高中数学立体几何专:空间距离的各种计算(含答案)

合集下载

高二数学空间向量解决空间距离问题

高二数学空间向量解决空间距离问题

n
P
四种距离的统一向量形式:
点到平面的距离:
直线到平面的距离:
d

|
AP n |
平面到平面的距离:
n
异面直线的距离:
如图,在正方体ABCD-A1B1C1D1中,棱长为1, E为D1C1的中点,求下列问题:
(1) 求B1到面A1BE的距离; z
D1
A1
D
A
x
E
C1
B1
Cy
B
如图,在正方体ABCD-A1B1C1D1中,棱长为1, E为D1C1的中点,求下列问题:
即zy

2x, 2x,
取x=1,得平面A1BE的 一个法向量n (1, 2, 2)
z
D1 A1
E C1
B1
选点B1到面A1BE的斜向量为A1B1 0,1,0,
D
得B1到面A1BE的距离为d
A1B1 n n
2 3
A
x
Cy
B
解:1)以D为坐标原点,DA所在的直线为x轴,DC所在的直线为y轴,
立体几何中的向量方法 ------距离问题
一、求点到平面的距离
P
一般方法:
利用定义先作出过
d
这个点到平面的垂
线段,再计算这个
垂线段的长度。
O
还可以用等积法求距离.
向量法求点到平面的距离
d
sin
AP
d | AP | sin P
n
| AP n |
sin
d
AP n
d | AP n | n
(2) 求D1C到面A1BE的距离;
z
D1
A1
D

高中数学 第二章 空间向量与立体几何 2.6 距离的计算 2.6.2 直线到平面的距离、平面到平面的

高中数学 第二章 空间向量与立体几何 2.6 距离的计算 2.6.2 直线到平面的距离、平面到平面的
2.6.Biblioteka 直线到平面的距离、平面到平 面的距离
1.理解直线到平面的距离、平面到平面的距离的概念. 2.通过转化,会利用空间向量解决距离问题.
1.直线到平面的距离
当直线与平面平行时,直线上任一点到该平面的距离,叫直线到
平面的距离.
求直线到平面的距离时,一般转化为点到平面的距离.
说明:如果直线l平行于平面α,即l∥α,求直线l到α的距离可以转化
2.平面到平面的距离 当两平面平行时,一个平面内任一点到另一平面的距离,叫平面 到平面的距离. 求平面到平面的距离时,一般也是转化成点到平面的距离. 说明:如果两个平面α,β互相平行,即α∥β,求α与β之间的距离可以 转化为求平面α上任意一点P到平面β的距离,即点到平面的距离.
3.两条异面直线间的距离 (1)与两异面直线垂直且相交的直线叫作异面直线的公垂线,夹在 两交点之间的线段叫作公垂线段.两异面直线的距离是指公垂线段 的长度. (2)用向量法求异面直线距离的步骤:先求两条异面直线的公垂线 的方向向量,再求两条异面直线上两点的连线段在公垂线的方向向 量上的投影的大小.如图,a,b是两条异面直线,n是a和b的公垂线的 方向向量,点E∈a,F∈b,则异面直线a与b间的距离 d=|������|������������·|������|.
设 F(0,m,0),则������������=(-a,m-a,0),������������=(-a,-a,a).
∵PC⊥CF,∴������������ ⊥ ������������,∴������������ ·������������=(-a)·(-a)+(-a)·(m-a)+0·a
=a2-a(m-a)=0,
∴������������1=(1,1,1)为 AD1和 A1B 的公垂线的方向向量,d=|���������|������1������·������1������|���1| =

高中数学浅谈空间距离的几种计算方法-北师大版选修2-1

高中数学浅谈空间距离的几种计算方法-北师大版选修2-1

浅谈空间距离的几种计算方法【摘要】空间的距离是从数量角度进一步刻划空间中点、线、面、体之间相对位置关系的重要的量,是平面几何与立体几何中研究的重要数量.空间距离的求解是高中数学的重要内容,也是历年高考考查的重点和热点,其中以点与点、点到线、点到面的距离为基础,一般是将问题最终转化为求线段的长度。

在解题过程中,要充分利用图形的特点和概念的内在联系,做好各种距离间的相互转化,从而使问题得到解决。

【关键词】空间距离点线距离点面距离异面直线距离公垂线段等体积法【正文】空间距离是衡量空间中点、线、面、体之间相对位置关系的重要的量。

空间距离的求解是高中数学的重要内容,也是历年高考考查的重点。

空间距离主要包括:(1)两点之间的距离;(2)点到直线的距离;(3)点到平面的距离;(4)两条异面直线的距离;(5)与平面平行的直线到平面的距离;(6)两平行平面间的距离。

这六种距离的计算一般常采用“一作、二证、三计算”的方法求解。

对学生来说是较难掌握的一种方法,难就难在“一作”上。

所谓的“一作”就是作出点线或点面距中的垂线段,异面直线的公垂线段。

除非有相当的基本功,否则这种方法很难运用自如,因此就需要进行转化来求解这些空间距离。

下面就介绍几种常见的空间距离的计算方法,使得有些距离的计算可以避开作(或找)公垂线段、垂线段的麻烦,使空间距离的计算变得比较简单。

一、两点之间的距离两点间的距离的计算通常有两种方法:1、可以计算线段的长度。

把要求的线段放入某个三角形中,用勾股定理或余弦定理求解。

2、可以用空间两点间距离公式。

如果图形比较特殊,便于建立空间直角坐标系,可写出两点的坐标,然后代入两点间距离公式计算即可。

二、点到直线的距离在求解点到直线的距离时,通常是寻找或构造一个三角形。

其中点是三角形的一个顶点,直线是此顶点所对的一条边,利用等面积法计算点线距离。

所寻找或构造的三角形有等腰三角形(或等边三角形)、直角三角形、一般三角形三类,最关键的步骤是算出三角形的面积,然后用等面积法计算即可。

高中数学立体几何空间距离问题

高中数学立体几何空间距离问题

立体几何空间距离问题空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离.●难点磁场(★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点.求:(1)Q到BD的距离;(2)P到平面BQD的距离.P为RT△ABC所在平面α外一点,∠ACB=90°(如图)(1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角(2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离●案例探究[例1]把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC 的中点,点O 是原正方形的中心,求:(1)EF 的长;(2)折起后∠EOF 的大小.命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目.知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直.技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单.解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-42a , a ),F (42a , 42a ,0) 21||||,cos ,2||,2||8042)42)(42(420)0,42,42(),42,42,0()2(23,43)420()4242()042(||)1(22222-=>=<==-=⋅+-+⨯=⋅=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF∴∠EOF =120°[例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离.命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.错解分析:本题容易错误认为O 1B 是A 1C 与AB 1的距离,这主要是对异面直线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的距离.技巧与方法:求异面直线的距离,有时较难作出它们的公垂线,故通常采用化归思想,转化为求线面距、面面距、或由最值法求得.解法一:如图,连结AC 1,在正方体AC 1中,∵A 1C 1∥AC ,∴A 1C 1∥平面AB 1C ,∴A 1C 1与平面AB 1C 间的距离等于异面直线A 1C 1与AB 1间的距离.连结B 1D 1、BD ,设B 1D 1∩A 1C 1=O 1,BD ∩AC =O ∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥平面BB 1D 1D∴平面AB 1C ⊥平面BB 1D 1D ,连结B 1O ,则平面AB 1C ∩平面BB 1D 1D =B 1O 作O 1G ⊥B 1O 于G ,则O 1G ⊥平面AB 1C∴O 1G 为直线A 1C 1与平面AB 1C 间的距离,即为异面直线A 1C 1与AB 1间的距离.在Rt △OO 1B 1中,∵O 1B 1=22,OO 1=1,∴OB 1=21121B O OO += 26∴O 1G =331111=⋅OB B O O O ,即异面直线A 1C 1与AB 1间距离为33.解法二:如图,在A 1C 上任取一点M ,作MN ⊥AB 1于N ,作MR ⊥A 1B 1于R ,连结RN ,∵平面A 1B 1C 1D 1⊥平面A 1ABB 1,∴MR ⊥平面A 1ABB 1,MR ⊥AB 1 ∵AB 1⊥RN ,设A 1R =x ,则RB 1=1-x ∵∠C 1A 1B 1=∠AB 1A 1=45°,∴MR =x ,RN =NB 1=)1(22x - 31)31(23)1(2122222+-=-+=+=x x x RN MR MN (0<x <1)∴当x =31时,MN 有最小值33即异面直线A 1C 1与AB 1距离为33.●锦囊妙计空间中的距离主要指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离.(6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离.七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离.在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点.求点到平面的距离:(1)直接法,即直接由点作垂线,求垂线段的长.(2)转移法,转化成求另一点到该平面的距离.(3)体积法.求异面直线的距离:(1)定义法,即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.●歼灭难点训练 一、选择题1.(★★★★★)正方形ABCD 边长为2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图),M 为矩形AEFD 内一点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为( )21 D. 23C. B.1 22A.2.(★★★★)三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,则A 1C 1与l 的距离为( )A.10B.11C.2.6D.2.4二、填空题3.(★★★★)如左下图,空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为_________.4.(★★★★)如右上图,ABCD与ABEF均是正方形,如果二面角E—AB—C 的度数为30°,那么EF与平面ABCD的距离为_________.三、解答题5.(★★★★★)在长方体ABCD—A1B1C1D1中,AB=4,BC=3,CC1=2,如图:(1)求证:平面A1BC1∥平面ACD1;(2)求(1)中两个平行平面间的距离;(3)求点B1到平面A1BC1的距离.6.(★★★★★)已知正四棱柱ABCD—A1B1C1D1,点E在棱D1D上,截面EAC∥D1B且面EAC与底面ABCD所成的角为45°,AB=a,求:(1)截面EAC的面积;(2)异面直线A1B1与AC之间的距离;(3)三棱锥B1—EAC的体积.7.(★★★★)如图,已知三棱柱A1B1C1—ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.(1)求点A到平面B1BCC1的距离;(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.8.(★★★★★)如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB = 31AD =a ,∠ADC =arccos552,P A ⊥面ABCD 且P A =a .(1)求异面直线AD 与PC 间的距离;(2)在线段AD 上是否存在一点F ,使点A 到平面PCF 的距离为36.参考答案 难点磁场解:(1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足 连结QE ,∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE ∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b , ∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c∴QE =22222ba b a c ++∴Q 到BD 距离为22222ba b a c ++.(2)解法一:∵平面BQD 经过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离.在Rt △AQE 中,∵AQ =c ,AE =22ba ab +∴AH =22222)(ba cb a abc ++∴P 到平面BD 的距离为22222)(ba cb a abc ++解法二:设点A 到平面QBD 的距离为h ,由 V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQ h =22222)(ba cb a abc S AQS BQDABD ++==⋅∆∆歼灭难点训练一、1.解析:过点M 作MM ′⊥EF ,则MM ′⊥平面BCF ∵∠MBE =∠MBC∴BM ′为∠EBC 为角平分线, ∴∠EBM ′=45°,BM ′=2,从而MN =22 答案:A2.解析:交线l 过B 与AC 平行,作CD ⊥l 于D ,连C 1D ,则C 1D 为A 1C 1与l 的距离,而CD 等于AC 上的高,即CD =512,Rt △C 1CD 中易求得C 1D =513=2.6 答案:C二、3.解析:以A 、B 、C 、D 为顶点的四边形为空间四边形,且为正四面体,取P 、Q 分别为AB 、CD 的中点,因为AQ =BQ =22a ,∴PQ ⊥AB ,同理可得PQ ⊥CD ,故线段PQ 的长为P 、Q 两点间的最短距离,在Rt △APQ 中,PQ =22)2()23(2222=-=-a a AP AQ a 答案:22a4.解析:显然∠F AD 是二面角E —AB —C 的平面角,∠F AD =30°,过F 作FG ⊥平面ABCD 于G ,则G 必在AD 上,由EF ∥平面ABCD .∴FG 为EF 与平面ABCD 的距离,即FG =2a . 答案:2a三、5.(1)证明:由于BC 1∥AD 1,则BC 1∥平面ACD 1 同理,A 1B ∥平面ACD 1,则平面A 1BC 1∥平面ACD 1(2)解:设两平行平面A 1BC 1与ACD 1间的距离为d ,则d 等于D 1到平面A 1BC 1的距离.易求A 1C 1=5,A 1B =25,BC 1=13,则cos A 1BC 1=652,则sin A 1BC 1=6561,则S 111C B A ∆=61,由于111111D C A B BC A D V V --=,则31S 11BC A ∆·d =)21(31111D C AD ⋅·BB 1,代入求得d =616112,即两平行平面间的距离为616112. (3)解:由于线段B 1D 1被平面A 1BC 1所平分,则B 1、D 1到平面A 1BC 1的距离相等,则由(2)知点B 1到平面A 1BC 1的距离等于616112. 6.解:(1)连结DB 交AC 于O ,连结EO , ∵底面ABCD 是正方形 ∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45° 又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a (2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1 ∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a ∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC ∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a32422322311a a a V EAC B =⋅⋅=-7.解:(1)∵BB 1⊥A 1E ,CC 1⊥A 1F ,BB 1∥CC 1 ∴BB 1⊥平面A 1EF 即面A 1EF ⊥面BB 1C 1C 在Rt △A 1EB 1中, ∵∠A 1B 1E =45°,A 1B 1=a∴A 1E =22a ,同理A 1F =22a ,又EF =a ,∴A 1E =22a 同理A 1F =22a ,又EF =a∴△EA 1F 为等腰直角三角形,∠EA 1F =90°过A 1作A 1N ⊥EF ,则N 为EF 中点,且A 1N ⊥平面BCC 1B 1 即A 1N 为点A 1到平面BCC 1B 1的距离 ∴A 1N =221a =又∵AA 1∥面BCC 1B ,A 到平面BCC 1B 1的距离为2a ∴a =2,∴所求距离为2(2)设BC 、B 1C 1的中点分别为D 、D 1,连结AD 、DD 1和A 1D 1,则DD 1必过点N ,易证ADD 1A 1为平行四边形.∵B 1C 1⊥D 1D ,B 1C 1⊥A 1N ∴B 1C 1⊥平面ADD 1A 1 ∴BC ⊥平面ADD 1A 1得平面ABC ⊥平面ADD 1A 1,过A 1作A 1M ⊥平面ABC ,交AD 于M , 若A 1M =A 1N ,又∠A 1AM =∠A 1D 1N ,∠AMA 1=∠A 1ND 1=90° ∴△AMA 1≌△A 1ND 1,∴AA 1=A 1D 1=3,即当AA 1=3时满足条件. 8.解:(1)∵BC ∥AD ,BC ⊂面PBC ,∴AD ∥面PBC从而AD 与PC 间的距离就是直线AD 与平面PBC 间的距离. 过A 作AE ⊥PB ,又AE ⊥BC ∴AE ⊥平面PBC ,AE 为所求. 在等腰直角三角形P AB 中,P A =AB =a ∴AE =22a(2)作CM ∥AB ,由已知cos ADC =552 ∴tan ADC =21,即CM =21DM ∴ABCM 为正方形,AC =2a ,PC =3a过A 作AH ⊥PC ,在Rt △P AC 中,得AH =36 下面在AD 上找一点F ,使PC ⊥CF取MD 中点F ,△ACM 、△FCM 均为等腰直角三角形∴∠ACM +∠FCM =45°+45°=90°∴FC ⊥AC ,即FC ⊥PC ∴在AD 上存在满足条件的点F .[学法指导]立体几何中的策略思想及方法近年来,高考对立体几何的考查仍然注重于空间观点的建立和空间想象能力的培养.题目起点低,步步升高,给不同层次的学生有发挥能力的余地.大题综合性强,有几何组合体中深层次考查空间的线面关系.因此,高考复习应在抓好基本概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何问题的有效的策略思想及方法.一、领悟解题的基本策略思想高考改革稳中有变.运用基本数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在基本数学思想指导下,归纳一套合乎一般思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的经验,解决一般基本数学问题就会自然流畅.二、探寻立体几何图形中的基面立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地“立”起来.在具体的问题中,证明和计算经常依附于某种特殊的辅助平面即基面.这个辅助平面的获取正是解题的关键所在,通过对这个平面的截得,延展或构造,纲举目张,问题就迎刃而解了.三、重视模型在解题中的应用学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力.而数学问题中许多图形和数量关系都与我们熟悉模型存在着某种联系.它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学问题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特征规律获取优解.。

空间向量间的距离(高中全部8种方法详细例题)

空间向量间的距离(高中全部8种方法详细例题)

空间向量间的距离(高中全部8种方法详细例题)1. 利用欧式距离公式计算已知向量A(2, 3, 4)和向量B(1, -2, 5),求两向量间的欧式距离。

解答:欧式距离公式为:d = √((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2)其中,(x1, y1, z1)为向量A的坐标,(x2, y2, z2)为向量B的坐标。

代入数值计算:d = √((1-2)^2 + (-2-3)^2 + (5-4)^2)= √((-1)^2 + (-5)^2 + (1)^2)= √(1 + 25 + 1)= √27≈ 5.196所以向量A和向量B之间的欧式距离约为5.196。

2. 利用曼哈顿距离公式计算已知向量C(3, 5, 2)和向量D(6, 1, 4),求两向量间的曼哈顿距离。

解答:曼哈顿距离公式为:d = |x2-x1| + |y2-y1| + |z2-z1|其中,(x1, y1, z1)为向量C的坐标,(x2, y2, z2)为向量D的坐标。

