4色谱定性定量分析
色谱定量和定性方法
(2)求出未知物的Ii,并与文献值对照定性 2.2.2.3注意 在文献上所述色谱条件下计算未知物的Ii 2.2.2.3特点 重现性好,不需要纯物质相对照
8
2.2.3双柱定性法 双柱定性法
2.2.3.1依据 依据
3.3.2.1 方法 将一种纯物质作为标准物(S)加入到待测样品中进行色谱定量的一种方 法,组分含量的计算为: ms f i Ai
Xi % = mf E AE × 100%
式中:ms 、m 分别为加入内标物的量和试样的质量。i 代表被测峰,E代表内标峰。
3.3.2.2适用范围 适用于少量组分的含量测定,样品中各组分不能完全出峰,或只需对样品 中几个出峰的组分进行分析 3.3.2.3特点 不必准确进样,因此较准确,但操作复杂,每次进样都要准确称量内标物 和样品的质量,事先测得相对校正因子;色谱分离要求高; 3.3.2.4内标物选择 能和被测样品互溶,内标物和待测组分完全分开,最好是被分析物质的一 个同系物,内标物的浓度应与被测组分浓度相近,且内标物的色谱峰 位置最好邻近待测组分。
色谱定性不能直接给出物质的直接信息 未知物的保留值与已知物的保留值相同,未知 物可能是已知物,但不能肯定是已知物 未知物的保留值与已知物的保留值不同,则未 知物肯定不是已知物
10
3.色谱定量分析 色谱定量分析
3.1依据 依据 被测物质(i)的量与它在色谱图上的峰面积 (或峰高)成正比:mi=fi×Ai,fi—定量校正 因子。
峰面积
800 700 600 500 400 300 200 100 0 0 1 2 3 4 浓度 5 6 7 8
色谱定性定量分析方法
(1)绝对校正因子 某组分i通过检测器的量与检测器对该组分的响应信号之比
测定方法:将已知量的被测标准物质注入色谱仪,根据进样 量及色谱图上的峰面积或峰高计算出绝对校正因子
(2)相对校正因子 组分i与基准物(标准物)s的绝对校正因子之比
检测器不同,所选用的基准物不同 热导检测器——苯 氢火焰离子化检测器——正庚烷
(3)内标法
若试样中所有组分不能全部出峰,或仅需测定试样中某个或 某几个组分的含量时,可以采用内标法 将一定的标准物(内标物s)加入到一定量的试样中,混合均 匀后进样,从色谱图上分别测出组分i和内标物s的峰面积 (或峰高)
或:
内标法中常以内标物为基准,即fs=1.0,则:
■ 内标法最关键是选择合适的内标物,对内标物的 要求:
1.定量校正因子
■ 色谱定量分析是基于被测物质的量与其峰面积的 正比关系。但由于同一检测器对不同的物质具有 不同的响应值,所以两个相等量的物质出的峰面 积往往不相等,或者说,相同的峰面积并不意味 着相等物质的量。这样就不能用峰面积来直接计 算物质的量。
■ 因此,在计算组分的量时需将面积乘上一个换算 系数,使组分的面积转换成相应物质的量。即必 须将峰面积A乘上一个换算系数进行“校正”。
例:苯、甲苯、乙苯的相对校正因子的测定:分别称取一定 量的三种物质,在25 mL容量瓶中定容。取一定量注入色谱 仪,获得色谱图,测量其峰面积,以苯为基准物,计算各组 分相对校正因子。
组分 质量/g 1
峰面积/mm2
2
3
平均
相对校 正因子
苯(标 准物)
2.22
442
Hale Waihona Puke 440438440
甲苯 2.22 429
例:试样混合物中仅含有甲醇、乙醇和正丁醇,测得峰高分
色谱定性与定量
仪器分析中各分析定量定性的依据定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。
定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。
1、气相色谱:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。
色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。
2、紫外光谱:最大吸收波长λ、摩尔吸收系数ε及吸收曲线的形状不同是进行物质定性分析的依据。
进行定量分析依据朗伯-比耳定律:A=εbc3、核磁:定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应峰谱的峰面积之间的关系进行定量测定。
定量分析的根据:吸收能量的大小取决于核的多少。
