圆锥曲线中焦点三角形几个问题的解法
圆锥曲线焦点三角形的三大问题(解析版)
圆锥曲线焦点三角形的三大问题一、焦点三角形定义:椭圆与双曲线有对称中心,称为有心圆锥曲线.有心圆锥曲线上一点与两焦点构成的三角形叫做有心圆锥曲线的焦点三角形.其中我们把椭圆短轴的一个端点与两个焦点构成的等腰三角形称之为椭圆的特征焦点三角形1.焦点三角形的角度与离心率问题离心率是椭圆的一个非常重要的定型的量,椭圆的离心率与焦点三角形中的某些量存在关系:图1图2图3图4结论1:如图1,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,21PF F ∠的角平分线交x 轴于点M ,则椭圆的离心率2211PF MF PF MF e ==证明:由角平分线定理及和比定理得==2211PF MF PF MF e ac PF PF MF MF ==++222121结论2:如图2,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,I 为21F PF ∆的内心,PI 的延长线交x 轴于点M ,则椭圆的离心率IPIM e =证明:在M PF 1∆和M PF 2∆中由角平分线定理的2211,PF MF IPIM PF MF IPIM ==所以e acPF PF MF MF PF MF PF MF IPIM ==++===2221212211结论3:如图3,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,α=∠21F PF ,β=∠12F PF ,则椭圆的离心率βαβαsin sin )sin(++=e 证明:由正弦定理可知βαβαsin sin )sin(222121++=+==PF PF F F a c e 结论4:如图4,设21,F F 是双曲线)0,0(12222>>=-b a by a x 的左右焦点,点P 是双曲线上不同于左右顶点的任意一点,α=∠21F PF ,β=∠12F PF ,则双曲线的离心率βαβαsin sin )sin(-+=e 证明:由正弦定理可知βαβαsin sin )sin(222121-+=-==PF PF F F a c e 结论5:如图5,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,21PF F ∠的外角平分线交x 轴于点M ,α=∠2MPF ,β=∠2PMF ,则椭圆的离心率βαcos cos =e 证明:由正弦定理得βαβαααβαβααcos cos cos sin 2cos sin 2)sin()sin(2sin 222121==-++=+==PF PF F F a c e 结论6:圆锥曲线中,过焦点F 且不垂直于坐标轴的弦为AB ,其垂直平分线和焦点所在坐标轴交于点R ,则ABFR e 2=证明:设),(),,(2211y x B y x A ,AB 中点),(00y x M ,则02122)(2ex a x x e a AB +=++=由点差法(过程略)得02022200y a x b k a b x y k k k AB AB OMAB -=⇒-=⋅=所以AB 的中垂线:)(002020x x x b y a y y -=-,令0=y 得022020x e ax b x x R =-=,所以c x e c x FR R +=+=02,所以222002eex a c x e AB FR=++=,所以ABFR e 2=典例分析例1.设椭圆的两个焦点分别为21,F F ,以21F F 为直径的圆与椭圆交于点P ,且=∠12F PF 215F PF ∠,则椭圆的离心率为()A.22B.23 C.32 D.36解析:由题意01202102175,15,90=∠=∠=∠F PF F PF PF F 所以3662426426175sin 15sin 90sin 000==++-=+=e ,故选D 例2.已知21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,若椭圆上存在点P 使21PF PF ⊥,则该椭圆的离心率的取值范围为()A.)1,55[B.)1,22[C.]55,0( D.]22,0(解析:要使存在点P 使得21PF PF ⊥,只需当点P 在短轴端点时021902≥=∠θPF F 所以22sin ≥=θe ,所以122<≤e ,故选B 例3.已知椭圆192522=+y x 和双曲线)0,0(12222>>=-b a by a x 有共同焦点21,F F ,P 是它们的一个交点,且321π=∠PF F ,则双曲线的离心率为解法1:由题意知椭圆的离心率541=e ,又1434116cos 6sin 2221222212=+⇒=+e e e e ππ所以131341436425222=⇒=+e e 解法2:由题意知4=c ,由330cot 30tan 92221=⇒==b b S F PF ,所以13222=-=b c a所以13134134===a c e 例4.(2022·广西柳州·模拟预测(理))如图1所示,双曲线具有光学性质;从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E :)0,0(12222>>=-b a b y a x 的左、右焦点分别为21,F F ,从2F 发出的光线经过图2中的B A ,两点反射后,分别经过点C 和D ,且53cos -=∠BAC ,BD AB ⊥,则E 的离心率为()A.25 B.317 C.210 D.5解析:由题意知53cos 1=∠BAF ,AB B F ⊥1,可设4,3,511===BF AB AF ,由双曲线定义知3264434511=⇒=⇒=-+=-+a a a AB BF AF 所以1,222==BF AF ,由勾股定理得172=c ,所以==a c e 22317,故选B 例5.已知双曲线)0,0(12222>>=-b a by a x 左、右焦点分别为)0,(),0,(21c F c F -,若双曲线右支上存在点P 使得1221sin sin F PF cF PF a ∠=∠,则离心率的取值范围为()A.)12,0(-B.)1,12(- C.)12,1(+ D.),12(+∞+解析:由正弦定理及1221sin sin F PF cF PF a ∠=∠得a c a PF a a c PF c PF a -=⇒-==221222又a c PF ->2,所以a c ac a ->-221221+<<-⇒e ,又1>e ,所以121+<<r 故选C例6.(2022·河南开封·高二期末)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的左、右焦点,O 为坐标原点,点M 是C 上点(不在坐标轴上),点N 是2OF 的中点,若MN 平分21MF F ∠,则椭圆C 的离心率的取值范围是()A.)1,21( B.)21,0( C.)1,31( D.)31,0(解析:由角平分线定理得321232121===c c MF MF PF PF ,又a PF PF 221=+,所以a PF 212=又c a PF c a +<<-2,所以2121>⇒+<<-e c a a c a ,又1<e ,所以121<<e ,选A二、焦点三角形面积公式及其应用有心圆锥曲线(椭圆、双曲线)上一点与有心圆锥曲线的两个焦点构成的三角形,称为有心圆锥曲线的焦点三角形.接下来利用圆锥曲线的定义,结合正弦定理、余弦定理等知识推导焦点三角形的面积公式,并举例说明其应用结论7:椭圆的焦点三角形面积公式:设椭圆)0(12222>>=+b a b y a x 的左右焦点为21,F F ,点),(00y x P 为椭圆上不同于左右顶点的任意一点,θ=∠21PF F ,则21F PF ∆的面积为r c a b y c PF PF S F PF )(2tan sin 21202121+====∆θθ(其中r 为21F PF ∆的内切圆半径)证明:略结论8:双曲线焦点三角形面积公式:设双曲线)0,0(12222>>=-b a by a x 的左右焦点为21,F F ,点),(00y x P 为双曲线上不同于左右顶点的任意一点,θ=∠21PF F ,则21F PF ∆的面积为2cot sin 21202121θθb y c PF PF S F PF ===∆证明:略典型例题例1.设P 为椭圆16410022=+y x 上一点,21,F F 是其左右焦点,若321π=∠PF F ,则21F PF ∆的面积为解析:33646tan6421==∆πF PF S 例2.已知双曲线116922=-y x 的左、右集点分别为21,F F ,若双曲线上点P 使02190=∠PF F ,则21F PF ∆的面积是()A.12B.16C.24D.32解析:1645cot 16021==∆F PF S ,故选B例3.(2020新课标Ⅰ)设21,F F 是双曲线C :1322=-y x 的两个焦点,O 坐标原点,点P在C 上且2=OP ,则21F PF ∆的面积为()A.27 B.3C.25 D.2解析:由题意知221===OP OF OF ,所以02190=∠PF F ,所以345cot 3021==∆F PF S 故选B例4.(2022城厢区校级期中)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的两个焦点,P是椭圆C 上的一点,若321π=∠PF F ,且21F PF ∆的面积为33,则=b ()A.2B.3C.6D.9解析:9336tan2221=⇒==∆b b S F PF π3=⇒b ,故选B 例5.(2022连城县校级期中)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的两个焦点,P是椭圆C 上的一点,3221π=∠PF F ,若21F PF ∆的面积为39,则=b ()A.9B.3C.4D.8解析:9393tan2221=⇒==∆b b S F PF π3=⇒b ,故选B 例6.(2020·新课标Ⅲ)设双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为5,P 是C 上的一点,且21PF PF ⊥,若21F PF ∆的面积为4,则=a ()A.1B.2C.4D.8解析:由2445cot 0221=⇒==∆b b S F PF ,又1541)(122=⇒=+=+=a a ab e ,故选A 例7.(2022·安徽省亳州市第一中学高月考)已知双曲线)0,0(12222>>=-b a by a x ,过原点的直线与双曲线交于B A ,两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF ∆的面积为22a ,则双曲线的离心率为()A.2B.3C.2D.5解析:连接11,BF AF ,易知BF AF 1为平行四边形,又090=∠AFB ,所以0190=∠AF F 所以2245cot 22221=⇒==∆ab a b S FAF ,所以5)(12=+=a b e ,故选D例8.(2022·吉林吉林·高三期末)已知P 是椭圆)0(12222>>=+b a by a x 上一动点,21,F F 是椭圆的左、右焦点,当321π=∠PF F 时,3421=∆F PF S ,当线段1PF 的中点落到y 轴上时,34tan 21=∠PF F ,则点P 运动过程中,2111PF PF +的取值范围是()A.]32,21[ B.]32,158(C.158,21[ D.)32,21[解析:由12346tan2221=⇒==∆b b S F PF π,当线段1PF 的中点落到y 轴上时,x PF ⊥2轴,所以a b PF 22=,所以342tan 222121===∠b ac PF F F PF F 8=⇒ac ,又2212c a +=所以162=a ,所以21212121811PF PF PF PF PF PF PF PF =+=+,而]6,2[1∈PF ,所以]16,12[16)4()8(211121∈+--=-=PF PF PF PF PF ,所以∈=+2121811PF PF PF PF 32,21[,故选A例9.已知点F 是双曲线C :)0,0(12222>>=-b a by a x 的左焦点,P 为C 右支上一点.以C 的实轴为直径的圆与线段PF 交于B A ,两点,且B A ,是线段PF 的三等分点,则C 的渐近线方程为()A.x y 31±= B.x y 526±= C.x y 1225±= D.x y 597±=解析:设AB 的中点为M ,t BM AM ==,则t PB A F 21==,22t a OM -=所以2222t a PF -=,21PF PF ⊥,所以a t a t PF PF 2262221=--=-a t 53=⇒由勾股定理得2597257292222222212=⇒+=-+=+=e a a t a t OM M F c 又5262597)(122=⇒=+=a b abe ,故选B 三、焦点三角形内切圆的性质在圆锥曲线的考查中,焦点三角形是考查椭圆与双曲线第一定义的良好载体.焦点三角形结合圆,这样的试题难度一定不会小,往往还涉及中位线、角平分线、中垂线、相似等平面几何的知识.接下来归纳椭圆、双曲线焦点三角形内切圆的相关性质,并作进一步的引申和推广椭圆的焦点三角形指的是椭圆上一点与椭圆的两个焦点所连接成的三角形.椭圆的焦点三角形问题,可以将椭圆定义和性质、三角形的几何性质以及解三角形等进行有机结合.圆是平面几何中非常重要的研究对象,焦点三角形的内切圆问题对于问题转化能力、几何性质的应用能力、数形结合能力提出了更高维度的要求,是解析几何综合问题重点考察内容之一下面先看椭圆焦点三角形内切圆的三个性质:如图1,设21,F F 是椭圆C :)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,21F PF ∆的内切圆圆心为),(I I y x I ,且圆I 与21F PF ∆三边相切于点H E D ,,,设),(00y x P ,则有如下性质:性质1:ca PE PD -==证明:由切线长定理得PE PD =,H F D F 11=,EF PE 2=ca H F H F E F PE D F PD c a F F PF PF 222221212121-=--+++⇒-=-+所以ca PE PD -==性质2:0ex x I =,eey y I +=10,其中e 的椭圆的离心率证法1:⇒-=+-+⇒-==-c a c x ex a c a PD H F PF I )(0110ex x I =eeyc a cy y y c a y c S I I F PF +=+=⇒+==∆1)(00021证法2:设),(00y x P ,则0101,ex a PF ex a PF -=+=由内心的坐标公式得000022)()()(2ex c a c ex a c ex a cx x I =+-⨯-+⨯++=,eeyc a cy y I +=+=122200性质3:椭圆焦点三角形21F PF ∆的旁切圆与x 轴相切于顶点(当点P 点位于y 轴左侧时,切于左顶点,当点P 点位于y 轴右侧时,切于右顶点)证明:设旁切圆与x 轴切于点T ,则由切线长定理得PN PM =,T F N F 22=,TF M F 11=所以TF F F PM PF T F M F 221111+=+⇒=TF c PN PF a 2222+=+-⇒=-⇒N F a 22T F c 22+c a N F T F -==⇒22,所以点T 的横坐标为a ,所以T 为右顶点,即21F PF ∆的旁切圆与x 轴相切于顶点双曲线焦点三角形内切圆的重要性质性质1:已知21,F F 是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,点P 是双曲线上不同于左右顶点的任何一点,则21F PF ∆的内切圆与x 轴切于双曲线的顶点(当点P 在双曲线的右支上时,切点为右顶点,当点P 在双曲线的左支上时,切点为左顶点)证明:由切线长定理得C F A F B F A F PC PB 2211,,===所以a A F A F B F PB C F PC PF PF 2211221=-=--+=-又cA F A F 221=+两式相加得c a A F +=2,所以c a OA O F +=+2,所以a OA =,所以点A 是双曲线的右顶点性质2:已知21,F F 是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,点),(00y x P 是双曲线上不同于左右顶点的任何一点,),(I I y x I 是21F PF ∆的内切圆圆心为,且圆I 与21F PF ∆的三边切于点H E D ,,,则c a H F D F +==11,a x I =证明:由性质1可知内切圆与x 轴切于右顶点,所以a x I =由切线长定理得ca H F D F +==11性质3:已知21,F F 是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,过右焦点2F 作倾斜角为θ的直线l 交双曲线于B A ,两点,若2121,F BF F AF ∆∆的内切圆圆心为21,I I ,半径分别为21,r r ,则(1)21,I I 在直线a x =上;(2)221)(a c r r -=;(3)2cot 221θ=r r 证明:由性质1可知21,I I 在直线a x =上因为21,I I 分别为2121,F BF F AF ∆∆的内心,所以2212,I F I F 分别平分1212,F BF F AF ∠∠,所以022190=∠I F I 所以2122θ=∠F F I ,221θ=∠F HI ,又a c H F -=2所以⎪⎩⎪⎨⎧=-=⇒⎪⎪⎩⎪⎪⎨⎧-=-=2cot )(2tan )(2cot )(22122121θθθr r a c r r a c r a c r 从以上性质的证明过程中可以看出,这些性质的背后隐含着椭圆的定义、双曲线的定义、内切圆的定义、三角形全等、切线长定理、中位线定理等基础知识;性质的证明需要具有一定的数学抽象、逻辑推理与数学运算能力,可以考查学生对应核心素养维度的发展水平.