【高考第一轮复习数学】专题一
【名师导学】高考数学第一轮总复习 1
A.{0}
B.{1}
C.{1,2}
D.{0,2}
【解析】∵N={x|x=2a+1,a∈M}={1,3,5}. ∴M∩N={1},选B.
3.已知全集U=R,则正确表示集合M={-1,0,1}和 N={x|x2+x=0}关系的韦恩图是( B)
【解析】∵N={x|x2+x=0}={-1,0} M={-1,0,1}. ∴选B.
4.(2011辽宁)已知M,N为集合I的非空真子集,且 M,N不相等,若N∩∁IM=∅,则M∪N=( A)
A.M
B.N
C.I
D.∅
【解析】利用韦恩图:N M,∴M∪N=M,∴选A.
5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0}, B={x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数共 有__2__个.
【解析】由已知得M∩N={2,3},∴∁U(M∩N)= {1,4},选D.
4.(2011广东)已知集合A={(x,y)|x,y为实数,且
x2+y2=1},B={(x,y)|x,y为实数,且y=x},则
A∩B的元素的个数为( C)
A.0
B.1
C.2
D.3
【解析】集合A表示的是圆心在原点的单位圆,集合 B表示的是直线y=x,画图可知选C.
1.确定一个集合的依据是:一是判断集合的元素 是什么?二是理解元素的属性有哪些?
2.判断集合之间的包含关系,关键是理解符号 “⊆”的含义.注意∅对问题的影响.
3.对求解含有参数的集合运算问题,能化简的集 合应先化简,以便使问题进一步明朗化.
4.集合问题多与函数、方程、不等式、解析几何 等有关.在解题时,要注意相关知识间的联系.
③理解必要条件、充分条件与充要条件的意义.
【高考第一轮复习数学】三角函数专题
专题一:三角函数一、三角函数1、同角三角函数的基本关系:22sin cos 1αα+= sin tan cos ααα=2、诱导公式(一) tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k诱导公式(二) tan )tan(cos )cos( sin )sin(αααααα-=-=--=- 诱导公式(三)sin(180)=-sin ;cos(180)cos ;tan(180)tan αααααα++=+=。
tan )180tan(cos )180cos( sin )180sin(αααααα-=-︒-=-︒=-︒诱导公式(四)sin )2cos( cos )2sin(ααπααπ=-=-sin )2cos(cos )2sin(ααπααπ-=+=+3、两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i nαβαβαβ+=-两角和与差的正弦公式:()sin sin cos cos sin αβαβαβ+=+ ()s i n s i n c o s c o s s i nαβαβαβ-=-两角和与差的正切公式:()tan tan tan 1tan tan αβαβαβ++=-; ()tan tan tan 1tan tan αβαβαβ--=+注意:,,()222k k k k z πππαβπαπβπ±≠+≠+≠+∈4、辅助角公式:sin cos ))a x b x x x x ϕ+=+=+其中辅助角ϕ由cos sin ϕϕ⎧=⎪⎪⎨⎪=⎪⎩确定,即辅助角ϕ的终边经过点(,)a b5、二倍角正弦、余弦和正切公式:sin 22sin cos ααα=2222c o s 2c o s s i n 12s i n2c o s 1ααααα=-=-=- 22t a n t a n 21t a n ααα=-注意:2,22k k ππαπαπ≠+≠+ ()k z ∈升幂公式:221cos 21cos 2cos ;sin 22αααα+-==降幂公式:221cos22cos;1cos22sinαααα+=-=7、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+()k∈Z时,m ax1y=;当22x kππ=-()k∈Z时,m in1y=-.当()2x k kπ=∈Z时,m ax1y=;当2x kππ=+()k∈Z时,m in1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦在[]()2,2k k kπππ-∈Z上是增函数;在在,22k kππππ⎛⎫-+⎪⎝⎭函数性质()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数. []2,2k k πππ+ ()k ∈Z 上是减函数.()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴8、常用特殊角的三角函数值表:二、解三角形1、正弦定理:在C ∆A B 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆A B 的外接圆的半径,则有2sin sin sin a b c R C===AB .2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a RA =,sin 2b RB =,sin 2cC R=;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c CC++===A +B +AB.3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆A B 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c abc+-A =,222cos 2a c bac+-B =,222cos 2a b cC ab+-=.6、设a 、b 、c 是C ∆A B 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > .。
2023年高三一轮复习专题一基本不等式及其应用-教师版
高三一轮复习专题一基本不等式及其应用【考点预测】 1.基本不等式如果00>>b a ,,那么2b a ab +≤,当且仅当b a =时,等号成立.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号; 基本不等式2:若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号. 注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致. 【方法技巧与总结】 1.几个重要的不等式(1)()()()20,00,0.a a R a a a a R ≥∈≥≥≥∈ (2)基本不等式:如果,a b R +∈,则2a bab +≥(当且仅当“a b =”时取“”). 特例:10,2;2a ba a ab a>+≥+≥(,a b 同号). (3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)222,1122a b a b ab a b R a b+++≤≤≤∈+即 调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件). 2.均值定理 已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”. 3.常见求最值模型 模型一:)0,0(2>>≥+n m mn xnmx ,当且仅当m n x =时等号成立; 模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma ax na x m a x n mx ,当且仅当m n a x =-时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当a cx =时等号成立; 模型四:)0,0,0(4)21)()(22mnx n m m n mx n mx m m mx n mx mx n x <<>>=-+⋅≤-=-(,当且仅当mnx 2=时等号成 立.【题型归纳目录】题型一:基本不等式及其应用 题型二:直接法求最值 题型三:常规凑配法求最值 题型四:消参法求最值 题型五:双换元求最值 题型六:“1”的代换求最值 题型七:齐次化求最值题型八:利用基本不等式解决实际问题【典例例题】题型一:基本不等式及其应用例1.(2022·江苏·高三专题练习)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +≥>> B .220,0)a b a b +≥>>C .20,0)aba b a b ≤>>+ D .0,0)2a b a b +>>【答案】D 【解析】 【分析】设,AC a BC b ==,得到2a br OF +==,2a b OC -=,在直角OCF △中,利用勾股定理,求得222=2a b FC +,结合FO FC ≤,即可求解.【详解】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===, 又由22a b a bOC OB BC b +-=-=-=, 在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤a b =时取等号. 故选:D.例2.(2022·黑龙江·哈尔滨三中高三阶段练习(文))下列不等式中一定成立的是( ) A .()2111x x >∈+R B .()12,sin sin xx k x k π+>≠∈Z C .21ln ln (0)4x x x ⎛⎫+>> ⎪⎝⎭D .()212x x x +≥∈R【答案】D 【解析】 【分析】 由211x +≥得211x +的范围可判断A ;利用基本不等式求最值注意满足一正二定三相等可判断B ;作差比较214x +与x 的大小可判断C ;作差比较21x +与2x 的大小可判断D.【详解】因为x ∈R ,所以211x +≥,所以21011x <≤+,故A 错误; 1sin 2sin x x+≥只有在sin 0x >时才成立,故B 错误; 因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以214x x +≥,所以21ln ln 4x x ⎛⎫+≥ ⎪⎝⎭,故C 错误;因为()221210x x x +-=-≥,所以212x x +≥,故D 正确. 故选:D.(多选题)例3.(2022·全国·高三专题练习)下列函数中最小值为6的是( ) A .9ln ln y x x=+B .36sin 2sin y x x=+C .233xxy -=+ D .2y =【答案】BC 【解析】 【分析】根据基本不等式成立的条件“一正二定三相等”,逐一验证可得选项. 【详解】解:对于A 选项,当()0,1x ∈时,ln 0x <,此时9ln 0ln x x+<,故A 不正确.对于B 选项,36sin 62sin y x x =+≥,当且仅当36sin 2sin x x =,即1sin 2x =时取“=”,故B 正确.对于C 选项,2336x x y -=+≥=,当且仅当233x x -=,即1x =时取“=”,故C 正确.对于D 选项,26y ≥=,=27x =-无解,故D 不正确.故选:BC.(多选题)例4.(2022·江苏·扬州中学高三开学考试)设0a >,0b >,下列结论中正确的是( )A .()1229a b a b ⎛⎫++≥ ⎪⎝⎭B .()2221a b a b +≥++C .22b a a b a b+≥+D .22a b a b+≥+【答案】ACD 【解析】 【分析】利用基本不等式可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()12222559b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =时,等号成立,A 对;对于B 选项,取1a b ==,则()2221a b a b +<++,B 错;对于C 选项,22b a b a +≥=,22a b a b +≥=, 所以,2222b a a b a b a b +++≥+,即22b a a b a b+≥+,当且仅当a b =时,等号成立,C 对;对于D 选项,因为222a b ab +≥,则()()2222222a b a b ab a b +≥++=+,所以,()()22222a b a b a ba b a b +++≥=≥++a b =时,两个等号同时成立,D 对.故选:ACD. 【方法技巧与总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.题型二:直接法求最值例5.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为( ) A .4- B .4 C .8 D .8-【答案】B 【解析】 【分析】根据()f x 的值域求得1ac =,结合基本不等式求得14c a+的最小值.【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a =即12,2a c ==时等号成立.故选:B例6.(2022·湖北十堰·三模)函数()1111642x x x f x -=++的最小值为( ) A .4 B .C .3D .【答案】A 【解析】 【分析】利用不等式性质以及基本不等式求解. 【详解】因为116224xx x +≥⨯,当且仅当1164x x =,即0x =时等号成立,1122222422x x x x -⨯+=⨯+≥=,当且仅当2222xx⨯=,即0x =时等号成立, 所以()f x 的最小值为4. 故选:A(多选题)例7.(2022·广东·汕头市潮阳区河溪中学高三阶段练习)已知a ,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是( ) A .ab 的最小值是1 B .ab 的最大值是1 C .11a b+的最小值是94D .11a b +的最大值是92【答案】BC 【解析】 【分析】根据等比中项整理得44a b +=,直接由基本不等式可得ab 的最大值,可判断AB ;由111()(4)4a b a b +⋅+⋅展开后使用基本不等式可判断CD. 【详解】因为22164a b ⋅=,所以4422a b +=,所以4424a b ab +=,可得1ab ,当且仅当4a b =时等号成立, 所以ab 的最大值为1,故A 错误,B 正确.因为1111419()(4)(14)(524444b a a b a b a b +⋅+⋅=++++=, 故11a b +的最小值为94,无最大值,故C 正确,D 错误. 故选:BC【方法技巧与总结】直接利用基本不等式求解,注意取等条件.题型三:常规凑配法求最值例8.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】将给定函数化简变形,再利用均值不等式求解即得. 【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x-=-,即0x =时取“=”, 所以当0x =时,22222x x y x -+=-有最大值1-.故选:A例9.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是( )A .4B .3C .D .3【答案】D 【解析】 由()13131y x x =-++-,利用基本不等式求最小值即可. 【详解】因为1x >,所以()131331y x x =-++≥-3=,当且仅当()1311x x -=-,即1x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3. 故选:D. 【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题. 例10.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x yx y +--的最小值为( )A .3B .52C .3D .3+【答案】D 【解析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得. 【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >, 由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=+------当且仅当2111x y =--,即11x y =+=“=”,所以211x y x y +--的最小值为3+ 故选:D例11.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3 【解析】 【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.例12.(2021·江苏·常州市北郊高级中学高一阶段练习)已知1xy =,且102y <<,则22416x yx y -+最大值为______.【解析】由1xy =且102y <<,可得1(2)y x x=>,可得40x y ->,再将22416x y x y -+化为18(4)4x y x y-+-后利用基本不等式求解即可. 【详解】解:由1xy =且102y <<,可得1(2)y x x =>,代入440x y x x-=->,又222441816(4)8(4)4x y x y x y x y xy x y x y--==≤=+-+-+-当且仅当844x y x y-=-,即4x y -= 又1xy =,可得x =y =时,不等式取等, 即22416x y x y -+,. 【方法技巧与总结】1.通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式. 2.注意验证取得条件.题型四:消参法求最值例13.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,则___________.【答案】【解析】 【分析】将点(1,1)-代入直线方程可得3a b +=. 【详解】直线30ax by --=过点(1,1)-,则3a b += 又0,0a b >>,设t =0t >2126t a b =++++=+由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立. 故答案为:例14.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z取得最大值时,212x y z+-的最大值为( )A .0B .3C .94D .1【答案】D 【解析】 【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=, 2234z x xy y ∴=-+.∴22111434432?xy xy x y z x xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212xyz+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.例15.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( ) A .2 B.2 C.2 D .6【答案】B 【解析】 【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842, 用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解. 【详解】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222, 当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.例16.