玻璃窑炉结构设计
玻璃窑炉设计技术研究与探讨
玻璃窑炉设计技术研究与探讨第一章单元窑用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。
它是一种窑池狭长,用横穿炉膛的火焰燃烧和使用金属换热器预热助燃空气的窑炉。
通过设在两侧胸墙的多对燃烧器,使燃烧火焰与玻璃生产流正交,而燃烧产物改变方向后与玻璃流逆向运动。
因此在单元窑内的玻璃熔化、澄清行程长,比其它窑型在窑内停留时间长,适合熔制难熔和质量要求高的玻璃。
单元窑采用复合式燃烧器,该燃烧器将雾化燃料与预热空气同时从燃烧器喷出,经烧嘴砖进入窑炉内燃烧。
雾化燃料处在燃烧器中心,助燃空气从四周包围雾化燃料,能达到较好的混合。
所以与采用蓄热室小炉的窑型相比,燃料在燃烧过程中更容易获得助燃空气。
当空气过剩系数为1.05时能完全燃烧,通过调节燃料与助燃空气接触位置即可方便地控制火焰长度。
由于使用多对燃烧器,分别调节各自的助燃风和燃料量,则可以使全窑内纵向温度分布和炉内气氛满足玻璃熔化与澄清的要求,这也是马蹄焰窑所无法达到的。
单元窑运行中没有换火操作,窑内温度、气氛及窑压的分布始终能保持稳定,这对熔制高质量玻璃有利。
现代单元窑都配置有池底鼓泡,窑温、窑压、液面及燃烧气氛实行自动控制等系统,保证了难熔的E玻璃在较高熔化率下能获取用于直接拉制玻璃纤维的优质玻璃液。
所以迄今在国际上单元窑始终是E玻璃池窑拉丝的首选窑型。
单元窑与其它窑型相比的不足之处是能耗相对较高。
这是因为单元窑的长宽比较大,窑炉外围散热面积也大,散热损失相对较高。
采用金属换热器预热助燃空气的优点是不用换火,缺点是空气预热温度,受金属材料抗氧化、抗高温蠕变性能的制约,一般设计金属换热器的出口空气温度为650—850。
大多数单元窑热效率在15%以内,但如能对换热器后的废气余热再予利用,其热效率还可进一步提高。
配合料在单元窑的一端投入,投料口设在侧墙的一边或两边,也有设在端墙上的。
熔化好的玻璃从另一端穿过沉式流液洞流至称为通路的拉丝作业部。
第一节单元窑的结构设计一、单元窑熔化面积的确定单元窑熔化面积可用公式F= G/g2表示。
玻璃窑炉结构及窑炉用耐火材料性能.
5、热源供给:蓄热室
1)用途:蓄热室是利用耐火材料做蓄热体 (称为格子体)蓄积从窑内排出烟气的部分 热量,用来加热进入窑内的助燃空气 ---这样不但可以利用烟气余热,而且使得助燃 空气加热到较高温度,有利于提高作业温度; ---同时还起到把窑内废气排出及助燃空气 进入的通道;
2)蓄热室是什么结构和材质? 蓄热室是由前、后墙、隔墙及蓄热室内格子体组成, 使用温度分为上部为1200~1500℃,中部为 800~1200℃,下部为<800℃: a.蓄热室碹(砖厚350mm,外有3*64mm保温砖),其使 用条件为粉料的飞散,高温的温度变化,氧化还原反应, 材质为优质硅砖; b.蓄热室目标墙(砖厚350mm,外有146 的粘土砖及 178mm保温砖)其使用条件同蓄热室碹,材质为 AZS33#锆刚玉砖或高纯电熔镁砖; c.主墙和隔墙:上部(砖厚350mm),使用条件同蓄热室 碹,材质为优质硅砖;中部(砖厚230mm),使用条 件为中温的温度变化,材质为高铝砖或镁质砖;下部 (砖厚350mm),使用条件为低温的温度变化,材质 为低气孔粘土砖。 d.底部炉条碹,使用条件同下部格子砖,材质为低气孔率
卡脖出 口矮碹 卡脖吊 平碹 熔化部 大碹 卡脖入口 J形吊墙
卡脖池底
卡脖大 水包
池壁
2)玻璃液分隔装置有卡脖、冷却水包、窑坎等: ---卡脖是熔化部和冷却部之间的一段缩窄窑池,与 矮碹、吊墙配合使用,对熔化部和冷却部之间的 气体空间及玻璃液起分隔作用,从而降低玻璃液 的温度; ---冷却水管是由一组通过冷却水的圆形或方形钢管 组成,水管高度根据实用确定。冷却水管附近的 玻璃液受冷却后,形成粘度较大的不动层,构成 一道挡墙、降温作用大,不但可以阻挡未熔化的 浮渣进入冷却部,而且通过调节水管的沉入深度, 可以控制进入冷却部玻璃液的质量; ---窑坎,是斜坡式分隔能阻挡玻璃液的对流,窑的 纵向有多个窑坎,如澄清带,进入卡脖及进入工 作部前端均可设置窑坎。
梯度增氧助燃玻璃窑炉蓄热室结构的改进设计
梯度增氧助燃玻璃窑炉就是通过区域可控的弥散燃烧方式和梯度控制氧气和燃料燃烧技术,调整氧气的纯度、温度、压力、流量以及氧气喷出口形状和角度,实现分阶段燃烧,控制玻璃窑炉横向火焰预混区O2、N2浓度分布,燃烧区温度分布和火焰末端的CO 浓度分布,建立玻璃窑炉纵向合理的烟气组分分布和温度分布曲线,以满足整条生产线生产工艺的要求,熔化出优质玻璃液。
玻璃窑炉实行梯度增氧助燃后,燃烧产物的温度、碱蒸气和水蒸气含量以及NO X浓度等均发生了变化,导致蓄热室各部位的作业环境和耐火材料使用过程中损毁的原因也发生了改变。
因此,在合理选取蓄热室各部位耐火材料材质的同时,还需要对蓄热室各部位的结构进行设计改进。
首先是蓄热室墙体,根据蓄热室各部位所处的作业环境(温度、废气的冲刷和侵蚀情况),窑炉技术指标、原燃料特性、助燃方式和生产工艺等条件,合理经济的选取耐火材料。
格子体顶面下1.5 m 以上的上部空间墙体,此段宜选用优质的MgO≥97%的电熔再结合镁砖或Cr2O3≥20%的电熔再结合镁铬砖;经济条件许可的话,目标墙选用33#氧化法普通浇铸锆刚玉砖;炉条碹以上至格子体顶面下1.5 m处高度范围的墙体宜选用MgO 97%的高纯镁砖或Cr2O3≥12%的直接结合镁铬砖;下段墙体选用低气孔黏土砖;炉条碹找平砖以下的蓄热室墙宜选用普通黏土砖。
其次在锚拉结构,在墙体的外端,设置锚拉结构,增加了墙体的稳定性。
锚拉结构由特殊形状的锚拉砖、锚拉杆和锚拉横梁构成,见图1。
图1 锚拉结构蓄热室碹脚结构方面,蓄热室碹脚砖直接砌筑在墙体顶部,减少了蓄热室碹脚砖与墙体的缝隙,避免了高温废气穿透造成的侵蚀和冷空气吸入造成的能耗升高,见图2。
图2 蓄热室碹脚结构图蓄热室碹脚砖处设有能滚动的碹脚梁结构,由蓄热室碹脚梁、顶板、圆钢滚轴、顶丝和垂直吊挂件组和构成,见图3。
图3 能滚动的碹脚梁结构图蓄热室小炉入口碹和跺墙改为整块砖,其长度根据蓄热室的墙体厚度和蓄热室立柱的断面尺寸来确定。
浮法玻璃炉窑蓄热室格子体设计