代入数值计算:d = |6-3| + |1-5| + |4-2|= |3| + |-4| + |2|= 3 + 4 + 2= 9所以向量C和向量D之间的曼哈顿距离为9。

3. 利用切比雪夫距离公式计算已知向量E(7, 2, 6)和向量F(4, 8, 3),求两向量间的切比雪夫距离。

解答:切比雪夫距离公式为:d = max(|x2-x1|, |y2-y1|, |z2-z1|)其中,(x1, y1, z1)为向量E的坐标,(x2, y2, z2)为向量F的坐标。

代入数值计算:d = max(|4-7|, |8-2|, |3-6|)= max(|-3|, |6|, |-3|)= 6所以向量E和向量F之间的切比雪夫距离为6。

4. 利用马氏距离公式计算已知向量G(2, 4, 6)和向量H(4, 8, 12),求两向量间的马氏距离。

解答:马氏距离公式为:d = √((x2-x1)^T * C^-1 * (x2-x1))其中,(x1, x2)为向量G和向量H的坐标,C为协方差矩阵。

专题38 立体几何中的距离、截面、折叠问题(解析版)

专题38  立体几何中的距离、截面、折叠问题(解析版)
因为 平面 ,所以 ,所以 为二面角 的平面角.
结合图1可知, 为 中点,故 ,从而
所以 ,所以二面角 的平面角的余弦值为 .
向量法:以 点为原点,建立空间直角坐标系 如图所示,
则 , , ,所以 ,
设 为平面 的法向量,则 ,即 ,
解得 ,令 ,得 ,由(Ⅰ)知, 为平面 的一个法向量,
所以 ,即二面角 的平面角的余弦值为 .
2、平面外一点P到平面α的距离:如图,已知平面α的法向量为n,A是平面α内的定点,P是平面α外一点,过点P作平面α的垂线l,交平面α于点Q,则n是直线l的方向向量,且点P到平面α的距离PQ= = =
基本题型:
1.(多选)已知正方体ABCD-A1B1C1D1的棱长为1,点E,O分别是A1B1,A1C1的中点,点P在正方体内部且满足 = + + ,则下列说法正确的是()
【解析二】由题意可知,该平面与在正方体的截面为对边平行的六边形,如图所示,则截面面积为
所以当 时,
7.(2017新课标Ⅰ)如图,圆形纸片的圆心为 ,半径为5 cm,该纸片上的等边三角形 的中心为 . 、 、 为圆 上的点, , , 分别是以 , , 为底边的等腰三角形。沿虚线剪开后,分别以 , , 为折痕折起 , , ,使得 、 、 重合,得到三棱锥。当 的边长变化时,所得三棱锥体积(单位: )的最大值为_______。
所以 , , , .
得 , .
设平面 的法向量 ,平面 的法向量 ,
平面 与平面 夹角为 ,则 ,得 ,取 ,
,得 ,取 ,从而 ,
即平面 与平面 夹角的余弦值为 .
9.(2015浙江)如图,已知 , 是 的中点,沿直线 将 翻折成 ,所成二面角 的平面角为 ,则
10.(2012浙江)已知矩形 , , .将 沿矩形的对角线 所在的直线进行翻折,在翻折过程中,

专题09 利用空间向量求空间距离(解析版)

专题09 利用空间向量求空间距离(解析版)

2020年高考数学立体几何突破性讲练09利用空间向量求空间距离一、考点传真:能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用. 二、知识点梳理:空间距离的几个结论(1)点到直线的距离:设过点P 的直线l 的方向向量为单位向量n ,A 为直线l 外一点,点A 到直线l 的距离d =|P A →|2-|P A →·n |2. (2)点到平面的距离:设P 为平面α内的一点,n 为平面α的法向量,A 为平面α外一点,点A 到平面α的距离d =|P A →·n ||n |.(3)线面距离、面面距离都可以转化为点到面的距离. 三、例题:例 1.(2018天津)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60,求线段DP 的长.N ABC D EF G M例2. (2014新课标2)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,ADE ACD -的体积.例3.(2013天津) 如图, 四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB DC ∥,AB AD ⊥,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.1A 1(Ⅰ)证明11B C CE ⊥;(Ⅱ)求二面角11B CE C --的正弦值;(Ⅲ)设点M 在线段1C E 上;且直线AM 与平面11ADD A , 求线段AM 的长.例4.(2012福建)如图,在长方体1111ABCD A B C D -中11AA AD ==,E 为CD 中点.(Ⅰ)求证:11B E AD ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得DP ∥平面1B AE ?若存在,求AP 的行;若存在,求AP 的长;若不存在,说明理由.(Ⅲ)若二面角11A B E A --的大小为30°,求AB 的长.四、巩固练习:1.如图,已知圆柱OO 1底面半径为1,高为π,平面ABCD 是圆柱的一个轴截面,动点M 从点B 出发沿着圆柱的侧面到达点D ,其运动路程最短时在侧面留下曲线Γ.将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ<π)后得到平面A 1B 1C 1D 1,边B 1C 1与曲线Γ相交于点P .(1)求曲线Γ的长度;(2)当θ=π2时,求点C 1到平面APB 的距离.2.如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB ⊥AC ,AE ⊥BD ,DE ∥12AC ,AD =BD =1.(1)求AB 的长;(2)已知2≤AC ≤4,求点E 到平面BCD 的距离的最大值.3.如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离.4.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠=︒,2AB AD DC ===E ,F分别为PD ,PB 的中点.(1)求证://CF 平面PAD ;(2)若截面CEF 与底面ABCD 所成锐二面角为4π,求PA 的长度.5.如图,在四棱锥P -ABCD 中,侧面P AD 是边长为2的正三角形,且与底面垂直,底面ABCD 是∠ABC =60°的菱形,M 为PC 的中点.(1)求证:PC ⊥AD ;(2)求点D 到平面P AM 的距离.6.如图,四棱锥P-ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD,PA=AD=2,BD=2.1(1)求证:BD⊥平面PAC;(2)求二面角P-CD-B的大小;(3)求点C到平面PBD的距离.。

高考数学复习第十一讲立体几何之空间距离

高考数学复习第十一讲立体几何之空间距离

第^一讲立体几何之空间距离一、空间距离包括:点与点、点与线、点与面、线与线(异面直线)、线与面(线面平行)、面与面(面面平行)的距离。

要理解各个距离的概念。

二、空间距离的求法重点掌握:线线距离、点面距离、尤其点面距离(1)线线距离:找公垂线段(2)点面距离①直接法(过点向面作作垂线段,即求公垂线段长度)②等体积法(三棱锥)③向量法:设平面的法向量为n , P为平面外一点,Q是平面内任一点,一n PQ 则点P到平面的距离为d等于PQ在法向量n上的投影绝对值。

d --------------------n三、例题讲解1、下列命题中:①PA 矩形ABCD所在的平面,则P、B间的距离等于P到BC的距离;②若a//b,a ,b ,则a与b的距离等于a与的距离;③直线a、b是异面直线,a ,b// ,则a、b之间的距离等于b与的距离④直线a 、b 是异面直线,a ,b ,且// ,则a 、b 之间的距离等于 、 间的距离其中正确的命题个数有( C )A. 1个B. 2个C. 3个D. 4个1,C 、D 为两条棱的中点,A 、B 、M 是顶点,那么点 M 到截面ABCD 的距离是 ________________解析:取AB 、CD 中点P 、Q ,易证 MPQ 中,PQ 边长的高 MH 为所求,PM丄PQ 口MH2243A-BCDE 中,AE 底面 BCDE 且 AE=CD=a, G 、H 是 BE 、ED 的中点,贝U GH 到面ABD 的距离是解析:连结EC ,交BD 于0,且交GH 于0,则有平面 AEO 面ABD 。

2、如图所示,正方形的棱长为3、在底面是正方形的四棱锥1 i AE EO :"3过E作EK AO于K,则所求距离等于—EK a2 2 AO 64、如图,在棱长为a的正方体ABCD A1B1C1D1中,E、F分别为棱AB和BC的中点, G为上底面A1B1C1D1的中心,则点D到平面B1EF的距离_______________ _解:方法1 :建立如图直角坐标系,a a a a则Aa,0,0,B a,a,0,C 0,a,0,E a,2,0 , F2,a,0 ,B1a,a,a ,G 2,2,a设平面B1FE的法向量为n1 x,y,zEFa a —2,2,0 ,EB10,|,an1EF 0, n1 EB, 0a—x2ayaz 0取y 2,则x 2,z可取n12,2, 1DB1ri| 又DB1 a, a, a D到平面B1 EF的距离d —厂l n12a 2a aa3方法2 :等体积法3h a即D到平面B1EF的距离为a 。

立体几何之夹角、距离问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学(新高考通用)

立体几何之夹角、距离问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学(新高考通用)