(2022·浙江·高三专题练习)若正实数a ,b 满足32+=b a ab ,则2+a bab 的最大值为______. 【答案】12【解析】 【分析】由已知得a =23b b -,代入2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12,然后结合二次函数的性质可求. 【详解】因为正实数a ,b 满足b +3a =2ab , 所以a =23bb -,则2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12, 当112b =,即b =2 时取得最大值12.故答案为:12. 【点睛】思路点睛:b +3a =2ab ,可解出a ,采用二元化一元的方法减少变量,转化为1b的一元二次函数,利用一元二次函数的性质求最值.例17.(2022·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________. 【答案】2 【解析】 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥,当且仅当14xy xy =,即22x y ==211x y+.故答案为:2例18.(2022·浙江绍兴·模拟预测)若220,0,422>>+-=a b a b ab ,则12++ab a b的取值范围是_________.【答案】23⎡⎢⎣⎦【解析】 【分析】根据已知可得2(2)206a b ab +-=>,求得2a b +>2(2)26a b ab +=+结合基本不等式可求得02a b <+≤12++ab a b变形为14262a b a b ⎛⎫++ ⎪+⎝⎭,采用换元法,利用导数求得结果. 【详解】由题意220,0,422>>+-=a b a b ab 得:2(2)206a b ab +-=> ,则2a b +>,又222(2)26232+⎛⎫+=+≤+⨯ ⎪⎝⎭a b a b ab ,当且仅当2b a ==时取等号,故02a b <+≤2a b <+≤ 所以1142262ab a b a b a b +⎛⎫=++ ⎪++⎝⎭,令2,t a b t =+∈ ,则14()()6f t t t =+ ,222144()(1)66t f t t t -'=-=,2t << 时,()0f t '<,()f t 递减,当2t <≤时,()0f t '>,()f t 递增,故min 2()(2)3f t f ==,而f = ,f =,故2()[3f t ∈,即2[312ab a b ∈++,故答案为:23⎡⎢⎣⎦【方法技巧与总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!题型五:双换元求最值例19.(2022·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,则2ab -的最大值为( )A .3B .C .1D .2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()14a b +=进而根据三角换元得5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可. 【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩, 由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-=≤+当且仅当4πθ=时取等号.故选:D.例20.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+ 【解析】 【分析】令2,,(0,0)c m c n m n -==>> ,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。
高考数学一轮复习讲练测专题1.1集合的概念及其基本运算(讲)理(含解析)
1},专题1.1集合的概念及其基本运算(讲)【辭析】由已知得^ = {1,4}.当口 = <时.A = [3],则討二〔12*卜・4厂直=0,当也=1时,J = ;L3j ; 则JU5 = {1.3r 4} p = 当a = 4时.^ = {4.3}, = (1,3.4}, -40-8={4}.当疽产1,戊戸吳。
否4时…儿丘二卩”丸好,JO^ =0,综上所述,当a = 3时—儿P = {1S4齐AClB^Qi 当应"时,血JH"4}, /仃丘二{1»当*4时,则加UE 二口34、“5={4}f 当口工1, 口产3, a 芦4时I dl-再三卜 B =0.2.【2015高考天津,理1】已知全集U 1,2,3,4,5,6,7,8 ,集合A 2,3,5,6,集合B 1,3,4,6,7则集合AI ejB () (A )2,5( B )3,6 (C ) 2,5,6 ( D ) 2,3,5,6,8【答案】A【赭斤】^5 = (2,5,8}_所以二冷5},故选九3. 【云南省玉溪一中 2015届高三上学期第一次月考试卷】设集合B {(x, y) y 3x },则A B 的子集的个数是( )A. 4 B. 3C. 2D. 1【答案】A1.【课本典型习题,P12第3题】设集合Ax(x a)(x 3) 0,a R , Bx(x 4)(x 1) 0 ,AUB , AI B .【答案】当a 3时,AU B 1,3,4 , AI B ;当a 1 时,AU B1,3,4,AI B 1 ;当 a时,贝U AU B 1,3,4 , AIB 4 ;当 a 1 ,a 3, a 4时, AU B1,3,4, a , AI B【课前小测摸底细】求4{(“)話【解析】篥會話为橢區|兰+匸=1上的昌集合卫为扌無心煎i' = 丁上的点,由于指纹函数恒过点(Q1)・16 -4* 斗由于点121在椭圆兰十二“曲内部,因此扌旨数函数与椭圆有2个交点.,的子篥的个数次F =4个,16 4故答累为扎4. 【基础经典试题】集合M ={y | y= x2—1, x R},集合N={x|y= 9 x2, x R},则MIN等于( )A. {t|0 t 3} B . {t|—1 t 3} C . {(- . 2,1),( .2,1) D •【答案】B【鱷析】■・」=/—in —h 二対=[—h +工)・又丫)=嗣-》匸9 - ? > 0 +/■[- 3,3]. ■- M A -V = [-l(3].5. 【改编自2012年江西卷理科】若集合A={— 1,1}, B= 0,2,则集合{z|z= x+ y, x A, y B}中的元素的非空子集个数为()A. 7 B . 6 C . 5 D . 4【答案】A【鋒析】由已知得,集台V尸K+F送用ye ^={-1.1.3}-所以其非空子集个数冷2为二7,故选【考点深度剖析】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识•纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算•解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素•二是考查抽象集合的关系判断以及运算•【经典例题精析】考点1集合的概念K【1-1 】若a, b R,集合{1 , a b, a 0,-,b,求b a的值_____________________ .a【答案】2iy【解析】由d d+方卫}=0—血可知“山则只能卄庄0,则有以下对应关爲CJ - b = 0.b—=c ab = 1.Jl_2【1-2】已知集合A={x|x+ m好4 = 0}为空集,则实数m的取值范围是()A. ( —4, 4) B . [ —4, 4] C . ( —2, 2) D . [ —2, 2]【答案】A【解析】依题意知一元二次方程F十ww十4二0无解,^flzA A= w;_16 < 0(解得一4€楞羔4.故选A.【1-3】已知A={a+ 2, (a+ 1)2, a2+ 3a+ 3},若1€ A,则实数a构成的集合B的元素个数是()A. 0 B . 1 C . 2 D . 3【答案】B丽析】若口则1,代入集合」」得川={1"1},与集合元责的互异性若S+1F=1,帶住=0或一2,代入集合4帰/=匸切}或去{0二1},后■看与集合的互异性矛盾,故尸0 符合要求J若/+3卄3=1,则尸—诫-拿代人黑皆出得沪{山1}或看•戶{轴助都与集合的互异性相矛盾, 無上可如只有口二。
高考数学一轮复习讲义(提高版) 专题1
D.(1,2)
3、已知全集 = , = { | > 1}, = { | > 1},那么(∁ ) ∩ 等于( )
A.{ | − 1 < ≤ 1} B.{ | − 1 < < 1} C.{ | < −1} D.{ | ≤ −1}
4、已知全集 = , = { | > 1},则 =( )
A.{ | ≤ 1}
(4)Venn 图法
5、常见数集的记法
集合 自然数集
符号
N
6、集合的分类
正整数集
*
N (或 N+)
整数集 有理数集 实数集 复数集
Z
Q
R
C
(1)有限集:含有有限个元素的集合.(2)无限集:含有无限个元素的集合.(3)空集 :不含任何元素
的集合
7、若一个集合含有 n 个元素,则子集个数为 2n 个,真子集个数为 2n 1
【修炼套路】---为君聊赋《今日诗》,努力请从今日始
考向一 点集
【例 1】(1)已知集合 A 0,1, 4, B {y | y x2, x A} ,则 A B A.0,1,16 B.0,1 C.1,16 D.0,1, 4,16 (2)设全集U 1,3,5, 6,9 , A 3, 6,9 ,则图中阴影部分表示的集合是
(1)自然语言描述法:用自然的文字语言描述.
(2)列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上.
(3)描述法:将集合中的元素的公共属性描述出来,写在花括号内表示集合的方法.
它的一般格式为 {x | P(x)} ,“|”前是集合 元素的一般形式,“|”后是集合元素的公共属性.
A.(1,2)
B.[0,2]
2023年高考数学一轮复习考点微专题(新高考地区专用) 考向01 集合(重点)- (解析版)
考向01 集合【2022年新高考全国Ⅰ卷】若集合{4},{31}M xx N x x =<=≥∣∣,则M N =( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】 【分析】求出集合,M N 后可求M N ⋂. 【详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D【2022年新高考全国II 卷】已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( ) A .{1,2}- B .{1,2} C .{1,4} D .{1,4}-【答案】B 【解析】 【分析】求出集合B 后可求A B . 【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.(1)离散型数集或抽象集合间的运算,常借用Venn 图求解.(2)集合中的元素若是连续的实数,常借助数轴求解,但要注意端点值能否取到. (3)根据集合的运算求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.(1)集合运算的相关结论交集 A B A ⊆ A B B ⊆ A A A = A ∅=∅ A B B A = 并集 A B A ⊇A B B ⊇A A A =A A ∅=A B BA =补集()UU A A =UU =∅UU ∅= ()U A A =∅()U A A U =(2)(.)UUU A B A B A A B B A B A B ⊆⇔=⇔=⇔⊇=⇔∅易错题【01】对集合中元素的类型理解不到位集合问题是高考必考问题,一般作为容易题出现,求解集合问题的关键是理解集合中元素的类型,特别是用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是连续数集、离散数集、点集或其他类型的集合.易错题【02】忽略集合中元素互异性利用元素与集合的关系或两集合之间的关系求参数的值,集合中元素的互异性常常容易忽略,求解问题时要特别注意,求出以后一定要代入检验,看看是否满足元素的互异性.易错题【03】忽略空集空集是任何集合的子集,在涉及集合关系,如根据,A B ⊆求参数的值或范围要注意A 是否可以为∅,根据A B =∅求参数的值或范围必须优先考虑空集的情况,否则会造成漏解.易错题【04】忽视集合转化的等价性把用描述法表示的集合转化为用列举法表述的集合或化简集合容易忽略等价性,如去分母忽略分母不为零,解含有对数式的不等式要保证对数式有意义,要注意集合中的限制条件等.1.(2022·全国·模拟预测)若集合{}24M xy x x ==-∣,{}222x N x -=>∣,则M N =( )A .{}01xx ≤≤∣ B .{01}x x ≤<∣ C .{14}x x <<∣ D .{1}∣<xx 【答案】B 【解析】 【分析】根据集合的定义,先对集合进行化简,再利用交运算即可求解. 【详解】由题意知{}04M xx =≤≤∣,{1}N x x =<∣,所以{01}M N x x ⋂=≤<∣. 故选:B .2.(2022·江苏·常州高级中学模拟预测)已知集合{}22(,)4A x y x y =+=,(){},34B x y y x ==+,则A B中元素的个数为( ) A .0 B .1 C .2 D .3【答案】B 【解析】 【分析】把34y x =+代入224x y +=,根据方程的根的个数分析即可 【详解】集合{}22(,)4A x y x y =+=,{}(,)34B x y y x ==+,把34y x =+代入224x y +=,得22330x x ++=,即3x =有唯一解,故集合A B 中元素的个数为1. 故选:B3.(2022·全国·南京外国语学校模拟预测)已知集合{}2670A x x x =--<,{}3,1x B y y x ==<,则()R A B ⋂=( ) A .[)3,7 B .(][)1,03,7-⋃C .[)7,+∞D .()[),17,-∞-⋃+∞【答案】B 【解析】 【分析】先化简集合A 、B ,再去求R B ,进而求得()RA B【详解】{}()26701,7A x x x =--<=-,{}()3,10,3x B y y x ==<=, 所以(][)R ,03,B =-∞⋃+∞,所以()(][)R 1,03,7A B ⋂=-⋃. 故选:B .1.(2022·江苏·苏州市第六中学校三模)设集合{}{}220,1,1,2,3A x N x x B =∈--≤=-,则A B =( )A .{1,0}-B .{1,2}C .{1,2,3}D .{0,1,2,3}【答案】B 【解析】 【分析】化简集合A ,根据交集运算求解. 【详解】{}{}{}220120,1,2A x N x x x N x =∈--≤=∈-≤≤=,{}1,1,2,3B =-, {1,2}A B ∴=,故选:B2.(2022·全国·模拟预测(文))如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂ B .()I A C B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B 【解析】 【分析】找到每一个选项对应的区域即得解. 【详解】 解:如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4. 故选:B3.(2022·浙江·镇海中学模拟预测)已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R ( ) A .[2,2]- B .(2,2]- C .[0,2] D .(0,2]【答案】B 【解析】【分析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解. 【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R2P x x =≤.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤, 所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤,故选:B.4.(2022·湖北·黄冈中学模拟预测)设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R ( ) A .(1,2) B .(1,2] C .(,2]-∞ D .(,2)-∞【答案】C 【解析】 【分析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案. 【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R , 故选:C.5.(2022·云南师大附中模拟预测(理))已知集合(){}2,A x y y x ==,(){},21B x y y x ==-,则集合AB的子集个数为( ) A .2 B .4 C .8 D .16【答案】B 【解析】 【分析】 求出抛物线2y x 和曲线2||1y x =-的交点,确定集合A B 的元素个数,即可确定答案.【详解】由题意得21,02121,0x x y x x x -≥⎧=-=⎨--<⎩,当0x ≥时,21y x =- 联立2y x ,解得11x y =⎧⎨=⎩ ;当0x <时,21y x =-- 联立2yx ,解得11x y =-⎧⎨=⎩;故抛物线2yx 与曲线2||1y x =-有两个公共点,分别为(11)-,,(11),, 则集合A B 有两个元素,所以A B 的子集个数为224=, 故选:B .6.(2022·河北·沧县中学模拟预测)若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=( ) A .(2,1)- B .{1,0}- C .(2,1]{2}-⋃ D .{1,0,1,2}-【答案】D 【解析】 【分析】根据已知条件求出集合A ,再利用并集的定义即可求解. 【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =, 所以}{{}1,00,1,2{1,0,1,2}A B =-=-.故选:D .7.(2022·黑龙江·哈尔滨三中模拟预测(文))已知集合()22,1,,42x y A x y x Z y Z ⎧⎫=+≤∈∈⎨⎬⎩⎭,则A 中元素的个数为( ) A .9 B .10C .11D .12【答案】C 【解析】 【分析】由椭圆的性质得22,x y -≤≤≤. 【详解】解:由椭圆的性质得22,x y -≤≤≤又,x Z y Z ∈∈,所以集合()()()()()()()()()()(){}=2,0,2,0,1,0,1,0,0,1,0,1,0,0,1,1,1,1,1,1,1,1A ------- 共有11个元素. 故选:C8.(2022·陕西·模拟预测(理))已知集合234|0A x x x ,{}2|B x a x a =<<,若A B =∅,则实数a 的取值范围是( ) A .(],1-∞- B .[)4,+∞ C .()(),12,4-∞-⋃ D .[][)1,24,-⋃+∞【答案】D 【解析】 【分析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可. 【详解】解:由题知{}{}2|3401,4A x x x =--==-,因为A B =∅, 所以,当{}2|B x a x a=<<=∅时,2a a≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞,综上,实数a 的取值范围是[][)1,24,-⋃+∞. 故选:D9.(2022·江苏·南京市第一中学三模)非空集合{|03}A x N x =∈<<,2{|10,}B y N y my m R =∈-+<∈,A B A B =,则实数m 的取值范围为( ) A .510,23⎛⎤ ⎥⎝⎦B .170,4⎛⎤ ⎥⎝⎦C .102,3⎛⎤ ⎥⎝⎦D .517,24⎛⎤ ⎥⎝⎦【答案】A 【解析】 【分析】由题知{}1,2A B ==,进而构造函数()21f x x mx =-+,再根据零点存在性定理得()()()302010f f f ⎧≥⎪<⎨⎪<⎩,解不等式即可得答案. 