以磁场强度为横坐标提供定性分析所依据的参数,以吸收能量为纵坐标,纵坐标对应于不同H0的出峰面积就是定量分析参数。
4、质谱:利用电磁学原理,对物质气相离子依其质荷比(m/e)进行分离和分析的方法。
被分析的样品首先离子化,然后利用离子在电场或磁场中的运动性质,将离子按质荷比(m/e)分开并按质荷比大小排列成谱图形式,根据质谱图可确定样品成分、结构和相对分子质量。
5、原子吸收:原子吸收光谱法进行定量分析的依据是:试样中待测元素的浓度与待测元素吸收辐射的原子总数成正比,即A=k'C 。
定量分析方法有标准曲线法和标准加入法两种。
6、红外:红外光谱的定性主要根据图谱中的:基团的特征吸收频率红外光谱的定量是根据图谱中的:特征峰的强度7、离子:利用离子交换的原理,连续对多种阴离子进行定性和定量的分析。
保留时间定性,峰高或峰面积定量。
8、荧光:物质吸收的光,称为激发光;物质受激后所发射的光,称为发射光或荧光。
根据荧光的光谱和荧光强度,对物质进行定性或定量测定9、差热:定性分析:定性表征和鉴别物质依据:峰温、形状和峰数目方法:将实测样品DTA曲线与各种化合物的标准(参考)DTA曲线对照。
化学鉴别四大光谱简介
四大名谱在检测领域,有四大名谱,色谱、光谱、质谱、波谱质谱:分析分子、原子、或原子团的质量的,可以推测物质的组成,一般用于定性分析较多,也可定量。
色谱:是一种兼顾分离与定量分析的手段,可分辨样品中的不同物质。
光谱:定性分析,确定样品中主要基团,确定物质类别。
从红外到X射线,都是光谱,其应用范围差别很大,是对分子或原子的光谱性质进行分析解析的。
波谱:通常指四大波谱,核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外(UV)。
光谱分析法光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成和相对含量。
光谱分析时,可利用发射光谱,也可以利用吸收光谱。
这种方法的优点是非常灵敏而且迅速。
某种元素在物质中的含量达10皮克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来。
光谱的分类按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱。
按产生的本质不同,可分为原子光谱和分子光谱。
按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱。
按光谱表现形态不同,可分为线光谱、带光谱和连续光谱。
分光光谱技术可用于:通过测定某种物质吸收或发射光谱来确定该物质的组成;通过测量适当波长的信号强度确定某种单独存在或其他物质混合存在的一种物质的含量;通过测量某一种底物消失或产物出现的量同时间的关系,示踪反应过程。
鉴定分子式、结构式的方法紫外光谱:反应分子中共轭体系状况;红外光谱:光能团鉴定、分子中环、双键数目。
光谱法的优缺点(1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。
(2)操作简便有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。
在毒剂报警、大气污染检测等方面,采用分子光谱法遥测,不需采集样品,在数秒钟内,便可发出警报或检测出污染程度。
6--第二章色谱的定性与定量
二、定量校正因子
为何引入定量校正因子? 色谱定量分析是基于被测物质的量与其峰面积 的正比关系。但由于同一检测器对不同的物质具有 不同的响应值,所以两个相等量的物质出的峰面积 往往不相等,这样就不能用峰面积来直接计算物质
的量。这就需要引入“定量校正因子”来进行校正。
绝对校正因子 一定操作条件下,进样量(mi)与响应信号(峰面积Ai)成 正比:
若各组分的f值相近或相同,例如同系物中沸点接近的 各组分,则上式可简化为:
ω i= Ai A1+A2+…+An
×100%
对于狭窄的色谱峰,也有用峰高代替峰面积来进行定量 测定。当各种条件保持不变时,在一定的进样量范围内,峰 的半宽度是不变的,因为峰高就直接代表某一组分的量。 ω i= hi fi´´ f1 ´´ h1+ f2 ´´ h2+…+ fn ´´ hn
第六节 色谱定性方法
一、根据色谱保留值进行定性分析 1.为什么色谱保留值可以作为定性分析的依据?