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题21立体几何之夹角、距离问题目录一览一、典型例题讲解二、梳理必备知识三、基础知识过关四、解题技巧实战五、跟踪训练达标(1)面面夹角(2)线面夹角(3)点到线的距离(4)点到面的距离六、高考真题衔接1.空间中的角(1)异面直线所成角公式:设 a , b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅== a b a b a bθ.(2)线面角公式:设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为二、梳理必备知识l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,= n n θ或12,- n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅= n n n n θ.2.空间中的距离求解空间中的距离(1)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为 n ,这时分别在,a b 上任取,A B 两点,则向量在 n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅= n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(2)点到平面的距离A 为平面α外一点(如图), n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||n n ⋅⋅=⋅=⋅<>=⋅ AB AB AH AB AB AB n AB AB θ,||||⋅= AB n d n 三、解题技巧实战1.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB 的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.在△CDO 中,易得222OC CD DO =+-又23PC =,∴222OC PO PC +=,∴PO则D (0,0,0),()22,0,0A ,(0,22,0B ∴()22,2,2CP =- ,()22,0,0CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩ ,得22220220x y z x ⎧-+=⎪⎨=⎪⎩,取∴1212cos ,212n n ==⨯ ,∴平面APD 和平面CEP 的夹角的余弦值为【点睛】方法点拨利用向量法求二面角的方法主要有两种:(平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的范围;两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.2.如图,已知多面体111ABC A B C -中,111,,A A B B C C 均垂直于平面ABC ,120ABC ∠= ,14A A =,111,2C C AB BC B B ====.请用空间向量的方法解答下列问题:求直线1AC 与平面1ABB 所成的角的正弦值.由题意知()(0,3,0,1,0,0A B -设直线1AC 与平面1ABB 所成的角为可知()(10,23,1,1,AC AB == 设平面1ABB 的法向量(,n x = 则10,0,n AB n BB ⎧⋅=⎪⎨⋅=⎪⎩ 即30,20,x y z ⎧+=⎪⎨=⎪⎩令1y =,则3,0x z =-=,可得平面111sin cos ,AC AC n AC θ⋅∴==⋅ ∴直线1AC 与平面1ABB 所成的角的正弦值是3.在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,M 为BB 1的中点,N 为BC 的中点.(1)求点M 到直线AC 1的距离;(2)求点N 到平面MA 1C 1的距离.则A(0,0,0),A1(0,0,(1)直线AC1的一个单位方向向量为故点M 到直线AC1的距离(2)设平面MA1C1的法向量为则1111·0·0n A C n A M ⎧=⎪⎨=⎪⎩ ,即202y x z =⎧⎨-=⎩不妨取x =1,得z =2,故因为N(1,1,0),所以MN 故N 到平面MA1C1的距离222102102MN n d n -+-==++ 四、跟踪训练达标面面夹角1.(2023·全国·浮梁县第一中学校联考模拟预测)如图,在四棱锥P ABCD -中,E 为棱AD 上一点,,PE AD PA PC ⊥⊥,四边形BCDE 为矩形,且13,,//4BC PE BE PF PC PA ==== 平面BEF .(1)求证:PA ⊥平面PCD ;(2)求二面角F AB D --的大小.因为//PA 平面BEF ,平面PAC 又//BE CD ,所以AF AF DE BC GC ==则(1,0,0),(0,3,0),(3,0,0),A B D F -设平面ABF 的一个法向量为(m = 则7330444030AF m x y AB m x y ⎧⎧⋅=-++⎪⎪⇒⎨⎨⋅=⎪⎪⎩-+=⎩又平面ABD 的一个法向量为(0,0,1)n = 故二面角F AB D --的大小为π4.2.(2023·辽宁大连·校联考模拟预测)已知多面体ABCDEF 中,AD BC EF ∥∥,且4AD CD DE ===,2BC EF ==,π3BCD FED ∠∠==(1)证明:AD BF ⊥;(2)若BF =C AF B --的余弦值.在BCD △中,4DC =,2BC =2222cos BD BC DC BC DC =+-⋅⋅同时AD ∥BC ,可得DB AD ⊥因为BD AD ⊥,DF AD ⊥,且所以AD ⊥平面BDF ;又因为BF ⊂平面BDF ,所以AD (2)在BDF V 中,2BD FD ==即222BD FD BF +=,所以BD ⊥以D 为原点,,,DA DB DF 的方向分别为建立空间直角坐标系如图.其中(4,0,0),(0,23,0),(0,0,23),(2,23,0)A B F C -,所以()()()4,23,0,4,0,23,6,23,0AB AF AC =-=-=- 设向量(,,)n x y z = 为平面ABF 的法向量,满足0423004230n AB x y n AF x z ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ ,不妨令3x =,则2y z ==,故(3,2,2)n = ,设向量(,,)m p q r =为平面ACF 的法向量,满足0423006230m AF p r m AC p q ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ 不妨令3p =,则2,3r q ==,故(3,3,2)m = 131311cos ,||||44114m n m n m n ⋅〈〉===⨯ 由图可知二面角为锐角,所以二面角C AF B --的余弦值为131144.3.(2023·云南昆明·统考一模)如图,直四棱柱1111ABCD A B C D -中,ABC 是等边三角形,AB AD ⊥(1)从三个条件:①AC BD ⊥;②120ADC ∠=︒;③2BD AD =中任选一个作为已知条件,证明:1BC DC ⊥;(2)在(1)的前提下,若13AB AA =,P 是棱1BB 的中点,求平面1PDC 与平面1PDD 所成角的余弦值.【答案】(1)证明见详解(2)710对②:∵180ADC ABC ∠+∠=又∵AB AD ⊥,即90BAD ∠=可得90BCD ∠=︒,即BC CD ⊥又∵1CC ⊥平面ABCD ,BC ∴1BC CC ⊥,且1CD CC =I 故BC ⊥平面11CDD C ,注意到1DC ⊂平面11CDD C ,故对③:∵AB AD ⊥,即BAD ∠在Rt BAD 中,则sin ABD ∠故30,ABD CBD AB ∠=∠=︒=故90BCD BAD ∠=∠=︒,即BC 又∵1CC ⊥平面ABCD ,BC4.(2023·辽宁·鞍山一中校联考模拟预测)刍甍(chúméng)是中国古代数学书中提到的一种几何体,《九章算术》中对其有记载:“下有袤有广,而上有袤无广”,可翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.”,如图,在刍甍ABCDEF中,四边形ABCD是正方形,平面BAE和平面CDE交于EF.(1)求证://AB EF ;(2)若平面CDE ⊥平面ABCD ,4AB =,2EF =,ED FC =,AF =,求平面ADE 和平面BAE 所成角余弦值的绝对值.5.(2023·山西·校联考模拟预测)如图,直三棱柱111ABC A B C -的所有棱长均相等,D 为1AA 的中点.(1)证明:11B D BC ⊥;(2)设,M N 分别是棱,AC BC 上的点,若点1,,,B D M N 在同一平面上,且ABC 的面积是CMN 的面积的3倍,求二面角1A B M N --的正弦值.【答案】(1)证明见解析(2)217【分析】(1)方法一:延长B 11B C BC ⊥可证得1BC ⊥平面方法二:结合垂直关系可以C 得结论;AB 设2AB = ,则()3,1,1D ,(0,2,0B ()13,1,1DB ∴=- ,(10,2,2BC =- 方法三:1AA ⊥ 平面ABC ,AB 10AA AB ∴⋅= ,10AA AC ⋅= ;则()3,1,0A ,232,,033M ⎛⎫ ⎪ ⎪⎝⎭,31,,033MA ⎛⎫∴= ⎪ ⎪⎝⎭ ,12MB ⎛=- ⎝ 设平面1AMB 的法向量(1,m x y = 则11111131033234233MA m x y MB m x y z ⎧⋅=+=⎪⎪⎨⎪⋅=-++⎪⎩设平面1B MN 的法向量(2,x n y =,线面夹角6.(2023·北京·校考模拟预测)如图,在三棱柱111ABC A B C-中,D,E,G分别为11,,AA AC BB的中点,11A C 与平面1EBB交于点F,AB BC==,12AC AA==,1C C BE⊥.(1)求证:F为11A C的中点;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线FG与平面BCD所成角的正弦值.条件①:平面ABC⊥平面1EBB;条件②:13BC=.注:如果选择条件①和条件②分别解答,按第一个解答计分.由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩ ,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为选条件②,因为5AB BC ==,AC由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为7.(2023·全国·模拟预测)如图,在几何体ABCDEF 中,四边形CDEF 是边长为2的正方形,AD DE ⊥,AB CD ∥,6AE =,1AB BD ==.(2)求直线BC与平面BEF所成角的正弦值.则()0,0,0D ,()1,0,0B ,E所以()0,2,0= EF ,(1,0,BE =- 设平面BEF 的法向量为n = 取1z =,得2x =,所以可取设直线BC 与平面BEF 所成的角为则sin cos ,BC BC n BC θ⋅== 所以直线BC 与平面BEF 所成角的正弦值为8.(2023春·甘肃张掖·高三高台县第一中学校考阶段练习)如图,在四棱锥P ABCD -中,PAD 为等边三角形,四边形ABCD 为平行四边形,PAB PDC ∠=∠.(1)证明:四边形ABCD 为矩形;(2)若2PA AB ==,当四棱锥P ABCD -的体积最大时,求直线PB 与平面PDC 所成角的正弦值.【答案】(1)证明见解析(2)64【分析】(1)取AD 的中点线面垂直,再证得线线垂直即可建立空间直角坐标系,利用空间向量法求(2)由题意知,当平面PAD ⊥平面(1)知AB AD ⊥,所以以O 为原点,空间直角坐标系,因为2PA AB ==,则()0,0,0O ,B 设平面PDC 的法向量为(,,n x y z = 令3x =,则()3,0,1n =- .又()1,2,3PB =- ,设直线PB 与平面则sin cos ,23n PB n PB n PBθ⋅=== 所以直线PB 与平面PDC 所成角的正弦值为9.(2023·四川凉山·二模)如图,在直三棱柱111ABC A B C -中,点E ,F 分别是BC ,11A C 中点,平面11ABB A平面AEF l =.(1)证明:l EF ∥;(2)若AB AC ==,平面11ACC A ⊥平面11ABB A ,且1AB EF ⊥,求直线l 与平面11A B E 所成角的余弦值.∵E ,G 分别是BC ,AB 又∵1A F AC ∥且112A F AC =∴四边形1EGA F 为平行四边形,∴又EF ⊄平面11ABB A ,1AG ∵EF ⊂平面AEF ,平面(2)由三棱柱为直棱柱,∴平面设1AA a =,则1(0,22,0)B ,F 所以1(0,22,)AB a =- ,(0,EF = 又1AB EF ⊥,则10AB EF ⋅= ,解得所以(2,2,2)E ,(0,0,2)A ,则设平面11A B E 法向量为(,,n x y = 所以11100n A B n A F ⎧⋅=⎪⎨⋅=⎪⎩ ,即2222x ⎧⎪⎨+⎪⎩由(1)知直线EF l ∥,则l 方向向量为设直线l 与平面11BCC B 所成角为则sin cos ,n EF n EF n EF α⋅===⋅ 所以直线l 与平面11BCC B 所成角的余弦值为10.(2023·江苏·统考一模)在三棱柱111ABC A B C -中,平面11A B BA ⊥平面ABC ,侧面11A B BA 为菱形,1π3ABB ∠=,1AB AC ⊥,2AB AC ==,E 是AC 的中点.(1)求证:1A B⊥平面1AB C;(2)点P在线段1A E上(异于点1A,E),AP与平面1A BE所成角为π4,求1EPEA的值.点到线的距离11.(2022·全国·高三专题练习)如图,在四棱锥P −ABCD 中,AD BC ,190 1.2ADC PAB BC CD AD ∠=∠==== ,E 为棱AD 的中点,异面直线PA 与CD 所成的角为90︒.(1)在平面PAB 内是否存在一点M ,使得直线CM 平面PBE ,如果存在,请确定点M 的位置,如果不存在,请说明理由;(2)若二面角P −CD −A 的大小为45︒,求P 到直线CE 的距离.点E 为AD 的中点,AE ED ∴=1,2BC CD AD ED BC ==∴= ,AD BC ∥ ,即ED BC ∥,∴四边形BCDE 为平行四边形,即,,AB CD M M CD CM ⋂=∴∈∴ BE ⊂ 平面,PBE CM ⊂平面PBE CM ∴ 平面PBE ,,M AB AB ∈⊂ 平面PAB ,M ∴∈平面PAB ,故在平面PAB 内可以找到一点M (2)如图所示,ADC PAB ∠∠= 且异面直线PA 与CD 所成的角为又,,AB CD M AB CD ⋂=⊂平面AD ⊂ 平面,ABCD PA AD ∴⊥,又,,AD CD PA CD AD PA ⊥⊥⋂=CD \^平面PAD ,PD ⊂ 平面,PAD CD PD ∴⊥.因此PDA ∠是二面角P CD A --PA AD ∴=.因为112BC CD AD ===.以A 为坐标原点,平行于CD 的直线为⎫⎪⎭12.(2023·全国·高三专题练习)如图,已知三棱柱111ABC A B C -的棱长均为2,160A AC ∠=︒,1A B =(1)证明:平面11A ACC ⊥平面ABC ;(2)设M 为侧棱1CC 上的点,若平面1A BM 与平面ABCM 到直线11A B 距离.轴,建立空间直角坐标系,-中,底面四边形ABCD 13.(2022秋·天津河东·高三天津市第七中学校考阶段练习)如图,在四棱锥P ABCD为菱形,E为棱PD的中点,O为边AB的中点.(1)求证:AE //平面POC ;(2)若侧面PAB ⊥底面ABCD ,且3ABC PAB π∠∠==,24AB PA ==;①求PD 与平面POC 所成的角;②在棱PD 上是否存在点F ,使点F 到直线OD 的距离为21,若存在,求DF DP 的值;若不存在,说明理由.(2)①在平面PAB 内过点O 作Oz 菱形ABCD 中3ABC π∠=,则OC ⊥以O 为原点,分别以,,OB OC Oz 所在直线为()()(1,0,3,0,23,0,4,23,0P C D --(1,0,3)OP =- ,(0,23,0)OC = ,设平面POC 的一个法向量为(,n x y = 则30230n OP x z n OC y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取=3x ,得设直线PD 与平面POC 所成的平面角为n PD ⋅ 4②设[],0,1DF DP λλ=∈14.(2022秋·山东青岛·高三统考期中)如图,已知长方体1111ABCD A B C D -的体积为4,点A 到平面1BC D 的.(1)求1BC D 的面积;(2)若2AB BC ==,动点E 在线段1DD 上移动,求1AEC 面积的取值范围.则(2,0,0)A ,1(0,2,1)C 设(0,0,)(01)E t t ≤≤,则(2,0,EA = 则直线1AC 的单位方向向量为u =r 则点E 到直线1AC 的距离为d EA = 所以1AEC 的面积1112AEC S AC =⋅△所以1AEC 面积的取值范围为32⎡⎢⎣15.(2022·全国·高三专题练习)在滨海文化中心有天津滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1AC 与平面1A ED 所成角的正弦值;(2)求二面角1E A D F --的余弦值;(3)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.则1(2A ,0,2),(0C ,4,0),(2E ,1,所以11(2,4,2),(2,0,2),(2,1,0)A C DA DE =--==设平面1A ED 的法向量为(,,)n x y z = ,则有100n DA n DE ⎧⋅=⎨⋅=⎩,即22020x z x y +=⎧⎨+=⎩,令1x =,则=2y -,1z =-,故(1,n =- 所以111||2|cos ,|3||||A C n A C n A C n ⋅<>== ,故1AC 与平面1A ED 所成角的正弦值为23点到面的距离16.(2022秋·四川·高三四川省岳池中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ⊥平面,120,3,ABC AB BC ABC PA D ∠==== 为线段PC 上一点,且BC BD ⊥.(1)在线段AC 上求一点M ,使得平面BPC ⊥平面BDM ,并证明;(2)求点C 到平面ABD 的距离.则33(0,,0),(,0,0),(0,22A B C -设PD PC λ= ,其中01λ≤≤,则BD BP PD BP PC λ=+=+ 因为BC BD ⊥,所以BC BD ⋅ 设平面BPC 的法向量为m = 则33022330m BC x y m PC y z ⎧⋅=-+=⎪⎨⎪⋅=-=⎩ 设33(0,,0),22M b b -≤≤,MB17.(2023春·广东揭阳·高三校联考阶段练习)如图所示的四棱锥P ABCD -中,底面ABCD 为直角梯形,AB CD ,AD AB ⊥,22DC AD a ===,PA PD =,二面角P AD B --的大小为135︒,点P 到底面ABCD 的距离为2a .(1)过点P 是否存在直线l ,使直线l ∥平面ABCD ,若存在,作出该直线,并写出作法与理由;若不存在,请说明理由;(2)若2PM MC = ,求点M 到平面PAD 的距离.平面,建立空间直角坐标系,由条件(2)取线段AD 的中点为O ,线段连接,OE OP ,因为ABCD 为直角梯形,AB CD 所以//OE AB ,又AD AB ⊥,所以AD OE ⊥,因为PA PD =,所以PO AD ⊥,又PO OE O = ,,PO OE ⊂平面POE 所以AD ⊥平面POE ,过点O 在平面POE 内作直线ON ⊥则直线,,OA OE ON 两两垂直,以O 为原点,,,OA OE ON 为,,x y z 过点P 作//PF NO ,交直线OE 于点因为,ON OA ON OE ⊥⊥,,OA OE 所以ON ⊥平面ABCD ,故PF ⊥平面又点P 到底面ABCD 的距离为2a ,所以因为OE AD ⊥,OP AD ⊥,18.(2023·云南红河·统考二模)如图,在几何体ABCDEF中,菱形ABCD所在的平面与矩形BDEF所在的平面互相垂直.(1)若M 为线段BF 上的一个动点,证明:CM ∥平面ADE(2)若60BAD ∠=︒,2AB =,直线CF 与平面BCE F 到平面BCE 的距离.()3,1,0B ,()0,2,0C ,(0,0,E a19.(2023·北京·北京市八一中学校考模拟预测)如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A CD E --为60°,DE CF ∥,CD DE ⊥,2AD =,3DE DC ==,6CF =.(1)求证:CD AE ⊥;(2)求直线DE 与平面AEF 所成角的正弦值.(3)直接写出λ的值,使得CG CF λ=,且三棱锥B ACG -【答案】(1)证明见解析CD AD ⊥ ,CD DE ⊥,ADE ∴∠即为二面角A CD F --的平面角,即∴(0,1,3)A ,(0,0,0),(0,3,0),(3,6,0)D E F ∴(0,2,3),(3,5,3),AE AF DE =-=-设平面AEF 的法向量为(,,)n x y z =,230,3530.n AE y z n AF x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩ 令2z =,则所以(3,3,2)n =-,∴3330cos ,10310DE n DE n DE n ⋅===20.(2023·江西九江·统考二模)如图,在三棱柱111ABC A B C -中,AC ⊥平面11AA B B ,13ABB ∠=,1AB =,12AC AA ==,D 为棱1BB 的中点.(1)求证:AD ⊥平面11AC D ;(2)若E 为棱BC 的中点,求三棱锥1E AC D -的体积.则()0,0,0A ,1,1,02E ⎛⎫⎪⎝⎭,1,0,2D ⎛ ⎝所以1,1,02AE ⎛⎫= ⎪⎝⎭ ,1,0,2AD ⎛= ⎝ 设(),,n x y z =r为平面1AC D 的一个法向量,则10n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即1302223x z x y ⎧+=⎪⎨⎪-++⎩所以点E 到平面1AC D 的距离d =则三棱锥1E AC D -的体积13S V =1.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 五、高考真题衔接的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.则()2,0,0A 、()2,2,0B 、(2,0,2C 则10,,12EF ⎛⎫= ⎪⎝⎭,易知平面ABC 的一个法向量为EF ⊄ 平面ABC ,故//EF 平面2.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩ 可取()1,0,1m =-,3.(2021·天津·统考高考真题)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(I )求证:1//D F 平面11A EC ;(II )求直线1AC 与平面11A EC 所成角的正弦值.(III )求二面角11A A C E --的正弦值.4.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.。

专题 空间距离 (解析版)

专题 空间距离 (解析版)

巩固提高1.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为________.【答案】13【解析】 连接A 1C 1,则∠AC 1A 1为AC 1与平面A 1B 1C 1D 1所成的角. 因为AB =BC =2,所以A 1C 1=AC =22, 又AA 1=1,所以AC 1=3, 所以sin∠AC 1A 1=AA 1AC 1=13. 2.【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22 B .3 C .5 D .7【答案】C【解析】如图,连接,因为,所以异面直线与所成角等于相交直线与所成的角,即.不妨设正方体的棱长为2,则,,由勾股定理得,又由平面,可得,所以,故选C .3.(2019·青海模拟)如图,正四棱锥P ­ABCD 的体积为2,底面积为6,E 为侧棱PC 的中点,则直线BE 与平面PAC 所成的角为( )A .60°B .30°C .45°D .90°【答案】A【解析】如图,在正四棱锥P ­ABCD 中, 根据底面积为6可得,BC = 6.连接BD 交AC 于点O ,连接PO ,则PO 为正四棱锥P ­ABCD 的高,根据体积公式可得,PO =1.因为PO ⊥底面ABCD ,所以PO ⊥BD ,又BD ⊥AC ,PO ∩AC =O ,BE AB CD ∥AE CD AE AB EAB ∠1CE =2BC =5BE =AB ⊥11BCC B AB BE ⊥5tan 2BE EAB AB ∠==所以BD ⊥平面PAC ,连接EO ,则∠BEO 为直线BE 与平面PAC 所成的角.在Rt △POA 中,因为PO =1,OA =3,所以PA =2,OE =12PA =1,在Rt △BOE 中,因为BO =3,所以tan ∠BEO =BOOE=3,即∠BEO =60°.故直线BE 与平面PAC 所成角为60°.4.(2019·成都检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为( )A.12 B .-12C.32D .-32【答案】 A【解析】如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.5.如图所示,在正方体ABCD ­A 1B 1C 1D 1中, (1)求AC 与A 1D 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小.【解析】(1)如图所示,连接B 1C ,AB 1,由ABCD ­A 1B 1C 1D 1是正方体,易知A 1D ∥B 1C ,从而B 1C 与AC 所成的角就是AC 与A 1D 所成的角.∵AB 1=AC =B 1C , ∴∠B 1CA =60°.即A 1D 与AC 所成的角为60°.(2)连接BD ,在正方体ABCD ­A 1B 1C 1D 1中,AC ⊥BD ,AC ∥A 1C 1,∵E ,F 分别为AB ,AD 的中点, ∴EF ∥BD ,∴EF ⊥AC .∴EF ⊥A 1C 1. 即A 1C 1与EF 所成的角为90°.6.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =. (1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(1)55;(2)见解析;(3)55. 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC 所成角的余弦值为5. (2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得2225DF CD CF =+=, 在Rt △DPF 中,可得5sin PD DFP DF ∠==. 所以,直线AB 与平面PBC 所成角的正弦值为5。

空间几何体的距离问题(答案版)

空间几何体的距离问题(答案版)

专题:空间几何体的距离问题一、点到直线的距离(点线距)1、点在直线上的射影自点A向直线l引垂线,垂足A叫做点A在直线l上的射影.1点A到垂足的距离叫点到直线的距离.2、点线距的求法:点到直线的距离问题主要是将空间问题转化为平面问题,利用解三角形的方法求解距离。