另外证明过程中用到了数形结合、转化与化归、类比等数学思想方法.这些都是学生应该掌握的基础知识、基本技能、基本思想与基本活动经验,说明该考点不超纲,可以作为命题的出发点典型例题(一)定值问题例1.已知椭圆1162522=+y x 的左右焦点分别为21,F F ,P 为椭圆上异于长轴端点的动点,21F PF ∆的内心为I =PF PI 解析:设21F PF ∆内切圆切2PF 于M ,则=PF PI 235=-=-=c a PM 例2.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,P 为椭圆上不同于左右顶点任意一点,点G I ,分别为21F PF ∆的内心、重心.当IG 恒与x 轴垂直时,椭圆的离心率是解析:设点),(00y x P ,则)3,3(00y x G ,)1,(00e ey ex I +,因为当IG 恒与x 轴垂直,所以300xex =解得31=e 注:若IG 恒与y 轴垂直,则3100y e ey =+,解得21=e 例3.已知椭圆1162522=+y x 左、右焦点分别为21,F F ,P 为椭圆上一点,21F PF ∆的内心为I ,若内切圆半径为1,则=PI 解析:由题知53=e ,设),(00y x P ,则381831000=⇒==+y y e ey ,代入椭圆方程得3550=x 即点)38,355(P ,所以50==ex x I ,即)1,5(I ,所以=PI 22)138()5355(-+-5=(二)轨迹问题例4.已知椭圆)0(12222>>=+b a by a x 左、右焦点分别为21,F F ,P 为椭圆上不同于左右顶点的动点,21F PF ∆的内心为I ,则点I 的轨迹方程为解析:设点),(),,(00y x P y x I ,则⎪⎪⎩⎪⎪⎨⎧+==⇒⎪⎩⎪⎨⎧+==y c c a y x ca x e ey y ex x 00001,因为点P 在椭圆上,所以1)(1)(22222222222222=++⇒=++bc y c a c x b c y c a a c x a ,所以点I 的轨迹方程为1)(222222=++b c y c a c x )0(≠y 例5.双曲线191622=-y x 的左、右焦点分别21,F F ,P 为双曲线右支上的点,21F PF ∆内切圆与x 轴相切于点C ,则圆心I 到y 轴的距离为()A.1B.2C.3D.4解析:因为4==a x I ,所以圆心I 到y 轴的距离为4,故选D例6.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,e 为双曲线的离心率,P 是双曲线右支上的点,21F PF ∆的内切圆的圆心为I ,过2F 作直线PI 的垂线,垂足为B ,则点B 的轨迹是()A.椭圆B.圆C.抛物线D.双曲线解析:延长B F 2交1PF 于点M ,因为PI 平分21PF F ∠的角平分线,所以2PF PM =又a PF PF 221=-,所以a MF 21=,又B 为2MF 的中点,O 为21F F 的中点,所以a MF OB ==121,所以点B 的轨迹是以原点为圆心,a 为半径的圆,故选B 例7.已知)5,22(P 在双曲线14222=-by x 上,其左、右焦点分别为21,F F ,21F PF ∆的内切圆切x 轴于点M ,则2MF MP ⋅的值为()A.122- B.122+ C.222- D.222+解析:将)5,22(P 代入双曲线方程得5=b ,所以3=c ,)0,3(2F ,21F PF ∆的内切圆切x 轴于点M ,所以M 为双曲线的右顶点,所以)0,2(M ,所以)5,222(-=MP ,)0,1(2=MF ,所以=⋅2MF MP 222-,故选C例8.点P 是双曲线)0,0(12222>>=-b a by a x 右支上一点,21,F F 分别为左、右焦点,21F PF ∆的内切圆与x 轴相切于点N ,若点N 为线段2OF 中点,则双曲线离心率为()A.12+ B.2C.2D.3解析:易知点N 为右顶点,又点N 为线段2OF 中点,所以22=⇒=e a c ,故选B 提升训练1.已知21,F F 分别为椭圆)0(12222>>=+b a by a x 的左、右两个焦点,P 是以21F F 为直径的圆与该椭圆的一个交点,且12212F PF F PF ∠=∠,则这个椭圆的离心率为()A.13- B.13+ C.213- D.213+解析:易知02190=∠PF F ,又12212F PF F PF ∠=∠,所以01202130,60=∠=∠F PF F PF 所以1330sin 60sin 90sin 000-=+=e ,故选A2.(2022·重庆一中高一期末)已知B A ,为椭圆E 的左,右焦点,点M 在E 上,ABM ∆为等腰三角形,且顶角为0120,则E 的离心率为()A.23 B.36 C.23或36 D.23或313-解析:若0120=∠AMB ,则2360sin 0==e 若0120=∠ABM ,则c MA c MB 32,2==,所以213322222-=+==c c c a c e 故选D3.(2022·贵州遵义·高二期末)椭圆C :)0(12222>>=+b a by a x 左右焦点分别为21,F F ,P为C 上除左右端点外一点,若21cos 21=∠F PF ,31cos 12=∠F PF ,则椭圆C 的离心率为A.634- B.7325- C.5337- D.5627-解析:由21cos 21=∠F PF ,31cos 12=∠F PF 得23sin 21=∠F PF ,322sin 12=∠F PF 所以6223322213123)sin(sin 122121+=⨯+⨯=∠+∠=∠F PF F PF PF F 所以5627322236223sin sin sin 122121-=++=∠+∠∠=F PF F PF PF F e ,故选D4.(2022·天津市西青区杨柳青第一中学高二期末)已知21,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且321π=∠PF F ,则椭圆和双曲线离心率倒数之和的最大值为A.34 B.334 C.4D.364解析:因为130cos 30sin 22022102=+e e 即4312221=+e e ,所以由柯西不等式得31643431311()33111(11(2221221221=⨯=++≤⋅+⋅=+e e e e e e ⇒3341121≤+e e ,故选B 5.(2022·四川成都·模拟预测)椭圆)0(12222>>=+b a by a x 的左右焦点分别为21,F F ,右顶点为B ,点A 在椭圆上,满足022160=∠=∠ABF AF F ,则椭圆的离心率为()A.23 B.313- C.332- D.13-解析:因为221ABF AF F ∠=∠,所以21AF F ∆∽BA F 1∆,所以=⇒=2112111AF AF F F BF AF )(2121c a c BF F F +=⋅,所以)(21c a c AF +=,所以)(222c a c a AF +-=所以02030tan 60sin ))(22()(22121b c a c a c a c S F PF =⨯+-⨯+⨯=∆)1(4))1(2)1(22(3)(33))(2)(22(43222e e e e e c a c a c c a c a -=+-+⇒-=+-+⇒0410523=+-+⇒e e e 0)46)(1(2=-+-⇒e e e =⇒e 313-,故选B6.(2022·江西上饶·高二期末)已知21,F F 是椭圆C :)0(12222>>=+b a b y a x 的两个焦点,P 为C 上一点,且02160=∠PF F ,213PF PF =,则C 的离心率为()A.22 B.621 C.47 D.32解析:因为213PF PF =,又a PF PF 221=+,所以2,2321a PF a PF ==所以16930tan 60sin 223212202021=⇒=⨯⨯⨯=∆a b b a a S F PF ,所以47)(12=-=a b e ,故选C 7.(2022·甘肃·永昌县第一高级中学高二期末)已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,上顶点为B ,2BF 的延长线交C 于Q ,Q F BQ 1=,则C 的离心率=e ()A.21 B.32 C.22 D.33解析:不妨设221===a BF BF ,t QF =2,θ221=∠BF F ,则t QF -=41,又Q F BQ 1=,所以12242=⇒=-=t t BF ,所以31==QF BQ ,所以312cos =θ所以33sin 31sin 212=⇒=-θθ,所以==θsin e 33,故选D 8.已知椭圆1422=+y x 上一动点P 到两个焦点21,F F 的距离之积取最大值时,21F PF ∆的面积为()A.1B.3C.2D.32解析:4)2(22121=+≤⋅PF PF PF PF ,当且仅当21PF PF =即点P 为短轴端点时等号成立,此时321==∆bc S F PF ,故选B9.已知21,F F 为双曲线C :122=-y x 的左、右焦点,点P 在C 上,02160=∠PF F ,则=21PF PF ()A.2B.4C.6D.8解法1:434330cot 60sin 2121210202121=⋅⇒=⋅⇒=⋅=∆PF PF PF PF b PF PF S F PF ,选B 解法2:4211260cos 120221=-=-=b PF PF ,故选B 10.(2019·新课标Ⅲ)已知F 是双曲线C :15422=-y x 的一个焦点,点P 在C 上,O 为坐标原点,若OF OP =,则OPF ∆的面积为()A.23B.25 C.27 D.29解析:OF OP =,所以02190=∠PF F ,所以2545cot 52121021=⨯⨯==∆∆F PF OPF S S ,选B 11.设21,F F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上,且满足02190=∠PF F ,则21F PF ∆的面积为()A.5B.2C.25 D.1解析:145cot 0221==∆b S F PF ,故选D12.已知21,F F 为双曲线C :122=-y x 的左、右焦点,点P 在C 上,02160=∠PF F ,则P 到x 轴的距离为()A.23 B.26 C.3 D.6解析:26230cot 100021=⇒⨯=⨯=∆y y S F PF ,故选B13.(2022攀枝花市第十五中学校高二期中(理))设21,F F 为椭圆1422=+y x 的两个焦点,点P 在此椭圆上,且221-=⋅PF PF ,则21F PF ∆的面积为()A.1B.2C.3D.2解析:设θ=∠21PF F ,则21cos 2cos cos 12cos 221-=⇒-=+==⋅θθθθb PF PF 0120=⇒θ,所以36tan 12tan0221=⨯==∆θb S F PF ,故选C 14.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为解析:516545cot 0221=⇒⨯==∆P P F PF y y b S ,所以点P 到x 轴的距离为51615.如图,21,F F 分别为椭圆)0(12222>>=+b a by a x 的左、右焦点,点P 在椭圆上,2OPF ∆是面积为3的正三角形,则=2b 解析:由题意知02190=∠PF F 且3221=∆F PF S ,所以323245tan 22=⇒=b b 16.已知点P 是椭圆)0(12222>>=+b a b y a x 上的一点,21,F F 为椭圆的左、右焦点,若21PF F ∠060=,且21F PF ∆的面积为243a ,则椭圆的离心率是解析:434330tan 2220221=⇒==∆a b a b S F PF ,所以21)(12=-=a b e 17.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,点O 为双曲线的中心,点P 在双曲线右支上,21F PF ∆内切圆的圆心为Q ,圆Q 与x 轴相切于点A ,过2F 作直线PQ 的垂线,垂足为B ,则下列结论成立的是()A.OBOA > B.OBOA < C.OBOA = D.OB OA ,大小关系不确定解析:延长B F 2交1PF 于点M ,因为PQ 平分21PF F ∠的角平分线,所以2PF PM =又a PF PF 221=-,所以a MF 21=,又B 为2MF 的中点,O 为21F F 的中点,所以a MF OB ==121,而A 为双曲线的顶点,所以a OA =,所以OB OA =,故选C 18.已知点P 是双曲线)0,0(12222>>=-b a by a x 左支上除顶点外的一点,21,F F 分别是双曲线的左、右焦点,,,1221βα=∠=∠F PF F PF ,双曲线离心率为e ,则=2tan2tanβα()A.11+-e e B.11-+e e C.1122-+e e D.1122+-e e 解法1:2cos 2sin 2cos 2sin 2cos2sin 2cos 2sin 2sin 2sin 2sin 2cos 22cos 2sin2sin sin )sin(βαβαβαβαβαβαβαβαβαβαβαβα+-=-+=-+++=-+=e 2tan 2tan 2tan 2tan βαβα+-=⇒=2tan2tanβα11-+e e ,故选B 解法2:易知21F PF ∆的内切圆切x 轴于点)0,(a A -,设内切圆半径为r ,则ac r-=2tan αa c r +=2tan β,所以=2tan 2tanβα11-+=-+e e a c a c ,故选B 18.