因为在确定的色谱分析条件下,各物质都有确定不变的保留值。 保留值是最常用的色谱定性方法。
2.根据保留值定性的优劣
方法简便,但应用局限性大。
3.定性方法 (1)简单情况:对于较简单的多组分混合物,其所有待测
式中Mi,Ms分别为被测物和标准物质相对分子量。
3、体积校正因子fV 如果以体积计量(气体试样)则体积校正因子就是 摩尔校正因子,因为1mol任何气体在标准状态下其 体积都是22.4L。 mi /Mi *22.4 Ai fi ’(V) = fM fV = = fS ’ ms/Ms *22.4 (V) As
.
.fi ×100%
此法是通过测量内标物和待测组分的峰面积的相对值来进行计算的,因此,由于 操作条件变化所引起的误差可以得到抵消,结果比较准确。
气相色谱常用定量和定性方法
fM
14
2020/10/20
3.2.2相对校正因子的查阅
3.2.3.1相对响应值(S ) 一种物质与相同量的参比物质的响应值之比 3.2.3.2 f =1/S
15
2020/10/20
3.2.3定量校正因子的测定
相对校正因子:采用的标准物因检测器不同而 不同: 热导池检测器TCD:苯 火焰离子化检测器FID:正庚烷
保留指数I只与柱温和固定相的性质和被测物质的性质有关,与色谱柱 的尺寸、固定相的液膜厚度、载气流量、流速无关。
2.3.2.2方法
(1)将碳数为Z和Z+1的正构烷烃做标准物,加入到待测样品i中,测得这
三种物质的调整保留值,且tR(Z) < tR(i)< tR(Z+1)
I
100[Z
lg X i lg X Z lg X(Z 1) lg X Z
Xi%=fi×Ai Xs%=fs×As= fi×As Xi%/ Xs%= Ai/As Xi%= Xs% Ai/As
20
2020/10/20
3.3.4内标法
2.常用的色谱定性分析方法
2.1 根据保留值定性(用纯物质对照) 2.2 用双柱定性 2.3 利用文献值对照定性 2.4 GC-MS联用定性
4
2020/10/20
2.1 根据保留值定性--最常用的定性方法
2.1.1 依据 相同物质在相同的色谱条件下具有相同的保留值。
(1()即若:试若样tR中=ti某,组则分R的=i)保留值(tR) 与已知物相同,则试样中含有该物质。 (2)峰增高法:在待测物中加入已知物的纯物质,再与待测物色谱图比较,
]
(2)求出未知物的Ii,并与文献值对照定性 2.3.2.3注意
色谱定性定量分析方法
⑥稳定性(stability):
意义: 考察分析样品与试剂在一定时间内稳定性。 内容:
根据样品与试剂测定时实际可能所处的环 境进行考察。
⑦耐用性( robustness ):
意义: 考察测定条件发生小变动时测定结果的变化。
内容:
流动相的组成和pH、商品柱的品牌尺寸、 柱温等
广泛用于药物中的杂质、体内外代谢产物的结构鉴定
重现性: 不同实验室,不同人测定的精密度 1、色谱信号的测量:
意义: 待测物浓度与响应值成线性关系的浓度范围;
相对保留值 α, (t-t0)/(tr -t0)
2、选择合适的离子源,利用LC-MS获得杂质的准分量不同浓度的对照品,比较测定值和加入值确定。
ELSD响应的自然对数与样品的浓度或质量呈线 性关系;
质谱(MS-ESI)检测器高浓度时的响应与样品 的质量可能呈二次或更复杂的方式。
四、色谱分析方法验证
目的:
证明所采用的色谱分析方法适合于相应的检验 要求,判断能否用于药品分析。
效能指标:评价分析方法的尺度
效能指标包括: 精密度、准确度、专属性、检测限、定量限、
tr
内容: LC-ESI-MS的
要求,判断能否用于药品分析。 内容: 药物制剂含量测定时的专属性考察内容:
重复性 广药泛品用 质于量药标物准中分的析杂方质法:、验体证内外代同谢产一物的实结构验鉴定室,同一人多次测定的精密度
中间精密度 2药、品选质择量合标适准的分离析子方源法,验利证用LC:-MS同获得一杂质实的准验分子室离子,峰。不同人,不同仪器测定的精密度
线性与范围、耐用性、稳定性、系统适用性等
不同分析测定方法的要求
药品质量标准分析方法验证 药物制剂人体生物利用度和生物等效性试验
色谱的定性和定量分析
定量准确度决定于 2.求相对校正因子 一.峰面积
1. 对称峰:
2.不对称峰 A = 1/2 式中W0.15和 W0.85
分别为峰高0.15倍和0.85倍处的峰宽
二.定量校正因子f 为什么要用f? ∵不同 组分有不同的响应值
例如用TCD,N2作载气测O2,H2的百分含量 若H2、O2峰面积相同, 百分含量相同就不对。 不能用下式计算:
i
/ Ai
准确定量分析时,应该用自己测定的校正因子,而不用文献 值∵ 校正因子随检测器类别,使用载气的不同而不同
3. 相对校正因子的测定方法
f’值可引用文献值,也可以自己测定。 标准物质,TCD是苯, FID是正庚烷。 准确称量被测组分wi和标准组分ws的重量
在线线范围内进样测 Ai,As
求f’ w或f’
则H 2
AH 2 AH 2 AO2
50%
∵H2的热导系数大,TCD响应大,但 实际含量小∴必须用校正因子.