神雾500t/d浮法玻璃炉窑蓄热室格子体设计(一)一、基本参数及蓄热室结构1.基本参数:●生产能力:P=500t / d;●燃料:热值为Q=1400kcal / Nm3的发生炉煤气;●单耗:r=1600 kcal / kg;●空气过剩系数:α=1.1;●换向周期:f=20分钟;●高温段格孔尺寸:150×150mm。
2.蓄热室结构高低温两段格子体结构,煤气和助燃空气独立预热。
流过格子体的烟气、助燃空气和煤气温度变化情况如下图所示:二、高温段蓄热室热平衡计算(一)高温段蓄热室气体温度及其热容量(二)全窑基础数据计算1.单位煤气所需理论空气量L0=(0.85Q / 1000)+Δ=(0.85×1400 / 1000)+0.03=1.22(Nm3 / Nm3)2.单位煤气所需实际空气量L a=α·L0=1.1×1.22=1.342(Nm3 / Nm3)3.全窑单位时间(秒)耗热量R s=(P×1000×r)÷(24×3600)=(500×1000×1600)÷(24×3600)=9260(kcal/ s)4.单位时间(秒)煤气消耗量MQ=R s / Q=9260 / 1400=6.614(Nm3 / s)5.单位时间(秒)实际助燃空气消耗量KQ a=L a·MQ=1.342×6.614=8.876(Nm3 / s)6.单位时间(秒)产生的烟气量YQ=[L a +0.98-(0.13×Q/1000)]·MQ=[1.342 +0.98-(0.13×1400/1000)]×6.614=14.154(Nm3 / s)(三)空气蓄热室与煤气蓄热室的烟气分配1.单位时间(秒)空气预热所需热量Q KQ=KQ a·(C KQ1350·1350℃-C KQ500·500℃)=8.876×(0.355×1350-0.326×500)=8.876×(479.25-163)=2807(kcal / s)2.单位时间(秒)煤气预热所需热量Q MQ=MQ·(C MQ1350·1350℃-C MQ500·500℃)=6.614×(0.361×1350-0.330×500)=6.614×(487.35-165)=2132(kcal / s)3.单位时间(秒)空气、煤气预热所需热量之和Q q=Q KQ+Q MQ=2807+2132=4939(kcal / s)4.单位时间(秒)空气蓄热室所需要的烟气量Y KQ=Q KQ / Q q·YQ=2807/4939×14.154=8.044(Nm3 / s)――――――――――――――――――――57%5.单位时间(秒)煤气蓄热室所需要的烟气量Y MQ=Q MQ / Q q·YQ=2132/4939×14.154=6.110(Nm3 / s)――――――――――――――――――――43%(四)高温段空气蓄热室热平衡1.单位时间(秒)烟气带入热量Q J1=Y KQ·C YQ1450·t YJ=8.044×0.391×1450=4560(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出热量Q C1=Y KQ·C YQ600·t YC=8.044×0.358×600=1728(kcal / s)――――――――――――――――――――37.89%3.单位时间(秒)空气预热所需热量Q KQ=2807(kcal / s)――――――――――――――――――61.56%4.单位时间(秒)空气蓄热室结构散热Q KQSR=Q J1-Q C1-Q KQ=4560-1728-2807=25(kcal / s)――――――――――――――――――――0.55%(五)高温段煤气蓄热室热平衡1.单位时间(秒)烟气带入热量Q J2=Y MQ·C YQ1450·t YJ=6.110×0.391×1450=3464(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出热量Q C2=Y MQ·C YQ600·t YC=6.110×0.358×600=1312(kcal / s)――――――――――――――――――――37.87%3.单位时间(秒)煤气预热所需热量Q MQ=2132(kcal / s)――――――――――――――――――61.55%4.单位时间(秒)煤气蓄热室结构散热Q MQSR=Q J2-Q C2-Q MQ=3464-1312-2132=20(kcal / s)――――――――――――――――――――0.58%(六)整个高温段蓄热室热平衡1.单位时间(秒)烟气带入总热量Q J=Q J1+Q J2=4560+3464=8024(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出总热量Q C=Q C1+Q C2=1728+1312=3040(kcal / s)――――――――――――――――――――37.89%3.单位时间(秒)空气、煤气预热所需总热量Q q=Q KQ+Q MQ=2807+2132=4939(kcal / s)――――――――――――――――――――61.55%4.单位时间(秒)空气、煤气蓄热室结构总散热Q ZSR=Q KQSR+Q MQSR=25+20=45(kcal / s)――――――――――――――――――――0.56%三、低温段蓄热室热平衡计算(一)低温段蓄热室气体温度及其热容量(二)低温段空气蓄热室热平衡1.单位时间(秒)烟气带入热量Q J1=Y KQ·C YQ600·t YJ=8.044×0.358×600=1728(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出热量Q C1=Y KQ·C YQ200·t YC=8.044×0.337×150=407(kcal / s)――――――――――――――――――――23.55%3.单位时间(秒)空气预热所需热量Q KQ=KQ a·(C KQ500·500℃-C KQ50·50℃)=8.876×(0.326×500-0.316×50)=8.876×(163-15.8)=1306(kcal / s)――――――――――――――――――75.58%4.单位时间(秒)空气蓄热室结构散热Q KQSR=Q J1-Q C1-Q KQ=1728-407-1306=15(kcal / s)――――――――――――――――――――0.87%(三)低温段煤气蓄热室热平衡1.