【详解】解:由题知{}0{|}13,2A x N x =∈<=<, 因为A B A B =,所以A B =,所以{}2{|10,}1,2B y N y my m R =∈-+<∈=,故令函数()21f x x mx =-+,所以,如图,结合二次函数的图像性质与零点的存在性定理得: ()()()302010f f f ⎧≥⎪<⎨⎪<⎩,即103052020m m m -≥⎧⎪-<⎨⎪-<⎩,解得51023m <≤,所以,实数m 的取值范围为510,23⎛⎤⎥⎝⎦.故选:A10.(2022·四川攀枝花·三模(理))设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ). A .(),1-∞ B .(],1-∞ C .()2,+∞ D .[)2,+∞【答案】D 【解析】 【分析】先求出集合B ,再由A B ⊆求出实数a 的范围. 【详解】{}{23202B x x x x x =-+>=>或}1x <.因为集合{}A x x a =>,A B ⊆,所以2a ≥. 故选:D11.(2022·安徽黄山·二模(文))若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3- B .[2,3)-C .(2,2)-D .[2,2)-【答案】D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-. 故选:D1.(2022·全国·高考真题(文))集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A 【解析】 【分析】根据集合的交集运算即可解出. 【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4MN =.故选:A. 2.(2022·全国·高考真题(理))设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉【答案】A【解析】【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A 3.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则()U A B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-【答案】D【解析】【分析】 解方程求出集合B ,再由集合的运算即可得解.【详解】 由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-, 所以(){}U 2,0A B ⋃=-.故选:D.4.(2022·浙江·高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【解析】【分析】利用并集的定义可得正确的选项.{}1,2,4,6A B =,故选:D.5.(2022·北京·高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A ( ) A .(2,1]-B .(3,2)[1,3)--C .[2,1)-D .(3,2](1,3)-- 【答案】D【解析】【分析】利用补集的定义可得正确的选项.【详解】由补集定义可知:{|32U A x x =-<≤-或13}x <<,即(3,2](1,3)U A =--,故选:D .6.(2022·全国·高考真题(文))设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( ) A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【解析】【分析】 根据集合的交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =. 故选:A.7.(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U AB =( )A .{3}B .{1,6}C .{5,6}D .{1,3} 【答案】B【解析】【分析】根据交集、补集的定义可求()U A B ⋂.由题设可得{}U 1,5,6B =,故(){}U 1,6A B ⋂=,故选:B. 8.(2021·全国·高考真题(文))设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【解析】【分析】求出集合N 后可求M N ⋂.【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,故选:B.9.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z【答案】C【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T =.故选:C.10.(2021·全国·高考真题(理))设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N =( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【解析】【分析】根据交集定义运算即可【详解】 因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.11.(2021·全国·高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【解析】【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .12.(2020·浙江·高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则y x∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8S T =,包含4个元素,排除选项 C ;若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456*********,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 13.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( ) A .{4,1}-B .{1,5}C .{3,5}D .{1,3} 【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.14.(2020·浙江·高考真题)已知集合P ={|14}<<x x ,{|23}Q x x =<<,则PQ =( ) A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}<<x x【答案】B【解析】【分析】根据集合交集定义求解.【详解】(1,4)(2,3)(2,3)P Q == 故选:B【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.。
2022届高考数学统考一轮复习第一章集合学案文含解析新人教版
高考数学统考一轮复习新人教版:第一节集合【知识重温】一、必记3个知识点1.元素与集合(1)集合中元素的特性:________、________、无序性.(2)元素与集合的关系:若a属于A,记作________,若b不属于A,记作________.(3)集合的表示方法:________、________、图示法.(4)常见数集及其符号表示数集自然数集正整数集整数集有理数集实数集符号____________________2.集合间的基本关系(1)集合相等:若集合A与集合B中的所有元素________,则称A与B相等.(2)子集:若集合A中________________________均为集合B中的元素,则称A是B的子集,记作A⊆B或B⊇A,________是任何集合的子集.(3)真子集:若集合A中任意一个元素均为集合B中的元素,且集合B中⑮________________不是集合A中的元素,则称A是B的真子集,记作A B或B A.(4)空集是任何集合的子集,是任何________集合的真子集.(5)含有n个元素的集合的子集个数为________,真子集个数为________,非空真子集个数为________.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A图形表示意义{x|______}{x|______}{x|________}1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.要注意区分元素与集合的从属关系,以及集合与集合的包含关系.3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合元素的互异性,否则很可能会因为不满足互异性而导致解题错误.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)集合{x ∈N |x 3=x },用列举法表示为{-1,0,1}.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( )(3)方程x -2 018+(y +2 019)2=0的解集为{2 018,-2 019}.( )二、教材改编2.集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∩B =( )A .{x |2≤x <4}B .{x |3≤x <4}C .{x |2<x <4}D .{x |3<x <4}3.已知集合A ={x |3≤x <7},B ={x |2<x <10},则∁R (A ∪B )=________.三、易错易混4.已知集合A ={-1,1},B ={x |ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为( )A .{-1}B .{1}C .{-1,1}D .{-1,0,1}5.已知集合A ={y |y =x 2-2x -3,x ∈R },B ={y |y =-x 2+2x +13,x ∈R },则A ∩B =________.四、走进高考6.[2020·山东卷]设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}考点一 集合[自主练透型]1.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( ) A .1 B .-1 C .2 D .-22.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A.92B.98 C .0 D .0或983.[2021·河南省豫北名校高三质量考评]已知集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|y =-x 2+2},则集合A ∩B 的真子集的个数为( )A .3B .4C .7D .8悟·技法解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特性(满足的条件)构造关系式解决相应问题.[提醒] 含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.考点二 集合间的基本关系[互动讲练型][例1] (1)[2021·黄冈中学,华师附中等八校联考]已知集合M ={x |x 2-5x -6≤0},N =⎩⎨⎧⎭⎬⎫y |y =⎝⎛⎭⎫16x ,x ≥-1,则( ) A .M ⊆N B .N ⊆MC .M =ND .M ⊆(∁R N )(2)[2021·大同市高三学情调研测试试题]已知集合A 满足{0,1}⊆A {0,1,2,3},则集合A 的个数为( )A .1B .2C .3D .4(1)判断两集合关系的3种常用方法(2)根据两集合的关系求参数的方法[提醒]题目中若有条件B⊆A,则应分B=∅和B≠∅两种情况进行讨论.[变式练]——(着眼于举一反三)1.[2021·广州市高三学情调研]已知集合{x|x2+ax=0}={0,1},则实数a的值为() A.-1 B.0 C.1 D.22.已知集合A={x|x2-2x≤0},B={x|x≤a},若A⊆B,则实数a的取值范围是() A.a≥2 B.a>2 C.a<0 D.a≤0考点三集合间的基本运算[分层深化型][例2](1)[2020·全国卷Ⅱ]已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则∁U(A∪B)=()A. {-2,3}B. {-2,2,3}C. {-2,-1,0,3}D. {-2,-1,0,2,3}(2)[2021·合肥市高三调研性检测]若集合A={x|x(x-2)>0},B={x|x-1>0},则A∩B=()A.{x|x>1或x<0} B.{x|1<x<2}C.{x|x>2} D.{x|x>1}悟·技法[同类练]——(着眼于触类旁通)3.[2021·广东省七校联合体高三联考试题]已知集合A={x|x2-x-2<0},B={x|x<1},则有()B .A ∩B ={x |-1<x <1}C .A ∪B ={x |-1<x <1}D .A ∪B ={x |-1<x <2}4.[2021·唐山市高三年级摸底考试]已知集合A ={0,1,2,3},B ={x |x 2-2x <0},则A ∩B =( )A .{0,1,2}B .{0,1}C .{3}D .{1}[变式练]——(着眼于举一反三)5.[2021·武汉部分学校质量检测]已知集合A ={x |x 2-x -2<0},则∁R A =( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1或x >2}D .{x |x ≤-1或x ≥2}6.[2021·南昌市高三年级摸底测试卷]已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -3x -1≥0,N ={}x | y =2-x ,则(∁R M )∩N =( )A .(1,2]B .[1,2]C .(2,3]D .[2,3][拓展练]——(着眼于迁移应用)7.[2021·山西省六校高三阶段性测试]已知全集U =R ,集合A ={x |x 2-4<0,x ∈Z },集合B ={x |x 2-2x -3=0},则图中阴影部分表示的集合是( )A .{0,1,3}B .{-2,0,1,2,3}C .{0,-1,-3}D .{-1,0,1,3}8.[2021·石家庄市重点高中高三毕业班摸底考试]已知集合A ={x |y =log 2(x -2)},B ={x |x 2≥9},则A ∩(∁R B )=( )A .[2,3)B .(2,3)C .(3,+∞)D .(2,+∞)第一节 集合 【知识重温】①确定性 ②互异性 ③a ∈A ④b ∉A ⑤列举法 ⑥描述法 ⑦N ⑧N *(或N +) ⑨Z ⑩Q ⑪R ⑫都相同 ⑬每一个元素 ⑭空集 ⑮至少有一个元素 ⑯非空 ⑰2n ⑱2n -1 ⑲2n -2 ⑳x ∈A 或x ∈B ○21x ∈A 且x ∈B ○22x ∈U 且x ∉A 【小题热身】1.答案:(1)× (2)× (3)×2.解析:∵A ={x |2≤x <4},B ={x |x ≥3},答案:B3.解析:A ∪B ={x |2<x <10},∴∁R (A ∪B )={x |x ≤2或x ≥10}.答案:{x |x ≤2或x ≥10}4.解析:∵B ⊆A ,当B ≠∅,即a ≠0时,B ={x |x =-1a}, ∴-1a∈A ,即a =±1; 当B =∅,即a =0时,满足条件,综上可知实数a 所有可能取值的集合是{-1,0,1}.故选D.答案:D5.解析:A ={y |y =(x -1)2-4,x ∈R }={y |y ≥-4}.B ={y |y =-(x -1)2+14,x ∈R }={y |y ≤14}.∴A ∩B ={y |-4≤y ≤14}.答案:{y |-4≤y ≤14}6.解析:A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B ={x |1≤x <4},选C.答案:C课堂考点突破考点一1.解析:因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则b a =-1,所以a =-1,b =1.所以b -a =2.答案:C2.解析:若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98.所以a 的值为0或98.故选D 项. 答案:D3.解析:解法一 由⎩⎪⎨⎪⎧ x 2+y 2=4y =-x 2+2,解得⎩⎪⎨⎪⎧ x =0y =2或⎩⎨⎧ x =3y =-1或⎩⎨⎧x =-3y =-1,则集合A ∩B ={(0,2),(3,-1),(-3,-1)},有3个元素,其真子集的个数为23-1=7,故选C.解法二 分别作出圆x 2+y 2=4与抛物线y =-x 2+2,如图.由图可知集合A ∩B 中有3个元素,则其真子集的个数为23-1=7,故选C.答案:C考点二 例1 解析:(1)由x 2-5x -6≤0得-1≤x ≤6,即M =[-1,6];由y =⎝⎛⎭⎫16x ,x ≥-1得0<y ≤6,即N =(0,6],所以N ⊆M ,故选B.(2)由题意可知A 可能为{0,1},{0,1,2},{0,1,3},则满足条件的集合A 的个数为3,故选C. 答案:(1)B (2)C变式练1.解析:由x 2+ax =0,得x (x +a )=0,所以x =0或x =-a .所以由已知条件可得-a =1,所以a =-1.答案:A2.解析:∵A ={x |0≤x ≤2},B ={x |x ≤a },∴为使A ⊆B ,a 须满足a ≥2.答案:A考点三例2 解析:(1)∵A ={-1,0,1},B ={1,2},∴A ∪B ={-1,0,1,2},又∵集合U ={-2,-1,0,1,2,3},∴∁U (A ∪B )={-2,3},故选A.(2)通解 因为A ={x |x (x -2)>0}={x |x >2或x <0},B ={x |x -1>0}={x |x >1},所以A ∩B ={x |x >2},故选C.优解 因为32∉A ,所以32∉(A ∩B ),故排除A ,B ,D ,选C. 答案:(1)A (2)C同类练3.解析:由题意可得A ={x |-1<x <2},故A ∩B ={x |-1<x <1},选B.答案:B4.解析:B ={x |0<x <2},A ={0,1,2,3},则A ∩B ={1},故选D.答案:D变式练5.解析:通解 因为A ={x |x 2-x -2<0}={x |(x +1)(x -2)<0}={x |-1<x <2},所以∁R A ={x |x ≤-1或x ≥2},选D.优解 显然0∈A ,所以0∉∁R A ,排除A ,B ;又2∉A ,所以2∈∁R A ,排除C.选D. 答案:D6.解析:因为M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -3x -1≥0={x |x <1或x ≥3},所以∁R M ={x |1≤x <3}.又N ={x |y =2-x }={x |x ≤2},所以(∁R M )∩N =[1,2],故选B.答案:B拓展练7.解析:由题意知A ={-1,0,1},B ={-1,3},则A ∩B ={-1},A ∪B ={-1,0,1,3},于是阴影部分表示的集合为{0,1,3},故选A.答案:A8.解析:A ={x |y =log 2(x -2)}=(2,+∞),∵B ={x |x 2≥9}=(-∞,-3]∪[3,+∞),∴∁R B =(-3,3),则A ∩(∁R B )=(2,3),故选B.答案:B。
专题01 集合-2022年高考数学一轮复习小题多维练(新高考版)(解析版)