二、点到平面的距离(点面距)1、点到平面的距离:已知点P是平面α外的任意一点,过点P作PAα⊥,垂足为A,则PA唯一,则PA是点P 到平面α的距离。

即:一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离(转化为点到点的距离)结论:连结平面α外一点P与α内一点所得的线段中,垂线段PA最短2、点面距的求解问题,主要有三个方法:(1)定义法(直接法):找到或者作出过这一点且与平面垂直的直线,求出垂线段的长度;(2)等体积法:通过点面所在的三棱锥,利用体积相等求出对应的点线距离;(3)转化法:转化成求另一点到该平面的距离,常见转化为求与面平行的直线上的点到面的距离.三、异面直线的距离(线线距)1、公垂线:两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.两条异面直线的公垂线有且只有一条.2、两条异面直线的距离:两条异面直线的公垂线段的长度.四、直线到平面的距离(线面距)直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离(转化为点面距离).如果一条直线l平行与平面α,则直线l上的各点到平面的垂线段相等,即各点到α的距离相等;垂线段小于或等于l上任意一点与平面α内任一点间的距离;五、平面到平面的距离(面面距)1、两个平行平面的公垂线、公垂线段:(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线.(2)两个平面的公垂线段:公垂线夹在平行平面间的的部分,叫做两个平面的公垂线段.(3)两个平行平面的公垂线段都相等.(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长.2、两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离.题型一点到直线的距离【例1】【解析】ABC 的两条直角边3BC =,4AC =,22345AB ∴=+=.过C 作CM AB ⊥,交AB 于M ,连接PM ,因,,∩,,AB CM AB PC CM PC C CM PC ⊥⊥=⊂平面PCM ,则AB ⊥平面PCM .又PM ⊂平面PCM ,则PM AB ⊥,∴点P 到斜边AB 的距离为线段PM 的长.由1122ABC S AC BC CM =⋅=⋅△,得431255AC BC CM AB ⋅⨯===,228114432525PM PC CM =+=+=.∴点P 到斜边AB 的距离为3.故选:B.【变式1-1】【解析】将四面体SABC 补成正方体SDBG EAFC -,连接DE 交AS 于点M ,连接FG 交BC 于点N ,连接MN ,如图,则M ,N 分别为DE ,BC 的中点,因为BD CE ∥且BD CE =,故四边形BDEC 为平行四边形,则BC DE ∥且BC DE =,又因为M ,N 分别为DE ,BC 的中点,所以DM BN ∥且DM BN =,故四边形BDMN 为平行四边形,故MN BD ∥且52MN BD SG ===因为BD ⊥平面SDAE ,AS ⊂平面SDAE ,所以BD AS ⊥,即MN AS ⊥,同理可得MN BC ⊥,故P 到BC 的距离最小值为52MN =故选:C【变式1-2】【解析】因为PB ⊥平面ABCD ,BC ⊂平面ABCD ,所以PB BC ⊥,又因为AB BC ⊥,且AB PB B ⋂=,,AB PB ⊂平面PAB ,所以BC ⊥平面PAB ,因为PA ⊂平面PAB ,所以PA BC ⊥,取PA 的中点E ,因为PB AB =,所以PA BE ⊥,又因为BE BC B = ,且,BE BC ⊂平面BCE ,所以PA ⊥平面BCE ,因为CE ⊂平面BCE ,所以CE PA ⊥,所以CE 即为点C 到直线PA 的距离,在等腰直角PAB 中,由4PB AB ==,可得22BE=,在直角BCE 中,由2BC =,可得2223CE BC BE =+=所以点C 到直线PA 的距离为23故选:B.【变式1-3】【解析】(1)取AB 的中点E ,连接CE ,如图所示:因为AD DC ⊥,122AD DC AB ===,则四边形AECD 为正方形,所以222222AC BC =+=因为222AC BC AB +=,所以BC AC ⊥.因为AD DC ⊥,AD DB ⊥,CD BD D =I ,,CD BD ⊂平面BCD ,所以AD ⊥平面BCD .又因为BC ⊂平面BCD ,所以AD BC ⊥.因为BC AC ⊥,BC AD ⊥,AD AC A = ,,AC AD ⊂平面ACD ,所以BC ⊥平面ACD ,又因为BC ⊂平面ABC ,所以平面ABC ⊥平面ADC .(2)取,AC CD 的中点,F H ,连接,,EF FH HE ,因为BC ⊥平面ACD ,//EF BC ,所以EF ⊥平面ACD ,又因为CD ⊂平面ACD ,所以EF CD ⊥.因为,//AD CD AD FH ⊥,所以FH CD ⊥.因为EF CD ⊥,FH CD ⊥,EF FH F ⋂=,,EF FH ⊂平面EFH ,所以CD ⊥平面EFH ,又因为EH ⊂平面EFH ,所以CD EH ⊥.因为112HF AD ==,122EF BC ==,且HF EF ⊥,所以()22123HE +=,即点E 到直线CD 3题型二直线到直线的距离【例2】【解析】如图,该四棱柱为长方体,因为11//A B D C ,所以1AD C ∠为异面直线1A B 与1AD 所成角,设底面正方形边长为a,则11,AC AD CD ===,在1AD C 中,22211121184cos 2285AD CD AC AD C AD CD a +-∠===+,解得1a =,因为该四棱柱为长方体,所以AB ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以1AB B C ⊥,同理1AB AD ⊥,所以直线1AD 与直线1B C 的距离为1AB a ==,故选:B.【变式2-1】【解析】,P Q 在,BD SC 上移动,则当PQ 为,BD SC 公垂线段时,,P Q 两点的距离最小; 四棱锥S ABCD -为正四棱锥,SO ⊥平面ABCD ,O ∴为正方形ABCD 的中心,BD AC ∴⊥,又SO BD ⊥,SO AC O = ,BD ∴⊥平面SOC ,过O 作OM SC ⊥,垂足为M ,OM ⊂ 平面SOC ,OM BD ∴⊥,OM ∴为,BD SC 的公垂线,又5SO OC OM SC ⋅===,,P Q ∴.故选:B.【变式2-2】【解析】连接1AC 交1AC 于点O ,连接OM ,∵,O M 分别为1,AC BC 的中点,则OM 1A B ,、且OM ⊂平面1AMC ,1A B ⊄平面1AMC ,∴1A B 平面1AMC ,则点P 到平面1AMC 的距离相等,设为d ,则P ,Q 两点之间距离的最小值为d ,即点1A 到平面1AMC 的距离为d ,∵1AC 的中点O 在1AC 上,则点C 到平面1AMC 的距离为d ,由题意可得为1111,AC CM C M AC AM MC ======由11C AMC C ACM V V --=,则11111113232d ⨯⨯=⨯⨯⨯⨯,解得d =故P ,Q两点之间距离的最小值为3d =.故选:A.【变式2-3】【解析】如图所示:连接EH ,且1EH =,设2HEF θ∠=,1EHG θ∠=,作GR AB⊥于,R EH的中点为O,连接OR,在Rt ROG△中,可求得2OG=,在Rt OGH中,可求得GH=由此可知121cos cos2θθ===延长EA到K使AK EA=,连接,GK GF,则易知四边形EKGF为平行四边形,∴GK EF//,且GK EF=,则KGHθ∠=就是EF与GH所成的角,连接KH与AB交于R,则KH=,在GKH△中,由余弦定理可求得1cos3θ=,则28sin9θ=,根据公式(2)得2d=,∴EF与GH间的距离是2.题型三点到平面的距离【例3】【解析】在棱长为2的正方体1111ABCD A B C D-中,1BB⊥平面1111DCBA,1B P⊂平面1111DCBA,则11BB B P⊥,由3BP=,得1B P===在11Rt B C P△中,1190B C P∠= ,则11C P==,即点P为11C D中点,又111//,AA BB BB⊂平面1BB P,1AA⊄平面1BB P,因此1//AA平面1BB P,于是点A到平面1BB P的距离等于点1A到平面1BB P的距离,同理点C到平面1BB P的距离等于点1C到平面1BB P的距离,连接1A P,过11,A C分作1B P的垂线,垂足分别为1,O O,如图,由1111111111122A PBS B P A O A BA D=⋅=⋅1122O=⨯,解得115AO=,在11Rt B C P△中,111115B CC PC OB P⋅==,则111555AO C O+=+=,所以点,A C到平面1BB P故选:B【变式3-1】【解析】1113D C BE C BEV S DC-=⋅⋅,111112122C BES C E BC=⋅⋅=⨯⨯=,2DC=,则123D C BEV-=.在BED中,由题意及图形结合勾股定理可得BE DE==,BD=则由余弦定理可得222125cos BE DE BD BED BE DE +-∠==⋅,则1261255sin BED ∠=-=.则162sin BDE S BE DE BED =⋅⋅∠= .设1C 到平面EBD 的距离为d ,则113C BDE BDE V S d -=⋅ .又11D C BE C BDE V V --=,则11226333C BDE BDE BDE V S d d S -=⋅=⇒== .故选:D 【变式3-2】【解析】(1)连接BD ,交AC 于点O ,连接OE ,∵四边形ABCD 是平行四边形,∴O 是BD 的中点,又∵E 为PD 的中点,∴OE 是三角形PBD 的中位线,∴//PB OE ,又∵PB ⊂/平面AEC ,OE ⊂平面AEC ,∴//PB 平面AEC ;(2)∵平行四边形ABCD 中,60ABC ∠=︒,2BC AD ==,1AB =,∴222cos 3AC AB BC AB BC ABC =+-⋅∠=,则222AC AB BC +=,故90ACD ∠=︒,又∵PA ⊥平面ABCD ,∴PAB ,PAD ,PAC △都是直角三角形,∵1==PA AB ,∴2PB =,2PC =,5PD =,∴222PD PC CD =+,∴90PCD ∠=︒,∴52EA EC ==,因为O 是AC 的中点,所以OE AC ⊥,且1222OE PB ==,所以112632224EAC S AC OE =⋅=⨯⨯=△,11331222DAC S AC CD =⋅=⨯⨯=△,设点D 到平面AEC 的距离为h ,由12D ACE E ACD P ACD V V V ---==得:16113134232h ⨯⨯=⨯⨯⨯,解得22h =.【变式3-3】【解析】(1)连接CO ,如图,由3AD DB =知,点D 为AO 的中点,又∵AB 为圆O 的直径,∴AC CB ⊥,由3AC BC =知,60CAB ∠=︒,∴ACO △为等边三角形,从而CD AO ⊥.∵点P 在圆O 所在平面上的正投影为点D ,∴PD ⊥平面ABC ,又CD ⊂平面ABC ,∴PD CD ⊥,又PD AO D = ,,PD AO ⊂平面PAB ,所以CD ⊥平面PAB .(2)因为2AO =,所以CD =3PD DB ==,∴1111133332322P BDC BDC V S PD DB DC PD -=⋅=⋅⋅⋅=⨯⨯=.又PB ==,PC ==,BC ==∴PBC 为等腰三角形,则12PBC S =⨯ 设点D 到平面PBC 的距离为d ,由P BDC D PBC V V --=得,132PBC S d ⋅=△,解得5d =,即点D 到平面PBC 5题型四直线到平面的距离【例4】【解析】在正三棱柱111ABC A B C -中,在底面ABC 内作AD BC ⊥,因为平面11BB C C ⊥底面ABC ,平面11BB C C 底面ABC BC =,所以AD ⊥平面11BB C C ,因为11AA CC ∥,1AA ⊄平面11BB C C ,1CC ⊂平面11BB C C ,所以1AA ∥ 平面11BB C C ,所以AD 即为直线1AA 到平面11BB C C 的距离,因为ABC 为等边三角形,且2AB =,所以直线1AA 到平面11BB C C 的距离为AD ==.【变式4-1】【解析】因为//,BC AD AD ⊂平面PAD ,BC 不在平面PAD 内,所以//BC 平面PAD ,则BC 到平面PAD 的距离即为点B 到平面PAD 的距离,设点B 到平面PAD 的距离为d ,因为B PAD P ABD V V --=,2PD AD ==,PD ⊥平面ABCD ,60BAD ∠= ,四边形ABCD 为菱形,所以11112222232322d ⨯⨯⨯=⨯⨯⨯⨯,解得d =即BC 到平面PAD【变式4-2】【解析】(1)因为PA ⊥平面ABC ,连接AM ,则PMA ∠即为直线PM 与平面ABC 所成的角,又3PA AB ==,4AC =,AB AC ⊥,M 为BC 中点,可得5BC =,52AM =,所以6tan 5PA PMA AM ∠==,即直线PM 与平面ABC 所成的角的正切值为65.(2)由题知,//ME 平面PAB ,//MF 平面PAB ,ME MF M = ,,ME MF ⊂平面MEF ,所以平面//MEF 平面PAB .因为PA ⊥平面ABC ,AC ⊂平面ABC ,所以PA AC ⊥,又AC AB ⊥,,AB PA ⊂平面PAB ,AB PA A = ,所以AC ⊥平面PAB ,又//ME 平面PAB ,所以AE 就是直线ME 到平面PAB 的距离,又M 为BC 122AE AC ==,即直线ME 到平面PAB 的距离为2.【变式4-3】【解析】(1)连接BD 交AC 于O ,连接FO ,∵F 为AD 的中点,O 为BD 的中点,则//OF PB ,∵PB ⊄平面ACF ,OF ⊂平面ACF ,∴//PB 平面ACF .(2)因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PA AD ⊥,PA ⊂平面PAD ,所以PA ⊥平面ABCD .由于//PB 平面ACF ,则PB 到平面ACF 的距离,即P 到平面ACF 的距离.又因为F 为PD 的中点,点P 到平面ACF 的距离与点D 到平面ACF 的距离相等.取AD 的中点E ,连接EF ,CE,则//EF PA ,因为PA ⊥平面ABCD ,所以EF ⊥平面ABCD ,因为CE ⊂平面ABCD ,所以EF CE ⊥,因为菱形ABCD 且60ABC ∠= ,2PA AD ==,所以3CE =,1EF =,则22132CF EF CE =+=+=,2AC =,1144222AF PD ==+=,11724222ACF S =⨯⨯-=△,设点D 到平面ACF 的距离为D h ,由D ACF F ACD V V --=得113122133772ACD ACF D ACD D ACF S EF S h S EF h S ⨯⨯⨯=⨯⇒===△△△△即直线PB 到平面ACF 的距离为2217.题型五平面到平面的距离【例5】【解析】如图,过点A 作AE β⊥,垂足为E ,过点C 作CF β⊥,垂足为F ,由题意可知,5BE =,16DF =,设AB x =,33CD x =-,则()222533256x x -=--,解得:13x =,∴平面α与平面β间的距离2213512AE =-=【变式5-1】【解析】如图所示:将鲁班锁放入正方体1111ABCD A B C D -中,则正方体的边长为222+,连接1BD ,1CD ,11D I D J =,故1D C IJ ⊥,BC ⊥平面11CDD C ,IJ ⊂平面11CDD C ,则BC ⊥IJ ,1BC D C C ⋂=,1,BC D C ⊂平面1BCD ,故IJ ⊥平面1BCD ,1D B ⊂平面1BCD ,故1IJ D B ⊥,同理可得1IH D B ⊥,HI IJ I = ,,HI IJ ⊂平面HIJ ,故1D B ⊥平面HIJ ,同理可得1BD ⊥平面EFG ,132236BD =+=,设B 到平面EFG 的距离为h ,则111122222sin 603232h ⨯=⨯⨯⨯⨯︒⨯,则63h =,故两个相对三角形面间的距离为1422363BD h -=.【变式5-2】【解析】分别取,BC AD 的中点,M N ,连接,,,MN MG NE EG ,根据半正多面体的性质可知,四边形EGMN 为等腰梯形;根据题意可知,BC MN BC MG ⊥⊥,而,,MN MG M MN MG =⊂ 平面EGMN ,故BC ⊥平面EGMN ,又BC ⊂平面ABCD ,故平面ABCD ⊥平面EGMN ,则平面EFGH ⊥平面EGMN ,作MS EG ⊥,垂足为S ,平面EFGH 平面EGMN EG =,MS ⊂平面EGMN ,故MS ⊥平面EFGH ,则梯形EGMN 的高即为平面ABCD 与平面EFGH 之间的距离;322223212,2M G S G ====,故22243(21)228MS MG SG =-=--==,即平面ABCD 与平面EFGH 48B11【变式5-3】【解析】(1)证明:连接11,B D NF M N ,、分别为1111A B A D 、的中点,E F 、分别是1111,C D B C 的中点,11////MN EF B D ∴,MN ⊄ 平面EFBD ,EF ⊂平面EFBD ,//MN ∴平面EFBD ,NF 平行且等于AB ,ABFN ∴是平行四边形,//AN BF ∴,AN ⊄ 平面EFBD ,BF ⊂平面EFBD ,//AN ∴平面EFBD ,AN MN N ⋂= ,∴平面//AMN 平面EFBD ;(2)平面AMN 与平面EFBD 的距离B =到平面AMN 的距离h .AMN中,AM AN ==MN =12AMN S = ∴由等体积可得1112313232h ⋅=⋅⋅⋅⋅,h ∴=。

空间距离及立体几何中的探索性问题(含解析)

空间距离及立体几何中的探索性问题(含解析)