已知点P 为椭圆)0(12222>>=+b a by a x 上异于左、右顶点的任意一点,21,F F 是左、右焦点,连接21,PF PF ,作21F PF ∆的旁切圆(与线段P F PF 12,延长线及21F F 延长线均相切),其圆心为'O ,则动圆圆心'O 的轨迹所在曲线是()A.直线B.圆C.椭圆D.双曲线解析:因为21F PF ∆的旁切圆与x 轴切于椭圆的右顶点,即圆心'O 在x 轴上射影为椭圆的右顶点,所以圆心'O 的轨迹为直线a x =,故选B19.(2022·陕西·西北工业大学附属中学模拟预测)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,经过1F 的直线交椭圆于B A ,,2ABF ∆的内切圆的圆心为I ,若05432=++IF IA IB ,则该椭圆的离心率是()A.55 B.32 C.43 D.21解析:由05432=++IF IA IB 及奔驰定理可知,不妨设5,4,322===AB BF AF ,则3125434=⇒=++=a a ,所以点A 为椭圆的短轴的端点,设θ221=∠AF F ,则=⇒=-⇒=θθθsin 53sin 21532cos 255,所以=e =θsin 55,故选A 20.(2022·江苏苏州·模拟预测)已知21,F F 是椭圆)1(1122>=-+m m y m x 的左、右焦点,点A 是椭圆上的一个动点,若21F AF ∆的内切圆半径的最大值是33,则椭圆的离心率为A.12- B.21 C.22 D.13-解析:设),(00y x A ,则ey e r +=10,可知当点A 在短轴端点时21F AF ∆的内切圆半径最大,此时433113311=⇒=+-⇒=+-⨯m m m e m e ,所以21=e ,故选B21.(2022·江西·景德镇一中高一期末)已知双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,P 是双曲线上一点,且0)(22=⋅+P F OF OP (O 为坐标原点),若21F PF ∆内切圆的半径为2a,则C 的离心率是()A.13+ B.213+ C.216+ D.16+解析:由0)(22=⋅+P F OF OP 可知21PF PF ⊥,又21F PF ∆内切圆的半径为2a,所以2321a c a a c PF +=++=,222ac a a c PF -=+-=,由勾股定理得=⇒=--⇒-++=e e e ac a c c 0544)2()23(42222216+,故选C 22.(2022·江西·上高二中模拟预测)已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,P 为双曲线上的一点,I 为21F PF ∆的内心,且PI IF IF 2221=+,则双曲线的离心率为()A.31B.52 C.33 D.2解析:022222121=++⇒=+IP IF IF PI IF IF ,结合奔驰定理不妨设12=PF ,21=PF ,221=F F ,所以212222=-==a c e ,故选D 23.(2022·湖北·高二月考)已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,过右焦点作平行于其中一条渐近线的直线交双曲线于点A ,若21F AF ∆的内切圆半径为4b,则双曲线的离心率为A.2B.3C.35 D.47解析:由题意知21F AF ∆的内切圆圆心)4,(b a I ,设渐近线的倾斜角为θ2,则ab =θ2tan 且)(4tan a c b -=θ,所以350583))(4(1)(4222=⇒=+-⇒=---e e e a b a c b a c b,故选C 24.椭圆1C :)0(1222>=+a y a x 与双曲线2C :)0(1222>=-m y mx 有公共焦点,左、右焦点分别为21,F F ,曲线1C ,2C 在第一象限交于点P ,I 是21F PF ∆内切圆圆心,O 为坐标原点,H F 2垂直射线PI 于H 点,2=OH ,则I 点坐标是解析:由题意知2==m OH ,所以3=c ,2=a ,点I 的横坐标为2,设θ=∠21PF F由0902cot 12tan121=⇒⨯=⨯=∆θθθF PF S ,所以3232(45tan 1021-=⇒+=⨯=∆r r S F PF 所以I 点坐标是)32,2(-25.已知21,F F 分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,点P 在双曲线上且不与顶点重合,满足2tan22tan1221F PF F PF ∠=∠,该双曲线的离心率为解析:设21F PF ∆内切圆半径为r ,易知内切圆与x 轴切于点)0,(a -,所以32tan 2tan 2tan 22tan12211221=⇒+⨯=-⇒∠=∠⇒∠=∠e ac ra c r F IF F IF F PF F PF 26.(2022·四川达州·高二期末)已知点)0,3(),0,3(21F F -分别是双曲线C :12222=-b y a x )0,0(>>b a 的左、右焦点,M 是C 右支上的一点,1MF 与y 轴交于点P ,2MPF ∆的内切圆在边2PF 上的切点为Q ,若2=PQ ,则C 的离心率为解析:设2MPF ∆的内切圆分别与21,MF MF 切于点B A ,,则由切线长定理得MBMA =Q F B F 22=,PQ P A =,所以P A MA MF PF MP MF MF a +=-+=-=2221224222=⇒==--++a PQ Q F MB Q F PQ ,又3=c ,所以23=e 27.已知21,F F 是双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,P 为曲线上一点,02160=∠PF F ,21F PF ∆的外接圆半径是内切圆半径的4倍.若该双曲线的离心率为e ,则=2e 解析:设21F PF ∆的外接圆半径为R ,内切圆半径为r ,则3260sin 220cR c R ===,所以32c r =,设βα=∠=∠1221,F IF F IF ,则0601806022=+⇒=++βαβα所以)(32)(321)(32)(32tan tan 1tan tan )tan(3a c c a c c a c ca c c -⋅+--++=-+=+=βαβαβα7122=⇒e 28.(2022·河南·开封市东信学校模拟预测)已知双曲线C :)0,0(18222>>=-b a y a x 的左、右焦点为21,F F ,若点P 在双曲线的右支上,且21F PF ∆的内切圆圆心的横坐标为1,则该双曲线的离心率为解析:易知1=a ,所以3=e 综合训练1.(2022·福建漳州·高二期末)已知椭圆1162522=+y x 的左、右焦点分别为21,F F ,点P 在椭圆上,若61=PF ,则21F PF ∆的面积为()A.8B.28 C.16D.216解析:由题知42=PF ,621=F F ,所以211F F PF =,所以2843642121=-⨯⨯=∆F PF S 故选B2.(2022·福建南平·高二期末)椭圆两焦点分别为)0,3(),0,3(21F F -,动点P 在椭圆上,若21F PF ∆的面积的最大值为12,则此椭圆上使得21PF F ∠为直角的点P 有()A.0个B.1个C.2个D.4个解析:由题意知3412=>=⇒=c b bc ,所以当点P 在短轴端点处时0245<∠OPF ,所以02190<∠PF F ,所以椭圆上使得21PF F ∠为直角的点P 有0个,故选A3.(2022·江西鹰潭·高二期末)椭圆C :1244922=+y x 的焦点为21,F F ,点P 在椭圆上,若81=PF ,则21F PF ∆的面积为()A.48B.40C.28D.24解析:由题知62=PF ,1021=F F ,所以21PF PF ⊥,所以24862121=⨯⨯=∆F PF S ,选D 4.(2022·安徽省亳州市第一中学高二期末)设21,F F 是椭圆1241222=+y x 的两个焦点,P 是椭圆上一点,且31cos 21=∠PF F ,则21F PF ∆的面积为()A.6B.26 C.8D.28解析:设θ221=∠PF F ,则22tan 36cos 311cos 2cos 221=⇒=⇒=-=∠θθθPF F 所以26tan 1221==∆θF PF S ,故选B5.(2022北京市第五十七中学高月考)已知椭圆C :192522=+y x 的左右焦点为21,F F ,BA ,分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中错误的是()A.离心率54=e B.若02190=∠PF F ,则21F PF ∆的面积为8C.21F PF ∆的周长为18D.直线P A 与直线PB 斜率乘积为定值259-解析:4,3,5===c b a ,离心率54=e ,A 正确;若02190=∠PF F ,则945tan 9021==∆F PF S B 错;21F PF ∆的周长为1822=+c a ,C 正确;由第三定义知259-=⋅PB P A k k ,D 正确,选B6.(2022黑龙江·大庆中学高二期末)已知21,F F 分别为椭圆C :)0(12222>>=+b a by a x 的左右焦点,O 为坐标原点,椭圆上存在一点P ,使得212F F OP =,设21F PF ∆的面积为S ,若221)(PF PF S -=,则该椭圆的离心率为()A.31 B.21 C.23 D.35解析:由212F F OP =知21PF PF ⊥,所以2121PF PF S =,所以221)(PF PF S -=9445tan 94844)(22022221221=⇒==⇒-=-+a b b a S S a PF PF PF PF 所以=-=2)(1abe 35,故选D 7.(2022·山西运城·高二期末)已知点21,F F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,以线段21F F 为直径的圆与双曲线在第一象限的交点为P ,若213PF PF =,则A.1PF 与双曲线的实轴长相等 B.21F PF ∆的面积为223a C.双曲线的离心率为23D.直线023=+y x 是双曲线的一条渐近线解析:由题意21PF PF ⊥,又213PF PF =,所以a PF a PF ==21,3,所以A 错;23321221a a a S F PF =⨯=∆,B 正确;由勾股定理得21094222=⇒+=e a a c ,所以C 错;2612=-=e a b ,所以渐近线方程为x y 26±=即026=±y x ,D 错;故选B 8.(2022·内蒙古赤峰·高三期末)已知双曲线116922=-y x 的两个焦点为21,F F ,P 为双曲线上一点,211F F PF ⊥,21F PF ∆的内切圆的圆心为I ,则=PI ()A.3342 B.334 C.3343 D.234解析:设内切圆切1PF 于点M ,则31621==a b PF ,334612=+=PF PF ,所以内切圆半径222211=-+=PF F F PF r ,所以3101=-=r PF PM ,所以在PMI ∆中由勾股定理得=+=+=4910022r PM PI 33429.(2022·广东·执信中学高三阶段练习)已知双曲线C 的离心率为3,21,F F 是C 的两个焦点,P 为C 上一点,213PF PF =,若21F PF ∆的面积为2,则双曲线C 的实轴长为A.1B.2C.3D.4解析:因为213PF PF =,所以a PF a PF ==21,3,又a c ace 33=⇒==所以3132129cos 22221-=⨯⨯-+=∠a a a a a PF F 322sin 21=∠⇒PF F ,所以1232232121=⇒=⨯⨯⨯=∆a a a S F PF ,所以双曲线C 的实轴长为2,故选B 10.(2022·广西玉林·模拟预测)已知双曲线C :1222=-y x 的左、右焦点为21,F F ,P为双曲线右支上的一点,02130=∠F PF ,I 是21F PF ∆的内心,则下列结论错误的是A.21F PF ∆是直角三角形B.点I 的横坐标为1C.232-=PI D.21F PF ∆的内切圆的面积为π解析:设t PF =2,则t PF +=21,由余弦定理得2)2(32212)2(30cos 220=⇒+⨯⨯-++=t t t t 所以22=PF ,41=PF ,3221=F F ,所以02290=∠F PF ,A 正确;P 在右支上,所以点I 的横坐标为1=a ,B 正确;内切圆半径1321212-=-+=PF F F PF r ,D 错;所以232)13())13(2(22-=-+--=PI ,C 正确;故选D11.(2022·全国·高三专题练习)P 是双曲线M :15422=-y x 右支上的一点,21,F F 是左、右焦点,42=PF ,则21F PF ∆的内切圆半径为()A.9154 B.3152 C.9152 D.315解析:42=PF ,81=PF ,621=F F ,所以1611842366416cos 21=⨯⨯-+=∠PF F ,所以16153sin 21=∠PF F ,所以=⇒⨯⨯⨯=++=∆r r S F PF 161538421)684(2121315,故选D 12.设P 是双曲线)0,0(12222>>=-b a by a x 上的点,21,F F 是焦点,双曲线的离心率是34,且02190=∠PF F ,21F PF ∆的面积是7,则=+b a ()A.73+ B.79+ C.10D.16解析:7745cot 0221=⇒==∆b b S F PF ,又33471)(122=⇒=+=+=a a a b e 所以=+b a 73+,故选A13.在直角坐标系xOy 中,)0,(),0,(21c F c F -分别是双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点,位于第一象限上的点),(00y x P 是双曲线C 上的一点,21F PF ∆的外心M 的坐标为)33,0(c ,21F PF ∆的面积为232a ,则双曲线C 的渐近线方程为()A.xy ±= B.x y 22±= C.x y 21±= D.xy 2±=解析:21F PF ∆的外心M 的坐标为)33,0(c ,所以33tan tan 1221=∠=∠F MF F MF 0122130=∠=∠⇒F MF F MF ,所以021********1,120=∠=∠=∠MF F PF F MF F 所以23230cot 2221=⇒==∆aba b S F PF ,所以渐近线方程为x y 2±=,故选D 二、多选题14.已知P 为双曲线)0,0(12222>>=-b a by a x 右支上一点,21,F F 分别为双曲线的左、右焦点,I 是21F PF ∆的内心,双曲线的离心率为e ,2121,,F IF IPF IPF ∆∆∆的面积分别为,,21S S 3S ,且321kS S S +=,下列结论正确的为()A.ek = B.ek 1=C.I 在定直线a x =上D.若m PF =1,则a m PF 22-=或am PF 22+=解析:321kS S S +=ke kc a r c k r PF r PF 1221212121=⇒=⇒⋅⋅⋅+=⇒,A 错;B 正确;点P 在右支上,所以21F PF ∆的内切圆与x 轴切于点)0,(a A ,所以I 在定直线a x =上,C 正确;因为点P 在右支上,所以a m a PF PF 2212-=-=,D 错;故选BC15.