集合一、单选题1.已知集合P={x∈N|x≤3},Q={x|x2≤x+2},则P∩Q=()A.{﹣1,0,1,2}B.[0,2]C.{0,1,2}D.{1,2}【答案】C【分析】先求出集合P,Q,再利用集合的交集运算求解.【解答】解:集合P={x∈N|x≤3}={0,1,2,3},Q={x|x2≤x+2}={x|﹣1≤x≤2},∴P∩Q={0,1,2}.故选:C.【知识点】交集及其运算2.已知集合A={x|y=,x∈N},B={x|﹣1<x<4},则集合A∩B中元素的个数为()A.2B.3C.4D.5【答案】C【分析】可求出集合A,然后进行交集的运算求出A∩B,然后即可得出A∩B中元素的个数.【解答】解:∵A={x|3x≤81,x∈N}={x|x≤4,x∈N}={0,1,2,3,4},B={x|﹣1<x<4},∴A∩B={0,1,2,3},∴A∩B中元素的个数为4.故选:C.【知识点】交集及其运算3.已知集合M={x|log2(x﹣1)2<4},N={x|x2+4x+3≤0},则M∪N=()A.{x|﹣3<x≤﹣1}B.{x|﹣3≤x<5}C.{x|﹣3≤x<1或1<x<5}D.{x|﹣3≤x≤5}【答案】C【分析】利用对数函数的性质解不等式log2(x﹣1)2<4,得到集合M,再解不等式x2+4x+3≤0得到集合N,再利用集合的并集的定义求解即可.【解答】解:∵log2(x﹣1)2<4,∴(x﹣1)2<16,且x﹣1≠0,解得:﹣3<x<5且x≠1,即﹣3<x<1或1<x<5,又∵N={x|x2+4x+3≤0}={x|﹣3≤x≤﹣1},∴M∪N={x|﹣3≤x<1或1<x<5},故选:C.【知识点】并集及其运算4.已知集合M={x|﹣4<x≤2},N={x|y=},则M∩N=()A.{2}B.{x|﹣4<x≤﹣2}C.{x|﹣4<x≤2}D.{x|﹣2≤x≤2}【答案】B【分析】求出函数y=的定义域,得到集合N,再利用集合的交集的定义求解.【解答】解:集合N={x|y=}={x|(x+2)(x﹣4)≥0}={x|x≤﹣2或x≥4},∴M∩N={x|﹣4<x≤2}.故选:B.【知识点】交集及其运算5.已知集合A={x|(x+2)(x﹣3)<0},B={x|y=},则A∩(∁R B)=()A.[﹣2,1)B.[1,3]C.(﹣∞,﹣2)D.(﹣2,1)【答案】D【分析】可以求出集合A,B,然后进行交集、补集的运算即可.【解答】解:∵A={x|﹣2<x<3},B={x|x≥1},∴∁R B={x|x<1},A∩(∁R B)=(﹣2,1).故选:D.【知识点】交、并、补集的混合运算6.已知集合M={﹣2,﹣1,0,1},N={x∈R|x(x﹣2)≤0},则M∩N=()A.{﹣1,0,1}B.{0,1}C.{﹣2,﹣1,0,1}D.{﹣2,﹣1,0}【答案】B【分析】可以求出集合N,然后进行交集的运算即可.【解答】解:∵M={﹣2,﹣1,0,1},N={x|0≤x≤2},∴M∩N={0,1}.故选:B.【知识点】交集及其运算7.设函数f(x)=sin(ωx+φ),A={(x0,f(x0))|f'(x0)=0},,若存在实数φ,使得集合A∩B中恰好有7个元素,则ω(ω>0)的取值范围是()A.B.C.D.【答案】B【分析】可知集合A表示函数f(x)的最大值点和最小值点,而f(x)的最大值和最小值在直线y=±1上,从而代入即可解出﹣4≤x≤4,从而得出,解出ω的范围即可.【解答】解:∵f′(x0)=0,∴f(x0)是f(x)的最大值或最小值,又f(x)=sin(ωx+φ)的最大值或最小值在直线y=±1上,∴y=±1代入得,,解得﹣4≤x≤4,又存在实数φ,使得集合A∩B中恰好有7个元素,∴,且ω>0,解得,∴ω的取值范围是.故选:B.【知识点】交集及其运算8.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M具有∟性,给出下列四个集合:①M={(x,y)|y=x3﹣2x2+3};②M={(x,y)|y=log2(2﹣x)};③M={(x,y)|y=2﹣2x};④M={(x,y)|y=1﹣sin x};其中具有∟性的集合的个数是()A.1B.2C.3D.4【答案】D【分析】条件等价于:对于M中任意点P(x1,y1),在M中存在另一个点P′(x2,y2),使OP⊥OP′.作出函数图象,验证即可.【解答】解:由题意知:对于M中任意点P(x1,y1),在M中存在另一个点P′(x2,y2),使,即OP⊥OP′,即过原点任作一条直线与函数图象相交,都能过原点作另一条直线与此直线垂直,经验证①②③④皆满足.故选:D.【知识点】集合的表示法、函数的图象与图象的变换二、多选题9.下列每组对象,能构成集合的是()A.中国各地最美的乡村B.直角坐标系中横、纵坐标相等的点C.一切很大的数D.清华大学2020年入学的全体学生【答案】BD【分析】根据集合的定义进行判断即可.【解答】解:A,中国各地最美的乡村,无法确定集合中的元素,故A不不能,C,一切很大的数,无法确定集合中的元素,故C不不能,∴根据集合元素的确定性可知,B,D,都不能构成集合,故选:BD.【知识点】集合的含义10.已知集合A={x|ax≤2},B={2,},若B⊆A,则实数a的值可能是()A.﹣1B.1C.﹣2D.2【答案】ABC【分析】通过集合的包含关系,判断元素的关系,通过选项的代入判断是否成立.【解答】解:因为集合A={x|ax≤2},B={2,},B⊆A,若a=﹣1,A=[﹣2,+∞),符合题意,A对;若a=1,A=(﹣∞,2],符合题意,B对;若a=﹣2,A=[﹣1,+∞),符合题意,C对;若a=1,A=(﹣∞,1],不符合题意,D错;故选:ABC.【知识点】集合的包含关系判断及应用11.设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8【答案】AC【分析】根据集合的交集,补集,并集的定义分别进行判断即可.【解答】解:∵全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},∴A∩B={0,1},故A正确,∁U B={2,4},故B错误,A∪B={0,1,3,4},故C正确,集合A的真子集个数为23﹣1=7,故D错误故选:AC.【知识点】交、并、补集的混合运算12.已知集合A={x|x=3a+2b,a,b∈Z},B={x|x=2a﹣3b,a,b∈Z},则()A.A⊆B B.B⊆A C.A=B D.A∩B=∅【答案】ABC【分析】利用集合的基本关系可判断集合的关系.【解答】解:已知集合A={x|x=3a+2b,a,b∈Z},B={x|x=2a﹣3b,a,b∈Z},若x属于B,则:x=2a﹣3b=3*(2a﹣b)+2*(﹣2a);2a﹣b、﹣2a均为整数,x也属于A,所以B是A的子集;若x属于A,则:x=3a+2b=2*(3a+b)﹣3*(a);3a+b、a均为整数,x也属于B,所以A是B的子集;所以:A=B,故选:ABC.【知识点】集合的包含关系判断及应用三、填空题13.已知集合A={﹣2,0,1},B={x|x2﹣1>0},则A∩B=﹣.【答案】{-2}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={﹣2,0,1},B={x|x<﹣1或x>1},∴A∩B={﹣2}.故答案为:{﹣2}.【知识点】交集及其运算14.设集合A={1,2,3},B={3,4},则满足C⊆A,且C∩B≠∅的集合C共有个.【答案】4【分析】利用集合的包含关系即可求出满足条件的集合C.【解答】解:∵集合A={1,2,3},B={3,4},且集合C满足C⊆A,且C∩B≠∅,∴集合C={3}或{1,3}或{2,3}或{1,2,3},故答案为:4.【知识点】交集及其运算、集合的包含关系判断及应用15.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=.【答案】{1,2,4,6},【分析】由已知,先求出C∪P,再求(∁U P)∪Q.【解答】解:∵U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},∴C∪P={2,4,6},∴(∁U P)∪Q={1,2,4,6},故答案为:{1,2,4,6},【知识点】交、并、补集的混合运算16.已知集合M={x∈N|1≤x≤21},集合A1,A2,A3满足①每个集合都恰有7个元素;②A1∪A2∪A3=M.集合A i中元素的最大值与最小值之和称为集合A i 的特征数,记为X i(i=1,2,3),则X1+X2+X3的最大值与最小值的和为.【答案】132【分析】判断集合的元素个数中的最小值与最大值的可能情况,然后按照定义求解即可.【解答】解:集合M={x∈N|1≤x≤21},由集合A1,A2,A3满足①每个集合都恰有7个元素;②A1∪A2∪A3=M可知最小的三个数为1,2,3;21必是一个集合的最大元素,含有21集合中的元素,有21,20,19,…,16和1,2,3中一个组成,这样特征数最小,不妨取1,这时X1最小值为22;15必是一个集合的最大元素,含有15集合中的元素,有15,14,13,…,10和2,3中一个组成,这样特征数最小,不妨取2,这时X2最小值为17;9必是一个集合的最大元素,含有9集合中的元素,有9,8,7,…,4和3组成,这样特征数最小,这时X3最小值为10;则X1+X2+X3的最小值为22+17+12=51.同理可知最大的三个数为21,20,19;含有21集合中的元素,有21,18,17,16,16,15,13;这样特征数最大,为34;含有20的集合中元素为20,12,11,10,9,8,7,这样特征数最大,为27;含有19的集合中元素为19,6,5,4,3,2,1,特征数最大,且为20;则X1+X2+X3的最大值为34+27+20=81;所以X1+X2+X3的最大值与最小值的和为51+81=132.故答案为:132.【知识点】子集与交集、并集运算的转换17.已知集合A={(x,y)|(x+y)2+x+y﹣2≤0},,若A∩B≠∅,则实数a的取值范围为.【分析】集合A={(x,y)|(x+y)2+x+y﹣2≤0},可得集合A={(x,y)|﹣2≤x+y≤1},,其(x﹣2a)2+(y﹣a﹣1)2=a2﹣,由a2﹣≥0,解得a或a≤0.在此条件下,表示以(2a,a+1)为圆心,为半径的圆及其圆内的点.由A∩B≠∅,利用点到直线的距离公式、直线与圆的位置关系即可得出.【解答】解:∵集合A={(x,y)|(x+y)2+x+y﹣2≤0},∴集合A={(x,y)|﹣2≤x+y≤1},,其(x﹣2a)2+(y﹣a﹣1)2=a2﹣,由a2﹣≥0,解得a或a≤0.在此条件下,表示以(2a,a+1)为圆心,为半径的圆及其圆内的点.其圆心在直线x﹣2y+2=0上.由A∩B≠∅,①a<0时,由≤,或≤,或﹣2≤2a<0.解得:≤a≤,﹣≤a<0,或﹣1≤a<0.即≤a<0.②时,由<,或<,解得:a∈∅.③a=0时,满足题意.a=时,不满足题意,舍去.综上可得:实数a的取值范围为.故答案为:.【知识点】空集的定义、性质及运算18.已知A={x|﹣2≤x≤4},B={x|x>a},A∩B≠∅,则实数a的取值范围是.【答案】a<4【分析】由A与B,以及A与B的交集不为空集,确定出a的范围即可.【解答】解:∵A={x|﹣2≤x≤4},B={x|x>a},且A∩B≠∅,∴a<4,故答案为:a<4.【知识点】交集及其运算19.已知集合A={x|x2﹣x﹣6<0},集合B={x|x2+2x﹣8>0},集合C={x|x2﹣4ax+3a2<0},若C⊇(A∩B),试确定实数a的取值范围.【答案】[1,2]【分析】先确定集合A,B得到A={x|﹣2<x<3},B={x|x<﹣4或x>2},再根据题意分类讨论得出a的取值范围.【解答】解:由已知得A={x|﹣2<x<3},B={x|x<﹣4或x>2},所以,A∩B={x|2<x<3},C={x|x2﹣4ax+3a2<0}={x|(x﹣a)(x﹣3a)<0},①当a>0时,C={x|a<x<3a},如右图所示:则C⊇(A∩B)等价为:,解得,1≤a≤2,经检验符合题意;②当a<0时,C={x|3a<x<a};C是负半轴上的一个区间,而A∩B是正半轴上的一个区间,因此C⊇(A∩B)是不可能的,故无解;③当a=0时,C=∅,此时C⊇(A∩B)是不可能的,也无解.综合以上讨论得,a∈[1,2].故答案为:[1,2].【知识点】子集与交集、并集运算的转换20用C(A)表示非空集合A中元素的个数,设A={x||x3+4x2+3x|+a|x2﹣1|=0},若C(A)=5,则实数a的取值范围.【分析】由题意可得:|x3+4x2+3x|+a|x2﹣1|=0有5个不同实数解.必然a<0,方程化为:|x(x+1)(x+3)|+a|(x﹣1)(x+1)|=0,可得x=﹣1是此方程的一个实数根,x≠﹣1时,化为:|x(x+3)|=﹣a|(x﹣1)|,分别作出函数y=|x(x+3)|,y=﹣a|(x﹣1)|的图象.P(1,0),Q.由于函数y=|x(x+3)|,y=﹣a|(x﹣1)|的图象必须有四个交点,当y=﹣a|(x﹣1)|的图象经过点Q时,有=﹣a×,解得a,进而得出.【解答】解:A={x||x3+4x2+3x|+a|x2﹣1|=0},C(A)=5,则|x3+4x2+3x|+a|x2﹣1|=0有5个不同实数解.必然a<0,方程化为:|x(x+1)(x+3)|+a|(x﹣1)(x+1)|=0,x=﹣1是此方程的一个实数根,x≠﹣1时,化为:|x(x+3)|=﹣a|(x﹣1)|,分别作出函数y=|x(x+3)|,y=﹣a|(x﹣1)|的图象.P(1,0),Q.由于函数y=|x(x+3)|,y=﹣a|(x﹣1)|的图象必须有四个交点,当y=﹣a|(x﹣1)|的图象经过点Q时,有=﹣a×,解得a=﹣.∴0.∴实数a的取值范围是.故答案为:.【知识点】子集与交集、并集运算的转换21.已知集合M={(x,y)|y=},N={(x,y)|y=x+m},且M∩N≠∅,则m的取值范围为﹣.【分析】集合M表示圆心为(0,0),半径为3的半圆,集合N表示直线y=x+m上的点,根据题意画出相应的图形,根据两集合交集不为空集得到两函数图象有交点,抓住两个特殊位置,直线与半圆相切时;直线过(3,0)时,分别求出m的值,即可得到满足题意m的范围.【解答】解:根据题意画出相应的图形,当直线y=x+m与半圆y=相切,且切点在第二象限时,圆心到直线的距离d=r,即=3,解得:m=3或m=﹣3(不合题意,舍去),当直线过点(3,0)时,将x=3,y=0代入得:3+m=0,解得:m=﹣3,则m的取值范围为﹣3≤m≤3.故答案为:﹣3≤m≤3【知识点】交集及其运算22.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有种;②这三天售出的商品最少有种.【答案】【第1空】16【第2空】29【分析】①由题意画出图形得答案;②求出前两天所受商品的种数,由特殊情况得到三天售出的商品最少种数.【解答】解:①设第一天售出商品的种类集为A,第二天售出商品的种类集为B,第三天售出商品的种类集为C,如图,则第一天售出但第二天未售出的商品有19﹣3=16种;②由①知,前两天售出的商品种类为19+13﹣3=29种,第三天售出但第二天未售出的商品有18﹣4=14种,当这14种商品第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种.故答案为:①16;②29.【知识点】集合的包含关系判断及应用、容斥原理23.设有限集合A={a1,a2,..,a n},则a1+a2+…+a n叫做集合A的和,记作S A,若集合P={x|x=2n﹣1,n∈N*,n≤4},集合P的含有3个元素的全体子集分别记为P1,P2,…,P k,则P1+P2+…+P k=.【答案】48【分析】由题意:集合P={x|x=2n﹣1,n∈N*,n≤4},求出集合P的含有3个元素的全体子集,求全体子集之和即可.【解答】解:由题意:集合P={x|x=2n﹣1,n∈N*,n≤4},那么:集合P={1,3,5,7},集合P的含有3个元素的全体子集为{1,3,5},{1,3,7},{1,5,7},{3,5,7},由新定义可得:P1=9,P2=11,P3=13,P4=15则P1+P2+P3+P4=48.故答案为:48.【知识点】子集与真子集24.若对任意的x∈D,均有f1(x)≤f(x)≤f2(x)成立,则称函数f(x)为函数f1(x)到函数f2(x)在区间D上的“折中函数”.已知函数f(x)=(k﹣1)x﹣1,g(x)=0,h(x)=(x+1)lnx,且f(x)是g(x)到h(x)在区间[1,2e]上的“折中函数”,则实数k的值构成的集合是.【答案】{2}【分析】在区间[1,2e]上分g(x)≤f(x)及f(x)≤h(x)两种情况考虑即可.【解答】解:根据题意,可得0≤(k﹣1)x﹣1≤(x+1)lnx在x∈[1,2e]上恒成立.当x∈[1,2e]时,函数f(x)=(k﹣1)x﹣1的图象为一条线段,于是,,解得k≥2.另一方面,在x∈[1,2e]上恒成立.令=,则.由于1≤x≤2e,所以,于是函数x﹣lnx为增函数,从而x﹣lnx≥1﹣ln1>0,所以m′(x)≥0,则函数m(x)为[1,2e]上的增函数.所以k﹣1≤[m(x)]min=m(1)=1,即k≤2.综上,k=2.故答案为:{2}.【知识点】元素与集合关系的判断25.记A={θ|f(x)=sin(x+ωθ)为偶函数,ω是正整数},B={x|(x﹣a)(x﹣a﹣1)<0},对任意实数a,满足A∩B中的元素不超过两个,且存在实数a使A∩B中含有两个元素,则ω的值是.【答案】5、6、7、8、9【分析】根据正弦型函数的性质,可得A={θ|θ=(kπ+),k∈Z,ω是正整数},若对任意实数a,满足A∩B中的元素不超过两个,(π+)≥,即ω≤2π,存在实数a使A∩B中含有两个元素,(π+)<1,即ω>π进而得到答案.【解答】解:B={x|(x﹣a)(x﹣a﹣1)<0}=(a,a+1),A={θ|f(x)=sin(x+ωθ)为偶函数,ω是正整数}={θ|ωθ=kπ+,k∈Z,ω是正整数}={θ|θ=(kπ+),k∈Z,ω是正整数},对任意实数a,满足A∩B中的元素不超过两个,(π+)≥,即ω≤3π,存在实数a使A∩B中含有两个元素,(π+)<1,即ω>π,故ω的值是:5、6、7、8、9故答案为:5、6、7、8、9【知识点】交集及其运算26.设P,Q是两个非空集合,定义集合间的一种运算“⊙”:P⊙Q={x|x∈P∪Q,且x∉P∩Q},如果P={y|y=},Q={y|y=4x,x>0},则P⊙Q=.【答案】[0,1]∪(2,+∞)【分析】根据已知得到P、Q中的元素y,然后根据P⊙Q={x|x∈P∪Q,且x∉P∩Q}求出即可.【解答】解:P={y|y=}={y|0≤y≤2},Q={y|y=4x,x>0}={y|y>1},∵P⊙Q={x|x∈P∪Q,且x∉P∩Q}.∴P⊙Q=[0,1]∪(2,+∞)故答案为:[0,1]∪(2,+∞)【知识点】子集与交集、并集运算的转换。
高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版
专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
【高考第一轮复习数学】函数专题一
专题一:函数1.函数的定义设集合A 是一个非空的数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数,记作y=f(x),x ∈A.其中x 叫做自变量,自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作y=f(a),所有函数值构成的集合{y|y=f(x),x ∈A}叫做这个函数的值域.因为函数的值域被函数的定义域和对应法则完全确定,所以确定一个函数就只需要两个要素:定义域和对应法则.2.同一函数:定义域相同,值域相同,对应法则也相同的函数是同一函数.3.区间的概念及表示4.映射的定义bbb {x | a ≤x ≤b }a ≤x ≤b a <x <b a <x ≤b a ≤x <b {x | a <x <b } {x | a <x ≤b }{x | a ≤x <b } [a ,b ] (a ,b ) (a ,b ] [a ,b ) 闭区间开区间半开半闭区间半开半闭区间b 其中 a,b 叫做区间的端点.aa x ≥ a x ≤ a x > a x < a {x | x ≥ a } {x | x ≤ a } {x | x > a } {x | x < a } (-∞ ,a ][a ,+∞)(-∞,a )(a ,+∞)对于实数集 R ,也可用区间(- ∞ ,+∞) 表示 .(2)含有一个端点的数轴区域 (1)含有两个端点的数轴区域 设a <x <b设A 、B 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射,这时称y 是x 在映射f 的作用下的象,记作f(x).于是y=f(x),x 称作y 的原象,映射f 也可记作:f :A →B,x →f(x).其中A 叫做映射f 的定义域(函数定义域的推广),由所有象f(x)构成的集合叫做映射f 的值域,通常记作f(A). 注意:(1)映射是一种特殊的对应;(2)符号“f :A →B ”表示A 到B 的映射;(3)映射有三个要素:两个集合,一种对应法则;(4)集合的顺序性:f :A →B 与 f :B →A 是不同的: (5)箭尾集合中元素的任意性(少一个也不行)。