空间距离及立体几何中的探索性问题培优篇考点1 点到直线的距离如图,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a·u )u ,在Rt △APQ 中,由勾股定理,得PQ=|AP→|2-|AQ →|2=a 2- a·u 2.空间距离及立体几何中的探索性问题培优篇 考点2 点到平面的距离如图,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP →在直线l 上的投影向量QP →的长度,因此PQ =AP n n.【例1】 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长都是a ,且AB ⊥AD ,∠A 1AB=∠A 1AD =60°,E 为CC 1的中点,则点E到直线AC 1的距离为( ) ABCD空间距离及立体几何中的探索性问题培优篇 【例2】 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D 、E 、N 分别为棱P A 、PC 、BC 的中点,M 是线段AD 的中点,P A =AC =2,AB =1. (1)求证:MN∥平面BDE ; (2)求点N 到直线ME 的距离;(3)在线段P A 上是否存在一点H ,使得直线NH 与平面MNE ,若存在,求出线段AH 的值,若不存在,说明理由.学霸笔记点到直线的距离(1)设过点P 的直线l 的单位方向向量为n ,A 为直线l 外一点,点A 到直线l的距离d =|P A ,→|2-(P A →·n )2;(2)若能求出点在直线上的射影坐标,可以直接利用两点间距离公式求距离.空间距离及立体几何中的探索性问题培优篇【对点训练1】 如图,在直三棱柱ABC -A 1 B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1,AB =BC =AA 1=3,线段AC 、A 1B 上分别有一点E 、F 且满足2AE =EC ,2BF =F A 1. (1)求证:AB ⊥BC ;(2)求点E 到直线A1B 的距离;(3)求二面角F -BE -C 的平面角的余弦值.空间距离及立体几何中的探索性问题培优篇【例3】 在如图所示的圆锥中,已知P 为圆锥的顶点,O 为底面的圆心,其母线长为6,边长为ABC 内接于圆锥底面,OD⃗=λOP ⃗且1,12. (1)证明:平面DBC ⊥平面DAO ;(2)若E 为AB 中点,射线OE 与底面圆周交于点M ,当二面角A -DB -C的余弦值为519时,求点M 到平面BCD 的距离.空间距离及立体几何中的探索性问题培优篇 【例4】 在多面体ABCC 1 A 1B 1中,四边形BB 1C 1 C 是边长为4的正方形,AB ⊥BB 1,△ABC 是正三角形.(1)若A 1为AB 的中点,求证:直线AC ∥平面A 1BC 1;(2)若点A 1在棱AB 1上且AA 1=2A 1 B 1,求点C到平面A 1BC 1的距离.空间距离及立体几何中的探索性问题培优篇【对点训练2】 已知多面体PQABCD ,四边形ABCD 是等腰梯形,AD ∥BC ,BC=2AD=2AB=4,四边形PQAD 是菱形,π3QAD,E ,F 分别为QA ,BC 的中点,QF =√6. (1)求证:平面QPDA ⊥平面ABCD ;(2)求点E 到平面QFD 的距离.空间距离及立体几何中的探索性问题培优篇【对点训练3】 在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且P A =2,四边形ABCD 是直角梯形,且AB ⊥AD ,BC ∥AD ,AD =AB =2,BC =4,M 为PC 中点,E 在线段BC 上,且BE =1. (1)求证:DM ∥平面 ;(2)求平面PDE 与平面BDE 夹角的余弦值;(3)求点E 到平面PDC 的距离.空间距离及立体几何中的探索性问题培优篇【例5】 如图,在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M 、N 、R 分别是OA 、BC 、AD 的中点.求: (1)直线MN与平面OCD的距离; (2)平面MNR 与平面OCD 的距离.空间距离及立体几何中的探索性问题培优篇【对点训练4】 直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,边长为2,侧棱A 1A =3,M 、N 分别为A 1B 1、A 1D 1的中点,E 、F 分别是C1D1,B 1C 1的中点. (1)求证:平面AMN ∥平面EFBD ; (2)求平面AMN 与平面EFBD 的距离.空间距离及立体几何中的探索性问题培优篇空间距离及立体几何中的探索性问题题型一 点到直线距离问题【例1】 如图,在平行六面体1111ABCD A B C D 中,以顶点A 为端点的三条棱长都是a ,且AB AD ,1160A AB A AD,E 为1CC 的中点,则点E到直线1AC 的距离为( )ABC D 【解答】 在平行六面体1111ABCD A B C D 中,不妨设AB d,AD b ,1AA c . 11AC AB AD AA d b c ,112C E c=-,d b c a ,2110,22d b d c b c a a a,所以1AC d b c ,112C E a =,2111122AC d b c d C E c c a c b c c-=-,所以E到直线1AC 的距离为d ,故选:A 【例2】 如图,在三棱锥 P ABC 中,PA 底面ABC ,90BAC .点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,2PA AC ,1AB .空间距离及立体几何中的探索性问题培优篇(1)求证://MN 平面BDE ;(2)求点N 到直线ME 的距离;(3)在线段PA 上是否存在一点H ,使得直线NH 与平面MNE ,若存在,求出线段AH 的值,若不存在,说明理由. 【解答】(1)因为PA 底面ABC ,90BAC , 建立空间直角坐标系如图所示,则11(0,0,0),(1,0,0),(0,2,0),(0,0,1),(0,1,1),(0,0,),(,1,0),(0,0,2)22A B C D E M N P ,所以(0,1,0),(1,0,1)DE DB, 设(,,)n x y z为平面BDE 的法向量,则0n DE n DB ,即00y x z ,不妨设1z ,可得(1,0,1)n ,又11,1,22MN,可得0MN n,因为MN 平面BDE , 所以//MN 平面BDE ,空间距离及立体几何中的探索性问题培优篇 (2)因为10,1,2ME,所以点N 到直线ME 的距离d (3)设 0,0,H t , 0,2t ,则1,1,2NH t,设平面MNE 的法向量为 ,,m a b c ,则11022102m MN a b c m ME b c令1b ,则 4,1,2m ,所以cos ,21m NH m NH m NH,即2202830t t ,解得32t 或110t (舍去), 所以32AH. 【对点训练1】 (2023·全国·高三专题练习)如图,直四棱柱1111ABCD A B C D 的底面ABCD为平行四边形,π3DAB,13226AD CD DD ,点P ,M 分别为AB ,1CD 上靠近1,A D 的三等分点.(1)求点M 到直线1PD 的距离;(2)求直线PD 与平面1PCD 所成角的正弦值. 【解答】(1)由题可得AD =2,13CD DD , 又点P 为AB 上靠近A 的三等分点,所以AP =1. 在ADP △中,由余弦定理可得,空间距离及立体几何中的探索性问题培优篇 22312cos 4122132DP AD AP AD AP DAP, 故2224AD AP DP ,所以ADP △为直角三角形,故DP ⊥AB . 因为底面ABCD 为平行四边形,所以DP ⊥CD . 由直四棱柱性质可知1DD DP ,1DD CD , 即DP ,CD ,1DD 两两垂直.故以D 为坐标原点,分别以DP ,DC ,1DD 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Dxyz .则1(0,0,0),(0,0,3),(0,1,2)D P D M .因为1PD,过点M 作1ME PD ,(点到直线的距离即为通过该点向直线做垂线,点到垂足的距离)令 1,0,3PE PD,所以 ,0,3E,故,1,32ME.由133960ME PD ,解得34 ,所以11,4ME,故点M 到直线1PD 的距离为2ME. (2)因为 DP , 10,1,1D M ,1PD ,设平面1PCD 的法向量为 ,,n x y z,则110,0,n D M n PD即0,30,y z z令x 1y ,1z ,故n.设直线PD 与平面1PCD 所成角为 ,空间距离及立体几何中的探索性问题培优篇 则sin |cos ,|||||n DP n DP n DP所以直线PD 与平面1PCD . 【对点训练2】 如图,在直三棱柱111ABC A B C -(侧棱和底面垂直的棱柱)中,平面1A BC 侧面11A ABB ,13AB BC AA ,线段AC 、A 1B 上分别有一点E 、F 且满足12,2AE EC BF FA .(1)求证:AB BC ; (2)求点E 到直线1A B 的距离;(3)求二面角F BE C 的平面角的余弦值.【解答】(1)证明:如图,过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D , 则由平面A 1BC ⊥侧面A 1ABB 1,且平面A 1BC 侧面A 1ABB 1=A 1B ,得 AD ⊥平面A 1BC ,又BC 平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC —A 1B 1C 1是直三棱柱,则AA 1⊥底面ABC ,BC 底面ABC ,所以AA 1⊥BC .又AA 1 AD =A ,1,AA AD 侧面A 1ABB 1,从而BC ⊥侧面A 1ABB 1, 又AB 侧面A 1ABB 1,故AB ⊥BC .(2)由(1)知,以点B 为坐标原点,以BC 、BA 、BB 1所在的直线分别为x 轴、y 轴、z 轴,可建立如图所示的空间直角坐标系, B (0,0,0),A (0,3,0),(3,0,0)C ,1(0,3,3)A有由线段AC 、A 1B 上分别有一点E 、F 且满足12,2AE EC BF FA .则13AE AC ,1(,3,)(3,3,0)3E E E x y z ,1,2,0E E E x y z , 即E (1,2,0),同理得F (0,1,1)(1,1,1),EF1(0,3,3).BA 10EF BA ,所以1EF BA ,空间距离及立体几何中的探索性问题培优篇 所以点E 到直线1A B 的距离为||d EF .(3)设平面FBE 的一个法向量为(,,)m x y z,则10330m EF x y z m BA y z,取1z 得1,2 yx ,即(2,1,1)m, 又平面EBC 的一个法向量为(0,0,1)n,cos ,m n m nm n二面角F BE C 是钝二面角,,所以它的余弦值为6. 题型二 点到平面距离问题【例3】 如图,在四面体ABCD 中,,,2,3,60AD CD AD CD ACAB CAB .点E 为棱AB 上的点,且AC DE ,三棱锥D BCE .(1)求点A 到平面CDE 的距离;(2)求平面BCD 与平面CDE 夹角的余弦值.【解答】(1)取AC 中点F ,连接,FE FD ,因为AD CD ,所以DF AC , 又,,,AC DEDEDF D DE DF 平面DEF ,所以AC 平面DEF ,而FE 平面DEF ,所以AC FE ,空间距离及立体几何中的探索性问题培优篇由已知,601B AF AC ,所以2,1EF AE BE AB AE , 由AC 平面,DEF AC 平面ABC ,得平面ABC 平面DEF , 因此DE 在平面ABC 内的射影就是直线EF , 设D 在面ABC 的射影为H ,则H 在直线EF 上, 由题意知13BE AB,则13BCE ABC S S △△, 所以1111123sin60333926D BCE BCE ABC V S DH S DH DH △△,所以1DH ,又因为1DF ,所以H 与F 重合,所以DF 平面ABC ,以F 为原点,,,FA FE FD 所在直线为,,x y z 轴建立如图所示的空间直角坐标系F xyz , 则0,0,1,1,0,0,1,0,0,D C A E ,11,,22AE EBAE所以B 点坐标为1,1,0,12CD,1,,2,0,02CB CE CA.设平面DEC 的一个法向量是 1,,n x y z,则110n CD x z n CE x,取1y,则x z ,即11,n,所以点A 到平面CDE 的距离11CA n d n. (2)设平面BCD 的法向量为 2,,b c n a,则220102n CD a c n CB a,取1b =-,则a c空间距离及立体几何中的探索性问题培优篇 故 21,n,所以121212cos ,n n n n n n由于平面BCD 与平面CDE 夹角范围为π[0,2,所以平面BCD 与平面CDE夹角的余弦值是385. 【例4】 (2023·江苏苏州·模拟预测)在如图所示的圆锥中,已知P 为圆锥的顶点,O 为底面的圆心,其母线长为6,边长为ABC 内接于圆锥底面,OD OP 且1,12.(1)证明:平面DBC 平面DAO ;(2)若E 为AB 中点,射线OE 与底面圆周交于点M ,当二面角A DB C 的余弦值为519时,求点M 到平面BCD 的距离.【解答】(1)因为P 为圆锥的顶点,O 为底面的圆心,所以PO 面ABC . 又因为BC 面ABC ,所以PO BC ,即DO BC .因为O 为ABC 外接圆圆心,且ABC 为正三角形,所以OA BC . 又因为OA OD O 且OA ,OD 面AOD ,所以BC 面AOD , 因为BC 面BCD ,所以面DBC 面DAO . (2)作OG BC ∥交AB 于G ,取BC 中点为F . 因为OA BC ,OG BC ∥,所以OF OG .因为OD 面ABC ,OG ,OF 面ABC ,所以OD OG ,OD OF.如图,以点O 为坐标原点,OG ,OF ,OD 所在的直线分别为x ,y ,z 轴建立空间直角坐标系O xyz .因为6PA ,AB 3AO ,PO空间距离及立体几何中的探索性问题培优篇 所以 0,0,0O , 0,3,0A,3,022B,3,022C, P .由OD OP,得 0,D,9,02AB,AD,0BC ,3,2DB.设面ABD 的法向量为 111,,m x y z ,则1111902230m AB x y mAD yz,取1y ,则11z ,13x ,所以3,1m.设面BCD 的法向量为222,,x n y z ,则222203022n BC n DB x yz, 取2y ,则23z ,20x ,所以,3n.由5cos ,19m n m n m n,且1,12, 解得23,所以 D ,0,n .又因为3,02M ,所以3,2DM , 所以M到面BCD的距离19DM n d n.空间距离及立体几何中的探索性问题培优篇 【例5】 (2023·重庆·统考模拟预测)在多面体111ABCC A B 中,四边形11BB C C 是边长为4的正方形,1AB B B ,△ABC 是正三角形.(1)若1A 为AB 的中点,求证:直线//AC 平面11A BC ;(2)若点1A 在棱1AB 上且1112AA A B ,求点C 到平面11A BC 的距离.【解答】(1)连接1CB ,设11B D C C B I ,由题意可得D 为1CB 的中点,连接1A D , 因为1,A D 分别为11,AB CB 的中点,则1A D //AC , 1A D 平面11A BC ,AC 平面11A BC ,所以直线//AC 平面11A BC .(2)由题意可得:11,AB B B BC B B ,AB BC B ,,AB BC 平面ABC , 所以1BB 平面ABC , 取AB 的中点H ,连接CH ,因为△ABC 是正三角形,则CH AB ,又因为1BB 平面ABC ,CH 平面ABC ,则1CH BB , 1AB BB B ?,1,AB BB 平面1ABB ,所以CH 平面1ABB ,如图,以H 为坐标原点,,HA HC 为x 轴,z 轴,建立空间直角坐标系,空间距离及立体几何中的探索性问题培优篇则 111282,0,0,0,0,,2,4,0,0,,,,033B C B C A,可得 11482,0,,2,4,,,,033BC BC BA uuu r uuu r uuu r ,设平面11A BC 的法向量 ,,n x y z ,则1124048033n BC x y n BA x y, 令2x ,则1,0y z,即 2,1,0n,所以点C 到平面11A BC 的距离5n BC d nr uu u rr.【例6】 如图,在四棱锥P ABCD 中,PA 平面ABCD ,AD CD ,//AD BC ,2PA AD CD ,3BC .E 为PD 的中点,点F 在PC 上,且12PF FC .(1)求证:平面AEF 平面PCD ;(2)求平面AEF 与平面AEP 所成角的余弦值;(3)若棱BP 上一点G ,满足2PG GB ,求点G 到平面AEF 的距离.【解答】(1)如图,以D 为原点,分别以DA ,DC 为x 轴,y 轴,过D 作AP 平行线为z 轴,建立空间直角坐标系,则 0,0,0D , 2,0,0A , 0,2,0C , 2,0,2P , 1,0,1E , 3,2,0B ,所以 0,2,0DC , 2,2,2PC ,因为12PF FC ,所以13PF PC ,空间距离及立体几何中的探索性问题培优篇 所以 14242,2,22,0,2,,3333DF ,即424,,333F ,所以224,,333AF ,1,0,1AE , 设平面AEF 的法向量为 ,,n x y z ,则22403330n AF x y z n AE x z, 令1x z ,则1y ,所以 1,1,1n,平面PCD 的法向量为 ,,m a b c ,则202220m DC b n PC a b c , 令1a ,则1c ,所以 1,0,1m,所以 1101110n m ,所以n m ,所以平面AEF 平面PCD .(2)易知平面AEP 的一个法向量 0,1,0u,设平面AEF 与平面AEP 所成角为 ,则cos n u n u所以平面AEF 与平面AEP 所成角的余弦值为3. (3)因为棱BP 上一点G ,满足2PG GB ,所以23PG PB,所以222420,0,21,2,2,,33333AG AP PG AP PB, 所以点G 到平面AEF 的距离0n AG d n.【对点训练3】 (2023·湖北襄阳·襄阳四中校考模拟预测)斜三棱柱111ABC A B C -的各棱长都为14,60A AB,点1A 在下底面ABC 的投影为AB 的中点O .空间距离及立体几何中的探索性问题培优篇(1)在棱1BB (含端点)上是否存在一点D 使11A D AC ?若存在,求出BD 的长;若不存在,请说明理由;(2)求点1A 到平面11BCC B 的距离.【解答】(1)因为点1A 在下底面ABC 的投影为AB 的中点O ,故1A O 平面ABC , 连接OC ,由题意ABC为正三角形,故OC AB ,以O 为原点,1OA OC OA ,,分别为x y z 、、轴建立如图所示空间直角坐标系:则1(2,0,0),0,0,,0,A A C ,112,0,0,4,0,,2,B B C ,设11,2,0,BD BB BB,可得22,0,D , 1122,0,,4,A AC D,假设在棱1BB(含端点)上存在一点D 使11A D AC , 则 1114220,5,A D AC,则11455BD BB; (2)由(1)知12,,2,BBBC,设平面11BCC B 的法向量为 ,,n x y z r,空间距离及立体几何中的探索性问题培优篇 则1020,020n BB x n BC x,令x1,1z y , 则1,1n,又 12,0,A B,则1A 到平面11BCC B 的距离为1||||A B n d n,即点1A 到平面11BCC B 距离为5. 【对点训练4】 (2023·天津河西·统考三模)已知直三棱柱111ABC A B C -中,AB BC ,12AB AA ,1BC ,D ,E 分别为111,A B BB 的中点,F 为CD 的中点.