单位时间(秒)烟气带入热量Q J2=Y MQ·C YQ600·t YJ=6.110×0.358×600=1312(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出热量Q C2=Y MQ·C YQ150·t YC=6.110×0.337×150=309(kcal / s)――――――――――――――――――――23.55%3.单位时间(秒)煤气预热所需热量Q MQ=MQ·(C MQ500·500℃-C MQ50·50℃)=6.614×(0.330×500-0.317×50)=6.614×(165-15.85)=986(kcal / s)――――――――――――――――――――75.15%4.单位时间(秒)煤气蓄热室结构散热Q MQSR=Q J2-Q C2-Q MQ=1312-309-986=17(kcal / s)――――――――――――――――――――1.30%(四)整个低温段蓄热室热平衡1.单位时间(秒)烟气带入总热量Q J=Q J1+Q J2=1728+1312=3040(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出总热量Q C=Q C1+Q C2=407+309=716(kcal / s)――――――――――――――――――――23.55%3.单位时间(秒)空气、煤气预热所需总热量Q q=Q KQ+Q MQ=1306+986=2292(kcal / s)――――――――――――――――――――75.39%4.单位时间(秒)空气、煤气蓄热室结构总散热Q ZSR=Q KQSR+Q MQSR=15+17=32(kcal / s)――――――――――――――――――――1.06%四、全窑蓄热室热平衡1.单位时间(秒)烟气带入总热量Q J=8024(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出总热量Q C=716(kcal / s)――――――――――――――――――――8.92%3.单位时间(秒)空气、煤气预热所需总热量Q q=4939+2292=7231(kcal / s)―――――――――――――90.12%4.单位时间(秒)空气、煤气蓄热室结构总散热Q ZSR=45+32=77(kcal / s)―――――――――――――――0.96%五、高温段蓄热室格子体设计(一)高温段空气蓄热室格子体1.采用以碱性砖为主的筒型砖格子体,格子体参数如下:(1)格孔尺寸:d g=150mm×150mm(2)筒型砖格子体壁厚:δ=30mm(3)格孔当量直径:d e=156mm(4)格孔断面积:A d=0.022m2(5)格子体单位体积换热面积(平均值)/比表面积:A gk=17.4m2 / m3(6)格子体单位体积砖体积:V gk=0.32m3 / m3(7)单位助燃空气单位时间(秒)所需要的格子体换热面积:A kk=800m2 / Nm3·s 2.助燃空气耗量:KQ a=8.876Nm3 / s3.每侧所需要的格子体换热面积:A g=KQ a·A kk=8.876×800=7101m24.每侧所需要的格子体体积:V g=A g/A gk=7101÷17.4=408m35.初步设格子体高度、长度尺寸:H=8m,L=18m6.求得格子体宽度:B=V g/(H·L)=408 /(8×18)=2.83(m)7.蓄热室每侧腔道数(小炉数):n=78.腔道纵向尺寸:小炉中心线间距-分隔墙厚=3.1-0.462=2.638(m)9.蓄热室纵向腔道总长:2.638m×7=18.466m10.腔道纵向格孔数:n1=1411.腔道横向格孔数:n2=1612.每侧腔道格孔总流通面积:0.022×14×16×7=34.5m213.格子体中空气标态流速:8.876÷34.5=0.257Nm / s14.格子体中烟气标态流速:8.044÷34.5=0.233Nm / s15.单侧蓄热室格子体总体积为:V t=[n1×(0.15+δ)]×[16×7×(0.15+δ)]×H=(14×0.18)×(16×7×0.18)×8=406.42m316.单侧蓄热室格子体总换热面积为:A=V t·A gk=406.42×17.4=7072(m2)17.单侧蓄热室格子体格子砖的总体积为:V=V t·V gk=406.42×0.32=130.05m3G gz=130.05×2.8=364.15t(二)高温段煤气蓄热室格子体1.采用以碱性砖为主的筒型砖格子体,格子体参数如下:(1)格孔尺寸:d g=150mm×150mm(2)筒型砖格子体壁厚:δ=30mm(3)格孔当量直径:d e=156mm(4)格孔断面积:A d=0.022m2(5)格子体单位体积换热面积(平均值)/比表面积:A gk=17.4m2 / m3(6)格子体单位体积砖体积:V gk=0.32m3 / m3(7)单位煤气单位时间(秒)所需要的格子体换热面积:A kk=800m2 / Nm3·s 2.煤气耗量:MQ=6.614Nm3 / s3.每侧所需要的格子体换热面积:A g=MQ·A kk=6.614×800=5291m24.每侧所需要的格子体体积:V g=A g/A gk=5291÷17.4=304m35.初步设格子体高度、长度尺寸:H=6m,L=18m6.求得格子体宽度:B=V g/(H·L)=304 /(6×18)=2.81(m)7.蓄热室每侧腔道数(小炉数):n=78.腔道纵向尺寸:小炉中心线间距-分隔墙厚=3.1-0.462=2.638(m)9.蓄热室纵向腔道总长:2.638m×7=18.466m10.腔道纵向格孔数:n1=1411.腔道横向格孔数:n2=1412.每侧腔道格孔总流通面积:0.022×14×14×7=30.2m213.格子体中煤气标态流速:6.614÷30.2=0.219Nm / s14.格子体中烟气标态流速:6.110÷30.2=0.202Nm / s15.单侧蓄热室格子体总体积为:V t=[n1×(0.15+δ)]×[14×7×(0.15+δ)]×H=(14×0.18)×(14×7×0.18)×6=266.72m316.单侧蓄热室格子体总换热面积为:A=V t·A gk=266.72×17.4=4641(m2)17.