新高考数学一轮复习考点知识专题讲解与练习 1 集合
新高考数学一轮复习考点知识专题讲解与练习第一章 集合与常用逻辑用语考点知识总结1 集合高考 概览本考点在高考中是必考知识点,常考题型为选择题,分值为5分,低难度考纲 研读1.了解集合的含义,体会元素与集合的属于关系2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题3.理解集合之间包含与相等的含义,能识别给定集合的子集 4.在具体情境中,了解全集与空集的含义5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集 6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集 7.能使用Venn 图表达集合的关系及运算一、基础小题1.已知集合A ={x |x 2-x -6<0},B ={x |2<x <5},则A ∪B =( ) A .(1,6) B .(-2,5) C .(2,3) D .(3,5) 答案 B解析 A ={x |-2<x <3},A ∪B =(-2,5).故选B.2.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 集合M ={a 1,a 2}或{a 1,a 2,a 4},有2个.故选B. 3.已知集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <13,则(∁R P )∩N =()A .{x |0<x <3}B .{x |0<x ≤3}C .{0,1,2,3}D .{1,2,3} 答案 C 解析 由题意,得P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <13=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -33x >0={x |x >3或x <0},则(∁R P )∩N ={x |0≤x≤3}∩N ={0,1,2,3}.故选C.4.已知集合A ={1,2},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 的子集共有( ) A .2个 B .4个 C .6个 D .8个 答案 A解析 由已知得B ={(2,1)},所以B 的子集有2个.故选A.5.已知集合A ={x |(x -2)(x +2)≤0},B ={y |x 2+y 2=16},则A ∩B =( ) A .[-3,3] B .[-2,2] C .[-4,4] D .∅ 答案 B解析 由题意,得A ={x |-2≤x ≤2},B ={y |-4≤y ≤4},所以A ∩B ={x |-2≤x ≤2}.故选B.6.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},A ∩(∁U B )={3},则B =( )A .{1,2}B .{2,4}C .{1,2,4}D .∅ 答案 A解析 由∁U (A ∪B )={4},得A ∪B ={1,2,3}.由A ∩(∁U B )={3},得3∈A 且3∉B .现假设1∉B ,∵A ∪B ={1,2,3},∴1∈A .又1∉A ∩(∁U B )={3},∴1∉∁U B ,即1∈B ,矛盾.故1∈B .同理2∈B .故选A.7.已知集合A ={x |y =x 2-2},集合B ={y |y =x 2-2},则有( ) A .A =B B .A ∩B =∅ C .A ∪B =A D .A ∩B =A 答案 C解析 A ={x |y =x 2-2}=R ,B ={y |y =x 2-2}=[-2,+∞),所以B ⊆A ,故A ∪B =A .故选C.8.已知集合M 是函数y =11-2x的定义域,集合N 是函数y =x 2-4的值域,则M ∩N =( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤12B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-4≤x <12 C .⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪x <12且y ≥-4D .∅ 答案 B解析 由题意,得M =⎝ ⎛⎭⎪⎫-∞,12,N =[-4,+∞),所以M ∩N =⎣⎢⎡⎭⎪⎫-4,12.故选B.9.若集合U =R ,A ={1,2,3,4,5},集合B ={x |0<x <4},则图中阴影部分表示( )A .{1,2,3,4}B .{1,2,3}C .{4,5}D .{1,4} 答案 C解析 集合A ={1,2,3,4,5},B ={x |0<x <4},图中阴影部分表示A ∩(∁U B ),又∁U B ={x |x ≥4或x ≤0},所以A ∩(∁U B )={4,5}.故选C.10.已知集合A ={(x ,y )|y =2x },B ={(x ,y )|y =x +1},则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 答案 B解析 由y =2x 与y =x +1的图象可知,两函数图象有两个交点,如图所示.∴A ∩B中元素的个数为2.故选B.11.(多选)已知全集U=R,函数y=ln (1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)≠∅C.M∪N=U D.M⊆(∁U N)答案AB解析由题意知M={x|x<1},N={x|0<x<1},所以M∩N=N.又∁U N={x|x≤0或x≥1},所以M∩(∁U N)={x|x≤0}≠∅,M∪N={x|x<1}=M,M⊆/(∁U N).故选AB.12.(多选)已知集合A={0,1,2},若A∩(∁Z B)≠∅(Z是整数集合),则集合B可以为()A.{x|x=2a,a∈A}B.{x|x=2a,a∈A}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}答案ABD解析由题意知,集合A={0,1,2}.{x|x=2a,a∈A}={0,2,4},则A∩(∁Z B)={1}≠∅,A满足题意;{x|x=2a,a∈A}={1,2,4},则A∩(∁Z B)={0}≠∅,B满足题意;{x|x=a-1,a∈N}={-1,0,1,2,3,…},则A∩(∁Z B)=∅,C不满足题意;{x|x=a2,a∈N}={0,1,4,9,16,…},则A∩(∁Z B)={2}≠∅,D满足题意.故选ABD.二、高考小题13.(2022·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=() A.{2} B.{2,3} C.{3,4} D.{2,3,4}答案 B解析 因为A ={x |-2<x <4},B ={2,3,4,5},所以A ∩B ={2,3}.故选B. 14.(2022·新高考Ⅱ卷)设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( )A .{3}B .{1,6}C .{5,6}D .{1,3} 答案 B解析 由题意可得∁U B ={1,5,6},故A ∩(∁U B )={1,6}.故选B.15.(2022·全国甲卷)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x ≤5,则M ∩N =( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x ≤13B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4C .{x |4≤x <5}D .{x |0<x ≤5} 答案 B 解析 由已知得M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4.故选B.16.(2022·全国乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A .∅B .SC .TD .Z 答案 C解析 因为s =2n +1,n ∈Z ,当n =2k ,k ∈Z 时,s =4k +1,k ∈Z ;当n =2k +1,k ∈Z 时,s =4k +3,k ∈Z ,所以TS ,S ∩T =T .故选C.17.(2022·天津高考)设集合A ={-1,0,1},B ={1,3,5},C ={0,2,4},则(A ∩B )∪C =( )A .{0}B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4} 答案 C解析 ∵A ={-1,0,1},B ={1,3,5},C ={0,2,4},∴A ∩B ={1},∴(A ∩B )∪C={0,1,2,4}.故选C.18.(2022·新高考Ⅰ卷)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 答案 C解析 A ∪B =[1,3]∪(2,4)=[1,4).故选C.19.(2022·全国Ⅰ卷)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a =( )A .-4B .-2C .2D .4 答案 B 解析 ∵A ={x |x2-4≤0}={x |-2≤x ≤2},B ={x |2x +a ≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2,A ∩B ={x |-2≤x ≤1},∴-a2=1,解得a =-2.故选B.20.(2022·全国Ⅲ卷)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6 答案 C解析 由题意,A ∩B 中的元素满足⎩⎨⎧y ≥x ,x +y =8,且x ,y ∈N *,由x +y =8≥2x ,得x ≤4,所以A ∩B 中的元素有(1,7),(2,6),(3,5),(4,4),共4个.故选C.三、模拟小题21.(2022·江苏镇江市第一中学高三上学期期初考试)已知集合A ={x ||x |≤2,x ∈N },集合B ={x |x 2+x -6=0},则A ∩B =( )A .{2}B .{-3,2}C .{-3,1}D .{-3,0,1,2}答案 A解析集合A={x||x|≤2,x∈N}={0,1,2},集合B={x|x2+x-6=0}={-3,2},所以A∩B={2}.故选A.22.(2022·广东广州荔湾区高三上调研考试)已知全集U=R,设集合A={x|x2-x-6≤0},B={x|x-1<0},则图中阴影部分表示的集合是()A.{x|x≤3} B.{x|-3≤x<1}C.{x|-2≤x<-1} D.{x|1≤x≤3}答案 D解析由题意得,A={x|-2≤x≤3},B={x|x<1},∴∁U B={x|x≥1},∴A∩(∁U B)={x|1≤x≤3}.故选D.23.(2022·新高考八省联考)已知M,N均为R的子集,且∁R M⊆N,则M∪(∁R N)=()A.∅B.M C.N D.R答案 B解析解法一:∵∁R M⊆N,∴M⊇∁R N,据此可得M∪(∁R N)=M.故选B.解法二:如图所示,设矩形区域ABCD表示全集R,矩形区域ABHE表示集合M,则矩形区域CDEH表示集合∁R M,矩形区域CDFG表示集合N,满足∁R M⊆N,结合图形可得M∪(∁R N)=M.故选B.24.(2022·河南南阳模拟)设集合P={3,log2a},Q={a,b},若P∩Q={0},则P ∪Q=()A.{3,0} B.{3,0,1}答案 B解析 ∵P ∩Q ={0},∴log 2a =0,∴a =1,从而b =0,∴P ∪Q ={3,0,1}.故选B.25.(2022·河北沧州第一中学等十五校高三上摸底考试)已知集合A =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪y = x -4x -7,集合B ={3,4,5,6,7},则A ∩B =( ) A .(3,4) B .{3,4} C .[3,4] D .{3,4,7} 答案 B解析 由x -4x -7≥0得⎩⎨⎧(x -4)(x -7)≥0,x ≠7,得x ≤4或x >7,所以A ={x |x ≤4或x >7},因为B ={3,4,5,6,7},所以A ∩B ={x |x ≤4或x >7}∩{3,4,5,6,7}={3,4}.故选B.26.(2022·湖北襄阳五中高三开学考试)已知集合M ={x |1-a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(-∞,2]B .(-∞,0]C .⎝ ⎛⎦⎥⎤-∞,13D .⎣⎢⎡⎭⎪⎫13,2答案 C解析 因为M ⊆N ,而∅⊆N ,所以当M =∅时,2a ≤1-a ,则a ≤13;当M ≠∅时,M ⊆N ,则⎩⎪⎨⎪⎧1-a <2a ,1-a ≥1,2a ≤4⇒⎩⎪⎨⎪⎧a >13,a ≤0,a ≤2,无解.综上得a ≤13,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,13.故选C.27.(2022·湖南长沙长郡中学高三上开学考试)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪12<2x +1<16,B={x |x 2-4x +m =0},若1∈A ∩B ,则A ∪B =( )A .{1,2,3}B .{1,2,3,4}答案 D 解析由题可知,A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪12<2x +1<16,即2-1<2x +1<24,解得-2<x <3,又x ∈N ,所以A ={0,1,2}.因为1∈A ∩B ,则1∈B ,所以1-4+m =0,解得m =3,所以B ={x |x 2-4x +3=0}={1,3},所以A ∪B ={0,1,2,3}.故选D.28.(多选)(2022·江苏沭阳如东中学测试)设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 的值可以为( )A .15B .0C .3D .13 答案 ABD解析 ∵x 2-8x +15=0的两个根为3和5,∴A ={3,5},∵A ∩B =B ,∴B ⊆A ,∴B =∅或B ={3}或B ={5}或B ={3,5},当B =∅时,满足a =0即可,当B ={3}时,满足3a -1=0,∴a =13,当B ={5}时,满足5a -1=0,∴a =15,当B ={3,5}时,显然不符合条件,∴实数a 的值可以是0,13,15.故选ABD.29.(多选)(2022·山东滨州模拟)设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题中的真命题有( )A .集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集B .若S 为封闭集,则一定有0∈SC .封闭集一定是无限集D .若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集 答案 AB解析 因为两个复数的和是复数,两个复数的差是复数,两个复数的积也是复数,所以集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集,A 正确;当S 为封闭集时,因为x -y ∈S ,取x =y ,得0∈S ,B 正确;集合S ={0}显然是封闭集,但S 是有限集,C 错误;取S ={0},T ={0,1},满足S ⊆T ⊆C ,但由于0-1=-1不属于T ,故T 不是封闭集,D 错误.故选AB.30.(多选)(2022·湖南衡阳模拟)对于集合M ,定义函数f M (x )=⎩⎨⎧-1,x ∈M ,1,x ∉M .对于两个集合M ,N ,定义集合M ⊗N ={x |f M (x )·f N (x )=-1}.已知集合A ={2,4,6},B ={1,2,4},则下列结论正确的是( )A .1∈A ⊗B B .2∈A ⊗BC .4∉A ⊗BD .A ⊗B =B ⊗A 答案 ACD解析 由题意知,f A (x )=⎩⎨⎧-1,x ∈{2,4,6},1,x ∉{2,4,6},f B (x )=⎩⎨⎧-1,x ∈{1,2,4},1,x ∉{1,2,4}.当x =1时,f A (1)=1,f B (1)=-1,所以f A (1)f B (1)=1×(-1)=-1,故1∈A ⊗B ,A 正确;当x =2时,f A (2)=-1,f B (2)=-1,所以f A (2)f B (2)=(-1)×(-1)=1,故2∉A ⊗B ,B 错误;当x =4时,f A (4)=-1,f B (4)=-1,所以f A (4)f B (4)=(-1)×(-1)=1,故4∉A ⊗B ,C 正确;由定义及乘法的交换律可知,D 正确.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2022·江西南昌高三模拟)已知全集U =R ,集合A ={x |x 2-4x -5≤0},B ={x |2≤x ≤4}.(1)求A ∩(∁U B );(2)若集合C ={x |a ≤x ≤4a ,a >0},满足C ∪A =A ,C ∩B =B ,求实数a 的取值范围. 解 (1)由题意,得A ={x |-1≤x ≤5},∁U B ={x |x <2或x >4}, ∴A ∩(∁U B )={x |-1≤x <2或4<x ≤5}.(2)由C ∪A =A 得C ⊆A ,则⎩⎨⎧a ≥-1,4a ≤5,解得-1≤a ≤54.由C ∩B =B 得B ⊆C ,则11 / 11 ⎩⎨⎧a ≤2,4a ≥4,解得1≤a ≤2. 从而实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪1≤a ≤54. 2.(2022·云南师大附中月考)设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4,B ={x |x 2+(b -a )x -ab ≤0}. (1)若A =B 且a +b <0,求实数a ,b 的值;(2)若B 是A 的子集,且a +b =2,求实数b 的取值范围. 解 (1)A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤2x ≤4={x |-1≤x ≤2}, ∵a +b <0,∴a <-b ,∴B ={x |(x -a )(x +b )≤0}={x |a ≤x ≤-b },∵A =B ,∴a =-1,b =-2.(2)∵a +b =2,∴B ={-b ≤x ≤2-b },∵B 是A 的子集,∴-b ≥-1且2-b ≤2,解得0≤b ≤1,即实数b 的取值范围为[0,1].。
【学海导航】高考数学第一轮总复习1
题型3 集合运算中的参数的取值范围问题 3. 设集合A={x|x2+3x+2≥0},B={x|mx2-
4x+m+3>0},若A∩B= ,且A∪B=A,求实数
m的取值范围. 解:因为A∪B=A,所以BA,从而A∩B=B,
又A∩B= ,所以B= .