(2022福建福州·高三)已知P 是双曲线E :15422=-y x 在第一象限上一点,21,F F 分别是E 的左、右焦点,21F PF ∆的面积为215.则以下结论正确的是()A.点P 的横坐标为25B.2321ππ<∠<PF F C.21F PF ∆的内切圆半径为1 D.21PF F ∠平分线所在的直线方程为0423=--y x 解析:设),(00y x P ,3,5,2===c b a ,2521530021=⇒=⨯=∆y y S F PF ,代入双曲线方程得30=x ,A 错;232tan 2152cot 5212121=∠⇒=∠=∆PF F PF F S F PF =∠⇒21tan PF F35122tan 12tan221221>=∠-∠=PF F PF F ,所以2321ππ<∠<PF F ,B 正确;13225200=+⨯=+=x a ay y I 所以21F PF ∆的内切圆半径为1,C 正确;内心)1,2(I ,)25,3(P ,所以21PF F ∠平分线所在的直线方程为)2(231-=-x y ,即0423=--y x ,D 正确;故选BCD16.(2022江苏省天一中学高三)已知点P 是双曲线E :191622=-y x 的右支上一点,21,F F 为双曲线E 的左、右焦点,21F PF ∆的面积为20,则下列说法正确的是()A.点P 的横坐标为320 B.21F PF ∆的周长为380C.21PF F ∠大于3πD.21F PF ∆的内切圆半径为23解析:42050021=⇒==∆y y S F PF ,代入双曲线方程得3200=x ,A 正确;21F PF ∆的周长为38052320452200=⨯+⨯⨯=+-++c a ex a ex ,B 正确;202cot 92121=∠=∆PF F S F PF 2092tan 21=∠⇒PF F 3319360)209(12092tan 221<=-⨯=∠⇒PF F ,所以321π<∠PF F ,C 错;23203802121=⇒=⨯⨯=∆r r S F PF ,D 正确;故选ABD三、填空题17.设21,F F 是椭圆C :)20(14222<<=+m m y x 的两个焦点,),(00y x P 是C 上一点,且满足21F PF ∆的面积为3,则0x 的取值范围是解析:由340221=-=∆y m S F PF 22043m y -=⇒,所以1)4(342220=-+m m x )4(1242220m m x --=⇒,又20<<m ,所以]4,0()4(22∈-m m ,所以]1,0[]1,0[020∈⇒∈⇒x x 18.设21,F F 为椭圆C :1422=+y x 的两个焦点.M 为C 上点,21F MF ∆的内心I 的纵坐标为32-,则21PF F ∠的余弦值为解析:02121902tan132)(32(21=∠⇒∠⨯=-+=∆PF F PF F S F PF ,所以0cos 21=∠PF F 19.双曲线C :1322=-y x 的左、右焦点分别为21,F F ,点P 在C 上且34tan 21=∠PF F ,O 为坐标原点,则=OP 解析:71cos 34tan 2121=∠⇒=∠PF F PF F ,所以771132cos 1221221=-⨯=∠-=PF F b PF PF 又2221==-a PF PF ,所以182221=+PF PF,由平行四边形的性质得536164)(2)2(222212212=⇒=+⇒+=+OP OP PF PF F F OP 20.已知椭圆C 的焦点为)0,(),0,(21c F c F -,过点2F 与x 轴垂直的直线交椭圆于第一象限的A 点,点A 关于坐标原点的对称点为B ,且01120=∠B AF ,3321=∆AB F S ,则此椭圆的标准方程为解析:由题意知四边形21BF AF 为平行四边形,且02130=∠F AF ,02160=∠AF F ,所以233230tan 202211=⇒===∆∆b b S S F AF AB F ,133232211=⇒=⨯==∆∆c c c S S F AF AB F 所以32=a ,所以椭圆的方程为12322=+y x。
圆锥曲线解题技巧和方法综合全
圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。
如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。
〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
圆锥曲线中焦点三角形和内切圆的解法技巧总结与赏析
圆锥曲线中焦点三角形和内切圆的解法技巧总结与赏析圆锥曲线中焦点三角形和内切圆的解法技巧1.已知椭圆x^2/a^2+y^2/b^2=1的左、右焦点为F1和F2,点M为椭圆上一点。
如果△MF1F2的内切圆周长等于3π,求a^2的值。
解析:根据椭圆的性质,椭圆上到两焦点的距离之和等于长轴的长度,即2a=F1F2.又因为内切圆的周长等于3π,所以其半径为r=3a/2π。
根据△MF1F2的内切圆半径公式r=S/(p-a-b),其中S为△MF1F2的面积,p为△MF1F2的半周长,可得到S=9a^2/4,p=3a,代入公式可得到a^2=16.2.已知椭圆x^2/25+y^2/16=1,F1、F2为其左、右焦点。
如果△MF1F2的内切圆周长等于3π,求满足条件的点M的个数。
解析:根据椭圆的性质,椭圆上到两焦点的距离之和等于长轴的长度,即2a=10.又因为内切圆的周长等于3π,所以其半径为r=3a/2π=9/5.根据△MF1F2的内切圆半径公式r=S/(p-a-b),其中S为△MF1F2的面积,p为△MF1F2的半周长,可得到S=27/5,p=15/2.代入公式可得到MF1+MF2=8或12,即点M恰好有2个。
3.已知椭圆C的中心在原点,焦点在x轴上,离心率为e=√3/2,右焦点到右顶点的距离为3-2,求椭圆C的标准方程;设F1、F2为椭圆的左、右焦点,过F2作直线交椭圆C于P、Q两点,求△PQF1的内切圆半径r的最大值。
解析:由椭圆的性质,可得到椭圆的长轴为2a=2(3-2)=2,离心率为e=√3/2,所以短轴为b=a√3/2=√3.因此,椭圆C的标准方程为x^2+y^2/3=1.设P(x1,y1)、Q(x2,y2),则F2到直线PQ的距离为2b/3=2√3/3,即y1+y2=4√3/3.根据△PQF1的内切圆半径公式r=S/(p-a-b),其中S为△PQF1的面积,p为△PQF1的半周长,可得到r=2S/(2p-2a-b)。
有关圆锥曲线的焦点三角形面积公式的证明及其应用
圆锥曲线的焦点三角形面积问题比较常见,这类题目常以选择题、填空题、解答题的形式出现.圆锥曲线主要包括抛物线、椭圆、双曲线,每一种曲线的焦点三角形面积公式也有所不同,其适用情形和应用方法均不相同.在本文中,笔者对圆锥曲线的焦点三角形面积公式及其应用技巧进行了归纳总结,希望对读者有所帮助.1.椭圆的焦点三角形面积公式:S ΔPF 1F 2=b 2tan θ2若椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∠F 1PF 2=θ,则三角形ΔF 1PF 2的面积为:S ΔPF 1F 2=b 2tan θ2.对该公式进行证明的过程如下:如图1,由椭圆的定义知||F 1F 2=2c ,||PF 1+||PF 2=2a ,图1可得||PF 12+2||PF 1||PF 2+||PF 22=4a 2,①由余弦定理可得||PF 12+||PF 22-2||PF 1||PF 2cos θ=4c 2,②①-②可得:2||PF 1||PF 2(1+cos θ)=4b 2,所以||PF 1||PF 2=2b 21+cos θ,则S ΔPF 1F2=12|PF 1||PF 2|sin θ=12×2b 21+cos θsin θ,=b 22sin θ2cos 2θ22cos 2θ2=b 2tan θ2.若已知椭圆的标准方程、短轴长、两焦点弦的夹角,则可运用椭圆的焦点三角形面积公式S ΔPF 1F 2=b 2tan θ2来求椭圆的焦点三角形面积.例1.(2021年数学高考全国甲卷理科)已知F 1,F 2是椭圆C :x 216+y 24=1的两个焦点,P ,Q 为椭圆C 上关于坐标原点对称的两点,且||PQ =||F 1F 2,则四边形PF 1QF 2的面积为________.解析:若采用常规方法解答本题,需根据椭圆的对称性、定义以及矩形的性质来建立关于||PF 1、||PF 2的方程,通过解方程求得四边形PF 1QF 2的面积.而仔细分析题意可发现四边形PF 1QF 2是一个矩形,且该矩形由两个焦点三角形构成,可利用椭圆的焦点三角形面积公式求解.解:S 四边形PF 1QF 2=2S ΔPF 1F 2=b 2tan θ2=2×4×tan π2=8.利用椭圆的焦点三角形面积公式,能有效地简化解题的过程,有助于我们快速求得问题的答案.例2.已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1()a >b >0的两个焦点,P 为曲线C 上一点,O 为平面直角坐标系的原点.若PF 1⊥PF 2,且ΔF 1PF 2的面积等于16,求b的值.解:由PF 1⊥PF 2可得∠F 1PF 2=π2,因为ΔF 1PF 2的面积等于16,所以S ΔPF 1F 2=b 2tan θ2=b 2tan π2=16,解得b =4.有关圆锥曲线的焦点三角形面积公式的思路探寻48的面积,2.则ΔF 1PF 如|||PF 1-|得:|||PF 2cos θ即|由②所以则S Δ夹角、例3.双曲线C 是().A.72且)设双曲F 1,F 2,离△PF 1F 2=1.本题.运用该=p 22sin θ,且与抛S ΔAOB =图3下转76页)思路探寻49考点剖析abroad.解析:本句用了“S+Vt+动名词”结构,能用于此结构的及物动词或词组有mind ,enjoy ,finish ,advise ,consider ,practice ,admit ,imagine ,permit ,insist on ,get down to ,look forward to ,put off ,give up 等。
焦点三角形问题(解析版)
第一篇圆锥曲线专题01焦点三角形问题焦点三角形的边角关系如下:三条边:122F F c =122PF PF a+==22a c +三角形周长ce a=222a b c =+三个角:随着动点P 的移动,三个角都在变化,可能为锐角,直角和钝角,这里我们只研究顶角P ∠,利用余弦定理,P ∠又和三边a,b,c 的大小有关系三角形的面积:12S ah =底为定值,面积最大时高最大1sin 2S ab c =面积和三边长有关系一、与焦点三角形边长有关的问题焦点三角形中三边长涉及a,c ,因此最直观的是可以根据三边关系求出离心率的值或取值范围,前提是三边之间存在可以转化的关系。
若单独分析三角形的两个腰长,则若能够构成三角形,则需满足1a c PF a c-≤≤+例1椭圆22221x y a b+=的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在一点P ,满足线段AP 的垂直平分线过点F ,则椭圆的离心率的取值范围是________.例2.已知12,F F 是椭圆22221x y a b+=的左右焦点,若在其右准线上存在点P ,使得线段1PF 的中垂线过点2F ,则椭圆的离心率的取值范围是________.【解析】求离心率的范围问题,需要根据条件列出不等式,在含有动点的题目中,需要找出动态的量和常量之间的大小关系。
题目中:2122PF F F c==因为点P 在右准线上下移动,2PF 虽然是常量,但由于不知道a,b,c 的关系,因此还是相对的变量。
本题的定值为22a F H c c=-在2RT PHF 中,222,2a PF F H c c c >≥-解得:313e ≤<例3.设12,F F 是双曲线2214x y -=的左右焦点,点P 在双曲线上,且满足1290F PF ︒∠=,则12PF F ∆的面积是________.方法一:方法二:此题目有更简单的做法,方法一只是为了巩固焦半径的知识,设12,PF x PF y ==则有:4x y -=,又因为2220x y +=解得:2xy =,因此面积等于1.上面两题都是关于焦点三角形中两条腰长的问题,在焦点三角形中两腰长之和为2a ,底边为2c ,因此三边之间暗含离心率的关系,因此在一些出现焦点三角形求离心率的问题中一般腰长和底边之间都存在一个可以互相转化的关系,通过这个关系可以求出离心率。
圆锥曲线专题
圆锥曲线专题一、求面积问题方法:利用焦点三角形及定义1、已知椭圆14922=+y x 的左右焦点为F 1、F 2,P 为椭圆上一点, (1)若∠F 1PF 2=900,求△F 1PF 2的面积(2)若∠F 1PF 2=600,求△F 1PF 2的面积2、已知双曲线14522=-y x 的左右焦点为F 1、F 2,P 为双曲线上一点, (1)若∠F 1PF 2=900,求△F 1PF 2的面积(2)若∠F 1PF 2=600,求△F 1PF 2的面积二、求轨迹方程(一)与两个定圆相切的圆心轨迹方程(用圆心距解题)1.一动圆与两圆:012812222=+-+=+x y x y x 和都外切,则动圆的圆心 的轨迹方程是什么?2. 一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。
(二)用代入法求轨迹1.已知圆922=+y x ,从圆上任意一点P 向x 轴作垂线段/PP ,点M 在/PP 上,并且/2MP =,求点M 的轨迹。
2.双曲线2219x y -=有动点P ,12,F F 是曲线的两个焦点,求12PF F ∆的重心M 的轨迹方程。
三、直线截圆锥曲线得相交弦(求相交弦长,相交弦的中点坐标)常用方法:方程的根与系数关系;弦长公式;对焦点弦要懂得用焦半径公式(连结圆锥曲线(包括椭圆,双曲线,抛物线)上一点与对应焦点的线段的长度,叫做圆锥曲线焦半径。
点差法; (一)求相交弦长1.已知椭圆:1922=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长.2.求直线1y x =+被双曲线2214y x -=截得的弦长;变式:双曲线X 2-22y =1,截得直线Y=x+M 所得的弦长为求M 的(二)中点问题1.已知中点坐标:以定点为中点的弦所在直线的方程(1)过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
圆锥曲线中的三角形问题(含解析)