单侧蓄热室格子体格子砖的总体积为:V=V t·V gk=266.72×0.32=85.35m3G gz=85.35×3.4=290.19t(三)整个高温段蓄热室格子体数据汇总1.空气蓄热室单侧格子孔数量:14×16×7=15682.煤气蓄热室单侧格子孔数量:14×14×7=13723.单侧空气蓄热室格子体总换热面积:7072(m2)4.单侧煤气蓄热室格子体总换热面积:4641(m2)5.单侧空气蓄热室格子体总体积:406.42m36.单侧煤气蓄热室格子体总体积:266.72 m37.单侧空气蓄热室格子砖的总重量为:364.15t8.单侧煤气蓄热室格子砖的总重量为:290.19t9.全窑高温段蓄热室格子砖总重量:1308.68t六、低温段蓄热室格子体设计(一)低温段空气蓄热室格子体1.采用以碱性砖为主的筒型砖格子体,格子体参数如下:(1)格孔尺寸:d g=150mm×150mm(2)筒型砖格子体壁厚:δ=30mm(3)格孔当量直径:d e=156mm(4)格孔断面积:A d=0.022m2(5)格子体单位体积换热面积(平均值)/比表面积:A gk=770m2 / m3(6)格子体单位体积砖体积:V gk=0.423m3 / m3(7)单位助燃空气单位时间(秒)所需要的格子体换热面积:A kk=416m2 / Nm3·s 2.助燃空气耗量:KQ a=8.876Nm3 / s3.每侧所需要的格子体换热面积:A g=KQ a·A kk=8.876×416=3692m24.每侧所需要的格子体体积:V g=A g/A gk=3692÷770=4.79m35.初步设格子体高度、长度尺寸:H=8m,L=18m6.求得格子体宽度:B=V g/(H·L)=408 /(8×18)=2.83(m)7.蓄热室每侧腔道数(小炉数):n=78.腔道纵向尺寸:小炉中心线间距-分隔墙厚=3.1-0.462=2.638(m)9.蓄热室纵向腔道总长:2.638m×7=18.466m10.腔道纵向格孔数:n1=1411.腔道横向格孔数:n2=1612.每侧腔道格孔总流通面积:0.022×14×16×7=34.5m213.格子体中空气标态流速:8.876÷34.5=0.257Nm / s14.格子体中烟气标态流速:8.044÷34.5=0.233Nm / s15.单侧蓄热室格子体总体积为:V t=[n1×(0.15+δ)]×[16×7×(0.15+δ)]×H=(14×0.18)×(16×7×0.18)×8=406.42m316.单侧蓄热室格子体总换热面积为:A=V t·A gk=406.42×17.4=7072(m2)17.单侧蓄热室格子体格子砖的总体积为:V=V t·V gk=406.42×0.32=130.05m318.单侧蓄热室格子体格子砖的总重量为:G gz=130.05×2.8=364.15t(二)低温段煤气蓄热室格子体1.采用以碱性砖为主的筒型砖格子体,格子体参数如下:(1)格孔尺寸:d g=150mm×150mm(2)筒型砖格子体壁厚:δ=30mm(3)格孔当量直径:d e=156mm(4)格孔断面积:A d=0.022m2(5)格子体单位体积换热面积(平均值)/比表面积:A gk=17.4m2 / m3(6)格子体单位体积砖体积:V gk=0.32m3 / m3(7)单位煤气单位时间(秒)所需要的格子体换热面积:A kk=800m2 / Nm3·s 2.煤气耗量:MQ=6.614Nm3 / s3.每侧所需要的格子体换热面积:A g=MQ·A kk=6.614×800=5291m24.每侧所需要的格子体体积:V g=A g/A gk=5291÷17.4=304m35.初步设格子体高度、长度尺寸:H=6m,L=18m6.求得格子体宽度:B=V g/(H·L)=304 /(6×18)=2.81(m)7.蓄热室每侧腔道数(小炉数):n=78.腔道纵向尺寸:小炉中心线间距-分隔墙厚=3.1-0.462=2.638(m)9.蓄热室纵向腔道总长:2.638m×7=18.466m10.腔道纵向格孔数:n1=1411.腔道横向格孔数:n2=1412.每侧腔道格孔总流通面积:0.022×14×14×7=30.2m213.格子体中煤气标态流速:6.614÷30.2=0.219Nm / s14.格子体中烟气标态流速:6.110÷30.2=0.202Nm / s15.单侧蓄热室格子体总体积为:V t=[n1×(0.15+δ)]×[14×7×(0.15+δ)]×H=(14×0.18)×(14×7×0.18)×6=266.72m316.单侧蓄热室格子体总换热面积为:A=V t·A gk=266.72×17.4=4641(m2)17.单侧蓄热室格子体格子砖的总体积为:V=V t·V gk=266.72×0.32=85.35m318.单侧蓄热室格子体格子砖的总重量为:G gz=85.35×2.8=238.98t(三)整个低温段蓄热室格子体数据汇总1.空气蓄热室单侧格子孔数量:14×16×7=15682.煤气蓄热室单侧格子孔数量:14×14×7=13723.单侧空气蓄热室格子体总换热面积:7072(m2)4.单侧煤气蓄热室格子体总换热面积:4641(m2)5.单侧空气蓄热室格子体总体积:406.42m36.单侧煤气蓄热室格子体总体积:266.72 m37.单侧空气蓄热室格子砖的总重量为:364.15t8.单侧煤气蓄热室格子砖的总重量为:238.98t9.全窑高温段蓄热室格子砖总重量:1202.26t11。
玻璃窑炉设计及先进经验技术引用