所以不等式mx2-4x+m+3>0无解, 即对一切x∈R,mx2-4x+m+3≤0恒成立.
设M={m|关于x的方程x2-2x+2m+4=0两根均 为非负实数},
Δ 4(-2m-3 ) 0
x1
x2
2
0
,
则 x1x2 2m 4 解0 得-2≤m≤
-3
2
-3 , 2
,
所以M={m|-2≤m≤
}.
-3
2
设全集U={m|Δ≥0}={m|m≤ },
所以实数m的取值范围是 UM={m|m<-2}.
数形结合(例如韦恩图、数轴)是常用的有
效方法.利用此法较简捷、直观,应强化
这方面的意识培养.
2.
个不可忽视,但又经常遗漏的情况,如A
B,A∪B=B,A∩B=A等,集合A可以
是空集,也可以是非空集合,应当分两种
情况加以讨论.
3.设全集U={(x,y)|x∈R,y∈R},集合M={(x,y)
|
y- 3 x- 2
1
},P={(x,y)|y≠x+1},那么 U(M∪P)等
于( B )
A.
B. {(2,3)}
C. (2,3)
D. {(x,y)|y=x+1}
解:M={(x,y)| y- 3 1 }={(x,y)|y=x+1且
高考数学一轮复习考点知识专题讲解1---集合
高考数学一轮复习考点知识专题讲解集合考点要求1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.知识梳理1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B ,且x∉A,就称集合A 是集合B 的真子集,记作A B(或B A).(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示运算文字语言集合语言图形语言记法并集所有属于集合A或属于集合B的元素组成的集合{x|x∈A,或x∈B} A∪B交集所有属于集合A且属于集合B的元素组成的集合{x|x∈A,且x∈B} A∩B补集全集U中不属于集合A的所有元素组成的集合{x|x∈U,且x∉A} ∁U A常用结论1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.2.A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)集合{x ∈N |x 3=x },用列举法表示为{-1,0,1}.(×) (2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.(×) (3)若1∈{x 2,x },则x =-1或x =1.(×) (4)对任意集合A ,B ,都有(A ∩B )⊆(A ∪B ).(√) 教材改编题1.若集合A ={x ∈N |2x +10>3x },则下列结论正确的是() A .22∈A B .8⊆A C .{4}∈A D .{0}⊆A 答案D2.已知集合M ={a +1,-2},N ={b,2},若M =N ,则a +b =________. 答案-1解析∵M =N ,∴⎩⎨⎧a +1=2,b =-2,解得⎩⎨⎧a =1,b =-2,∴a +b =-1.3.已知全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4},则A ∩B =____________,A ∪(∁UB )=____________.答案{x |2≤x ≤3}{x |-2<x ≤3}解析∵全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4}={x |x ≤-2或x ≥2}, ∴∁U B ={x |-2<x <2},∴A ∩B ={x |2≤x ≤3},A ∪(∁U B )={x |-2<x ≤3}.题型一 集合的含义与表示例1(1)(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为() A .2B .3C .4D .6 答案C解析A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素.(2)若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________. 答案0或1解析①当a -3=-3时,a =0, 此时A ={-3,-1,-4}, ②当2a -1=-3时,a =-1, 此时A ={-4,-3,-3}舍去,③当a 2-4=-3时,a =±1,由②可知a =-1舍去,则当a =1时,A ={-2,1,-3}, 综上,a =0或1. 教师备选若集合A ={x |kx 2+x +1=0}中有且仅有一个元素,则实数k 的取值集合是________.答案⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,14 解析依题意知,方程kx 2+x +1=0有且仅有一个实数根,∴k =0或⎩⎨⎧k ≠0,Δ=1-4k =0,∴k =0或k =14,∴k的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,14.思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题. 跟踪训练1(1)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪4x -2∈Z ,则集合A 中的元素个数为() A .3B .4 C .5D .6 答案C 解析∵4x -2∈Z , ∴x -2的取值有-4,-2,-1,1,2,4, ∴x 的值分别为-2,0,1,3,4,6, 又x ∈N ,故x 的值为0,1,3,4,6. 故集合A 中有5个元素. (2)已知a ,b ∈R ,集合{1,a +b ,a }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b ,则a 2023+b 2023=________.答案0解析∵{1,a +b ,a }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b 且a ≠0,∴a +b =0,∴a =-b , ∴{1,0,-b }={0,-1,b }, ∴b =1,a =-1,∴a 2023+b 2023=0.题型二 集合间的基本关系例2(1)设集合P ={y |y =x 2+1},M ={x |y =x 2+1},则集合M 与集合P 的关系是() A .M =P B .P ∈M C .M P D .P M答案D解析因为P ={y |y =x 2+1}={y |y ≥1},M ={x |y =x 2+1}=R ,因此PM .(2)已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},且B ⊆A ,则实数m 的取值范围是________. 答案[-1,+∞) 解析∵B ⊆A ,①当B =∅时,2m -1>m +1,解得m >2;②当B ≠∅时,⎩⎨⎧2m -1≤m +1,2m -1≥-3,m +1≤4,解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞). 延伸探究在本例(2)中,若把B ⊆A 改为B A ,则实数m 的取值范围是________.答案[-1,+∞)解析①当B =∅时,2m -1>m +1,∴m >2; ②当B ≠∅时,⎩⎨⎧2m -1≤m +1,2m -1≥-3,m +1<4或⎩⎨⎧2m -1≤m +1,2m -1>-3,m +1≤4.解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞). 教师备选已知M ,N 均为R 的子集,若N ∪(∁R M )=N ,则() A .M ⊆N B .N ⊆M C .M ⊆∁R N D .∁R N ⊆M 答案D解析由题意知,∁R M ⊆N ,其Venn 图如图所示,∴只有∁R N ⊆M 正确.思维升华 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题. 跟踪训练2(1)已知集合A ={x |x 2-3x +2=0},B ={x ∈N |x 2-6x <0},则满足A C ⊆B 的集合C 的个数为() A .4B .6 C .7D .8 答案C解析∵A ={1,2},B ={1,2,3,4,5}, 且A C ⊆B ,∴集合C 的所有可能为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.(2)已知集合M ={x |x 2=1},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值为________. 答案0,±1解析∵M ={-1,1},且M ∩N =N , ∴N ⊆M .若N =∅,则a =0; 若N ≠∅,则N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a , ∴1a =1或1a=-1,∴a =±1综上有a =±1或a =0. 题型三 集合的基本运算 命题点1集合的运算例3(1)(2021·全国乙卷)已知全集U ={1,2,3,4,5},集合M ={1,2},集合N ={3,4},则∁U (M ∪N )等于() A .{5}B .{1,2} C .{3,4}D .{1,2,3,4} 答案A解析方法一(先求并再求补)因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}.又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.方法二(先转化再求解)因为∁U(M∪N)=(∁U M)∩(∁U N),∁U M={3,4,5},∁U N={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.(2)集合A={x|x2-3x-4>0},B={x|1<x<5},则集合(∁R A)∩B=________.答案{x|1<x≤4}解析A={x|x2-3x-4>0}={x|x<-1或x>4},A={x|-1≤x≤4},∴∁RA)∩B={x|1<x≤4}.∴(∁R命题点2利用集合的运算求参数的值(范围)例4(1)(2022·厦门模拟)已知集合A={1,a},B={x|log2x<1},且A∩B有2个子集,则实数a的取值范围为()A.(-∞,0]B.(0,1)∪(1,2]C.[2,+∞)D.(-∞,0]∪[2,+∞)答案D解析由题意得,B={x|logx<1}={x|0<x<2},2∵A∩B有2个子集,∴A∩B中的元素个数为1;∵1∈(A∩B),∴a∉(A∩B),即a∉B,∴a≤0或a≥2,即实数a的取值范围为(-∞,0]∪[2,+∞).(2)已知集合A={x|x2-x-6≤0},B={x|a-1≤x≤a+1},若A∩B=∅,则实数a的取值范围是________.答案(-∞,-3)∪(4,+∞)解析A={x|x2-x-6≤0}={x|-2≤x≤3},∵A∩B=∅,∴a-1>3或a+1<-2,即a>4或a<-3.教师备选(2022·铜陵模拟)已知A={x|x≤0或x≥3},B={x|x≤a-1或x≥a+1},若A∩(∁R B)≠∅,则实数a的取值范围是()A.1≤a≤2B.1<a<2C.a≤1或a≥2D.a<1或a>2答案D解析A={x|x≤0或x≥3},B={x|x≤a-1或x≥a+1},B={x|a-1<x<a+1};所以∁R又A∩(∁R B)≠∅,所以a-1<0或a+1>3,解得a <1或a >2,所以实数a 的取值范围是a <1或a >2.思维升华 对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn 图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况. 跟踪训练3(1)(2021·全国甲卷)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x ≤5,则M ∩N 等于() A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x ≤13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4 C .{x |4≤x <5}D .{x |0<x ≤5} 答案B解析因为M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x ≤5, 所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13≤x <4. (2)(2022·南通模拟)设集合A ={1,a +6,a 2},B ={2a +1,a +b },若A ∩B ={4},则a =________,b =________. 答案22解析由题意知,4∈A ,所以a +6=4或a 2=4, 当a +6=4时,则a =-2,得A ={1,4,4}, 故应舍去;当a 2=4时,则a =2或a =-2(舍去), 当a =2时,A ={1,4,8},B ={5,2+b }, 又4∈B ,所以2+b =4,得b =2.所以a=2,b=2.题型四集合的新定义问题例5(1)已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x+x2,x1∈A,x2∈B},则A*B中的所有元素数字之和为()1A.15B.16C.20D.21答案D解析由x2-2x-3≤0,得(x+1)(x-3)≤0,得A={0,1,2,3}.因为A*B={x|x=x1+x2,x∈A,x2∈B},所以A*B中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),12+3=5,3+1=4(舍去),3+3=6,所以A*B={1,2,3,4,5,6},所以A*B中的所有元素数字之和为21.(2)若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A=A2时,(A1,A2)与(A2,A1)是集合A的同一种分拆.若集合A有三个元素,则集合A的1不同分拆种数是________.答案27解析不妨令A={1,2,3},∵A1∪A2=A,当A1=∅时,A2={1,2,3},当A1={1}时,A2可为{2,3},{1,2,3}共2种,同理A1={2},{3}时,A2各有2种,当A1={1,2}时,A2可为{3},{1,3},{2,3},{1,2,3}共4种,同理A1={1,3},{2,3}时,A2各有4种,当A 1={1,2,3}时,A 2可为A 1的子集,共8种, 故共有1+2×3+4×3+8=27(种)不同的分拆. 教师备选非空数集A 如果满足:①0∉A ;②若∀x ∈A ,有1x∈A ,则称A 是“互倒集”.给出以下数集:①{x ∈R |x 2+ax +1=0};②{x |x 2-6x +1≤0};③⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =2x,x ∈[1,4],其中是“互倒集”的序号是________. 答案②③解析①中,{x ∈R |x 2+ax +1=0},二次方程判别式Δ=a 2-4,故-2<a <2时,方程无根,该数集是空集,不符合题意; ②中,{x |x 2-6x +1≤0}, 即{x |3-22≤x ≤3+22}, 显然0∉A , 又13+22≤1x ≤13-22, 即3-22≤1x≤3+22,故1x也在集合中,符合题意;③中,⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =2x ,x ∈[1,4], 易得⎩⎨⎧⎭⎬⎫y ⎪⎪⎪12≤y ≤2,0∉A , 又12≤1y≤2,故1y也在集合A中,符合题意.思维升华解决集合新定义问题的关键解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义和要求进行恰当转化,切忌同已有概念或定义相混淆.跟踪训练4对于任意两集合A,B,定义A-B={x|x∈A且x∉B},A*B=(A-B)∪(B-A),记A={x|x≥0},B={x|-3≤x≤3},则A*B=____________.答案{x|-3≤x<0或x>3}解析∵A={x|x≥0},B={x|-3≤x≤3},∴A-B={x|x>3},B-A={x|-3≤x<0}.∴A*B={x|-3≤x<0或x>3}.课时精练1.(2022·天津模拟)设全集U={x∈N|x<6},集合A={1,2,4},B={1,2,3},则∁U(A∪B)等于()A.{5}B.{0,5}C.{0,3,4,5}D.{-5,-4,-3,-2,-1,0,5}答案B解析∵集合A={1,2,4},B={1,2,3},∴A∪B={1,2,3,4},∵U={x∈N|x<6}={0,1,2,3,4,5},∴∁U(A∪B)={0,5}.2.