A H2 500 C 50% f 0.1
O2 50
50%
1
, H2 , O2
则H 2 %
AH 2 f AH 2 f
, H2
AO2 f
500 0.1 50% 500 0.1 50 1
全知峰(有所有组分的标准品)
2. 外标法(标准曲线法) 用待测组分的纯样制标准曲线
优点:快速简单, 只要待测组分出峰且完全分离即可 缺点:绝对法, 进样量,操作条件要不变
3. 内标法(外加标准法)
不能全出峰或只需测某几个组分时采用 方法:准确称取样品,加入一定量内标物,根据重量及 峰面积求出某组分的含量
M
多次测定,求平均值。
三.定量方法
第十一章 色谱分析法——定性定量分析
气相色谱法的定性分析
1、知道气相色谱流出曲线及常用的基本术语。 2、知道气相色谱的定性和定量方法
一、色谱流出曲线
色谱流出曲线:以组分电信号为纵坐标,流出时间为横坐标所得的曲线称为色谱流 出曲线或色谱图。该曲线反映了试样在色谱柱分离的效果,是组分定性和定量的依 据,同时也是研究色谱动力学和热力学的依据。
空气峰有时有,有时没有。
tM
②保留时间(tR):组分从进样到柱后出现浓度极大值时所需的时间。
③调整保留时间(t R ’): (1) t′R = tR-tM (2)反映组分在固定相中停 留的时间
(3)在实验条件一定时, t′R 决定于组分的性质,是定性 的基本参数。
(2) 相对保留值r21 组分2与组分1调整保留值之比:
内标法 当组分不能全部流出色谱柱,或检测器对样品中某些组分不产生信号,或只测
定样品中某一组分,采用内标法可获得准确结果。
1、测定步骤 (1)称取样品m样(其中:样品中待测组分i的质量用mi表示) (2)选定内标物。称取内标物ms。 (3)将内标物加入到已准确称量的样品中去。 (4)进样,测定待测组分的峰面积Ai和内标物的峰面积As。
气相色谱的定量分析 一、定量依据
样品中组分的质量与组分色谱峰的面积或峰高成正比。
m i = f i ·A i 或 m i = f i ·h i
组
绝色
分
对谱
的
校峰
质
正面
量
因积
子
文献查出
①准确测定Ai和hi ②准确求出f i ③计算mi
峰 高
峰面积A 1、定义:色谱峰与峰底基线所围成区域的面积叫峰面积。
c.将所测组分的相对保留值ris与手册数据对比作出定性判断。
色谱的定性和定量分析
第四章色谱的定性和定量分析色谱分析分三个阶段:仪器调试;色谱操作条件选择;定性定量分析。
气相色谱法是用载气将试样带入分离柱。
各成分在柱中分离后用检测器测定,通常是未知试样与标准試样的保留时间及峰面积比较,进行定性定量分析。
色谱法分离较容易,往往是定性较困难。
用t R定性时,因t R与分子结构有关,但两者间相关规律远未阐明.因为色谱信息少,响应信号缺乏典型的分子结构特征,因此不能鉴定未知的新的化合物,只能鉴定已知的化合物。
第一节定性分析色谱定性分析就是要确定各色谱峰所代表的化合物。
由于各种物质在一定的色谱条件下均有确定的保留值,因此保留值可作为一种定性指标。
目前各种色谱定性方法都是基于保留值的。
但是不同物质在同一色谱条件下,可能具有相似或相同的保留值,即保留值并非专属的。
因此仅根据保留值对一个完全未知的样品定性是困难的。
因为许多化合物可能在同一时间流出色谱柱,因此仅仅依靠气相色谱本身是不能对一个完全未知的化合物进行定性的。
然而当样品限定时,如果在了解样品的来源、性质、分析目的的基础上,对样品组成作初步的判断,再结合下列的方法则可确定色谱峰所代表的化合物。
气相色谱将变成一个强有力的工具。