玻璃窑炉设计及先进经验技术引用第一章单元窑第一节单元窑的结构设计一、单元窑熔化面积的确定二、熔池长、宽、深的确定三、池底鼓泡位置的确定四、窑池结构设计五、火焰空间结构设计六、烟道七、通路结构设计第二节耐火材料的选用及砌筑一、单元窑选用的主要耐火材料二、窑炉的砌筑技术第三节单元窑的附属设备一、投料机二、鼓泡器三、燃烧系统四、金属换热器第四节助熔易燃技术的应用一、辅助电熔在单元窑上的应用二、纯氧助燃技术的应用第五节窑炉的启动和投产一、投产准备二、燃料准备三、熟料准备四、制定窑炉升温曲线五、采用热风烤窑技术六、点火烤窑注意事项七、投产第二章玻璃球窑第一节窑炉的结构一、球窑的种类二、马蹄焰球窑结构设计三、球窑砖结构和耐火材料第二节窑炉的熔制一、玻璃球的熔制二、玻璃球的成型三、玻璃球的退火四、玻璃球生产工艺规程第三章全电熔玻璃窑第一节全电熔玻璃窑概述一、全电熔窑的优缺点二、全电熔窑的分类三、全电熔窑一览四、熔制特性及对配合料要求五、电熔窑是防止环境污染有力措施六、玻璃全电熔窑的技术经济分析第二节全电熔窑的结构设计一、全电熔窑的形状二、全电熔玻璃窑炉的加料三、供电电源和电极连接第四章电助熔技术第一节火焰池窑电助熔的意义一、池窑电助熔的优缺点二、电助熔加热的技术分析第二节电助熔池窑设计和操作一、熔窑内电极布置和功率配置二、熔加热功率的计算第三节电助熔池窑的实例一、生产硼硅酸盐BL电助熔池窑二、生产有色BL的电助池窑三、生产平板BI的电助熔池窑第五章供料道的电加热第一节供料道电加热概述一、供料道工作原理及其加热现状二、供料道电加热的优越性三、供料道电加热分类第二节供料道电加热的设计一、料道加热方式的选择二、电加热能耗的计算三、变压器功率确定、电极配置第三节供料道电加热的使用第四节供料道电加热实例第六章先进经验、技术一、窑炉新技术二、窑炉富氧然绕技术三、窑炉图片玻璃窑炉设计及先进经验技术引用第一章单元窑用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。
玻璃窑炉结构及窑炉用耐火材料性能 ppt课件
PPT课件
1
---目的:
全面了解 玻璃窑炉主要结构、窑炉用耐火 材料的基本成分及其性能
---主要内容:
• 1、介绍玻璃窑炉主要结构及各部位所用的材
料
• 2、介绍玻璃窑用各种耐火材料的基本成分及
其性能
• 附一:我司三期窑炉的主要结构尺寸
PPT课件
2
一、玻璃窑炉主要结构
---池壁(砖厚250mm左右),其使用条件是与玻璃液接 触并冲刷,其熔化区的池壁上沿还受配合料飞散及火焰 烧蚀,均采用AZS36#锆刚玉砖;
---池底上层(铺面砖100mm,中间捣打料50mm ,下层 粘土大砖300mm),其使用条件是与玻璃液接触并冲刷, 气--液相向上钻孔侵蚀,铺PPT课面件砖采用AZS33#锆刚玉砖10 ,
---玻璃熔窑很多已采用与熔化部等宽的加料池, 使得料层更薄,能防止偏料,投料池壁(砖厚 250mm)使用材质为:AZS36#锆刚玉砖;
PPT课件
5
---上部挡墙广泛采用L形吊墙(砖厚 305mm),该吊墙是单独悬吊的,可以加 长加料池,不但加强了密封减少了料尘飞 扬,还加强了对配合料的预熔作用;吊墙 采用材质:进口的高级硅砖,也有在下端 采用电熔莫石或锆刚玉砖或其组合砖等;
---上部挡墙的前端(即L形吊墙鼻区的前端) 吊挂一排挡焰砖或一组水包,主要起密封 作用,挡焰砖采用材质:低膨胀硅砖或烧 结莫来石砖。
PPT课件
6
L吊墙砖结构 挡焰砖
L吊墙砖结构 L吊墙钢结构
熔化 大碹
投料口 池壁
挡焰砖
窑池铺 面砖
PPT课件
投料口 池壁
窑池铺 面砖
窑池粘 土大砖
7
2、熔制部分:熔化部是什么结构和 材质?
玻璃窑炉设计技术精编版
玻璃窑炉设计技术公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]玻璃窑炉设计技术第一章单元窑?用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。
它是一种窑池狭长,用横穿炉膛的火焰燃烧和使用金属换热器预热助燃空气的窑炉。
通过设在两侧胸墙的多对燃烧器,使燃烧火焰与玻璃生产流正交,而燃烧产物改变方向后与玻璃流逆向运动。
因此在单元窑内的玻璃熔化、澄清行程长,比其它窑型在窑内停留时间长,适合熔制难熔和质量要求高的玻璃。
单元窑采用复合式燃烧器,该燃烧器将雾化燃料与预热空气同时从燃烧器喷出,经烧嘴砖进入窑炉内燃烧。
雾化燃料处在燃烧器中心,助燃空气从四周包围雾化燃料,能达到较好的混合。
所以与采用蓄热室小炉的窑型相比,燃料在燃烧过程中更容易获得助燃空气。
当空气过剩系数为时能完全燃烧,通过调节燃料与助燃空气接触位置即可方便地控制火焰长度。
由于使用多对燃烧器,分别调节各自的助燃风和燃料量,则可以使全窑内纵向温度分布和炉内气氛满足玻璃熔化与澄清的要求,这也是马蹄焰窑所无法达到的。
单元窑运行中没有换火操作,窑内温度、气氛及窑压的分布始终能保持稳定,这对熔制高质量玻璃有利。
现代单元窑都配置有池底鼓泡,窑温、窑压、液面及燃烧气氛实行自动控制等系统,保证了难熔的E玻璃在较高熔化率下能获取用于直接拉制玻璃纤维的优质玻璃液。
所以迄今在国际上单元窑始终是E玻璃池窑拉丝的首选窑型。
单元窑与其它窑型相比的不足之处是能耗相对较高。
这是因为单元窑的长宽比较大,窑炉外围散热面积也大,散热损失相对较高。
采用金属换热器预热助燃空气的优点是不用换火,缺点是空气预热温度,受金属材料抗氧化、抗高温蠕变性能的制约,一般设计金属换热器的出口空气温度为650—850。
大多数单元窑热效率在15%以内,但如能对换热器后的废气余热再予利用,其热效率还可进一步提高。
配合料在单元窑的一端投入,投料口设在侧墙的一边或两边,也有设在端墙上的。
玻璃窑炉结构设计
LOGO
Page 8
二、蓄热式、横火焰、大型炉
窑炉结构
1、融化部
(3)小炉 小炉3、5、8对不等
LOGO
Page 9
(4)蓄热室 蓄热面积:
单位体积蓄热面积为 熔化区面积的30~35~40倍 (单侧) 蓄热体高度 为50层格子砖 以上, 空气量过剩1.05左右
LOGO
Page 10
二、蓄热式、横火焰、大型炉
Page 5
2~2.5吨/平方米,天
LOGO
LOGO
Page 6
熔池结构设计
a/c=融化池面积 长宽比=1.8~2.2~2.4 池深=1.2~1.5m
加料池>熔池面积的2/3~3/4 鼓泡、窑坎——1/2窑高以上
Page 7
LOGO
二、蓄热式、横火焰、大型炉
窑炉结构
1、融化部
(2)火焰空间 a、胸墙 高度>1.2~1.4m, 厚 度400~550mm b、大旋 跨度:炉宽+外鞘 旋升高:1/8~1/9
窑炉结构
2、卡脖
宽度:相当于融化部的1/3~1/4 深度:600~800mm,浅些好 材料、挡砖:不回流 长度:3m左右,根据产量 搅拌:水平较方便,垂直
LOGO
Page 11
二、蓄热式、横火焰、大型炉
窑炉结构
3、冷却部
小型化,占融化部面积的15%~20% 池深浅:400~600mm 冷却方式:强制冷却上部吹冷风,一般为自然冷却
硅 砖轻 质 质 硅 捣 打 料
轻 质 粘 土 砖LOGOPage 14LOGO谢谢!