已知集合U=R,集合A={x|x+3>2},B={y|y=x2+2},则A∩(∁U B)等于()A.R B.(1,2]C.(1,2) D.[2,+∞)答案C解析A={x|x+3>2}=(1,+∞),B={y|y=x2+2}=[2,+∞),∴∁U B=(-∞,2),∴A∩(∁U B)=(1,2).3.已知集合M={1,2,3},N={(x,y)|x∈M,y∈M,x+y∈M},则集合N中的元素个数为()A.2B.3C.8D.9答案B解析由题意知,集合N={(1,1),(1,2),(2,1)},所以集合N的元素个数为3. 4.(2022·青岛模拟)已知集合A={a1,a2,a3}的所有非空真子集的元素之和等于9,则a+a2+a3等于()1A.1B.2C.3D.6答案C解析集合A={a1,a2,a3}的所有非空真子集为{a1},{a2},{a3},{a1,a2},{a1,a3},{a2,a},3则所有非空真子集的元素之和为a1+a2+a3+a1+a2+a1+a3+a2+a3=3(a1+a2+a3)=9,所以a 1+a 2+a 3=3.5.已知集合P ={(x ,y )|x +y =1},Q ={(x ,y )|x 2+y 2=1},则下列说法正确的是() ①P ∪Q =R ;②P ∩Q ={(1,0),(0,1)};③P ∩Q ={(x ,y )|x =0或1,y =0或1}; ④P ∩Q 的真子集有3个. A .①②④B.②③④ C .②④D.③④ 答案C解析联立⎩⎨⎧x +y =1,x 2+y 2=1,解得⎩⎨⎧x =1,y =0或⎩⎨⎧x =0,y =1,∴P ∩Q ={(1,0),(0,1)}, 故②正确,③错误; 又P ,Q 为点集,∴①错误;又P ∩Q 有两个元素,∴P ∩Q 有3个真子集, ∴④正确.6.已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是()A .a <-2B .a ≤-2C .a >-4D .a ≤-4 答案D解析集合A ={x |-2≤x ≤2}, B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2,由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a2≥2,即a ≤-4.7.(2022·重庆模拟)已知全集U ={x ∈N |log 2x <3},A ={1,2,3},∁U (A ∩B )={1,2,4,5,6,7},则集合B 不可能为() A .{3,6}B .{3,4,5} C .{2,3,6}D .{3,5,6} 答案C解析由log 2x <3得0<x <23,即0<x <8, 于是得全集U ={1,2,3,4,5,6,7}, 因为∁U (A ∩B )={1,2,4,5,6,7}, 则有A ∩B ={3},3∈B ; 对于A 选项,若B ={3,6},则A ∩B ={3},∁U (A ∩B )={1,2,4,5,6,7},A 可能; 对于B 选项,若B ={3,4,5},则A ∩B ={3},∁U (A ∩B )={1,2,4,5,6,7},B 可能; 对于C 选项,若B ={2,3,6},则A ∩B ={2,3}, 所以∁U (A ∩B )={1,4,5,6,7},矛盾,故C 不可能; 对于D 选项,若B ={3,5,6},则A ∩B ={3},∁U (A ∩B )={1,2,4,5,6,7},D 可能.8.已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的个数是()①A∩B=∅;②A∩B=B;③A∪B=U;④(∁U B)∪A=A.A.1B.2C.3D.4答案B解析令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠∅,A∩B≠B,故①②均不正确;由(∁U A)∪B=B,知(∁U A)⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由(∁U A)⊆B,知(∁U B)⊆A,∴(∁U B)∪A=A,故③④均正确.9.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.答案-3解析由题意可知,A={x∈U|x2+mx=0}={0,3},即0,3为方程x2+mx=0的两个根,所以m=-3.10.(2022·宁夏模拟)已知全集U=R,集合M={x∈Z||x-1|<3},N={-4,-2,0,1,5},则下列Venn图中阴影部分的集合为________.答案{-1,2,3}解析集合M={x∈Z||x-1|<3}={x∈Z|-3<x-1<3}={x∈Z|-2<x<4}={-1,0,1,2,3},Venn图中阴影部分表示的集合是M∩(∁R N)={-1,2,3}.11.已知集合A={m2,-2},B={m,m-3},若A∩B={-2},则A∪B=________.答案{-5,-2,4}解析∵A∩B={-2},∴-2∈B,若m=-2,则A={4,-2},B={-2,-5},∴A∩B={-2},A∪B={-5,-2,4};若m-3=-2,则m=1,∴A={1,-2},B={1,-2},∴A∩B={1,-2}(舍去),综上,有A∪B={-5,-2,4}.12.已知集合A={x|y=lg(a-x)},B={x|1<x<2},且(∁R B)∪A=R,则实数a的取值范围是____________.答案[2,+∞)解析由已知可得A=(-∞,a),B=(-∞,1]∪[2,+∞),∁RB)∪A=R,∴a≥2.∵(∁R13.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=______,n=________.答案-11解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.14.对班级40名学生调查对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B 都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人,问对A,B都赞成的学生有___人.答案18解析赞成A的人数为40×35=24,赞成B的人数为24+3=27,设对A,B都赞成的学生有x人,则13x+1+27-x+x+24-x=40,解得x=18.15.若x ∈A ,则1x∈A ,就称A 是“伙伴关系”集合,集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有“伙伴关系”的集合的个数为()A .15B .16C .32D .256答案A解析由题意知,满足“伙伴关系”的集合由以下元素构成:-1,1,12,2,13,3,其中12和2,13和3必须同时出现,所有满足条件的集合个数为24-1=15. 16.已知集合A ={x |8<x <10},设集合U ={x |0<x <9},B ={x |a <x <2a -1},若(∁U B )∩A ={x |8<x <9},则实数a 的取值范围是______________.答案⎝⎛⎦⎥⎤-∞,92 解析当B =∅时,2a -1≤a ,解得a ≤1,此时∁U B =U ,(∁U B )∩A =U ∩A ={x |8<x <9},符合题意;当B ≠∅时,2a -1>a ,解得a >1,因为集合U ={x |0<x <9},B ={x |a <x <2a -1},所以∁U B ={x |0<x ≤a 或2a -1≤x <9},因为(∁U B )∩A ={x |8<x <9},所以2a -1≤8,解得a ≤92, 所以B ≠∅时,1<a ≤92, 综上所述,实数a 的取值范围是⎝⎛⎦⎥⎤-∞,92.。
专题01 集合的概念 学案——2023届高考数学一轮复习重难点突破
2023年高考一轮复习重难点突破专题01 集合的概念【知识归纳】1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R【题型分类】与集合中元素有关问题的求解步骤步骤一:确定集合的元素是什么,集合是数集还是点集.步骤二:看这些元素满足什么限制条件.步骤三:根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.题型一.集合的含义1.现规定:A是一些点构成的集合,若连接点集A内任意两点的线段,当该线段上所有点仍在点集A内时,则称该点集A是连通集,下列点集是连通集的是() A.函数2xy 图象上的点构成的集合B.旋转体表面及其内部点构成的集合C.扇形边界及其内部点构成的集合D.正四面体表面及其内部点构成的集合2.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合2{|1}y y x =-与集合2{(,)|1}x y y x =-是同一个集合; (3)3611,,,||,0.5242-这些数组成的集合有5个元素;(4)集合{(,)|0x y xy ,x ,}y R ∈是指第二和第四象限内的点集. A .0个B .1个C .2个D .3个3.定义集合A ,B 的一种运算“*”, *{|A B p p x y ==+,x A ∈,}y B ∈.若{1A =,2,3},{1B =,2},则集合*A B 中所有元素的和 .4.记集合{0T =,1,2,3,4,5,6},3124234|,1,2,3,47777i a a a a M a T i ⎧⎫=+++∈=⎨⎬⎩⎭,将M 中的元素按从大到小的顺序排列,则第2009个数是 .题型二.元素与集合关系的判断5.已知集合{0A =,1,2},那么( ) A .0A ⊆B .0A ∈C .{1}A ∈D .{0,1,2}A6.若集合{1}A =,则下列关系错误的是( ) A .1A ∈B .A A ⊆C .A ∅⊆D .A ∅∈7.若集合{|2020}A x N x =∈,22a =,则下列结论正确的是( )A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉8.已知集合{|14A x x =-<,)x Z ∈,则集合A 中元素的个数为( ) A .3B .4C .5D .69.已知集合{|0}M x x =,{|x N y y e ==,}x R ∈,那么正确的一项是( ) A e NB .0N ∈C .N M ⊆D .M N =10.若集合2{|1}A x N x =∈,1a =-,则下列结论正确的是( ) A .a A ∉B .a A ∈C .{}a A ∈D .{}a A ⊆11.已知i 是虚数单位,则集合{|n A x x i ==,}n Z ∈中元素的个数为 .12.设集合{1A =-,0,1,2},{1B =,2},{|C x x ab ==,a A ∈,}b B ∈,则集合C 中元素的个数为( ) A .5B .6C .7D .813.已知集合{|(3)(7)0A x x x =--,}x Z ∈,则集合A 中元素个数为( ) A .3B .4C .5D .614.已知集合{|(3)(7)0}A x Z x x =∈--,则集合A 中元素个数为( ) A .3B .4C .5D .615.设集合{|31}A x x m =-<,若1A ∈且2A ∉,则实数m 的取值范围是( ) A .(2,5)B .[2,5)C .(2,5]D .[2,5]16.已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x = . 17.已知集合{|1}kM x x=>-,且3M -∈,则k 的取值范围是 . 18.若集合{|(3)(2)6}A x N x x =∈--<,则A 中的元素个数为( ) A .3B .4C .5D .619.已知集合2{|45}A x x x =-<,则( ) A . 1.2A -∈ B .0.93A ∉C .2log 30A ∈D .{1A N =,2,3,4}20.设A ,B 是R 中两个子集,对于x R ∈,定义:0,,0,1,,1,x A x Bm n x A x B∉∉⎧⎧==⎨⎨∈∈⎩⎩.①若A B ⊆.则对任意x R ∈,(1)m n -= ; ②若对任意x R ∈,1m n +=,则A ,B 的关系为 .题型三.集合的确定性、互异性、无序性21.已知集合2{|210A x ax x =++=,}a R ∈只有一个元素,则a 的值( ) A .0B .1C .0或1D .1-22.由实数a ,a -,||a ,所组成的集合里,所含元素个数最多有( ) A .0个B .1个C .2个D .3个23.定义集合运算:*{|A B z z xy ==,x A ∈,}y B ∈.设{1A =,2},{0B =,2},则集合*A B 的所有元素之和为( ) A .0B .2C .3D .624.已知集合{1A =,2},{|B x x a b ==+,a A ∈,}b A ∈,则集合B 中元素个数为() A .1B .2C .3D .425.已知集合{1A =,2},{1B =,2,3},{|P x x a b ==+,a A ∈,}b B ∈,则集合P 的元素个数为( ) A .3B .4C .5D .626.若集合{M a =,b ,}c 中的元素是ABC ∆的三边长,则ABC ∆一定不是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形27.集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为( )A .4B .6C .8D .1228.集合{1A =,}t 中实数t 的取值范围是 .29.已知集合{1A =-,0},集合{0B =,1,2}x +,且A B ⊆,则实数x 的值为 . 30.已知数集{1M =-,0,2}x -中有3个元素,则实数x 不能取的值构成的集合为 .题型四.集合的表示法31.若集合2{|10}A x ax ax =-+=∅,则实数a 的取值集合为( ) A .{|04}a a <<B .{|04}a a <C .{|04}a a <D .{|04}a a32.已知集合2{|1log }A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k >B .8kC .16k >D .16k33.已知集合{|(1)}A x y lg x ==-,{|21}x B y y ==+,则( ) A .{|0}AB x x =< B .AB R =C .{|1}A B x x =>D .A B =∅34.已知集合{|(1)}A x y lg x ==-,{|10}B x x =->,则( ) A .{|0}AB x x =< B .AB R =C .{|1}A B x x =>D .A B =∅35.已知集合{|1}M x x =<,2{|0}N x x x =-<,则( ) A .M N ⊆ B .N M ⊆ C .{|1}MN x x =<D .{|0}MN x x =>36.已知集合2{|0}A x x x =->,2{|log 0}B x x =<,则( ) A .{|0}AB x x =< B .AB R =C .A B =∅D .{|1}A B x x =>37.已知单元素集合2{|(2)10}A x x a x =-++=,则(a = ) A .0B .4-C .4-或1D .4-或038.已知集合2{|30A x x x =-<,*}x N ∈,则用列举法表示集合A = .参考答案1.【解析】解:函数2x y =图象上连接任意两点的线段上的其它点不在函数2x y =图象上的,A ∴不正确.如果旋转体内部是空腔时,内表面上连接任意两点的线段上的其它点不在旋转体表面或其内部.,B ∴不正确如果扇形的圆心角大于180︒时,会出现连接某些点的线段上的其它点不在扇形边界或其内部,C ∴不正确∴利用排除法,应该选D故选:D .2.【解析】解:(1)中很小的实数没有确定的标准,不满足集合元素的确定性; (2)中集合2{|1}y y x =-的元素为实数,而集合2{(,)|1}x y y x =-的元素是点; (3)有集合元素的互异性这些数组成的集合有3个元素; (4)集合{(,)|0x y xy ,x ,}y R ∈中还包括实数轴上的点. 故选:A . 3.【解析】解:*{|A B p p x y ==+,x A ∈,}y B ∈.{1A =,2,3},{1B =,2}, *{2A B ∴=,3,4,5}, 234514+++=.故答案为:14.4.【解析】解:解法一:3124234|,1,2,3,47777i a a a a M a T i ⎧⎫=+++∈=⎨⎬⎩⎭中的元素为 444444012371,,,,77777-,故从大到小排列第2009个数是3928240149=. 