专题12 圆锥曲线中的三角形问题一、题型选讲题型一 、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1B .2C .3D .9例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( )A .5B .5C .2413D .1913例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x =的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,点B 在准线l 上的投影为E ,若C 是抛物线上一点,且AC EF ⊥.(1)证明:直线BE 经过AC 的中点M ;(2)求ABC ∆面积的最小值及此时直线AC 的方程.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____.2、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .43、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P为抛物线上异于原点的任一点,过点P作抛物线的切线交y轴于点Q,证明:2∠=∠.PFy PQF ()2A,B是抛物线上两点,线段AB的垂直平分线交y轴于点()D(AB不与x轴平行),且0,4+=.过y轴上一点E作直线//6AF BFm x轴,且m被以AD为直径的圆截得的弦长为定值,求ABE△面积的最大值.一、题型选讲题型一、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1 B .2C .3D .9【答案】C 【解析】设准线与x 轴的交点为T ,直线l 与准线交于R ,||||3||3NF EF MF a ===,则||||3NF EF a ==,||MF a =,过M ,N 分别作准线的垂线,垂足分别为,P Q ,如图,由抛物线定义知,||MP a =,||3NQ a =,因为MP ∥NQ ,所以||||||||PM RM QN RN =, 即||3||4a RM a RM a=+,解得||2RM a =,同理||||||||FT RF QN RN =,即||336FT aa a=,解得 3||2FT a =,又||FT p =,所以32a p =,23a p =,过M 作NQ 的垂线,垂足为G ,则||MG ===,所以1||||2MNES EF MG =⋅=△ 132a ⨯⨯=2a =,故332p a ==. 故选:C.例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.【答案】12【解析】作点B 关于原点的对称点B 1,可得S 21'BOF B OF S =,则有11275A B y S S y ==,所以175A B y y =-. 将直线AB 1方程4x c =-,代入椭圆方程后,222241x y c x y a b ⎧=-⎪⎪⎨⎪+=⎪⎩, 整理可得:(b 2+8a 2)y 2﹣b 2cy +8b 4=0,由韦达定理解得12228A B cy y b a+=+,142288A B b y y b a -=+, 三式联立,可解得离心率12c e a ==. 故答案为:12. 例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯,则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( ) A.5B.5C .2413D .1913【答案】D 【解析】如图,先固定直线AB ,设()BM f M AM =,则()()()f C f D f P ==,其中()BPf P AP=为定值, 故点P ,C ,D 在一个阿波罗尼斯圆上,且PCD 外接圆就是这个阿波罗尼斯圆,设其半径为r ,阿波罗尼斯圆会把点A ,B 其一包含进去,这取决于BP 与AP 谁更大,不妨先考虑BP AP >的阿波罗尼斯圆的情况,BA 的延长线与圆交于点Q ,PQ 即为该圆的直径,如图:接下来寻求半径的表达式, 由()2,2AP BP r BP BQ r AP AQ AP AP AQ BP ⋅+==+=+,解得111r AP BP=-, 同理,当BP AP <时有,111r BP AP=-, 综上,111r AP BP=-; 当直线AB无斜率时,与椭圆交点纵坐标为1,1AP BP ==,则1912r =; 当直线AB 斜率存在时,设直线AB 的方程为()12y k x -=-,即21y kx k =-+, 与椭圆方程联立可得()()()22224548129610k x k k x k k ++-+--=,设()11,A x y ,()22,B x y ,则由根与系数的关系有,()()12221224821245961245k k x x k k k x x k ⎧-+=⎪+⎪⎨--⎪=⎪+⎩,211112r AP BP x ∴=-=-,注意到12x -与22x -异号,故1119r ===,设125t k =+,则11121226131919192419r ==≤⋅=,,当15169t =,即1695t =,此时125k =,故1913r ≥,又19191213>,综上外接圆半径的最小值为1913. 故选:D .例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==,由两点之间距离公式可得||AM ==.所以△AMN的面积的最大值:1182⨯=. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k ,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.【答案】(△)223144x y +=;(△)221x y +=,⎡⎢⎣⎦.【解析】(△)由题意可得,22||48F A F B AB a ++==, 故2a =,又有3c e a ==,∴c = 椭圆的标准方程为223144x y +=;(△)法1:设||OA m =,||OB n =,∵0OA OB ⋅=,∴OA OB ⊥, 设点(cos ,sin )A m m θθ,点(sin ,cos )B n n θθ-,22222222cos 3sin 144cos 3sin 144m m n n θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相加得22131144m n +=+, 2222m n m n +=⋅,222AB OA OB =⋅,∴1r =,442222222111||1111n n AB m n n n n n -+=+===++---,24,43n ⎡⎤∈⎢⎥⎣⎦,∴AB ⎡∈⎢⎣⎦,OABS ⎡∈⎢⎣⎦△. 法2:()2222234136340x y k x kmx m y kx m⎧+=⇒+++-=⎨=+⎩, ()()22222236434131248160k m m k m k ∆=--+=-++>,1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++222444013m k k--==+, ∴221m k =+,∴1r ===,122||13AB xk=-==+当0k=时,||2AB=,当0k≠时,||AB=≤213k=时取到等号,此时243m=符合>0∆∴1,3OABS⎡∈⎢⎣⎦△.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x=的焦点为F,准线为l,过点F 的直线交抛物线于A,B两点,点B在准线l上的投影为E,若C是抛物线上一点,且AC EF⊥.(1)证明:直线BE经过AC的中点M;(2)求ABC∆面积的最小值及此时直线AC的方程.【答案】(1)详见解析;(2)面积最小值为16,此时直线方程为30x y±-=.【解析】(1)由题意得抛物线24y x=的焦点()1,0F,准线方程为1x=-,设()2,2B t t,直线AB:1x my=+,则()1,2E t-,联立1x my=+和24y x=,可得244y my=+,显然40A By y+=,可得212,At t⎛⎫-⎪⎝⎭,因为EFk t=-,AB EF⊥,所以1AC k t=, 故直线AC :2211y x t t t ⎛⎫+=- ⎪⎝⎭, 由224120y xx ty t ⎧=⎪⎨---=⎪⎩, 得224480y ty t---=. ∴4A C y y t +=,248A C y y t =--, 所以AC 的中点M 的纵坐标2M y t =,即M B y y =, 所以直线BE 经过AC 的中点M .(2)所以A C y A C =-== 设点B 到直线AC 的距离为d ,则2212t d ++==.所以1162ABCS AC d ∆=⋅=≥=,当且仅当41t =,即1t =±,1t =时,直线AD 的方程为:30x y --=,1t =-时,直线AD 的方程为:30x y +-=.另解:2221112222ABC A C S BM y y t t t ∆=⋅-=++-3222122t t ⎛⎫=++ ⎪⎝⎭.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____. 【答案】[]0,1【解析】依题意,122F F =,所以120122PF F S y ∆=⨯=0y =,而2200214x y m +=,所以2200224124144y x m m m ⎛⎫=-=- ⎪-⎝⎭.由于02m <<,204m <<,根据二次函数的性质可知:()(]22424240,4m m m -=--+∈,所以241234m m -≤--,所以22412414x m m =-≤-,解得[]00,1x ∈.故答案为:[]0,12、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和3y x =-联立,求得M,3(,22N -,所以||3MN ==,故选B . 3、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______. 【答案】258π【解析】设三个切点分别为222(,),(,),(,)444a b c A a B b C c ,若在点A 处的切线斜率存在,设方程为2()4a y a k x -=-与24y x =联立,得,222440,164(4)0ky y a k a k a k a --+=∆=--+=, 即222440,a k ak k a-+=∴=, 所以切线PA 方程为2202a x ay -+= ①若在点A 的切线斜率不存在,则(0,0)A , 切线方程为0x =满足①方程,同理切线,PB MN 的方程分别为2202b x by -+=,2202c x cy -+=,联立,PA PB 方程,22202202a x ay b x by ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得42ab x a b y ⎧=⎪⎪⎨+⎪=⎪⎩,即,42ab a b P +⎛⎫ ⎪⎝⎭同理,,,4242ac a c bc b c M N ++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,(),42a c b c b PM --⎛⎫= ⎪⎝⎭, ()(),,,4242b c a c a c b a b a PN MN ----⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,设PMN ∆外接圆半径为R ,|||||||||PM b c PN a c MN a b =-=-=-,11||||sin ||||22PMN S PM PN MPN PM PN ∆=∠=21||||()2||||PM PN PM PN ===||||||1||||||1622a b b c a c MN PM PN R---==,||||||4PM PN MN R S ⋅⋅==08c =≥时取等号,点P在直线40,4,8422ab a b ab x y a b +-+=∴+=∴+=+,8R =∴≥8==4≥=, 当且仅当1,6,0a b c =-==或6,1,0a b c ==-=时等号成立, 此时PMN ∆外接圆面积最小为258π. 故答案为:258π.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.【答案】(1)2y x =(2)最小值 【解析】(1)当1s =时,5||24p PF s =+=, 所以12p =,故所求抛物线方程为2y x =. (2)点(),P s t 为抛物线2y x =上的动点,则2s t =,设过点2(,)P t t 的切线为2()x m y t t =-+, 21=, 得22222(1)2(2)(2)10(*)t m t t m t -+-+--=, 12,m m 是方程(*)式的两个根, 所以21222(2)1t t m m t -+=-,2123m m t =-, 设()()221122,,,A y y B y y ,因直线2:()l x m y t t =-+,与抛物线2:C y x =交于点A ,则212()x m y t t y x⎧=-+⎨=⎩得22110y m y m t t -+-=, 所以211ty m t t =-,即11y m t =-,同理22y m t =-,设直线()1212:AB x y y y y y =+-,则12||||AB y y =-,d =,又12122221t y y m m t t -+=+-=-, 2121223()()1t y y m t m t t -=--=-, 所以212121211|||||()|22PAB S AB d y y t t y y y y ==--++22222311t t t t t --=-⨯+--=令210u t=->,4(PAB S u u =++当且仅当2u =,即t =时,PAB S 取得最小值5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.【答案】(1)24y x =;(2)【解析】(1)由已知得焦点F 的坐标为(1, 0), 2p ∴=,∴抛物线C 的方程为:24y x =;(2)设直线AB 的方程为:2x my =+,设()11,A x y ,()22,B x y ,()00,M x y ,联立方程224x my y x=+⎧⎨=⎩,消去x 得:2480y my --=, 216320m ∴∆=+>,124y y m +=,128y y =-,设直线l 方程为:()11y y k x x -=-,联立方程()1124y y k x x y x ⎧-=-⎨=⎩,消去x 得:2114440y y y x k k-+-=, 由相切得:112164440k k y x ⎛⎫∆=--= ⎪⎝⎭,112110y x k k ∴-+=, 又2114y x =,21121104y y k k ∴-+=, 21102y k ⎛⎫∴-= ⎪⎝⎭,12k y ∴=, ∴直线l 的方程为:11220x y y x -+=,由4AB AM →→=,得12034x x x +=,12034y y y +=, 将12034y y y +=代入直线l 方程,解得221121888N yy y y x +-==, 所以01212ABN N S x x y y =-⨯-△212112138248x x yy y +-=-⨯-2212121632y y y y ++=⨯-31232y y -=311832y y +=,又118y y +≥ 所以42ABN S △,当且仅当1y =±时,取到等号,所以ABN面积的最小值为6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P 为抛物线上异于原点的任一点,过点P 作抛物线的切线交y 轴于点Q ,证明:2PFy PQF ∠=∠. ()2A ,B 是抛物线上两点,线段AB 的垂直平分线交y 轴于点()0,4D (AB 不与x 轴平行),且6AF BF +=.过y 轴上一点E 作直线//m x 轴,且m 被以AD 为直径的圆截得的弦长为定值,求ABE △面积的最大值.【答案】()1证明见解析; ()2 【解析】()1由抛物线的方程可得()0,1F ,准线方程:1y =-,设200,4x P x ⎛⎫ ⎪⎝⎭, 由抛物线的方程可得2x y '=,所以在P 处的切线的斜率为:02x k =, 所以在P 处的切线方程为:()200042x x y x x -=-, 令0x =,可得204x y =-, 即2040,Q x ⎛-⎫ ⎪⎝⎭, 所以2014x FQ =+,而P 到准线的距离2014x d =+,由抛物线的性质可得PF d = 所以PF FQ =,PQF QPF ∠=∠,可证得:2PFy PQF ∠=∠.()2设直线AB 的方程为:y kx m =+,()11,A x y ,()22,B x y ,直线与抛物线联立24y kx mx y =+⎧⎨=⎩,整理可得:2440x kx m --=,216160k m ∆=+>,即20k m +>,124x x k +=,124x x m =-,()21212242y y k x x m k m +=++=+,所以AB 的中点坐标为:()22,2k k m +,所以线段AB 的中垂线方程为:()212(2)y k m x k k -+=--,由题意中垂线过()0,4D ,所以2224k m ++=,即222k m +=,① 由抛物线的性质可得:1226AF BF y y +=++=,所以24226k m ++=,即222k m +=,②设()0,E b ,()222114AD x y =+-,AD 的中点的纵坐标为142y +,所以以AD 为直径的圆与直线m 的相交弦长的平方为:2214442y AD b ⎡⎤+⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()()()222112114444444y y x b b y ⎡⎤-+=+--++⎢⎥⎢⎥⎣⎦()221111444434y b b y by b y b b ⎡⎤-+-+=-+-⎣⎦⎡⎤⎣⎦,要使以AD 为直径的圆截得的弦长为定值则可得3b =,时相交弦长的平方为定值12,即()0,3E所以E 到直线AB的距离为:d = 而弦长AB ==,所以1232EAB S AB d =⋅==-将①代入可得2322212ABE S k k =-+=+=设()6424472f k k k k =-+++为偶函数,0k >>的情况即可,()()()()5342222416142126722167f k k k k k k k k k k ++=---=-+=--' 令()0f k '=,6k =当06k <<,()0f k '>,()f k 单调递增;当k 6<<()0f k '<,()f k 单调递减,所以(k ∈且0k ≠上,66f f ⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为最大值9,所以ABE S的最大值为:212+=。