也可以通过比较气相色谱图来确定样品是否相同,例如油轮里的原油样品可以和海上浮油比较以确定油轮是否应对原油的泄漏负责,GC对于排除可疑性是很有用的,如果您从先前的实验中知道异辛烷在1.9 分钟出峰,那么一个在1.5分钟出的峰就不会是异辛烷,那么它是什么呢?幸运的是您不必要考虑所有的有机化合物的样品信息,如果限定化合物范围。
例如您不会期望在烷烃中找到苯系物,当一个未知的峰被初步确定后,还必须在别的不同性质的色谱柱上重现以得到确认,如果一个化合物在基于沸点分离的柱甲基硅氧烷和聚乙二醇极性柱上有正确的保留时间,此定性很可能就是正确的。
GC在处理已知样品组分并且要求定量时是特别有用的。
一、保留值定性(一)利用纯物质对照定性1.利用保留时间t R对照定性色谱分析的的基本依据是保留时间。
色谱的定性和定量分析
几种定量方法的比较
方法
项目 计算公式
xi
归一化法
fi A i f1 A1 f 2 A 2 ... fn A n
内标法
A i fi' mi m As fs' s 需要
不需准确 一次分析过程中条件 需稳定 内标物及所测组分
外标法
由工作曲线直接查 得
不对称峰采用此法计算较为准确
1 A h y0.15 y0.85 2 (3)峰高代替峰面积定量
对于一定的样品,操作条件严格不变 时,在一定的进样范围内,半峰宽不变。 当峰形较窄时,用此法定量更准确。
(4)峰高乘保留时间 在一定操作条件下,同系物的半峰宽与 保留时间成正比,对于狭窄峰或半峰宽以上 重叠的峰可用此法计算。
'
准确称量标准物和被测组分的质量。混合后进样,
' 以乙酸乙酯为标准,f乙 1.00
A乙 0.882 f A丁 0.901
' 丁
A乙 0.871 f A戊 0.901
' 戊
注意:测定时,进样量应在仪器的线性范围内
4.2.3 定量分析方法 (1)归一化法 样品中所有组分都能流出色谱柱,且 检测器都能检出响应信号时,可用此法 进行定量计算.
①准确测定峰的面积或峰高 定量计算
②求出定量校正因子
③选择定量的方法
4.2.1 峰面积的测量
(1) 峰高乘半峰宽
峰形对称,且不太窄时适应 A=h y 1
2
这样计算的峰面积是实际峰面积的0.94倍, A 1.065hy1 实际的峰面积应为:
2
作相对计算时,1.065可以省略。
色谱定性和定量分析方法
Identification
2019/9/22
二、 色谱定量分析方法 1. 峰面积的测量
(1)峰高(h)乘半峰宽(Y 1/2)法:近似将色谱峰当作等腰三角形。此法算 出的面积是实际峰面积的0.94倍:
A = 1.064 h·Y1/2 (2)峰高乘平均峰宽法:当峰形不对称时,可在峰高0.15和0.85处分别测定峰 宽,由下式计算峰面积:
fi' Ai
f
' s
AS
ci
%
mi W
100
ms
fi' Ai
f
' s
AS
W
100
ms W
fi' Ai
f
' s
AS
100
2019/9/22
内标法特点
(1) 内标法的准确性较高,操作条件和进样量的稍许变动对定量结果的影响 不大。
(2) 每个试样的分析,都要进行两次称量,不适合大批量试样的快速分析。 (3)若将内标法中的试样取样量和内标物加入量固定,则:
Ai Ai
)
100
i 1
特点及要求: 归一化法简便、准确; 进样量的准确性和操作条件的变动对测定结果影响不大; 仅适用于试样中所有组分全出峰的情况。
2019/9/22
(2)外标法
外标法也称为标准曲线法。 特点及要求: 外标法不使用校正因子,准确性较高, 操作条件变化对结果准确性影响较大。 对进样量的准确性控制要求较高,适用于大批量试样的快速分析。
1.0 DEG/MI N
HEWLET PTACKAR
5972A
D
Mass Selectiv eDetecto r
色谱数据处理定性与定量及色谱分析方法的建立色谱定性定量及方法建立4
气相色谱定性