期待老师同学的指导
LOGO
Page 12
二、蓄热式、横火焰、大型炉
窑炉结构
45m2燃油高效节能玻璃窑炉的设计与施工
45m2燃油高效节能玻璃窑炉的设计简介山东省轻工业设计院王均光窑炉是玻璃厂的的心脏,其使用寿命的长短与熔化质量的高低将直接关系到工厂的经济效益(此不多述说)。
本文主要介绍了一座45m2燃油蓄热式马蹄燃玻璃窑炉,设计中所采用的主要节能技术与参数进行了简单的介绍,不妥之处恳请各位同仁指正。
一、设计的基础条件a、窑炉的熔化能力:要满足年产2万吨成品玻璃瓶。
b、产品方案:640ml啤酒瓶,标准:《GB4544-1996》。
c、料色:颜色料与无色料(主导产品为:640ml瓶)。
d、炉龄:5年以上。
e、能耗:要求≤140kg重油/t玻璃液。
二、熔化面积及窑型的确定综合以上条件,并考虑到熔化能力、能耗、炉龄、耐火材料的匹配、造价,并经过燃烧等方面的综合计算(此略),最终确定为:45m2蓄热式马蹄燃池窑。
三、设计中采用主要技术的内容,见下表四、设计中采用的主要技术参数五、关键部位的结构设计及材料的匹配耐火材料的选用与匹配是否合理将直接关系到窑炉的寿命。
窑炉的易损地方是与火焰与玻璃液接触部位,主要有:加料口拐角及上部连接碹、大碹、流液洞、窑坎、池底、加料口对墙、小炉及其喷火口、池壁、胸墙火焰拐弯的部位、前后墙等。
因此在设计与选材时要注意以上几个关键部位的材料选用与匹配,尤其是要注意酸、碱性材料不能直接接触使用。
5.1关键部位的耐火材料的匹配,见下表:注:“层序”是指所用材料在窑炉中自内到外:自上到下的排列次序。
5.2关键部位的几个有特点的结构设计窑炉的结构设计不仅要考虑各种砖材的搭配、砖缝的留设要合理,还要考虑砖与钢结构之间的结合的问题,否则可能要出现这样那样的事故也可能导致烤窑后整个窑炉的变形,影响窑炉的使用寿命。
a、加料口上部结构设计该加料口是专为裹入式加料机设计的,具有密闭与预熔的功能,主要有两部分组成:固定与移动部分,如下图:b、小炉结构设计示意该小炉采用了内倾与下倾且较扁的形式利于火焰拐弯与扩大覆盖面积,利于化料,形式如下:c、窑坎窑坎的结构形式是比较关键的,如果不合理可能导致池底的流料,本设计的窑坎在防止流料及使用寿命等方面都作了充分的考虑,其结构形式如下:d、蓄热室底部的设计该蓄热室底部采用风洞的结构形式,可有效的保护蓄热室基础,其结构形式如下:e、胸墙的结构设计该窑炉的胸墙的结构设计如下,形式比较新颖易于彻筑与维修,结构如下:总之,该窑炉无论在其结构上还是在其选材上都有许多独到之处,由于种种原因,在此仅讲到其中的部分内容,不当之处恳请同行指正。
玻璃马蹄焰窑炉结构设计
玻璃马蹄焰窑炉结构设计第二章结构设计2.1熔化部设计2.1.1熔化率K值确定瓶罐玻璃池窑设计K值在2.2—2.6t/m2.d为宜。
熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取2.5t/(m2·d)。
理由如下:目前国外燃油瓶罐玻璃窑炉熔化率均在2.2以上,而我国却在2.0左右,偏低的原因:(1)整个池窑缺少有助于强化熔融的配套设计。
(2)操作管理,设备,材料等使得窑后期生产条件恶化。
由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。
在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。
采取了K=2.5t/(m2·d)。
2.1.2熔化池设计(1)确定来了熔化率K值:熔化部面积100/2.5=40m2。
(2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm本设计取长宽比值为1.6。
长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。
窑长应≥4m。
在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取0.9~1.2 m)。
窑池宽度约为2~7m。
长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。
具体的池底排列会在后面设计的选材方面进行说明。
这里先不做细讲。
综上,本次选用L=8m,B=5m。
窑池深度一般根据经验确定。
池深一般在900—1200mm为宜。
池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。
一般池底温度在1200—1360℃之间较为合适。
池底温度的提高可使熔化率提高。
窑炉基本结构、耐火材料
硅质耐火材料
指标 SiO2 Al2O3 Fe2O3 显气孔率 真比重 常温耐压强度 优质硅砖
≥96 ≤0.3 ≤0.6 ≤20
普通硅砖
≥95 ≤0.5 ≤1.0 ≤21 ≤2.37 ≥29.4
2.32~2.33
≥40
荷软温度
≥1680
≥1660
粘土质耐火材料
Al2O3 含量在30~48%,其余主要是SiO2。
1、 严格按照砌筑标准进行,泥浆饱合均匀, 砖缝均匀。 2、 烤窑是关键,例如:烤窑温度是否均匀, 不均匀就会出现碹体膨胀不一致,碹体出现横 向掰缝。再如:松紧拉条的控制不当,也会造 成砖体缝隙。 3、 碹体进行强保温,保温可减少碱蒸汽在砖 缝的附着,控制鼠洞侵蚀产生的几率。
耐火材料的侵蚀
2、胸墙、小炉腿、小炉吹出口的侵蚀 此部位温度波动较大,尤其是小炉口周围,必须选用耐 飞料和碱蒸汽侵蚀的耐火材料,在砌筑上要有足够的 结构稳定性。采用全保温除可节能外,还可使热波动 幅度减小,从而减少耐火材料炸裂、剥落等倾向。 3、间隙转、小炉底的侵蚀 此部位既受配合料固体飞料的侵蚀,又受到大量碱蒸汽 的侵蚀,它的侵蚀速率要比单纯暴露的垂直表面高, 应选用抗蚀能力强的耐火材料。 4、小炉脖侧墙及碹的侵蚀 此部位因受换火周期的影响,经受热震荡和碱蒸汽的双 重侵蚀。热震荡和碱蒸汽的侵蚀相结合,会使耐火材 料发生脱片、剥落,剥落物沉积在小炉底上。