怎样解答与焦点三角形有关的问题
焦点三角形是指由椭圆或双曲线上一点与两个焦点构成的三角形.焦点三角形较为特殊,其一条边为椭圆的长轴或双曲线的实轴.与焦点三角形有关的问题经常出现在解析几何试题中.下面结合实例来探讨一下与焦点三角形有关的问题的解法.一、根据椭圆或双曲线的定义求解解答椭圆和双曲线中焦点三角形问题,首先要明确这两种圆锥曲线的几何特征和定义.椭圆的定义:平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.若P为椭圆上一点,根据椭圆的定义可得|PF1|+|PF2|=2a.双曲线的定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹,用代数式可表示为||PF1|-|PF2||=2a.若∠F1PF2=θ,根据椭圆的定义可知(1)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cosθ;(2)S△PF1F2=|PF1||PF2|·sinθ;(3)焦点三角形的周长为2(a+c).对于双曲线,也有类似的性质.例1.已知双曲线的中心在原点,两个焦点F1,F2的坐标分别为()5,0和()-5,0,点P在双曲线上,且PF1⊥PF2,ΔABC的面积为2,则双曲线的方程为.解:设||PF1=r1,||PF2=r2,根据双曲线的第一定义可知,||r1-r2=2a,因为PF1⊥PF2,所以r21+r22=||F1F22,可得ìíîïïïïr21+r22=20,SΔABC=12r1r2=2,||r1-r2=2a,解得a2=3,而c=5,所以b2=2,可得双曲线方程:x23-y22=1.此题比较简单,根据题目中的垂直关系,利用双曲线的定义和三角形的面积公式即可建立关于||PF1、||PF2的方程组,解方程组就可以求出双曲线的方程.例2.已知椭圆C1与双曲线C2有相同的焦点F1,F2,曲线C1和C2的一个交点为P,且PF1⊥PF2,则C1的离心率e1与C2的离心率e2一定满足的关系是().A.e1+e2=2B.1e1+1e2=2C.e21+e22=2D.1e21+1e22=2解:设椭圆C1的方程为x2a21+y2b21=1,双曲线C2的方程为x2a22-y2b22=1,点P在第一象限,半焦距为c.则||PF1+||PF2=2a1,||PF1-||PF2=2a2,所以||PF1=a1+a2,||PF2=a1-a2,因为PF1⊥PF2,||PF12+||PF22=4c2,所以a21+a22=2c2,所以æèçöø÷a1c2+æèçöø÷a2c2=2,即1e21+1e22=2.解答本题,需利用椭圆与双曲线的定义,借助勾股定理建立关于||PF1、||PF2的方程,然后将其转化为a、c的方程,根据圆锥曲线离心率公式e=c a,得到e1、e2的关系式.二、根据正余弦定理求解若三角形ABC的三个内角的对边为a、b、c,则有正弦定理:asin A=b sin B=c sin C=2R.余弦定理:a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C.在解答与焦点三角形有关的问题时,可根据正余弦定理建立关于焦点三角形三边的关系式,通过解方程求考点透视36丈丈丈丈数列求和问题是高考数学试题中的“常客”.这类问题的命题形式多变,侧重于考查等差、等比数列的性质、通项公式、前n 项求和公式.解答此类问题的常用方法有分类讨论法、并项求和法、倒序相加法、裂项相消法等.本文主要介绍分类讨论法、倒序相加法和裂项相消法.一、分类讨论法有时数列中出现几类具有不同特征的项,此时需采用分类讨论法来求数列的和.运用分类讨论法求数列的和,需根据数列中各项的特点,对n 进行分类讨论,如分奇数项、偶数项,分整数项、分数项,分正数项、负数项等.运用该方法解题,需仔细观察数列的通项公式的结构或数列中各项的特点,并确定分类的标准,然后逐类进行讨论,求出各类数列的和,最后综合所得的结果即可解题.例1.已知数列{a n }的前n 项和为S n ,S 2=4,a n +1=2S n +1.(1)求{a n }的通项公式;(2)求数列{|a n -n -2|}的前n 项和.解:(1)数列n 的通项公式是a n n -1.(过程略)(2)设b n =||3n -1-n -2,则b 1=2,b 2=1,当n ≥3时,3n -1>n +2,可得b n =3n -1-n -2,n ≥3,设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n ≥3时,T n =3+9()1-3n -21-3-()n +7()n -22=3n-n 2-5n +112,故T n =ìíîïï2,(n =1)3n -n 2-5n +112.()n ≥2数列{b n }的通项公式中含有绝对值,经分析可知,当n =1、2时和当n ≥3时数列的前n 项和式不一样,因此需采用分类讨论法,分别讨论当n =1、2时和当n ≥3时数列的通项公式和前n 项和,最后综合所有情况即可.二、倒序相加法倒序相加法是求数列前n 项和的常用方法之一,考点透视。
圆锥曲线的七种常考题型详解【高考必备】
圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。
在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。
适用条件需要注意。
例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。
例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。
对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。
例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。
PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。
例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。
例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。
题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。
在解题时需要注重数形结合思想和不等式解法。
例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。
题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。
例1:求椭圆x^2/4+y^2/9=1的参数方程。
例2:求双曲线x^2/9-y^2/4=1的参数方程。
题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。
圆锥曲线中焦点三角形几个问题的解法
感谢您的观看
THANKS
焦点三角形中的中点问题
总结词
焦点三角形中的中点问题主要涉及到中点的性质和相关 的计算公式。
详细描述
在焦点三角形中,中点问题主要涉及到中点的性质和相 关的计算公式。例如,在椭圆中,如果一个三角形的一 个顶点与两个焦点的中点相连,那么这个三角形必然是 直角三角形。这是因为中位线的性质,即三角形的中位 线平行于底边且等于底边的一半。类似地,在双曲线中 也有类似的结论。解决这类问题的关键在于理解中点的 性质和相关的计算公式,以及如何应用这些性质和公式 来解决问题。
对于双曲线,标准方程为`(x-a)^2/b^2 - (y-c)^2/d^2 = 1`,其中`(a,b,c,d)`是双曲线的实半轴、虚半 轴、焦点到中心的距离和准线到中心的距离。
圆锥曲线的性质和特点
• 圆锥曲线具有封闭性、对称性和渐近性等性质。封闭性是指 椭圆和双曲线在坐标系中画出来是一个封闭的图形,而抛物 线则无限延伸。对称性是指椭圆和双曲线关于坐标轴对称, 而抛物线则关于准线对称。渐近性是指双曲线在远离中心的 区域逐渐接近两条直线,而椭圆则逐渐接近一个圆。
椭圆上点的离心率性质
在椭圆上,随着点在曲线上的位置变 化,离心率的变化规律是单调递增或 递减的。具体来说,当点从椭圆的长 轴向短轴移动时,离心率单调递增; 当点从短轴向长轴移动时,离心率单 调递减。
抛物线上点的离心率性 质
在抛物线上,随着点在曲线上的位置 变化,离心率的变化规律也是单调递 增或递减的。但是,与椭圆不同,抛 物线上的离心率变化规律取决于曲线 的形状(开口方向)。对于开口向右 的抛物线,离心率单调递增;对于开 口向左的抛物线,离心率单调递减。
VS
焦点三角形的弦长随着圆锥曲线类 型的变化而变化:在相同条件下, 椭圆中的弦长比双曲线中的弦长短 。
圆锥曲线中的焦点三角形问题
解 得:l e V , I . 1 P l = 6 4
=
. . .
系定理, 解题中,通过变形, 使之出现I f + l l = 2 a,或 I I — I P { = ± 2 口, 然 后找 到相 关关系, 进行 解题。
一
圭 × I P F 2 [ s i n 6 0  ̄ = 圭 × 6 4 × 2 _ 1 6
( 2 ) 的面积 的最 大值 ; ( 3 ) 的周长 的最 大值 。 分析 : ( 1 ) 令l l =m , f I = ,则 有 :
f + =2 a
二 与焦 点三角形有关 的轨迹 问题
例2 : -  ̄M( O , 一 5 ) , Ⅳ ( 0 , 5 ) , 脚 的 周长为 3 6 , 则 求△ M N P 的
圆
‘
. ’
]
] 或
‘
.
.
a=1 3.又 ‘ . C=5
MN P
轨迹方程为一 y 2 P 1 6 9+ 1 4 4= ≠叭 的顶点 的轨迹方程为 。 一 ~。 三、面积 问题
. ・ 。
.
‘ Y
f ,、 S . e e  ̄ e , = 曩F 2 l _ h
.
2mn
又 . 。 m +n =4 口 一2 mn
4 口 一2 mn一4 c
C 0S 廿 =
‘
2 6 .
一1
.
.
2mn
又・ . ・ 2 a : + ≥ 2 √
・
. .
m n 口 ( 当且 仅 当 m=n 时 ,取 “ = ”)
・ . .
。 a r c c o s 0
顶 点 P 的轨迹方 程 。
中点弦、焦点三角形、椭圆系lyt
关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。
这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。
其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。
一、求中点弦所在直线方程问题例1 过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。
解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:016)12(4)2(8)14(2222=--+--+k x k k x k又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是14)2(82221+-=+k k k x x , 又M 为AB 的中点,所以214)2(422221=+-=+k k k x x , 解得21-=k , 故所求直线方程为042=-+y x 。
解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y ,又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x ,两式相减得0)(4)(22212221=-+-y y x x , 所以21)(421212121-=++-=--y y x x x x y y ,即21-=AB k , 故所求直线方程为042=-+y x 。
解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,),因为A 、B 两点在椭圆上,所以有⎩⎨⎧=-+-=+16)2(4)4(1642222y x y x , 两式相减得042=-+y x ,由于过A 、B 的直线只有一条,故所求直线方程为042=-+y x 。
圆锥曲线中有关焦点三角形问题的解题策略
2 l P F l l P F I
l AF l +i F B I +l AF { +】 B F。I 一8 , 而 l A F f +l AF I —l B F I +l B F I 一2 a ,
所 以 4 a: 8 n= = = 2 .
去. 过F 的直线交椭 圆于
A, B两 点 , 且 △A BF 的 周 长 为 8 .
解 析
由余 弦 定 理 得 c o s F P F。一
… ~
。 6 o 。 :
( I) 求 椭 圆 E 的方程 .
解 析 因 为 j AB 1 +l A F 1 +1 B F 1 —8 , 即
3 焦 点 三 角 形 中 的 角 度 问题 的 求 解 策 略 — — 关
注 定 理
点 评 运 用 圆锥 曲线 中椭 圆或 双 曲线 的 第
一
定义, 可 以解 决 与三 角形周 长有 关 的 问题.
2 √ 3, 所以 l P F 1 . I P F l 一8 , 所以4 c :4 a +8 ,
即b 一2 , 又 因为 P 一 一2 , 所以 n z 一 . 故所 求
又椭 圆 的离 心 率为 , 从而 c 一2 √ 2, 所 以椭 圆 c
厶
~
2
. 2
1 1
( 1 P F I —l P F I ) + 2 I P F I I P F I —l F F f 2 l P F l l P F 。l
丢 2 一
2 f P F 】 l l P F 2 l 型, ~一 I P F 。 l 1 .