沸点规律 同族具有相同碳数碳链的异构体 化合物,其调整保留时间的对数和它们
的沸点呈线性关系,即
lg
t
' r
A2Tb
C2
式中A2和C2均为常数,Tb为组分的沸点(K)。 由此可见,根据同族同数碳链异构体中几个已 知组分的调整保留时间的对数值,可求得同族 中具有相同碳数的其他异构体的调整保留时间 。
色谱方法的建立
在实际工作中,液膜厚度的选择,应与柱内径 相联系,柱内径与液膜厚度的比值在4000~1000之 间 , 如 柱 直 径 为 0.32mm 的 毛 细 管 柱 , 以 0.08~0.25m的液膜厚度为宜。
色谱柱温(初温、终温、升温速率)的选择
提高柱温,有利于降低组分在汽液相的传质阻力 ,有利于提高柱效,同时纵向分子扩散项系数增大 ,柱温高时,可适当提高载气流速。柱温高时,可 提高分析速度,但柱选择性变差,即值变小,从 而使分离度降低。
色谱方法的建立
三、载气的种类及流速的选择
常用的载气有氢气、氮气、氩气和氦 气。从色谱理论知:载气的种类主要是 通过被测组分在气体中的扩散系数Dg影 响分子的纵向扩散项和气相传质阻力项 ;载气的流速既影响分子的纵向扩散项 ,又影响气相传质阻力项。
色谱方法的建立
色谱柱液膜厚度
液膜厚度既影响色谱柱性能,又影响分析时 间。膜厚为0.25~0.5微米的薄液膜色谱柱,相比 变大,分配比k变小,洗脱组分快,有利于实现 组分的快速分离,适于高沸点化合物、组分密集 化合物或热敏化合物的分析;同时液相传质阻力 下降,柱效变大,但柱容量减小。采用1~8m的 厚液膜柱,柱容量大,可以不经分流直接进1L 的汽油样品而不引起超载,有利于痕量组分的分 析;厚液膜色谱柱有利于低沸点化合物的分析。
色谱的定性与定量
谱峰的峰面积或峰高)---所测组分的数量或 浓度成正比,
即:
wi Ci f i Ai hi
w 式中: i –组分i的质量
ci —组分i的浓度
f i —组分的校正因子(与检测器的性质和被 测组分的性质有关)
Ai —组分i的峰面积,
②利用相对保留值定性
定义:相对保留值是组分i与基准物S的调整保留值之比:
i,s tR ,i / tR ,s VR,i /VR,s
优点:可以消除某些操作条件的影响,只要柱温、 固定相不变,即使柱径、柱长、填充情况及流动 相的流速有所变化,相对保留值γ仍然不变,它是 色谱定性分析的重要参数
③利用保留指数定性 表示物质在固定液上的保留行为,是目前使
绝对校正因子fi的大小主要由操作条件和 仪器的灵敏度所决定,既不容易准确测量,也 无统一标准;当操作条件波动时,fi也发生变 化。故fi无法直接应用,定量分析时,一般采 用相对校正因子。
(2)相对校正因子(校正因子):
f
fi fs
mi ci Ai hi ms cs As hs
式中:f -- 相对校正因子 ,简称为校正因子, 无因次量
hi —组分i的峰高
2.峰面积的准确测定
1)对称峰的峰高和峰面积 的测定
第一法:峰高×半高 峰宽
A h Wh 2
式中: h—从峰顶到峰底线 的垂直距离 W h/2—峰高1/2处的 峰宽
第二法:三角形法
A BM Wi
式中:BM—三角形的高 Wi—三角形KML的
半高宽,近似等于色 谱峰高0.607处的峰宽
0.40
Ethylparaben
0.35
6.色谱分析中的定性与定量方法
色谱定量分析
色谱定量分析
• 绝对校正因子:单位峰面积对应的物质量:fi = mi/Ai • 定量校正因子与检测器响应值成倒数关系: • fi=1/Si • 相对校正因子fi :即组分的绝对校正因子与标准物质 的绝对校正因子之比。
fi mi / Ai mi As fi f s ms / As ms Ai