熔窑的基本结构
1、投料池
投料机 前脸水包
投料口
熔窑的基本结构
2、前脸墙 目前浮法 玻璃熔窑前脸 墙结构形式大 多为L型吊墙。 L型吊墙 是采用耐热钢 件将砖材吊挂 起来,外形像 大写字母“L”, 因此称其为L 吊墙。
【精品完整版】玻璃窑炉设计及先进经验技术引用
【精品完整版】玻璃窑炉设计及先进经验技术引用(此文档为word格式,下载后您可任意编辑修改!)玻璃窑炉设计及先进经验技术引用第一章单元窑第一节单元窑的结构设计一、单元窑熔化面积的确定二、熔池长、宽、深的确定三、池底鼓泡位置的确定四、窑池结构设计五、火焰空间结构设计六、烟道七、通路结构设计第二节耐火材料的选用及砌筑一、单元窑选用的主要耐火材料二、窑炉的砌筑技术第三节单元窑的附属设备一、投料机二、鼓泡器三、燃烧系统四、金属换热器第四节助熔易燃技术的应用一、辅助电熔在单元窑上的应用二、纯氧助燃技术的应用第五节窑炉的启动和投产一、投产准备二、燃料准备三、熟料准备四、制定窑炉升温曲线五、采用热风烤窑技术六、点火烤窑注意事项七、投产第二章玻璃球窑第一节窑炉的结构一、球窑的种类二、马蹄焰球窑结构设计三、球窑砖结构和耐火材料第二节窑炉的熔制一、玻璃球的熔制二、玻璃球的成型三、玻璃球的退火四、玻璃球生产工艺规程第三章全电熔玻璃窑第一节全电熔玻璃窑概述一、全电熔窑的优缺点二、全电熔窑的分类三、全电熔窑一览四、熔制特性及对配合料要求五、电熔窑是防止环境污染有力措施六、玻璃全电熔窑的技术经济分析第二节全电熔窑的结构设计一、全电熔窑的形状二、全电熔玻璃窑炉的加料三、供电电源和电极连接第四章电助熔技术第一节火焰池窑电助熔的意义一、池窑电助熔的优缺点二、电助熔加热的技术分析第二节电助熔池窑设计和操作一、熔窑内电极布置和功率配置二、熔加热功率的计算第三节电助熔池窑的实例一、生产硼硅酸盐BL电助熔池窑二、生产有色BL的电助池窑三、生产平板BI的电助熔池窑第五章供料道的电加热第一节供料道电加热概述一、供料道工作原理及其加热现状二、供料道电加热的优越性三、供料道电加热分类第二节供料道电加热的设计一、料道加热方式的选择二、电加热能耗的计算三、变压器功率确定、电极配置第三节供料道电加热的使用第四节供料道电加热实例第六章先进经验、技术一、窑炉新技术二、窑炉富氧然绕技术三、窑炉图片玻璃窑炉设计及先进经验技术引用第一章单元窑用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。
玻璃球窑之窑炉的结构和熔制
玻璃球窑之窑炉的结构和熔制一、球窑的种类1.E玻璃球窑生产E玻璃成分的窑炉被称为E玻璃球窑。
适合的窑型有:蓄热式马蹄焰窑;蓄热式横火焰窑;换热式单元窑。
其中单元窑能较好控制玻璃质量,但在我国玻璃球生产初期,国内缺少高热值燃油及煤气,燃烧器和金属换热器方面的技术落后,因此实际上单元窑从没有用于生产玻璃球。
横火焰窑生产的玻璃质量相对较好,但因蓄热式横火焰窑池宽度一般要求大于4mm,以保证燃烧完全和窑炉热效率高。
这样,横火焰窑的熔化面积较大,使制球机半圆型工作池的布置受到限制,因此这种窑型的使用也很少。
但可以认为,随着制球机的改进,以及能源供给的多样化,采用横火焰窑还是有一定应用前景的。
马蹄焰窑至今仍是国内制造E玻璃球的首选窑型。
2.C玻璃球窑生产C玻璃成分的窑炉被称为C玻璃球窑,C玻璃球窑也以采用马蹄形火焰窑为主。
过去4台制球机以下的C玻璃球窑曾采用过双碹窑。
应该说单元窑和横火焰窑同样也适用于C玻璃球窑,但由于如前所述的原因,实际生产中从未采用。
3.电熔球窑适合于小规模特种成分玻璃球或玻璃块的生产。
二、马蹄焰球窑结构设计1.结构尺寸(1)熔化面积。
窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。
而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。
(2)熔池长宽比。
长宽比越大,玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。
采用高热值燃料的球窑池长可达到10mm,所以可选择较大的长宽比。
而采用低热值燃料的球窑应选择较小的长宽比。
一般长宽比选用范围为1.4—2.0。
(3)池深。
池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。
一般池底温度在1200—1360℃之间较为合适。
玻璃窑炉设计
目录设计说明 ........................................................................................................................ ΙDesign Specification . (III)目录 (V)第一章浮法玻璃工业概述 (1)1.1玻璃 (1)1.2 玻璃工艺 (1)1.3 浮法玻璃 (2)1.4生产工艺 (3)1.4.1 原料生产工艺流程 (3)1.4.2 燃油系统工艺流程 (4)1.4.3 浮法联合车间玻璃生产工艺流程 (5)1.5 窑炉 (6)1.6 熔窑设计 (7)第二章玻璃原料 (9)2.1 主要原料 (9)2.1.1 引入二氧化硅的原料 (9)2.1.2 引入氧化铝的原料 (10)2.1.3 引入氧化硼的原料 (10)2.1.4 引入氧化钠的原料 (10)2.1.5 引入氧化钾的原料 (11)2.1.6 引入氧化钙的原料 (11)2.1.7 引入氧化镁的原料 (11)2.2 辅助原料 (11)2.2.1 澄清剂 (12)2.2.2 氧化剂 (12)2.2.3 还原剂 (12)2.2.4 脱色剂 (12)V2.2.5 着色剂 (12)2.3 配合料质量要求 (13)第三章熔制车间的物料平衡计算 (14)3.1 