型 出现 . 但 总体说 来 , 焦点 三 角形有 关 问题 的解题 方 法 与三角 形 的有 关 边 角 联 系在 一 起 , 并 与 圆锥 曲线或 圆 的性 质有着 紧 密 的联 系 . 下 面就 焦 点 三 角形 有 关 问题 , 结 合 高 考 或 模
解圆锥曲线问题常用的八种方法及七种常规题型
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法〔点参数、K 参数、角参数〕7、代入法8、充分利用曲线系方程法七种常规题型〔1〕中点弦问题 〔2〕焦点三角形问题〔3〕直线与圆锥曲线位置关系问题 〔4〕圆锥曲线的有关最值〔围〕问题 〔5〕求曲线的方程问题1.曲线的形状--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程〔6〕存在两点关于直线对称问题 〔7〕两线段垂直问题常用的八种方法1、定义法〔1〕椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
〔2〕双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离〞互相转化。
〔3〕抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要无视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法〞。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法〞,即设弦的两个端点A(*1,y 1),B(*2,y 2),弦AB 中点为M(*0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求〞法,具体有:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有02020=+k by a x 。
圆锥曲线焦点三角形问题常见类型解析
圆锥曲线焦点三角形问题常见类型解析圆锥曲线中的三角形问题(特别是与焦半径相关的三角形问题)是解析几何中的一个综合性较强的重点内容。
下举例谈谈圆锥曲线焦点三角形问题常见类型。
一、定值问题例1. 椭圆上一点P ,两个焦点x a y ba b 222210+=>>(), 的内切圆记为,求证:点P 到的切)0,()0,(21c F c F ,-12F PF ∆M e M e 线长为定值。
证明:设⊙M 与△PF 1F 2的切点为A 、B 、C ,如图1,因⊙M 是△PF 1F 2的内切圆,所以|F 1A|=|F 1C|、|F 2C|=|F 2B|,|PA|=|PB|; ∵|F 1C|+|F 2C|=2c ,∴ |F 1A|+|F 2B|=2c ,由椭圆第一定义知 |PF 1|+|PF 2|=2a,∴ |PA|+|F 1A|+|PB|+|F 2B|=2a , ∴ 2|PA|=2a -2c 即 |PA|=a -c 为定值.证毕.点评:圆锥曲线定义不仅是推导圆锥曲线方程及性质的基础, 而且也是解题的重要工具.对于有些解析几何问题,若从圆锥曲线的定义上去思考,往往会收到避繁就简,捷足先登的解题效果。
二、动点轨迹问题 例2、已知椭圆上一动点P ,两个焦点, x a y ba b 222210+=>>())0,()0,(21c F c F ,-的内切圆记为,试求圆心M 的轨迹方程 。
12F PF ∆M e 解析: 如图1,设∠PF 1F 2=α、∠PF 2F 1=β,M(x ,y)则在△PF 1F 2中由正弦定理及椭圆的定义有,由等比定理有即||sin ||sin ||sin[()]PF PF F F 1212180βααβ==-+°,又由合分比定理知1212||||||22sin sin sin()sin sin sin()PF PF F F a c αβαβαβαβ+=⇒=++++。
素养导向指引下例谈圆锥曲线焦点三角形问题的解题策略
4620215素养导向指引下例谈圆锥曲线焦点三角形问题的解题策略*福建省南平市高级中学(353000)江智如李寿滨黄丽群圆锥曲线焦点三角形问题是高考与各类模拟考试的热点题型,涵盖几何、向量、三角、函数等多领域的知识与方法,综合性强,思维强度高,是圆锥曲线知识的重点与难点,考查考生数学阅读能力、数形结合思想、化归与转化思想、推理论证能力与运算求解能力.这类问题一般考查角度、周长、面积、中位线、角平分线、离心率等问题[1],包含丰富的圆锥曲线性质知识,解题策略多样,方法巧妙,需要从不同的角度针对问题条件进行策略选择,全方位反映焦点三角形问题的几何特征,引导学生掌握运用代数语言把几何问题转化为代数问题的思想与方法,提升直观想象、数学运算、数学建模、逻辑推理和数学抽象素养[2],有助于学生将高中数学基本知识结构化、系统化,形成学科知识网络[3].本文从高中学生的认知水平出发,把焦点三角形问题归纳为六种类型,在学科素养的指引下,探究问题解决的有效思路与方法.1概念界定如图1与图2,椭圆或双曲线上的一点P,与两焦点所构成的∆F1P F2称为椭圆或双曲线的焦点三角形.本文研究的圆锥曲线焦点三角形问题界定为:结合椭圆或双曲线的几何性质,解决与焦点三角形相关的问题,主要包括周长、离心率、角度、面积、中位线、角平分线等问题.图1图22方法探究圆锥曲线焦点三角形问题主要围绕圆锥曲线的几何性质展开,利用正余弦定理、平面向量、平面几何等相关知识与结论,借助数形结合思想,转化为圆锥曲线的性质或解三角形题型,运用函数与方程思想、建模思想,通过扎实的运算求解能力,解决问题,常采用四种解题方法:(1)定义法;(2)解析法;(3)三角法;(4)向量法.3方法应用3.1周长问题周长问题常考虑定义法,解题思路为:从圆锥曲线的第一定义出发,利用三角形的三边长关系与对称性质转化为共线问题,确定特殊点位置,结合正余弦定理和平面向量方法求解.要求考生具有扎实的几何功底,体现数学学习的能力与潜能[4].题目1(2015年高考全国I卷文科第16题)已知F是双曲线C:x2−y28=1的右焦点,P是C左支上一点,A(0,6√6),当∆AP F周长最小时,该三角形的面积为.分析本试题是以周长问题为背景寻找点P的位置,求解三角形面积问题.由已知条件可设左焦点为F′(−3,0),因为点P在C的左支上,所以由双曲线第一定义可得∆AP F的周长|AP|+|AF|+|P F|=|AP|+|AF|+|P F′|+2a|AF|+|AF′|+2a,当且仅当A,P,F′三点共线且P在A,F′中间时取等号,此时直线AF′的方程为x−3+y6√6=1,联立双曲线方程得P(−2,2√6),再由面积割补法求得,∆AP F的面积为12×6×6√6−12×6×2√6=12√6.考查数形结合思想、推理论证能力和运算求解能力.一点D(x0,y0),向抛物线C:y2=2px两切点分别为A(x1,y1),B(x2,y2)三角形ABD的面积为S.由性质1的证明过程可知S=12|AB|d=|y20−2px0|p√y2−2px0=(y20−2px0)32p,又因为C:y02=2px0+K,即y02−2px0=K,代入上式可得S=K32P,即面积为定值,得证.参考文献[1]杨力,康盛.过抛物线外任意上一点作切线的方法[J].中学数学研究(华南师范大学版)(上半月),2020(10):23.*本文为福建省教育科学“十三五”规划2020年度立项课题《核心素养导向下的高中数学主题教学校本研究》(立项批准号:FJJKXB20-1067)阶段性成果.20215473.2离心率问题离心率是圆锥曲线的重要性质,常以选填题形式出现,常考常新,考查考生圆锥曲线知识掌握水平和综合应用能力.解题的思路是:根据已知条件探寻a ,b ,c 三者之间的关系,要求考生运用圆锥曲线第一定义、正余弦定理、不等式等知识分析和探寻解题方向,通过细心的运算,步步为营,得到最终结果,培养考生数学素养,提高考生的圆锥曲线综合应用能力.题目2(2018年高考全国II 卷理科第12题)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,∆P F 1F 2为等腰三角形,∠F 1F 2P =120◦,则C 的离心率为()A.23B.12C.13D.14分析本试题中P 点虽然不在椭圆C 上,但问题本质仍然是焦点三角形题型,解题的关键可以由∆P F 1F 2为等腰三角形及∠F 1F 2P =120◦确定点P 的位置,即P F 2=F 1F 2=2c .再由AP 的斜率为√36,得到tan ∠P AF 2=√36,考虑把问题转化到∆P F 1F 2中,利用正弦定理确定角与边的关系,即P F 2AF 2=sin ∠P AF 2sin ∠AP F 2,其中sin ∠AP F 2=sin (π3−∠P AF 2),而sin ∠P AF 2=1√13,cos ∠P AF 2=√12√13,可求sin ∠AP F 2=52√13,所以2c a +c =25,化简得a =4c ,故e =14,考查考生综合运用所学知识解决问题的能力,实现考查阅读、应用、建模能力的目的[5].3.3角度问题角度问题需要运用椭圆或双曲线的第一定义,借助正余弦定理或向量夹角,转化为焦半径|P F 1|、|P F 2|与焦距|F 1F 2|之间的数量关系,再利用函数或不等式方法求解问题.解决思路为:设∠F 1P F 2=θ,则cos θ=|P F 1|2+|P F 2|2−|F 1F 2|22|P F 1|·|P F 2|=(|P F 1|±|P F 2|)2∓2|P F 1|·|P F 2|−|F 1F 2|22|P F 1|·|P F 2|=±2b 2|P F 1|·|P F 2|∓1其中|P F 1|·|P F 2|可由基本不等式或函数方法求解取值范围,再根据题设条件得到θ取值范围.特别地,当|P F 1|=|P F 2|时,等号成立,此时点P 为椭圆短轴或双曲线虚轴的端点,θ取到最大.题目3(2017年高考全国I 卷文科第12题)设A 、B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120◦,则m 的取值范围是()A.(0,1]∪[9,+∞)B.(0,√3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,√3]∪[4,+∞)分析本试题中A 、B 两点是长轴的两个端点,根据椭圆的对称性质,考虑类比焦点三角形的角度结论可以得到,当点M 为椭圆短轴的端点,∠AMB 取到最大,此时有∠OMB 60◦.因为已知条件没有明确椭圆焦点的位置,所以对参数m 进行讨论:当0<m <3时,a =√3,b =√m ,tan ∠OMB =ab =√3√m tan 60◦=√3,即0<m 1;当m >3时,b =√3,a =√m ,tan ∠OMB =a b =√m√3tan 60◦=√3,即m 9;综上所述,m ∈(0,1]∪[9,+∞).考查考生对椭圆性质知识的理解与应用水平,体现试题的基础性与选拔功能.3.4面积问题面积问题主要运用解析法、三角法和向量法求解,解决思路为:转化为|P F 1|、|P F 2|、|F 1F 2|或a ,b ,c 及角∠F 1P F 2=θ之间的数量关系,借助三角函数知识与圆锥曲线性质求解.特别地,在椭圆或双曲线中,∆F 1P F 2的底边为定值2c ,|P F 1|,|P F 2|及∠F 1P F 2=θ为变量,可以推导椭圆中焦点三角形的面积为S =b 2tan θ2,双曲线为S =b 2tanθ2.题目4(2019年高考全国II 卷文科第20题)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为C 上一点,O 为坐标原点.(1)若∆P OF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得P F 1⊥P F 2,且∆F 1P F 2的面积等于16,求b 的值和a 的取值范围.分析本试题依托三角形背景知识考查离心率和参数取值范围问题,考虑运用定义法和向量法求解.第(1)问面向大部分考生,首先连结P F 1,由∆P OF 2为等边三角形可知,在∆F 1P F 2中,∠F 1P F 2=90◦,于是把问题转化为直角三角形,可求|P F 2|=c ,|P F 1|=√3c ,再由椭圆的第一定义知,2a =|P F 1|+|P F 2|=(√3+1)c ,所以C 的离心率是e =ca=√3−1,考查直观想象能力与运算求解能力;第(2)问根据焦半径垂直关系,把面积问题转化为动点的坐标运算.设点P (x,y ),则有12|y |·2c =16,即c |y |=16.又P F 1⊥P F 2,故−−→P F 1·−−→P F 2=0,从而x 2+y 2=c 2,联立x 2a 2+y 2b 2=1,化简得y 2=b 4c 2,所以求得b =4.把y 2=b 4c2代入x 2a 2+y 2b 2=1,得x 2=a2c 2(c 2−b 2),所以c 2 b 2,从而a 2=b 2+c 2 2b 2=32,故a 4√2.即当b =4,4820215a 4√2时,存在满足条件的点P .因此b =4,a 的取值范围为[4√2,+∞).此处考查考生椭圆知识掌握与应用水平,展现考生分析问题、解决问题的思维过程[6],体现试题的选拔与区分功能.3.5中位线问题中位线问题运用定义法,利用三角形中位线性质,化归转化为圆锥曲线第一定义求解.