• 化学反应定性:利用化学反应,使样品中某些 化合物与特征试剂反应,生成相应的衍生物。 • 柱前反应:被分离混合物进入色谱柱前与某些 特征性试剂反应,观察色谱图上某些色谱峰发 生消失、提前或滞后而断定有无此类化合物。 • 柱 上: 如装有5A分子筛的前置柱,可吸附C3C11的正构烷烃,KOH处理的石英粉可将羧酸 和酚除去(吸附)等。 • 柱 后: 柱后流出物收集后,加入特征试剂与 其反应,可对未知物定性。
色谱定量分析
• 叠加内标法:以样品中已有的组分做内标,比 较该组分加入前后面积的改变,计算被测组分 含量
A1 mS ci % 100 A2 A1 W
• 特点:要求两次进样量完全相同。
色谱定量分析
• 叠加内标法:两次进样量不同时的处理
'
• 当 m i 、 m S 为质量单位时,为质量相对校正因子;当 m i 、 mS用摩尔单位时相应于摩尔校正因子。
色谱定量分析
• 归一化法:
mi ci % 100 m1 m2 mn
f i ' Ai
' ( f i Ai ) i 1 n
100
归一化法的特点: • 对同系物可认为校正因子一样,通过峰面积直接测定; • 进样量的准确性和操作条件的变动对测定结果影响不 大; • 试样中所有组分必须全出峰并且无分解反应发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定性方法
(1) 利用已知物直接对照进行定性分析
2. 用相对保留值定性 3. 用已知物增加峰高法定性 4. 利用文献值对照进行定性分析 5. 利用一定的规律:碳数规律法、沸点规律法、与化学
反应结合定性等方法。
利用保留指数定性:
Ix=100[Z+n(1gt`R(x)-1gt`R(z))/( 1gt`R(z+n)-1gt`R(z))] 例:在阿皮松L柱上,柱温100,用正庚烷及正辛烷作 参考物质对,测定乙酸正丁酯保留指数。 测定结果为:tm=0.5min, 正庚烷:tR=3.5min, 正辛烷:tR=8.5min, 乙酸正丁酯:tR=6.5min。(lg2=0.3010,lg3=0.4771)
▪ 准确称量,在分析时所要求的色谱条件下测得色谱图,计算峰面积。 ▪ 首先称量:并求出纯度 ▪ A. 12.6553克×99.99%=12.654克 ▪ B. 14.9651克×92.10%=13.783克 ▪ C. 5.443克×96.00%=5.227克 ▪ D. 57.6732克×88.90%=51.272克
联机定性
“四大谱”的质谱法、红外光谱法、紫外光谱法和核磁共振法对于单一组 分(纯物质)的有机化合物具有很强的定性能力。若将色谱分析与仪器联 用,解决组成复杂的混合物的定性分析问题。
联用方法有两种: 一种方法是将色谱分离后,然后再用上述“四大谱”的方法或其他的定性 分析方法进行分析 另一种方法是将色谱与仪器通过适当的连接技术——“接口”直接连接。 将色谱分离后的每一组分,通过“接口”直接送到上述仪器中进行定性分 析。
ffi i′= c=i·hs fs cs ·hi
fi′—相对校正因子 fs—基准物质的绝对校正因子 ci—i物质的浓度 hi—i物质的峰高 cs—基准物质的浓度 hs—基准物质的峰高。
fi—i物质的绝对校正因子 mi—i物质的质量 Ai—i物质的峰面积 ms—基准物质的质量 As—基准物质的峰面积
常用的基准物质对不同检测器是不同的,热导检测器常用苯作基 准物,氢火焰离子化检测器常用正庚烷作基准物质。
化,注意进样量应在线性范围之内, 同时要考虑到校正因子和浓度的 线性关系。
定量分析
校正因子
物理意义是单位峰面积所代表i组分的量是一个与 i组分的物理化学性质和检测器的性质有关的常数。