(1)求证:EF //平面ABC ;(2)求平面CED 与平面11ACC A 夹角的余弦值; (3)求点1C 到平面CED 的距离.【解答】 (1)在直三棱柱111ABC A B C -中,1BB 平面ABC ,且BC AB ,空间距离及立体几何中的探索性问题培优篇 以点B 为坐标原点,BC ,BA ,1BB 所在直线分别为x ,y ,z 轴建立如下图所示的空间直角坐标系.则 0,0,1E , 1,0,0C , 11,0,2C , 0,1,2D ,11,,122F .11,,022EF易知平面ABC 的一个法向量为 00,0,1m ,则00EF m ,故0EF m,又因为EF 平面ABC ,故EF //平面ABC(2) 1,0,1CE,1,1,2CD 设平面CED 的法向量为 ,,m x y z ,则020m CE x z m CD x y z,不妨设 1,1,1m ,因为 10,0,2CC , 1,2,0CA设平面CED 的法向量为 ,,n a b c ,则12020n CC c n CA a b ,不妨设 2,1,0n则cos cos ,m n m n m n因此,平面CED 与平面11ACC A15. (3)因为 10,0,2CC,根据点到平面的距离公式,则1CC m d m 即点1C 到平面CED 【对点训练5】 已知多面体PQABCD ,四边形ABCD 是等腰梯形,AD BC ∥,224BC AD AB ,四边形PQAD 是菱形,π3QAD,E ,F 分别为QA ,BC 的中点,QF .(1)求证:平面QPDA 平面ABCD ;空间距离及立体几何中的探索性问题培优篇(2)求点E 到平面QFD 的距离.【解答】(1)设O 是线段AD 的中点,连接,QO OF ,过D 作DM BC ,垂足为M , 因为四边形ABCD 为等腰梯形,//AD BC ,224BC AD AB, 所以1CM ,2CD ,因为F 是BC 的中点,可得1,OD MF DM 则//OD MF ,即四边形OFMD 为平行四边形, 可得//,OF DM OF DMOF AD ,又因为四边形PQAD 是边长为2的菱形,且π3QAD, 则QAD 是边长为2的等边三角形,可得,QO AD QO 则222QO FO QF ,可得QO OF ,因为,AD OQ O AD I 平面,QPDA OQ 平面QPDA , 所以OF 平面QPDA ,且OF 平面ABCD ,所以平面QPAD 平面ABCD.(2)以O 为原点、,,OF OD OQ 分别为x 轴、y轴、z 轴建立如图空间直角坐标系O xyz, 则 1,0,1,0,,0,,22Q D FEQ, 可得3,0,,0,22QF DE DQuuu ruuur uuur ,设平面QFD 的法向量为 ,,m x y z ,则0m QF mDQ y,取z,则3,y x ,可得m,空间距离及立体几何中的探索性问题培优篇【对点训练6】 (2023·天津南开·南开中学校考模拟预测)在四棱锥P ABCD 中,PA 底面ABCD ,且2PA ,四边形ABCD 是直角梯形,且AB AD ,//BC AD ,2AD AB ,4BC ,M 为PC 中点,E 在线段BC 上,且1BE .(1)求证://DM 平面PAB ;(2)求平面PDE 与平面BDE 夹角的余弦值; (3)求点E 到平面PDC 的距离.【解答】(1)证明:以A 为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,则0,0,0A , 2,0,0B , 0,2,0D , 002P ,,, 2,4,0C , 1,2,1M , 2,1,0E , 1,0,1DM,空间距离及立体几何中的探索性问题培优篇易知平面PAB 的一个法向量为 0,2,0AD ,故0DM AD,则DM AD ,又DM 平面PAB ,故//DM 平面PAB .(2)易知平面BDE 的一个法向量为 0,0,2AP,设平面PDE 的法向量为 ,,m x y z, 且 0,2,2PD , 2,1,0DE ,则22020m PD y z m DE x y ,令2y ,则1x ,2z , 1,2,2m , 设平面PDE 与平面BDE 夹角为 ,易知 为锐角,所以42cos cos ,323m AP m AP m AP,即平面PDE 与平面BDE 夹角的余弦值为23. (3)设平面PDC 的法向量为 ,,n a b c,且 2,2,0DC ,则220220n PD b c n DC a b,令1b ,则1a ,1c ,故1,1,1n , 设点E 到平面PDC 距离为h ,||DE nh n.【对点训练7】 如图,在直四棱柱1111ABCD A B C D 中,底面ABCD 为菱形,13DD ,2AD ,π3BCD,E 为棱1BB 上一点,1BE ,过A ,E ,1C 三点作平面 交1DD 于点G .(1)求点D 到平面1BC G 的距离; (2)求平面AEC 与平面BEC 夹角的余弦值.空间距离及立体几何中的探索性问题培优篇 【解答】(1)如图所示:取F 为AB 中点,ABCD 为菱形,π3BCD, 则222π21221cos33DF ,故DF 222DA DF AF,DF AB ,以DF ,DC,1DD 为,,x y z 轴建立空间直角坐标系,则 1,0A, B, 0,2,0C ,E, 10,2,3C ,设 0,0,G a ,则1AG AE AC,即0,2,1,32,3a ,故1323a,解得112a,故0,0,2G ,设平面1BC G 的法向量为 ,,n x y z ,则13020n BC y z n BG y z,取1y ,得到1,2n,点D 到平面1BCG的距离为53DB nn. (2)设平面AEC 的法向量为 1111,,n x y z ,则1111112030n AEy z n AC y ,空间距离及立体几何中的探索性问题培优篇取11y ,得到12n;设平面BEC 的法向量为 2222,,n x y z,则2222200n BE z n BC y, 取21x ,得到2n;平面AEC 与平面BEC夹角为锐角,余弦值为121212cos ,4n n n n n n .题型三 平行平面间的距离问题【例7】 (2023·全国·高三专题练习)如图,在四棱锥O ABCD 中,底面ABCD 是边长为2的正方形,OA 底面ABCD ,2OA ,M 、N 、R 分别是OA 、BC 、AD 的中点.求:(1)直线MN 与平面OCD 的距离; (2)平面MNR 与平面OCD 的距离.【解答】(1)解:因为OA 平面ABCD ,四边形ABCD 为正方形,以点A 为坐标原点,AB 、AD 、AO 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则 2,2,0C、 0,2,0D 、 0,0,2O 、 0,0,1M 、 2,1,0N 、 0,1,0R ,空间距离及立体几何中的探索性问题培优篇 因为M 、R 分别为PA 、AD 的中点,则//MR OD ,MR 平面OCD ,OD 平面OCD ,//MR 平面OCD ,因为//AD BC 且AD BC ,R 、N 分别为AD 、BC 的中点,则//CN RD 且CN RD , 所以,四边形CDRN 为平行四边形,//RN CD ,RN 平面OCD ,CD 平面OCD ,//RN 平面OCD ,MR RN R ,MR 、RN 平面MNR , 平面//MNR 平面OCD ,MN 平面MNR ,//MN 平面OCD ,设平面OCD 的法向量为 ,,n x y z, 2,0,0DC , 0,2,2DO ,则20220n DC x n DO y z ,取1y ,可得0,1,1n r ,0,1,0NC ,所以,直线MN 与平面OCD 的距离为12NC n d n. (2)解:因为平面//MNR 平面OCD ,则平面MNR 与平面OCD 的距离为22NC n d n.【对点训练8】 直四棱柱1111ABCD A B C D 中,底面ABCD 为正方形,边长为2,侧棱13A A ,M N 、分别为1111A B A D 、的中点,E F 、分别是1111,C D B C 的中点.(1)求证:平面AMN //平面EFBD ; (2)求平面AMN 与平面EFBD 的距离.【解答】(1)法一:证明:连接11,B D NF M N ,、分别为1111A B A D 、的中点,E F 、分别是1111,C D B C 的中点,11////MN EF B D ,MN 平面EFBD ,EF 平面EFBD ,空间距离及立体几何中的探索性问题培优篇//MN 平面EFBD ,NF 平行且等于AB , ABFN 是平行四边形,//AN BF ,AN 平面EFBD ,BF 平面EFBD ,//AN 平面EFBD , AN MN N , 平面//AMN 平面EFBD ; 法二: 如图所示,建立空间直角坐标系Dxyz ﹣,则 200103220013A M B E ,,,,,,,,,,,, 123213F N ,,,,,, 110110EF MN,,,,,, 103103AM BF ,,,,,,EF MN AM BF ,,//EF MN ,//AM BF ,MN 平面EFBD ,EF 平面EFBD ,//MN 平面EFBD , AN 平面EFBD ,BF 平面EFBD ,//AN 平面EFBD ,又MN AM M , 平面//AMN 平面EFBD ,(2)法一:平面AMN 与平面EFBD 的距离B 到平面AMN 的距离h. AMN中,AMAN MN122AMN S ,由等体积可得111231332,h 法二:设平面AMN 的一个法向量为 n x y z,,,则030n MN x y n AM x z,则可取 331n ,,, 020AB,,,空间距离及立体几何中的探索性问题培优篇平面AMN 与平面EFBD 的距离为19n AB d n题型四 异面直线的距离问题【例8】 如图,在三棱锥 P ABC 中,4AB BC PA PC AC ,平面ABC 平面PAC .(1)求异面直线AC 与PB 间的距离;(2)若点M 在棱BC 上,且二面角M PA C 为30 ,求PC 与平面PAM 所成角的正弦值. 【解答】(1)法一:取AC 中点O ,连接PO ,由PA PC 知PO AC , 又平面ABC 平面PAC ,平面ABC 平面PAC AC ,故PO 平面ABC , 连接BO ,则90POB,又因为,AB BC O 为AC 中点,故BO AC ,,BO PO 面,PBO BO PO O ,故AC面PBO ,在面PBO 中,作OD PB ,则由OD AC 知OD 为异面直线AC 与PB 间的距离,由2,4PO OB PB,PO OB PB OD 知OD 即异面直线AC 与PB法二:取AC 中点O ,连接PO ,由PA PC 知PO AC ,又平面ABC 平面PAC,平面ABC 平面PAC AC ,故PO 平面ABC 以O 为坐标原点,,,OB OC OP 所在直线分别为x 轴,y 轴,z 轴,空间距离及立体几何中的探索性问题培优篇则0,2,0,2,0,0,0,2,0,,2,0,,0,4,0A B C P PB AC, 设,,n x y z ,且0,0n AC n PB, 则020y x,令zn ,又 2,2,0AB ,则异面直线AC 与PB 间的距离为n AB d n(2)由(1)知PO 平面ABC ,可得平面PAC 平面ABC , 如图,在平面ABC 内作MN AC ,垂足为N ,则MN 平面PAC , 在平面PAC 内作FN AP ,垂足为F ,联结MF ,PA 平面PAC ,所以MN PA ,且MN FN N ,MN FN 、平面MFN ,所以PA 平面MFN ,FM 平面MFN ,所以PA FM故MFN 为二面角M PA C 的平面角,即30MFN, 设MN a ,则,4NC a AN a ,在Rt AFN中, 4FN a ,在Rt MFN △中,由30MFN 知FN ,得43a ,法一:设点C 到平面PAM 的距离为h ,由M APC C APM V V ,得1133APC APM S MN S h,即11113232AC MN PO PA MF h ,空间距离及立体几何中的探索性问题培优篇又4,2,AC PA MF MN PO ,解得h PC 与平面PAM 4; 法二:以O 为坐标原点,OB OC OP 、、所在直线分别为x 轴,y 轴,z 轴, 建立空间直角坐标系如图,则 420,2,0,2,0,0,0,2,0,,,,033A B C P M,480,2,,0,2,,,,033PC AP AM,设平面PAM 的法向量为 ,,nx y z ,则由0,0n AP n AM,知204833y x y,令z6,n , 则PC 与n所成角的余弦值为cosn PC n PC, 则PC 与平面PAM 所成角的正弦值sin cos 4.【例9】 如图①菱形ABCD ,60,1B BE EC .沿着AE 将BAE 折起到B AE,使得90DAB ,如图②所示.(1)求异面直线AB 与CD 所成的角的余弦值; (2)求异面直线AB 与CD 之间的距离.空间距离及立体几何中的探索性问题培优篇【解答】(1)图①菱形ABCD ,60,1B BE EC,由余弦定理得2222cos 603AE AB BE AB BE ,所以AE所以222BE AE AB ,即AE BC ,又//AD BC ,所以AE AD ,在图②中,90DAB ,即AD AB ,又,,AB AE A AB AE 平面AB E 所以AD 平面AB E ,即EC 平面AB E ,又B E 平面AB E ,所以B E EC,如图,以E 为原点,,,EC EAEB 分别为,,x y z 轴建立空间直角坐标系,则0,0,0,1,0,0,,0,0,1,E C D B A ,所以0,,AB CD ,故0303cos ,224AB CD AB CD AB CD, 则异面直线AB 与CD 所成的角的余弦值为34;(2)由(1)得1,0AC,设 ,,m x y z是异面直线AB 与CD 公垂线的方向向量,所以0000AB m z z CD m x x,令1y ,则 m所以异面直线AB 与CD 之间的距离为AC mm【例10】如图所示,在空间四边形PABC 中,2AC BC ,90ACB ,AP BP AB ,PC AC .空间距离及立体几何中的探索性问题培优篇 (1)求证:PC AB ;(2)求异面直线PC 与AB 的距离; (3)求二面角B AP C 的大小.【解答】(1)取AB 中点D ,连结PD CD ,.AP BP ,PD AB . AC BC ,CD AB .PD CD D ,,PD CD 平面PCD ,AB 平面PCD .PC 平面PCD ,PC AB .(2)因为PC AB ,PC AC ,AB AC A ,,AB AC 平面ABC ,PC 平面ABC .如图,以C 为原点,分别以,,CB CA CP 为,,x y z 轴建立空间直角坐标系C xyz .则(000)(020)(200),,,,,,,,C A B . 设(0,0,)P t . PB AB 2t ,(0,0,2)P . 所以(0,0,2) CP ,(2,2,0)AB ,设PC 与AB 的公垂线的一个方向向量为(,,)n x y z,则20220n CP z n AB x y,取1x ,得1y ,0z ,即(1,1,0)n ,空间距离及立体几何中的探索性问题培优篇又(0,2,0)CA ,所以异面直线PC 与AB 之间的距离为 CA n d n. (3)取AP 中点E ,连结BE CE ,.AC PC ,AB BP ,CE AP ,BE AP .BEC 是二面角B AP C 的平面角.(011) ,,E ,(011) ,,EC ,(211),,EB ,·cos ·EC EB BEC EC EB二面角B AP C 的大小为【对点训练9】 如图,在长方体111ABCD A BC D 中,11AD AA ,2AB ,求:(1)点1A 到直线BD 的距离; (2)点1A 到平面1BDC 的距离; (3)异面直线1,BD CD 之间的距离.【解答】(1)以点D 为原点,DA,DC ,1DD 为x ,y ,z 轴的正方向建立空间直角坐标系,因为11AD AA ,2AB ,则 1,2,0B , 0,0,0D , 11,0,1A , 10,2,1C , 0,2,0C ,10,0,1D所以 1,2,0BD , 10,2,1A B ,所以1A B uuu r在BD上的投影向量的大小为15A B BD BD,又1A B 所以点1A到直线BD 的距离15d;空间距离及立体几何中的探索性问题培优篇(2)由(1) 1,2,0BD , 10,2,1DC , 10,2,1A B ,设平面1BDC 的法向量 ,,n x y z ,则10n BD n DC ,所以2020x y y z ,取1y ,可得2x ,2z ,所以 2,1,2n是平面1BDC 的一个法向量,向量10,2,1A B 在法向量2,1,2n上的投影为143A B n n,所以点1A 到平面1BDC 的距离为43;(3)由(1) 10,2,1CD , 10,2,1BA ,所以11//CD BA,所以11//CD BA ,又1CD 平面1A BD ,1BA 平面1A BD ,所以1//CD 平面1A BD ,所以异面直线1,BD CD 之间的距离与点C 到平面1A BD 的距离相等,设平面1A BD 的法向量 111,,m x y z ,因为 1,2,0BD ,则10m BD n BA ,所以11112020x y y z ,取11y ,可得12x ,12z ,所以 2,1,2m是平面1A BD 的一个法向量,向量0,2,0CD在法向量 2,1,2m上的投影为23CD m m,所以点C 到平面1A BD 的距离为23;故异面直线1,BD CD 之间的距离为23.【对点训练10】 如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AB =a ,PB =PD a ,点E 在PD 上,且PE ∶ED =2∶1,求异面直线PB 与CE 的距离.空间距离及立体几何中的探索性问题培优篇【解答】解:由:2:1PE ED ,知在BD 上取点F 使:2:1BF FD , 根据三角形相似易知PB ∥EF ,又PB 平面CEF ,且EF 平面CEF ,从而PB ∥平面CEF ,于是只需求直线PB 到平面CEF 的距离.以A 为坐标原点,AD 所在直线为y 轴, 建立如图所示的直角坐标系,由已知,(0,0,)P a ,C 1,,0)2a ,F 1,,0)2a ,E 21(0,,)33a a,则PE =22(0,,)33a a ,CE=11(,,)63a a ,CF=(,0,0).设平面CEF 的法向量为(,,)n x y z, 则1126303n CE ax ay az n CF ax020x y z于是令0x ,=2y ,1z,则(0,2,1)n.∴PB 与平面CEF 间的距离||||5n PE d a n,高中 | 数学空间距离及立体几何中的探索性问题培优篇 415【对点训练11】 如图,已知以O 为圆心,2为半径的圆在平面 上,若PO ,且4PO ,OA 、OB 为圆O 的半径,且90AOB ,M 为线段AB 的中点.求:(1)异面直线OB ,PM 所成角的大小; (2)点O 到平面PAB 的距离; (3)异面直线OB ,PM 的距离.【解答】(1)由PO 且90AOB ,以O 为原点,分别以,,OA OB OP 所在的直线为,,x y z 轴,建立空间直角坐标系,如图,由题意 0,0,4,2,0,0,0,2,0P A B ,因为M 为线段AB 的中点,所以 1,1,0M ,所以 1,1,4,0,2,0PMOB,cos 6PM OB PM OB PM OB,,空间距离及立体几何中的探索性问题空间距离及立体几何中的探索性问题培优篇42所以异面直线OB ,PM 所成角的大小为 (2)由题意,1122222OAB SOA OB△, 11622PABS PM AB△, 设点O 到平面PAB 的距离为d ,因为PO , 由P OAB O PAB V V所以1133OAB PAB S PO S d △△,所以1124633d ,解得43d ,所以点O 到平面PAB 的距离43;(3)如上图所示,作//MN OB 交OA 于点N ,因为OB 平面PMN ,MN 平面PMN ,所以//OB 平面PMN , 因此异面直线OB ,PM 的距离就是直线OB 与平面PMN 的距离, 也即是点O 到平面PMN 的距离,因为M 为线段AB 的中点.所以 1,0,0N , 0,1,0NM设平面PMN 的法向量为 ,,n x y z,则040n NM y n PM x y z令1z,则可得 4,0,1n 所以点O 到平面PMN 的距离1,0,04,0,117ON n h n, 即异面直线OB ,PM。