本设计工艺制度 (14)3.1.1料方及原料组成 (14)3.1.2碎玻璃用量 (14)3.1.3配合料(不包括碎玻璃) (14)3.2 玻璃成分确定 (14)3.3 配合料用量计算 (16)第四章热平衡计算 (17)4.1 玻璃形成过程的热量平衡 (17)4.1.1 支出热量 (17)4.1.2 收入热量 (18)4.2 熔化部热平衡 (18)4.2.1 熔化部的热平衡分析 (18)4.2.2 油燃烧计算 (19)4.2.3 各项热收入项的计算 (20)4.2.4 各项热支出项的计算 (21)4.2.5 热平衡计算 (23)第五章玻璃窑体主要尺寸确定 (24)5.1 玻璃熔制部分设计 (24)5.1.1 熔化部的设计 (24)5.1.2 分隔装置的设计 (27)5.1.3 投料部分设计 (27)5.1.4 冷却部的计算 (27)5.2 热源供给部分的设计 (28)5.3 余热回收设备—蓄热室的设计 (29)5.4 排烟供气系统的设计 (29)第六章窑炉耐火材料选用 (31)6.1 熔化部用耐火材料 (31)6.1.1 与玻璃液相接触的部分 (31)VI6.1.2 火焰空间 (32)6.2 冷却部用耐火材料 (32)6.3 锡槽用耐火材料 (33)6.4 蓄热室用耐火材料 (33)6.5 烟道和烟囱用耐火材料 (34)6.6 玻璃退火窑用的耐火材料 (34)参考文献 (35)致谢 (36)VII第一章浮法玻璃工业概述1.1玻璃玻璃:一种透明的固体物质,在熔融时形成连续网络结构,冷却过程中粘度逐渐增大并硬化而不结晶的硅酸盐类非金属材料。
玻璃池窑结构
分隔挡板:起密封作用。
擦锡装置:在辊子下部紧贴着的擦锡石墨碗,它由弹簧片顶紧辊 子而起到擦锡作用。
可调辊(过渡辊):作用:(1)将玻璃带在锡槽出口处的玻璃带抬 起呈“爬坡”状态,以脱离锡液面而过渡到辊道 上,避免锡液被玻璃带拉出锡槽和玻璃带在尾端 出口 处被划伤。(2)牵引玻璃带前进。
投料池:用来集中配合料,摊平配合料并与使
作用
配合预热到一定的温度。
投
前脸墙:阻挡火焰不外溢,降低投料口的环境温度。
料
口
要求:连续薄层投料、加速熔化、扩大投料面积、
D:设备:
尽量避免扬尘能自动控制
常用设备:弧毯式投料机、倾斜式投料机(图2.4)
第8页/共88页
作用是进行配合料熔化和 玻璃液澄清、均化
1.3 余热回收利用部分
国内浮法玻璃能耗为7500kJ/kg玻璃液,而国际知名公司平均水平为
6500kJ/kg玻璃液,相差15%,按现有规模,每年多耗油45万吨。国内锡耗34g/重箱,国际知名公司平均水平为0.7-1g/重箱,每年多耗锡624吨。窑炉寿命 国内平均水平是5-7年,国际知名公司平均水平为8-12年,平均少4年。
结构
上部空间:起冷却作用。 下部空间:起供料、分配作用。
第10页/共88页
4、分隔装置
将玻璃池窑的熔化部和冷却部之间分隔
包括玻璃液的分隔装置和气体空间的分隔装置
气体空间分隔装置:作用:减小熔化部高温火焰对冷却部的影响
1)矮碹分隔式 特点:矮碹处的下胸墙比较低,但还有一定空间(称为开度)。
这种分隔效果较差,如果要想提高分隔效果,还要配合卡脖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玻璃窑炉结构设计
蓄热式横火焰浮法池窑窑墙结构
一、玻璃窑炉种类
1、间歇式
多品种,小批量(几 百公斤~几吨) (1)坩埚窑
用于手工传统工艺品
(2)电炉
生产小型仿玉玻璃
LOGO
Page 2
2、连续式
一边加热,一边输热 (1)换热式
通过同形砖、金属换热器 温度稳定
(2)蓄热式:
限制交换时间, 效率高 火焰形成:马蹄焰 横火焰
硅 砖轻 质 质 硅 捣 打 料
轻 质 粘 土 砖
LOGO
Page 14
LOGO
谢谢!
期待老师同学的指导
Page 5
2~2.5吨/平方米,天
LOGO
LOGO
Page 6
熔池结构设计
a/c=融化池面积 长宽比=1.8~2.2~2.4 池深=1.2~1.5m
加料池>熔池面积的2/3~3/4 鼓泡、窑坎——1/2窑高以上
Page 7
LOGO
二、蓄热式、横火焰、大型炉
窑炉结构
1、融化部
(2)火焰空间 a、胸墙 高度>1.2~1.4m, 厚 度400~550mm b、大旋 跨度:炉宽+外鞘 旋升高:1/8~1/9
LOGO
Page 3
蓄热体
在窑炉两侧建蓄热室:先通烟气,再通空气
1100~1300℃
1400℃左右
气空
蓄热室
气烟
镁砖,高铝砖 粘土砖
80~100℃
Page 4
650℃
LOGO
二、蓄热式、横火焰、大型炉
窑炉结构
1、融化部
(1)熔池面积 a、产量目标( 200吨~800吨)
b、产品品种、质量(透明度、条纹)、融化点、膨 胀系数、融化温度 c、熔化率
O
Page 8
二、蓄热式、横火焰、大型炉
窑炉结构
1、融化部
(3)小炉 小炉3、5、8对不等
LOGO
Page 9
(4)蓄热室 蓄热面积:
单位体积蓄热面积为 熔化区面积的30~35~40倍 (单侧) 蓄热体高度 为50层格子砖 以上, 空气量过剩1.05左右
LOGO
Page 10
二、蓄热式、横火焰、大型炉
窑炉结构
2、卡脖
宽度:相当于融化部的1/3~1/4 深度:600~800mm,浅些好 材料、挡砖:不回流 长度:3m左右,根据产量 搅拌:水平较方便,垂直
LOGO
Page 11
二、蓄热式、横火焰、大型炉
窑炉结构
3、冷却部
小型化,占融化部面积的15%~20% 池深浅:400~600mm 冷却方式:强制冷却上部吹冷风,一般为自然冷却
LOGO
Page 12
二、蓄热式、横火焰、大型炉
窑炉结构
4、烟道及烟囱
(1)玻璃液面在10~12m时, 烟囱一般为55m以上
5、余热处理、净化系统
LOGO
Page 13
二、蓄热式、横火焰、大型炉
窑墙耐火材料
1、池壁砖 2.胸墙砖
砖电 熔 锆 刚 玉
粘 土 大 砖
保 温 层
砖电 熔 锆 刚 玉