对同一个检测器,等量的不同物质其响应值是 不同的,但对同一种物质其响应值与该物质的量(或 浓度)有关。
定量校正因子的测定
定量校正因子分为绝对校正因子 相对校正因子
绝对校正因子(fi)
单位峰面积或单位峰高所代表的组分的量
用fM′表示。
fM′=
M) fs(M=)
fm′·
Ms Mi
式中,Mi、Ms分别为被测物和标准物的摩尔质量。
c.相对体积校正因子 对于气体样品,以体积计量时,对应的相对校正
因子称为相对体积校正因子,以fv′表示。当温度和压力一定时,相对 体积校正因子等于相对摩尔校正因子,即:
fv′= fM′
校正因子的测定:
a.相对质量校正因子 组分的量以质量表示时的相对校正因子,用fm′表
示时间的相对校正因子,用fm′表示。这是最常用的校正因子。
fm′=
fi(m) fs(m=)
mmsi//AAsi=
As·mi Ai ·ms
式中,下标i、s分别代表被测物和标准物。
b.相对摩尔校正因子 组分的量以物质的量n表示时的相对校正因子,
计算峰面积:
A. 5.966单位(峰面积) B. 29.765单位
C. 2.669单位
D. 7.106单位
计算绝对校正因子:称量的样品12.654克不可能都进入色谱仪,如进入 1/10000说是总量的多少分之一,以P代有比例数,都进入1μl。
A. 12.654P/5.966=2.121P克/单位 B. 13.783P/7.106=1.940P克/单位 C. 5.227P/2.669=1.958P克/单位 D. 51.272P/29.765=1.7237P克/单位
D. 63% 1%
4%
三组 1次
2次
1.093
1.090
3次 1.089
测定重量校正因子的步骤如下:
▪ 最好使用色谱试剂,如没有纯品,但要知道纯度。 ▪ 准确称量A、B、C、D被测组分和基准物质,并求出纯度。 ▪ 将被测组分A、B、C、D混匀后注入色谱仪,测出色谱图、峰面积。 ▪ 计算A、B、C、D绝对校正因子。 ▪ 计算相对校正因子,以B为标准物。 ▪ 在实验室条件下进行分析,要求色谱仪稳定A、B、 C、D组分都要气
将所得数值代入上述公式得
▪ 答案: ▪ IX=100[Z+n(1gt`R(x)-1gt`R(z))/( 1gt`R(z+n)-1gt`R(z))] ▪ IX=100[7+1×(1g6-lg3)/( 1g8-1g3) ▪ =100[7+1g2/(31g2-lg3)] ▪ =100[7+03010/(3×0.3010-0.4771)] ▪ =100[7+0.70677] ▪ =770.67
fi=mi/Ai
或
fi(h)=mi/hi
mi为组分质量(物质的量或体积) Ai为峰面积,hi为峰高
准确求出各组分的绝对校正因子: 1 进入检测器组分的量mi 2 测量出峰面积或峰高
相对校正因子(fi′) 是指组分i与另一标准物S的绝对校正因 子之比,用fi′表示:
fi′=
fi f=s
mi·As ms ·Ai
计算相对校正因子:以B(苯)为标准物
A=2.121P/1.940P=1.093
B=1.940P/1.940P=1.000
C=1.958P/1.940P=1.009
D=1.7237P/1.940P=0.888 按照分析对象配不同浓度
A. 15% 80%
6%
B. 16% 4 % 20%
C. 6% 15% 70%
色谱的定性定量方法
色谱分析中的二个目的
1.要确定被分析物是什么性质,即给物质
定性。
▪ 2.要确定被分析物中每个组份的含量的大小, 即给物质定量
▪ 定性分析 定量分析
气相色谱分析法概述
▪ 气液试样实在多,气相色谱把样侧, ▪ 分析灵敏响应快,常量分析全包括。 ▪ 内标外标归一法,检测热导氢焰化, ▪ 微机处理色谱图,定量结果准度大。