2019版数学(理)一轮讲义:第45讲 立体几何中的向量方法(二)——求空间角和距离 含答案

2019版数学(理)一轮讲义:第45讲 立体几何中的向量方法(二)——求空间角和距离 含答案

第45讲立体几何中的向量方法(二)——求空间角和距离考纲要求考情分析命题趋势1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成角为θ,a 与n 的夹角为β,则sin θ=|cos β|=__错误!__。

3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ为__〈错误!,错误!〉__。

(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=__|cos <n 1,n 2>|__,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).4.利用空间向量求距离(供选用)(1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|错误!|=__错误!__.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|错误!|=错误!.1.思维辨析(在括号内打“√”或“×”).(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(×)(3)两个平面的法向量所成的角是这两个平面所成的角.(×)(4)两异面直线夹角的范围是错误!,直线与平面所成角的范围是错误!,二面角的范围是[0,π].(√)2.已知向量m,n分别是直线l和平面α的方向向量和法向量,若cos〈m,n〉=-错误!,则l与α所成的角为(A)A.30°B.60°C.120°D.150°解析∵cos 〈m,n〉=-错误!,0°≤〈m,n〉≤180°,∴<m,n>=120°,∴l与α所成角为90°-(180°-120°)=30°,故选A.3.正三棱柱(如右图,底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为2错误!,则AC1与侧面ABB1A1所成的角为__30°__.解析取A1B1的中点E,连接C1E,AE,由正三棱柱性质得平面A1B1C1⊥平面A1B1BA,又∵C1E⊥A1B1,A1B1是平面A1B1C1与平面A1B1BA的交线,∴C1E⊥平面A1B1BA,则∠C1AE为所求.又∵A1B1=2,AA1=22,∴AE=3,C1E=错误!,∴tan ∠C1AE=错误!=错误!,∴∠C1AE=30°,∴AC1与平面ABB1A1所成角为30°.4.二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD =8,CD=2错误!,则该二面角的大小为__60°__。

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。

直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。

注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。

平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。

二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。

一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。

立体几何的空间距离

立体几何的空间距离
方法1 方法2
方法3
A
点评
F
B
单击按钮可演示动画; 再次单击即隐藏动画。
基础训练
1. 判断:如果一条直线上有两个点到平面的 距离相等,则这条直线和平面平行.( ) 2.长方体ABCD-A1B1C1D1中,AB=4,AD=3, AA1=1,则点C1到BD的距离为 D1 A1 A .
提 示
提 示
B1训练
5. 一副三角板如图拼接,使两个三角板所在的平 面互相垂直.如果公共边AC=a,则异面直线AB与 CD的距离是( C). (A)
a 2
(B) a (D)
2 (C) a 2
2a
答 案
提 示
基础训练
6.已知Rt△ABC的直角顶点C在平面α内,斜边 AB∥α,AB= 2 6 ,AC、BC分别和平面α成45° 和30°角,则AB到平面α的距离为______. 2
L H解三角形
B
a B
扇形弧长
说明:单击
弧长公式
b
可以演示相关动画,再次单击即可隐藏.
例题分析
例1.在棱长为1的正方体 ABCD—A1 B1C1 D1中,
(1)求点A到直线CD1的距离; (2)求直线CD到直线BC1的距离; (3)求点A到平面A1B1CD的距离;(4)求直线AB到平面A1B1CD的距离;
A
45° 30°
B
提 示
E
C
F
答 案
课堂小结
“距离”离不开垂直,因此求距离问题的过程实 质上是论证线面关系(垂直)与解三角形的过程. 1.求距离的一般步骤是:一作,二证,三计算.即 先作出表示距离的线段,再证明它就是要求的距离, 然后再计算,其中第二步证明易被忽视,应引起重视. 2.求距离问题体现了化归与转化的思想,一般情 况下需要转化为解三角形.

专题13 立体几何中点到面的距离问题(解析版)-2021年高考数学立体几何中必考知识专练

专题13 立体几何中点到面的距离问题(解析版)-2021年高考数学立体几何中必考知识专练

专题13:立体几何中点到面的距离问题(解析版)1.已知四边形ABCD 是梯形(如图甲),//AB CD ,AD DC ⊥,4CD =,2AB AD ==,E 为CD 的中点,以AE 为折痕把ADE 折起,使点D 到达点P 的位置(如图乙),且2PB =.甲 乙(1)求证:平面PAE ⊥平面ABCE ; (2)求点A 到平面PBE 的距离. 【答案】(1)证明见解析;(226. 【分析】(1)连接BE ,取AE 的中点M ,连接PM ,BM , 可得PM AE ⊥,PM MB ⊥,进而可得PM ⊥平面ABCE ,又PM ⊂平面PAE ,可得平面PAE ⊥平面ABCE ; (2)设点A 到平面PBE 的距离为d ,利用等体积法P ABE A PBE V V --=进行转化计算即可得解. 【详解】(1)连接BE ,因为//AB CD ,AD DC ⊥,4CD =,E 为CD 的中点,2AB AD ==,所以四边形ABED 是边长为2的正方形,且BE EC =, 取AE 的中点M ,分别连接PM ,BM ,因为2AP PE ==,所以PM AE ⊥,BM AE ⊥,且22AE =2PM AM BM ===又2PB =,所以222PM MB PB +=,所以PM MB ⊥, 又AE MB M ⋂=,所以PM ⊥平面ABCE ,又PM ⊂平面PAE ,所以平面PAE ⊥平面ABCE ;(2)由(1)知,PM ⊥平面ABCE ,PBE △为正三角形且边长为2, 设点A 到平面PBE 的距离为d ,P ABE A PBE V V --=, 则1133ABE PBE S PM S d ⨯⨯=⨯⨯△△, 所以211133234BE AB PM BE d ⨯⨯⨯⨯=⨯⨯⨯, 即2111322223234d ⨯⨯⨯⨯=⨯⨯⨯,解得263d =, 故点A 到平面PBE 的距离为26.【点睛】本题考查面面垂直的证明,考查点面间的距离求法,考查逻辑思维能力和计算能力,考查空间想象能力,属于常考题.2.如图,三棱柱111ABC A B C -中,底面ABC 为等边三角形,1AA ⊥平面ABC ,且12AA AC ==,点E 为BC 的中点,点F 为1AA 的中点.(1)求证:平面FBC ⊥平面1A AE ;(2)求点1C 到平面FBC 的距离. 【答案】(1)证明见解析;(2)3. 【分析】(1)由等边三角形的性质可知BC AE ⊥,由线面垂直的性质定理可知1AA BC ⊥;再结合线面垂直、面面垂直的判定定理即可得证;(2)取AC 的中点H ,连接EF ,由线面垂直的判定定理可证得BH ⊥面11ACC A ,即三棱锥1B C FC -的高为BH ;易知ABF ACF ≅∆,故BF CF =,BC EF ⊥,以便求FBC ∆的面积;设点1C 到平面FBC 的距离为d ,由等体积法11C FBC B C FC V V --=,解出d 的值即可. 【详解】 证明:(1)底面ABC 为等边三角形,且E 为BC 的中点,BC AE ∴⊥.1AA ⊥面ABC ,BC ⊂面ABC ,1AA BC ∴⊥,又1AA AE A ⋂=,1AA ⊂面1A AE ,AE ⊂面1A AE ,BC ∴⊥面1A AE ,BC ⊂面FBC ,∴面FBC ⊥面1A AE .(2)解:取AC 的中点H ,则BH AC ⊥,连接EF .1AA ⊥面ABC ,BH ⊂面ABC ,1AA BH ∴⊥, 1AA AC A =,1AA 、AC ⊂面11ACC A ,BH ∴⊥面11ACC A ,即三棱锥1B C FC -的高为3BH =AB AC =,90BAF CAF ∠=∠=︒,AF AF =,ABF ACF ∴∆≅∆,BF CF ∴=,E 为BC 的中点,BC EF ∴⊥,且22312EF AE AF =+=+=.设点1C 到平面FBC 的距离为d ,11C FBC B C FC V V --=,∴11111 (23232)d BC EF BH CC =,解得3d =,故点1C 到平面FBC 的距离为3. 【点睛】本题考查空间中线与面的垂直关系、点到面的距离,熟练运用线面垂直的判定定理与性质定理,以及等体积法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.3.三棱锥D ABC -中,08,120,,AB BC CD DA ADC ABC M O ====∠=∠=分别为棱,BC AC 的中点,42DM =.(1)求证:平面ABC ⊥平面MDO ; (2)求点M 到平面ABD 的距离. 【答案】(1)证明见解析;(2421. 【解析】试题分析:(1)利用勾股定理有OD OM ⊥,利用等腰三角形中点,有OD AC ⊥,故OD ⊥平面ABC ,所以平面ABC ⊥平面MDO ;(2)利用等体积法,M ABD D MAB V V --=,即11··33ABD MAB S h S OD ∆=,所以·4217MAB ABD S OD h S ∆∆==. 试题解析:(1)由题意:4OM OD ==,∵42DM =,∴090DOM ∠=,即OD OM ⊥. 又∵在ACD ∆中,,AD CD O =为AC 的中点,∴OD AC ⊥. ∵OM AC O ⋂=,∴OD ⊥平面ABC ,又∵OD ⊂平面MDO ,∴平面ABC ⊥平面MDO . (2)由(1)知OD ⊥平面,4ABC OD =,ABM ∆的面积为0113sin1208483222ABM S BA BM ∆=⨯⨯=⨯⨯⨯=, 又∵在Rt BOD ∆中,4OB OD ==,得42,8BD AB AD ===, ∴142648872ABD S ∆=⨯⨯-=. ∵M ABD D MAB V V --=,即11··33ABD MAB S h S OD ∆=,∴·4217MAB ABD S OD h S ∆∆==,∴点M 到平面ABD 的距离为421.考点:1.立体几何证明线面垂直;2.等体积法.4.如图所示,在四棱锥S ABCD -中,底面ABCD 是正方形,对角线AC 与BD 交于点F ,侧面SBC 是边长为2的等边三角形,E 为SB 的中点.(1)证明:SD ∥平面AEC ;(2)若侧面SBC ⊥底面ABCD ,求点A 到平面BSD 的距离. 【答案】(1)见解析;(2)217【分析】(1)利用线线平行,证明线面平行,所以可以通过证明EFDS ,而SD ⊄平面AEC ,EF ⊂平面AEC ,从而证得SD 平面AEC .(2)利用换底的方法求几何体的体积,根据线线垂直,可以得到线面垂直,从而找出几何体的高,再根据等体积转化,从而求出点A 到面BSD 的距离. 【详解】(1)连接EF ,易证EF 为BDS ∆的中位线,所以EFDS .又∵SD ⊄平面AEC ,EF ⊂平面AEC ,∴SD 平面AEC .(2)∵平面SBC ⊥底面ABCD ,平面SBC ⋂平面ABCD BC =,AB BC ⊥∴AB ⊥平面BCS在BSD∆中,22BD DS==,2BS=∴7BSDS∆=又∵A BSD D ABS C ABS A BSCV V V V----===12333BSCS AB∆=⋅=设点A到面BSD的距离为d∴221173A BSDBSDVdS-∆==∴点A到面BSD的距离为2217【点睛】本题主要考查空间中点、线、面的位置关系,基本定理的应用,利用等体积转化求高. 5.在直三棱柱111ABC A B C-中,1AB=,2BC=,3AC=,11AA=.(1)求三棱锥1A ABC-的表面积;(2)求1B到面1A BC的距离.【答案】(112+;(2)7. 【分析】(1)根据222AB AC BC +=,得到ABC 为直角三角形,再根据直三棱柱111 ABC A B C -,得到1A AB ,1A AC 为直角三角形,1A BC 是等腰三角形,分别求得各三角形的面积即可.(2)易得三棱锥1 C A AB -与三棱锥11 C A B B -的体积相等,又1111113326C A AB A ABC ABC V V SAA --==⨯⨯⋅==,则11116C A B B B A BCV V --==,利用等体积法求解. 【详解】(1)因为222AB AC BC +=, 所以ABC 为直角三角形,则122ABC S AB AC =⋅=△. 因为直三棱柱111ABC A B C -, 所以1A AB ,1A AC 为直角三角形,则AB =12A C =,111122A ABSA A AB =⋅=,11122A CA SA A AC =⋅=,在等腰1A BC 中,1A B 边上的高 2h =,则112 12A BCS A B h =⋅=,所以三棱锥1A ABC -的表面积1113ABCA AB A AC A BCS S SSS=+++=(2)因为三棱锥1 C A AB -与三棱锥11 C A BB -的底面积相等()111A ABA B BSS=,高也相等(点C 到平面11 ABB A 的距离);所以三棱锥1 C A AB -与三棱锥11 C A B B -的体积相等.又1111113326C A AB A ABC ABC V V S AA --==⨯⨯⋅==,所以11113C A B B B A BC V V --==. 设1 B 到面1 A BC 的距离为H ,则1111336B A BC A BC V S H -==,解得217H =. 【点睛】本题主要考查三棱锥表面积的求法,直棱柱结构特征的应用以及等体积法求点到面的距离,还考查了空间想象和逻辑推理的能力,属于中档题.6.如图所示,在梯形CDEF 中,四边形ABCD 为正方形,且1AE BF AB ===,将ADE 沿着线段AD 折起,同时将BCF △沿着线段BC 折起.使得E ,F 两点重合为点P .(1)求证:平面PAB ⊥平面ABCD ; (2)求点D 到平面PBC 的距离h . 【答案】(1)见解析;(23【分析】(1)由底面ABCD 为正方形,可得AD ⊥平面PAB ,由平面与平面垂直的判定定理即可证明.(2)作PO AB ⊥交AB 于O ,易得PO ⊥平面ABCD .可求得P BCD V -,由P BCD D PBC V V --=即可求得点D 到平面PBC 的距离h 【详解】(1)证明:∵四边形ABCD 为正方形, ∴AD AB ⊥,又∵AD AE ⊥,即AD PA ⊥,且PA AB A =,∴AD ⊥平面PAB , 又∵AD ⊂平面ABCD ,∴平面PAB ⊥平面ABCD ;(2)过点P 作PO AB ⊥交AB 于O ,如下图所示:由(1)知平面PAB ⊥平面ABCD ∴PO ⊥平面ABCD ∴11313332P BCD BCD V PO S -∆=⨯⨯=⨯⨯=又∵P BCD D PBC V V --= ∴133PBC S h ∆⨯⨯=即1131132h ⨯⨯⨯⨯=解得3h =所以点D 到平面PBC 的距离32h = 【点睛】本题考查了平面与平面垂直的判定,等体积法求点到平面的距离,属于基础题.7.如图所示,在矩形ABCD 中,22CD CB CE ==,将DAE △沿AE 折起至PAE △的位置,使得PA PB ⊥.(1)求证:PA BE ⊥;(2)若2CB =,求点C 到平面PAE 的距离. 【答案】(1)证明见解析;(22. 【分析】(1)可证明PA ⊥平面PBE ,从而得到PA BE ⊥.(2)利用等积法可求点C 到平面P AE 的距离,或者取AB 中点为F ,过F 作//FG BE 交AE 于G ,连接FC ,可证FG ⊥平面PAE 及//CF 平面PAE ,从而可求C 到平面P AE 的距离.【详解】(1)证明:在矩形ABCD 中,AD DC ⊥,PA PE ⊥, 又PA PB ⊥,PEPB P =,∴,PB PE ⊂平面PBE∴PA ⊥平面PBE ,∴PA BE ⊥(2)法一:设点C 到平面P AE 的距离为d . ∵224CD CB CE ===∴222222224AE BE AD DE CE BC CB AB +=+++== ∴AE BE ⊥,AEPA A =,,AE PA ⊂平面P AE ,∴BE ⊥平面PAE ,而BE ⊂平面PAE ,∴平面PAE ⊥平面ABCE . 过P 作PH 垂直AE 于点H ,因为平面PAE 平面ABCE AE =,PH ⊂平面PAE ,故PH ⊥平面ABCE.∵PA PE =,∴H 为AE 的中点∵2CB =,∴22AE BE ==,2PE AD CE ===, 而2PA =,所以2AH =又12222ACES=⨯⨯=,∴122233P ACE V -=⨯=. 又12222PAES=⨯⨯=,故12223C PAE P ACE V V d --=⨯⨯==, ∴2d =法二:设点C 到平面P AE 的距离为d .∵224AB CD CB CE ====∴222222224AE BE AD DE CE BC CB AB +=+++== ∴AE BE ⊥,AEPA A =,,AE PA ⊂平面P AE ,∴BE ⊥平面PAE .取AB 中点为F ,过F 作//FG BE 交AE 于G ,连接FC , ∴FG ⊥平面PAE .在四边形AFCE 中,//,EC AF EC AF =,故四边形AFCE 为平行四边形, 故//AE CF ,而AE ⊂平面PAE ,CF ⊄平面PAE ,故//CF 平面PAE ,故C 到平面PAE 等于F 到平面PAE 的距离. 故122d FG BE ===. 【点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为2π得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化. 点到平面的距离的计算可以利用面面垂直或线面垂直得到点到平面的距离,可以根据等积法把点到平面的距离归结为一个容易求得的几何体的体积.8.如下图,在直角梯形ABCD 中, 90,//,ADC CD AB ∠=︒ 4AB =,2AD CD ==,点M 为线段AB 的中点,将ADC ∆沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.(1)求证: BC ⊥平面ACD ;(2)求点B 到平面CDM 的距离.【答案】(Ⅰ)见解析; (Ⅱ. 【解析】试题分析:(Ⅰ)由余弦定理以及勾股定理可证明AC BC ⊥,根据面面垂直的性质定理可得BC ⊥平面ACD ;(Ⅱ)先求出114232D ABC V -=⨯⨯⨯=3D MBC V -=,利用1=3D MBC B DMC V V d --=可得结果.试题解析:(Ⅰ)证明:由已知可得:AC =45CAB ∠=︒, 由余弦定理 8CB ∴= 从而222AC BC AB +=,AC BC ∴⊥ 平面ADC ⊥平面ABC , 平面ADC ⋂平面ABC AC =∴ BC ⊥平面ACD .(Ⅱ)由已知,易求1142323D ABC V -=⨯⨯⨯=.3D MBC V -∴=, 设点B 到平面CDM 的距离为d ,又可求DMC S ∆1=3D MBC B DMC V V d --∴=,3d ∴=∴点B 到平面CDM 的距离为3. 走进高考9.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(2)455. 【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23. 连结OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC =12AC =2,CM =23BC 42,∠ACB =45°.所以OM =253,CH =sin OC MC ACB OM ⋅⋅∠=455.所以点C 到平面POM 的距离为45. 点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.10.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高.试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点.因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==, 由OH AD OD OA ⋅=⋅,且227AD OD OA =+=,得21OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 11.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 3V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离 试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)1366V PA AB AD AB =⋅⋅= 由,可得. 作交于.由题设易知,所以故,又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法1366V PA AB AD AB =⋅⋅= 由,可得. 由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离12.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析; (2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论; (2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C =又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C =//ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE //MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B , 所以1DE EC ⊥,所以113172DEC S ∆=设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯=⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为41717. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学立体几何空间距离1.两条异面直线间的距离和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.2.点到平面的距离从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离.4.两平行平面间的距离和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.题型一:两条异面直线间的距离【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;【规解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.(2)在Rt △BEF 中,BF =a 23,BE =a 21, 所以EF 2=BF 2-BE 2=a 212,即EF =a 22.由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 22. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.∵CE =23,∴CF =FD =21,∠EFC =90°,EF =22212322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛. ∴AB 、CD 的距离是22. 【解后归纳】 求两条异面直线之间的距离的基本方法:(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面,可以转化为求两平行平面的距离.题型二:两条异面直线间的距离【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD ,∴O 是△BCD 的中心,∴BO =32BE =332332=⨯.例1题图例2题图例3题图又AB =1,且∠AOB =90°,∴AO =36331222=⎪⎪⎭⎫⎝⎛-=-BO AB .∴A 到平面BCD 的距离是36. 【例4】在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.【规解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角.在△ADF 中,∠AFD =90°,∠ADF =arcsin 55,AD =3a ,∴AF =53a ,在Rt △P AF 中tan ∠PF A =3535==a a AF PA ,∴∠PF A =arc tan 35. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,∴PB =a ,∴AH =a 22.【例5】 如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.∴DF=C 1H=2. .6222=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG 面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然B ACD1A1A ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y xx y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则1111cos ||||CC n CC n α⋅==⋅u u u u r u u r u u uu r u u r ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d【例6】 正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。