解题思路为:在圆锥曲线中,若点M 为线段P F 1的中点,连接OM ,因为点O 为F 1F 2的中点,所以在∆P F 1F 2中,有OM //P F 2且OM =12P F 2,从而把OM 转化为P F 2,即把点M 的位置问题转化为点P 的位置问题求解,考查逻辑思维能力和创新能力.题目5(2020年福建南平高三期末质检15)如图3,已知F 1,F 2是双曲线C :x 2a 2−y 2b2=1(a,b >0)的左、右焦点,若双曲线右支上存在点P ,使得以双曲线实轴为直径的圆与线段P F 1相切于线段P F 1的中点M ,则双曲线C 的离心率为.分析本试题以圆的切线和三角形中位线背景知识,考查离心率问题,考虑利用圆的切线和中位线性质,把问题转化为双曲线的第一定义,探寻a ,c之间关图3系求解.为此连接P F 2,可得在∆P F 1F 2中,有OM //P F 2且OM =12P F 2.又P F 1与圆O 相切于点M ,故OM ⊥P F 1,从而P F 2=2OM =2a 且P F 1⊥P F 2,所以由双曲线第一定义可知,P F 1=4a .在Rt ∆P F 1F 2中,由勾股定理得,P F 21+P F 22=F 1F 22,即(4a )2+(2a )2=(2c )2,解得e =ca=√5.体现考生将所学知识迁移到新情境,解决新问题的能力[3],培养考生数学建模能力和创新能力.3.6角平分线问题角平分线问题是通过三角形的内角平分线性质,利用正弦定理把角的关系转化为对应边的比值,结合圆锥曲线第一定义求解.解题思路为:在∆P F 1F 2中,若∠F 1P F 2的平分线为P M ,交F 1F 2于点M ,则有|P F 1||P F 2|=|MF 1||MF 2|,从而把动点P 转化为点M ,而点M 、F 1、F 2共线,再根据已知条件求解问题.考查考生数学综合能力与学习潜能,引导考生打破常规进行思考,自主发现问题,提出解决方案,作出独立的判断和解答,创造性地解决问题[6].题目6(2011年高考全国II 卷理科第15题)已知F 1,F 2是双曲线C :x 29−y 227=1的左、右焦点,点A 在双曲线C上,点M 的坐标为(2,0),AM 为∠F 1AF 2的角平分线,则|AF 2|=.分析本试题点M 在x 轴上,考虑运用内角平分线性质把问题转化为点M 、F 1、F 2共线,即在∆F 1P F 2中,由AM为∠F 1AF 2的平分线可得,|AF 1||AF 2|=|MF 1||MF 2|=6+26−2=2,所以点M 在双曲线的右支,从而由双曲线第一定义知,|AF 1|−|AF 2|=2a =6,联立得|AF 2|=6.此题考查考生数学阅读理解能力,强化推理论证,考查理性思维能力,激发考生学习兴趣,提高考生学习的热情,有助于创新问题的解决[6].4方法总结圆锥曲线焦点三角形问题依托圆锥曲线定义与性质知识,考查考生解析几何功底和数学综合应用能力.考生可以通过目标分析、问题转化、模式识别进行求解,利用正余弦定理、向量性质、勾股定理等知识,把问题转化为圆锥曲线第一定义求解.引导考生深刻认识圆锥曲线的第一定义及丰富的几何特征,巩固复习已学知识,渗透解题策略多元化的思想.在日常的教学过程中,教师可以设计相应的“精致练习”[7],帮助学生巩固与深化所学知识,构建圆锥曲线知识网络结构,提高解题技巧及分析问题、解决问题的能力,增强思维的灵活性,培养学生求异创新的发散思维,实现学生数学学科素养的提升.参考文献[1]刘定明.高中生解决圆锥曲线焦点三角形问题的常见策略及认知分析[D].广州大学硕士学位论文,2019.[2]中华人民共和国教育部制定.普通高中数学课程标准(2017年版2020年修订)[S].北京:人民教育出版社,2020:47.[3]教育部考试中心制定.中国高考评价体系[M].北京:人民教育出版社,2019:24.[4]江智如.直观想象素养下一道高中数学联赛题的解法探析[J].中学数学研究(江西师大),2019(12):48-49.[5]任子朝,陈昂,赵轩.加强数学阅读能力考查展现逻辑思维功底[J].数学通报,2016(6):8-13.[6]于涵,任子朝,陈昂,赵轩,李勇.新高考数学考核目标与考查要求[J].中小学教材教学,2016(6):20-24.[7]江智如.高中平面向量教学中的“精致练习”[J].福建中学数学,2016(1):16-19.。
圆锥曲线的解题方法
圆锥曲线的解题方法导语:定义中提到的定点,称为圆锥曲线的焦点;定直线称为圆锥曲线的准线;固定的常数(即圆锥曲线上一点到焦点与准线的距离比值)称为圆锥曲线的离心率;焦点到准线的距离称为焦准距;焦点到曲线上一点的线段称为焦半径。
过焦点、平行于准线的直线与圆锥曲线相交于两点,此两点间的线段称为圆锥曲线的通径,物理学中又称为正焦弦。
第一、圆锥曲线的解题方法:一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2、求动点P的轨迹方程。
解析:依题意可知,{C},由题设知{C},{C}{C}。
(2)定义法:根据圆锥曲线的定义确定曲线的形状。
上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。
(3)待定系数法:通过题设条件构造关系式,待定参数即可。
例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。
解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。
解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。
二、圆锥曲线最值问题(1)化为求二次函数的最值根据已知条件求出一个参数表示的二次函数解析式,用配方法求出在一定范围自变量下函数的最值。
例题:曲边梯形由曲线{C}及直线x=1,x=2所围成,那么通过曲线上哪一点作切线,能使此切线从曲边梯形上切出一个最大面积的普通梯形。
解析:设切点{C},求出切线方程{C},再求出这条切线与直线x=1,x=2的交点纵坐标,根据梯形面积公式列出函数关系式:梯形面积={C},从而得出结论。
(2)利用圆锥曲线性质求最值先利用圆锥曲线的定义性质列出关系式,再用几何或代数方法求最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面积 最值等 。主要可分成以下几类 :
(1)利用椭圆 双曲线的第一定义求周长 ;
(2)利用圆锥曲线定义和正弦定理 余弦定理求焦
点三角形的面积 ;
(3)综合运用有关知识解综合性焦点三角形问题 ,如
最值问题 。
下面我们来探讨如何求焦点三角形的周长 面积以
及和焦点三角形有关的最值问题 ,并总结得出一些相关结
解 :根据椭圆定义有 : A F1 + A F2 = 2
B F1 + B F2 = 2 所以 △AB F2 的周长 = 2 + 2 = 4 小结 :解此类题的关键是应用椭圆或双曲线的定义来
表达三角形的周长 。
二 、求焦点三角形的面积
在求椭圆或双曲线的焦点三角形的面积时 , 需要用圆
锥曲线的第一定义结合勾股定理 正弦定理或余弦定理
即 △F1 PF2 的周长无最大值 。 小结 :解和焦点三角形有关的最值问题 ,主要是利用
圆锥曲线的第一定义 ,并借助正弦定理 余弦定理以及均
]汤小元 ,舒林军. 椭圆与双曲线焦点三角形的性质 [ J ].
数理化解题研究 :高中版 , 2005, (12).
〔责任编辑 :李海波 〕
— 87 —
co t
θ。
2
2
注 : (1)此结论称为圆锥曲线焦点三角形面积公式。
( 2)此结论可用于客观题的解题 。在解圆锥曲线的问题
中 ,有些选择题或填空题 ,如果用常规方法去解题 , 无疑是
小题大做 ,这在考试特别是高考中 , 是非常不可取的 。运
用特殊解法 ,显得很重要 ,不但可以节省时间 , 还可提高答
(当且仅当 m = n时 ,取“ = ”)
又因当 θ∈[ 0,π)时 , y = cosθ为单调减函数
所以
θ≤a
rcco
s
(
2b2 a2
-
1)
并且在
m
= n时 ,θ取得最大值
a
rcco
s
(
2b2 a2
-
1)
或
π
+
a
rcco
s
(
2b2 a2
-
1)
又因 m + n = 2a
所以 m = n = a时 ,θ取得最大值
利用椭圆和双曲线的第一定义 ,并结合正弦定理 余弦定
理来解 。 ( 2)解客观题 , 我们可直接利用焦点三角形面积
公式求解 。
三 、最值问题
椭圆和双曲线的焦点三角形 ,有时还表现出它的几何
特征 ,这些图形的出现 ,暗示着可用定义思考 , 如求和焦点
三角形有关的最值问题 。
例
3:如图
4, 已知椭圆
x2 a2
即 P位于椭圆短轴外端点时 ,θ取得最大值 。
2( ) S△PF1F2 = F1 F2 ·h 显然 , 由于 F1 F2 = 2c, 三角形的顶点位于椭圆短轴
外端点时 , h取得最大值 ,此时 S 取得最大值 。
( 3) △F1 PF2 的周长 C = F1 F2 + PF1 + PF2
因为 PF1 + PF2 = 2a, F1 F2 = 2c 所以 C为常数 2a + 2c
m + n = 2a
m2 + n2 - 2m ncosθ= ( 2c) 2
所以 cosθ= m2 + n2 - 4c2 2m n
又因 m2 + n2 = 4a2 - 2m n
所以 cosθ= 4a2 - 2m n - 4c2 = 2b2 - 1
2m n
mn
又因 2a =m + n≥2 m n
所以 m n≤a2
=
1 m n sinθ= b2 2
1
+sincθo sθ=
b2
tan
θ 2
(1)
由此类比双曲线还可得到 :
如图
2,
F1 、F2
是
x2 a2
-
y2 b2
= 1 ( a > 0, b > 0 ) 的两个焦
点 , P是双曲线上一点 ,且 ∠F1 PF2 =θ,则
S△F1 PF2
= b2 cot θ 2
(2)
+
y2 b2
= 1, ( a > b > 0) , F1 、F2
分别为其左右两焦点 , P为椭圆上任意一点 ,θ= ∠F1 PF2 , 求 : ( 1)θ的最大值 ;
( 2) △PF1 F2 的面积的最大值 ;
( 3) △PF1 F2 的周长的最大值 。
分析 : ( 1)令 PF1 =m , PF2 = n,则有 :
来解决 。
我们先来探求一个普遍结论 :
如图 1,若
F1 、F2
是椭圆
x2 a2
+
y2 b2
= 1 ( a > b > 0)的两个
焦点 , P是椭圆上一点 ,且 ∠F1 PF2
=θ, 则
S△F1 P F2
= b2 tan θ 2
收稿日期 : 2008 - 03 - 25 作者简介 :刘豪 (1967 - ) ,男 ,江苏靖江人 ,中学一级
关键词 :圆锥曲线 ;焦点三角形 ;解法 中图分类号 : G633. 65 文献标志码 : A 文章编号 : 1008 - 6714 (2008) 04 - 0086 - 02
所谓焦点三角形就是圆锥曲线的两个焦点与圆锥曲
线上的任意一点组成的三角形 ,它在圆锥曲线中有着重要
的地位 ,常见的问题有求圆锥曲线的焦点三角形的周长
公式 ( 1) 、( 2)对于焦点在 y 轴上的椭圆和双曲线同
样成立 。
由此可见 ,圆锥曲线焦点三角形的面积只与 b和曲线
上的这点与两个焦点的视角有关。假设这个视角为 θ, F1 、
F2 分别是曲线的两个焦点 , 在椭圆中焦点三角形的面积 S
= b2
tan
θ ,
在双曲线里焦点三角形的面积
S
= b2
对率 。焦点三角形面积公式便是解一些圆锥曲线客观题
的一种解题技巧和解题方法 。
例 2:如图 3, 已知曲线 x2 - y2 = 1, P 为双曲线上一 16 16
点 , F1 、F2 是 双 曲 线 的 两 个 焦 点 , ∠F1 PF2 = 60°, 求 △PF1 F2 的面积 。
分析 :常规解法 :由双曲线定义 ,余弦定理得 :
教师 ,从事中学数学教学研究 。
— 86 —
证明 :设 PF1 = m , PF2 = n,由余弦定理得
m2 + n2 - 2m ncosθ= F1 F2 2 = 4c2
①
由椭圆定义得
m + n = 2a
②
由
①得
:m
n
=
2 ( a2 1+
- c2 ) co sθ
=
1
2b2 + cosθ
所以
S△F1 P F2
2008年第 4期 总第 133期
林区教学
Teaching of Fo restry Region
No. 4 2008 General No. 133
圆锥曲线中焦点三角形几个问题的解法
刘 豪
(靖江市第三中学 ,江苏 泰州 214500)
摘 要 :焦点三角形是圆锥曲线的两个焦点与圆锥曲线上的任意一点组成的三角形 ,它在圆锥曲线中有着重要 的地位 。详细介绍如何求焦点三角形的周长 面积及和焦点三角形相关的最值问题 。
PF1 - PF2 = ±2a
PF1 2 + PF2 2 - 2 PF1 · PF2 cos60°= ( 2c) 2 解得 PF1 · PF2 = 64
所以
S△PF1 F2
=
1 2
× PF1
·
PF2
sin60°= 1 2
×64 ×
3 2
= 16
3
如为客观题 , 可直接代入焦点三角形面积公式得 :
S△PF1F2 = 16 3 小结 : ( 1)求椭圆和双曲线的焦点三角形面积 , 需要
论。
一 、求焦点三角形的周长
在求椭圆或双曲线的焦点三角形的周长时 ,经常要应
用椭圆或双曲线的第一定义 。
例 1: F1 、F2 是椭圆 x2 + 4y2 = 1的两个焦点 , A 是椭圆 上任一点 , A F1 的延长线交椭圆于 B ,求 △AB F2 的周长 。
分析 :由于三角形的周长由 A F1 、A F2 、B F1 、B F2 构成 , 故可考虑利用椭圆的定义来解题 。