(1)求点到直线AC 的距离.(2)求直线到平面的距离.解:(1)连结BD ,,由三垂线定理可得:AC D B ⊥1,所以就是点到直线AC 的距离。

在BD B Rt 1∆中,6810222211=-=-=BC C B BB 34=BD .2122121=+=∴B B BD D B .(2)因为AC 与平面BD 交于AC的中点D,设E BC C B =⋂11,则//DE ,所以//平面, 所以到平面BD 的距离等于A点到平面BD的距离,等于C点到平面BD 的距离,也就等于三棱 锥1BDC C -的高, BDC C BDC C V V --=11Θ,131311CC S hS BDC BDC ∆∆=∴,131312=∴h ,即直线到平面BD 的距离是131312. 【解后归纳】 求空间距离注意三点: 1.常规遵循一作二证三计算的步骤; 2.多用转化的思想求线面和面面距离;3.体积法是一种很好的求空间距离的方法.【例4】如图,在长方体AC 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;(3)AE 等于何值时,二面角D 1—EC —D 的大小为4π.解析:法1(1)∵AE ⊥面AA 1DD 1,A 1D ⊥AD 1,∴A 1D ⊥D 1E(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=,AD 1=,故.2121,232152211=⋅⋅==-⋅⋅=∆∆BC AE S S ACE C AD 而 11111131,1,.33223D AEC AEC AD C V S DD S h h h -∆∆∴=⋅=⋅∴⨯=⨯∴= (3)过D 作DH ⊥CE 于H ,连D 1H 、DE ,则D 1H ⊥CE,∴∠DHD 1为二面角D 1—EC —D 的平面角.设AE=x ,则BE=2-x11,, 1.4,,,Rt D DH DHD DH Rt ADE DE Rt DHE EH x π∆∠=∴=∆=∴∆=Q Q 在中在中在中D 1C 1B 1A 1ED CBAo xzy.4,32.32543.54,3122π的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=⇒+-=+∴+-=∆=∆法2:以D 为坐标原点,直线DA 、DC 、DD 1分别为x 、y 、z 轴,建立空间直角坐标系,设AE=x ,则A 1(1,0,1),D 1(0,0,1),E(1,x ,0),A(1,0,0), C(0,2,0).(1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD ,设平面ACD 1的法向量为),,(c b a n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD n AC n 也即⎩⎨⎧=+-=+-002c a b a ,得⎩⎨⎧==c a b a 2,从而)2,1,2(=n ,所以点E 到平面AD 1C 的距离为.313212||1=-+==n n E D h (3)设平面D 1EC 的法向量),,(c b a n =, ∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD C D x CE由⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅.0)2(02,0,01x b a c b CE n C D n 令b =1, ∴c=2, a =2-x , ∴).2,1,2(x n -=依题意.225)2(222||||4cos211=+-⇒=⋅=x DD n DD n π ∴321+=x (不合,舍去),322-=x . ∴AE=时,二面角D 1—EC —D 的大小为4π. ●对应训练 分阶提升 一、基础夯实1.把边长为a 的正△ABC 沿高线AD 折成60°的二面角,则点A 到BC 的距离是 ( )A.aB.a 26C.a 33D.a 415 2.△ABC 中,AB =9,AC =15,∠BAC =120°.△ABC 所在平面外一点P 到三个顶点A 、B 、C 的距离都是14,那么点P 到平面α的距离为 ( )A.7B.9C.11D.133.从平面α外一点P 向α引两条斜线P A ,PB .A ,B 为斜足,它们与α所成角的差是45°,它们在α的射影长分别是2cm 和12cm ,则P 到α的距离是 ( )A.4cmB.3cm 或4cmC.6cmD.4cm 或6cm4.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为 ( )A.a 21 B.a 22 C.a 23 D.a 5.在四面体P —ABC 中,P A 、PB 、PC 两两垂直.M 是面ABC 一点,且点M 到三个面P AB 、PBC 、PCA 的距离分别为2、3、6,则点M 到顶点P 的距离是 ( )A.7B.8C.9D.106.如图,将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线折成60°的二面角,则AC 与BD 的距离是 ( )A.a 43 B.a 43 C.a 23 D.a 467.如图,四棱锥P —ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD =1,设点C 到平面P AB 的距离为d 1,点B 到平面P AC 的距离为d 2,则有 ( )A.1<d 1<d 2B.d 1<d 2<1C.d 1<1<d 2D.d 2<d 1<18.如图所示,在平面α的同侧有三点A 、B 、C ,△ABC 的重心为G .如果A 、B 、C 、G 到平面α的距离分别为a 、b 、c 、d ,那么a+b+c 等于 ( )A.2dB.3dC.4dD.以上都不对 9.如图,菱形ABCD 边长为a ,∠A =60°,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点且2====DGCGFB CF HD AH EBAE ,沿EH 和FG 把菱形的两锐角折起,使A、C 重合,这时点A 到平面EFGH 的距离是 ( )A.2a B.a 22 C.a 23 D.a 615 二、思维激活10.二面角α-MN -β等于60°,平面α一点A 到平面β的距离AB 的长为4,则点B 到α的距离为 . 11.在60°的二面角α—l —β中,A ∈α,AC ⊥l 于C ,B ∈β,BD ⊥l 于D ,又AC =BD =a ,CD =a ,则A 、B 两点间距离为 .12.设平面α外两点A 和B 到平面α的距离分别为4cm 和1cm ,AB 与平面α所成的角是60°,则线段AB 的长是 .13.在直角坐标系中,已知A (3,2),B (-3,-2)沿y 轴把直角坐标系折成平面角为α的二面角A —Oy —B 后,∠AOB =90°,则cos α的值是 . 三、能力提高14.在边长为a 的菱形ABCD 中,∠ABC =60°,PC ⊥平面ABCD ,E 是P A 的中点,求点E 到平 面PBC 的距离.15.在直三棱柱ABC —A 1B 1C 1中,∠ACB 为直角,侧面AB 1与侧面AC 1所成的二面角为60°,M 为AA 1上的点.∠A 1MC 1=30°,∠BMC 1=90°,AB =a .(1)求BM 与侧面AC 1所成角的正切值. (2)求顶点A 到面BMC 1的距离. 16.已知斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直.∠ABC =90°,BC =2,AC =2,且AA 1⊥A 1C ,AA 1=A 1C .(1)求侧棱A 1A 与底面ABC 所成角的大小;(2)求侧面A 1ABB 1与底面ABC 所成二面角的大小;第8题图第9题图 第15题图(3)求顶点C 到侧面A 1ABB 1的距离.17.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为棱AB 与BC 的中点,EF 与BD 交于H . (1)求二面角B 1—EF —B 的大小.(2)试在棱B 1B 上找一点M ,使D 1M ⊥面EFB 1,并证明你的结论. (3)求点D 1到面EFB 1的距离.空间的距离习题解答1.D 折后BC =2a ,∴点A 到BC的距离为415422a a a =⎪⎭⎫⎝⎛-.2.A BC =21120cos 159215922=︒⨯⨯-+. ∴△ABC 外接圆半径R =37120sin 221=︒,∴点P 到α的距离为.7)37(1422=-3.D 设PO ⊥α垂足为O ,|PO |=x cm ,∠OAP =β,∠OBP =γ,那么β-γ=45°, tan β=2x,tan γ=12x ,tan (β-γ)=tan 45°展开左边并整理得:x 2-10x +24=0,解得x 1=6,x 2=4.4.B P 、Q 的最短距离即为异面直线AB 与CD 间的距离,当P 为AB 的中点,Q 为CD 的中点时符合题意.5.A PM =7632222=++.6.C 取BD 的中点O 连AO 、OC ,作OE ⊥AC 于E ,则OE 为所求,∴AO =CO =AC =23a . 7.D 点C 到平面P AB 的距离d 1=22,第17题图点B 到平面P AC 的距离d 2=33211221=+⋅, ∵12233<<,∴d 2<d 1<1.8.B |MM ′|=2c b +,又3122=+-+-c b a c bd .∴a +b +c =3d . 9.A 设BD 的中点为O ,∴EO =6760cos 2322322a a a a a =︒⨯⨯-⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛,点A 到平面EFGH 的距离为23679422a a a =-. 10.2 作AC ⊥MN 于C ,连BC ,则BC ⊥MN , ∴∠ACB =60°,又MN ⊥平面ABC ,∴平面ABC ⊥平面α,作BD ⊥AC 于D ,则BD ⊥α, ∴BD 的长即为所求,得BD =2.11. AB =a a a a a a 360cos 2)2(222=︒⋅⋅⋅-++. 12.2cm 或3310cm 当点A 、B 在α同侧时,AB =3260sin 3=︒;当点A 、B 在α异侧时,AB =331060sin 5=︒ 13.94如图,AB ″=26)32(22222=+=+OB OA ∵BC ⊥y 轴,B ′C ⊥y 轴,∴∠B ′CB ″为二面角A —Oy —B 的平面角. ∠B ′CB ″=α,在△B ′CB ″中,B ′C =B ″C =3, B ′B ″=104262=-,由余弦定理易知cos α=94. 14.如图,将点E 到平面PBC 的距离转化成线面距,再转化成点面距. 连AC 、BD ,设AC 、BD 交于O ,则EO ∥平面PBC , ∴OE 上任一点到平面PBC 的距离相等. ∵平面PBC ⊥平面ABCD ,过O 作OG ⊥平面PBC ,则G ∈BC , 又∠ACB=60°,AC=BC=AB=a , ∴OC =2a ,OG =OC sin60°=43a .点评:若直接过E 作平面PBC 的垂线,垂足难以确定.在解答求距离时,要注意距离之间的相互转化有的能起到意想不到的效果.15.(1)∵三棱柱ABC —A 1B 1C 1为直三棱柱,∴∠BAC 为二面角B 1—AA 1—C 1的平面角, ∴∠BAC =60°.又∵∠ACB 为直角,∴BC ⊥侧面AC 1.连MC ,则MC 是MB 在侧面AC 1上的射影. ∴∠BMC 为BM 与侧面AC 1所成的角.且∠CMC 1=90°,∠A 1MC 1=30°,所以∠AMC =60°. 设BC =m ,则AC =m 33,MC =32m ,第13题图解第14题图解所以tan ∠BMC =23. 即BM 与侧面AC 1所成的角的正切值为23. (2)过A 作AN ⊥MC ,垂足为N ,则AN ∥面MBC 1.∵面MBC ⊥面MBC 1,且过N 作NH ⊥MB ,垂足为H , 则NH 是N 到面MBC 1的距离,也就是A 到面MBC 1的距离. ∵AB =a ,AC =2a,且∠ACN =30°, ∴AN =4a 且∠AMN =60°,∴MN =a 123.∴NH =MN sin ∠BMC =a 123×a 5239(本题还可用等积法).16.(1)如图所示,作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC∴∠A 1AD 为A 1A 与面ABC 所成的角 ∵AA 1⊥A 1C ,AA 1=A 1C ∴∠A 1AD =45°为所求.(2)作DE ⊥AB 垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB , ∴∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角. 由已知AB ⊥BC 得DE ∥BC ,又D 是AC 的中点,BC =2,AC =2 ∴DE =1,AD =A 1D =,tan ∠A 1ED =DEDA 1=,故∠A 1ED =60°为所求. (3)连结A 1B ,根据定义,点C 到面A 1ABB 1的距离,即为三棱锥C —A 1AB 的高h . 由V C —A 1AB =V A 1-ABC 得31S △AA 1B h =31S △ABC ·A 1D 即313223122⨯⨯=⋅⨯h ,∴h =为所求.17.(1)如图连结B 1D 1,AC ,B 1H ,∵底面为正方形ABCD , ∴对角线AC ⊥BD .又∵E 、F 分别为AB 、BC 的中点 ∴EF ∥AC .∴EF ⊥BD .又∵棱B 1B ⊥底面ABCD ,EF 面ABCD ,∴EF ⊥B 1B . 又B 1B ∩BD =B ,BB 1面BB 1D 1D ,BD 面BB 1D 1D . ∴EF ⊥面BB 1D 1D .而B 1H面BB 1D 1D ,BH 面BB 1D 1D ,∴EF ⊥B 1H ,EF ⊥BH . ∴∠B 1HB 为二面角B 1—EF —B 的平面角. 在Rt △B 1BH 中,B 1B =a ,BH =a 42, ∴tan ∠B 1HB =221=BHBB . ∴∠B 1HB =arctan2.∴二面角B 1—EF —B 的大小为arctan2. (2)在棱B 1B 上取中点M ,连D 1M , 则D 1M ⊥面EFB 1.连结C 1M .∵EF ⊥面BB 1D 1D ,D 1M 面BB 1D 1D . ∴D 1M ⊥EF .又∵D 1C 1⊥面B 1BCC 1.∴C 1M 为D 1M 在面B 1BCC 1的射影.在正方形B 1BCC 1中,M 、F 分别为B 1B 和BC 的中点, 由平面几何知识B 1F ⊥C 1M .于是,由三垂线定理可知B 1F⊥D 1M,而B 1F 面EFB 1,EF 面EFB 1,EF ∩B 1F =F ,第16题图解第17题图解∴D 1M ⊥面EFB 1.(3)设D 1M 与面EFB 1交于N 点,则D 1N 为点D 到面EFB 1的距离, ∵B 1N面EFB 1,D 1M ⊥面EFB 1, ∴B 1N ⊥D 1M .在Rt △MB 1D 1中,由射影定理D 1B 12=D 1N ·D 1M , 而D 1B 1=a ,D 1M=a M B D B 2321211=+, ∴D 1N =.341211a M D B D = 即点D 1到面EFB 1的距离为a 34.高中数学立体几何 空间距离的计算(学生版)1.两条异面直线间的距离和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.2.点到平面的距离从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离.4.两平行平面间的距离和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.题型一:两条异面直线间的距离【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1) 求证:EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离;【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离.【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面,可以转化为求两平行平面的距离.题型二:两条异面直线间的距离【例7】 如图,正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离;例1题图例2题图B AC D【例8】在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.【例9】 如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.【例10】 正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。

相关文档
最新文档