解法二:根据题意,发现M 是关于类似7进制的转换问题,从大到小排序的第一个是 6666(7)[1-(7)1]- 所以第2009个数就是: 6666(7)[5566-(7)1]- 即1100(7)392(10)= 故本题的答案即为3928240149=; 故答案为:849. 5.【解析】解:因为集合{0A =,1,2},所以0A ∈,选项A 不正确,选项B 正确, 选项C 是集合与集合之间的关系,错用元素与集合关系,选项D 两个集合相等,所以D 错误. 故选:B .6.【解析】解:A 、B 、C 显然正确,∅与集合的关系不能是∈, 故选:D .7.【解析】解:因为{|2020}A x N x =∈,所以A 中元素全是整数, 因为22a =, 所以a A ∉, 故选:D .8.【解析】解:14x -<,x z ∈,1x ∴=-,0,1,2,3∴集合{1A =-,0,1,2,3}共有5个元素. 故选:C .9.【解析】解:{|0}M x x =,{|0}N y y =>,∴,0,e N N N M ∉⊆,M N ≠.故选:C .10.【解析】解:集合{|11}{0A x N x =∈-=,1},1a =-, 故A 、1A -∉,故本选项正确;B 、1A -∉,故本选项错误;C 、{1}A -⊂/,故本选项错误;D 、{1}A -⊂/,故本选项错误;故选:A .11.【解析】解:当4n k =,*k N ∈时,1n i =;当41n k =+,*k N ∈时,n i i =;当42n k =+,*k N ∈时,1n i =-;当43n k =+,*k N ∈时,n i i =-;所以集合{1A =-,i -,1,}i .故答案为:4.12.【解析】解:当1a =-,1b =时,1ab =-,当1a =-,2b =时,2ab =-, 当0a =,1b =时,0ab =,当0a =,2b =时,0ab =, 当1a =,1b =时,1ab =,当1a =,2b =时,2ab =, 当2a =,1b =时,2ab =,当2a =,2b =时,4ab =,、 故{2C =-,1-,0,1,2,4},即C 中元素的个数为6个. 故选:B .13.【解析】解:已知集合{|(3)(7)0A x x x =--,}{3x Z ∈=,4,5,6,7}, 则集合A 中元素个数为5个,故选:C .14.【解析】解:已知集合{|(3)(7)0}{3A x Z x x =∈--=,4,5,6,7}, 则集合A 中元素个数为5个, 故选:C .15.【解析】解:因为集合{|31}A x x m =-<,若1A ∈且2A ∉, 311m ∴⨯-<且321m ⨯-;解得25m <;故选:C .16.【解析】解:因为实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和, 所以123x x +++=(无解)或者1233x +++=, 解之得3x =-. 故答案为3-. 17.【解析】解:因为10()0k k xx x k x x+>-⇒>⇒+>, 3M -∈,(3)(3)03k k ∴--+>⇒<, k ∴的取值范围是:(,3)-∞.故答案为:(,3)-∞.18.【解析】解:集合{|(3)(2)6}{|05}{1A x N x x x N x =∈--<=∈<<=,2,3,4},则集合A 中的元素个数为4, 故选:B .19.【解析】解:2{|45}{|15}A x x x x x =-<=-<<, 220log 30log 325<<=, 2log 30A ∴∈故选:C . 20.【解析】解:①A B ⊆.则x A ∉时,0m =,(1)0m n -=.x A ∈时,必有x B ∈,1m n ∴==,(1)0m n -=.综上可得:(1)0m n -=.②对任意x R ∈,1m n +=,则m ,n 的值一个为0,另一个为1,即x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,A ∴,B 的关系为RA B =.故答案为:0,RA B =.21.【解析】解:若集合2{|210A x ax x =++=,}a R ∈只有一个元素,则方程2210ax x ++=有且只有一个解当0a =时,方程可化为210x +=,满足条件; 当0a ≠时,二次方程2210ax x ++=有且只有一个解 则△440a =-=,解得1a = 故满足条件的a 的值为0或1 故选:C .22.【解析】解:根据题意,分三种情况讨论, ①0a =,有||a a a =-=,组成的集合中有一个元素; ②0a >,有||a a =,组成的集合中有两个元素; ③0a <,有||a a -=,组成的集合中有两个元素; 故在其组成的集合里,所含元素个数最多有2个; 故选:C .23.【解析】解:根据题意,设{1A =,2},{0B =,2}, 则集合*A B 中的元素可能为:0、2、0、4, 又有集合元素的互异性,则*{0A B =,2,4}, 其所有元素之和为6; 故选:D .24.【解析】解:集合{1A =,2},{|B x x a b ==+,a A ∈,}b A ∈, {2B ∴=,3,4},∴集合B 中元素个数为3.故选:C .25.【解析】解:集合{1A =,2},{1B =,2,3},{|P x x a b ==+,a A ∈,}{2b B ∈=,3,4,5},则集合P 的元素个数为:4. 故选:B .26.【解析】解:根据集合元素的互异性,在集合{M a =,b ,}c 中,必有a 、b 、c 互不相等, 故ABC ∆一定不是等腰三角形; 故选:D .27.【解析】解:由题意,集合*12{|}x N Z x∈∈中的元素满足 x 是正整数,且12x是整数,由此列出下表x 1 2 3 4 6 12 12x1264321根据表格,可得符合条件的x 共有6个,即集合*{|}x N Z x∈∈中有6个元素 故选:B .28.【解析】解:集合{1A =,}t 由集合元素的互异性可得1t ≠ 故实数t 的取值范围是{|1}t t ≠ 故答案为:{|1}t t ≠29.【解析】解:由分析知21x +=-,3x ∴=-. 故答案为3-.30.【解析】解:由集合中元素的互异性可得21x -≠-,20x -≠,解得1x ≠,且2x ≠, 故实数x 不能取的值构成的集合为{1,2}.31.【解析】解:当0a =时,不等式等价于10<,此时不等式无解; 当0a ≠时,要使原不等式无解,应满足 00a >⎧⎨<⎩, 即2040a a a >⎧⎨-<⎩,解得04a <<;综上,a 的取值范围是[0,4). 故选:B .32.【解析】解:集合2{|1log }A x N x k =∈<<,集合A 中至少有3个元素, {2A ∴=,3,4}, 2log 4k ∴>,16k ∴>.故选:C .33.【解析】解:集合{|(1)}{|1}A x y lg x x x ==-=<,{|21}{|1}x B y y y y ==+=>, AB ∴=∅.故选:D .34.【解析】解:集合{|(1)}{|1}A x y lg x x x ==-=<,{|10}{|1}B x x x x =->=>, AB ∴=∅.故选:D .35.【解析】解:集合{|1}M x x =<,2{|0}{|01}N x x x x x =-<=<<,N M ∴⊆.故选:B .36.【解析】解:集合2{|0}{|0A x x x x x =-><或1}x >, 2{|log 0}{|01}B x x x x =<=<<, AB ∴=∅,{|0AB x x =≠且1}x ≠,故选:C .37.【解析】解:单元素集合2{|(2)10}A x x a x =-++=,∴△2[(2)]4110a =-+-⨯⨯=,解得4a =-或0a =. 故选:D .38.【解析】解:由集合2{|30A x x x =-<,*}x N ∈可得, 条件等价于集合{|03A x x =<<,*}{1x N ∈=,2}. 故填:{1,2}.。
【2022届高三数学一轮复习】专题1
专题1.8 基本不等式-重难点题型精练参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.(5分)(2021•三模拟)已知a >0,b >0,且a +2b =3ab ,则ab 的最小值为( ) A .1B .89C .49D .2√23【分析】利用已知条件推出1b +2a =3,然后利用基本不等式转化求解即可.【解答】解:因为a >0,b >0,且a +2b =3ab , 所以1b +2a =3,所以3=1b +2a ≥2√2ab , 所以√ab ≥2√23,即ab ≥89当且仅当{1b =2aa +2b =3ab即a =43,b =23时等号成立,故ab 的最小值89. 故选:B .【点评】本题考查基本不等式的应用,考查转化思想以及计算能力,是基础题. 2.(5分)(2021•乙卷)下列函数中最小值为4的是( ) A .y =x 2+2x +4 B .y =|sin x |+4|sinx| C .y =2x +22﹣xD .y =lnx +4lnx【分析】利用二次函数的性质求出最值,即可判断选项A ,根据基本不等式以及取最值的条件,即可判断选项B ,利用基本不等式求出最值,即可判断选项C ,利用特殊值验证,即可判断选项D . 【解答】解:对于A ,y =x 2+2x +4=(x +1)2+3≥3, 所以函数的最小值为3,故选项A 错误;对于B ,因为0<|sin x |≤1,所以y =|sin x |+4|sinx|≥2√|sinx|⋅4|sinx|=4, 当且仅当|sinx|=4|sinx|,即|sin x |=2时取等号, 因为|sin x |≤1,所以等号取不到,所以y =|sin x |+4|sinx|>4,故选项B 错误;对于C ,因为2x >0,所以y =2x +22﹣x =2x +42x ≥2√2x ⋅42x =4, 当且仅当2x =2,即x =1时取等号, 所以函数的最小值为4,故选项C 正确; 对于D ,因为当x =1e 时,y =ln 1e +4ln 1e=−1−4=−5<4, 所以函数的最小值不是4,故选项D 错误. 故选:C .【点评】本题考查了函数最值的求解,涉及了二次函数最值的求解,利用基本不等式求解最值的应用,在使用基本不等式求解最值时要满足三个条件:一正、二定、三相等,考查了转化思想,属于中档题. 3.(5分)(2021•和平区校级模拟)实数a ,b 满足a >0,b >0,a +b =4,则a 2a+1+b 2b+1的最小值是( )A .4B .6C .32D .83【分析】利用基本不等式得到ab 的范围,可解决此题. 【解答】解:∵a >0,b >0,∴4=a +b ≥2√ab ,∴0<ab ≤4. ∴a 2a+1+b 2b+1=a 2(b+1)+b 2(a+1)(a+1)(b+1)=a 2+b 2+ab(a+b)ab+a+b+1=(a+b)2−2ab+4abab+5=16+2ab ab+5=2(ab+5)+6ab+5=2+6ab+5∈[83,165).∴最小值为83. 故选:D .【点评】本题考查基本不等式应用、转化思想,考查数学运算能力,属于中档题.4.(5分)(2021•包头二模)在△ABC 中,已知C =60°,AB =4,则△ABC 周长的最大值为( ) A .8B .10C .12D .14【分析】根据余弦定理算出(a +b )2=16+3ab ,再利用基本不等式加以计算可得a +b ≤8,即可得到△ABC周长的最大值.【解答】解:∵在△ABC 中,C =60°,AB =c =4,∴由余弦定理,得c 2=a 2+b 2﹣2ab cos C ,即16=a 2+b 2﹣2ab cos60°=a 2+b 2﹣ab ≥2ab ﹣ab =ab (当且仅当a =b =4时等号成立), ∵16=a 2+b 2﹣ab =(a +b )2﹣3ab ,∴(a +b )2≤16+3ab ≤16+3×16=64,由此可得a +b ≤8(当且仅当a =b =4时等号成立),∴△ABC 周长a +b +c ≤8+4=12(当且仅当a =b =4时等号成立),即当且仅当a =b =4时,△ABC 周长的最大值为12.故选:C .【点评】本题给出三角形的一边和它的对角,求周长的最大值,着重考查了用余弦定理解三角形和基本不等式求最值等知识,属于中档题.5.(5分)(2021•南通模拟)已知x >0,y >0,且x +y =1,则下列结论中正确的是( ) A .1x+1y 有最小值4B .xy 有最小值14C .2x +2y 有最大值√2D .√x +√y 有最大值2【分析】利用“乘一法”及基本不等式的性质逐项判断即可. 【解答】解:∵x >0,y >0,且x +y =1, 对于A ,1x +1y=(1x+1y)(x +y )=2+x y +yx ≥4,故A 正确,对于B ,∵x +y ≥2√xy ,∴xy ≤(x+y 2)2=14,故B 错误,对于C ,2x +2y ≥2√2x ⋅2y =2√2,故C 错误, 对于D ,(√x +√y )2=x +y +2√xy =1+2√xy ,∵xy 有最大值14,故(√x +√y )2有最大值2,故D 错误,故选:A .【点评】本题考查基本不等式的性质,同时考查学生的运算能力.属于基础题.6.(5分)(2021•湖南模拟)数学里有一种证明方法叫做Proofswithoutwords ,也称之为无字证明,一般是指仅用图象语言而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证明被认为比严格的数学证明更为优雅.现有如图所示图形,在等腰直角三角形△ABC 中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD =a ,BD =b ,则该图形可以完成的无字证明为( )A .a+b 2≥√ab (a >0,b >0)B .2aba+b ≤√ab (a >0,b >0)C .a+b 2≤√a 2+b 22(a >0,b >0)D .a 2+b 2≥2√ab (a >0,b >0)【分析】由已知图形先求出OC ,CD ,然后结合OC ≤CD 即可判断.【解答】解:由题意得AB =AD +BD =a +b ,CO =12(a +b ),OD =OB ﹣DB =12(a +b )﹣b =12(a ﹣b ),Rt △OCD 中,CD 2=OC 2+OD 2=(a+b)24+(a−b)24=a 2+b 22, 因为OC ≤CD ,所以12(a +b )≤√a 2+b 22,当且仅当a =b 时取等号, 故选:C .【点评】本题主要考查了基本不等式的应用,体现了转化思想的应用,属于基础题.7.(5分)(2021•浙江模拟)已知直线l 过第一象限的点(m ,n )和(1,5),直线l 的倾斜角为135°,则1m+4n的最小值为( )A .4B .9C .23D .32【分析】根据题意,由直线的斜率计算公式可得n−5m−1=−1,变形可得m +n =6,则有1m+4n=16×(1m+4n)(m +n )=16(5+4m n +nm),结合基本不等式的性质分析可得答案. 【解答】解:根据题意,直线l 过第一象限的点(m ,n )和(1,5),直线l 的倾斜角为135°, 则n−5m−1=−1,变形可得m +n =6,则1m+4n=16×(1m +4n)(m +n )=16(5+4m n +nm ), 又由点(m ,n )在第一象限,即m >0,n >0, 则有4m n+nm≥2√4m n ×nm =4,当且仅当n =2m 时等号成立, 故1m +4n =16(5+4m n +n m )≥32,即1m +4n 的最小值为32, 故选:D .【点评】本题考查基本不等式的性质以及应用,涉及直线的斜率,属于基础题.8.(5分)(2021•1月份模拟)已知a ,b ,c ∈[12,1],则a 2+2b 2+c 2ab+bc的取值范围是( )A .[2,3]B .[52,3]C .[2,52]D .[1,3]【分析】由a 2+2b 2+c 2=a 2+b 2+b 2+c 2,然后利用重要不等式得到a 2+2b 2+c 2ab+bc≥2,根据12≤a b≤2,12≤b a≤2,构造对勾函数,然后结合其性质可求. 【解答】解:a 2+2b 2+c 2ab+bc=a 2+b 2+b 2+c 2ab+bc≥2ab+2bc ab+bc=2,当且仅当a =b =c 时取等号, 因为12≤a ≤1,12≤b ≤1,所以12≤a b≤2,12≤b a≤2,令f (x )=x +1x ,12≤x ≤2,根据对勾函数单调性知,当x =1时,函数取得最小值2,当x =2或12时,函数取得最大值52,故2≤f(x)≤52, 所以2≤b a +a b ≤52,即a 2+b 2≤52ab , 同理b 2+c 2≤52bc ,所以a 2+2b 2+c 2≤52(ab +bc), 所以a 2+2b 2+c 2ab+bc≤52.所以2≤a 2+2b 2+c 2ab+bc ≤52.故选:C .【点评】本题主要考查了基本不等式,不等式的性质及对勾函数单调性在求解范围及最值中的应用,试题的变形比较灵活,属于中档题.二.多选题(共4小题,满分20分,每小题5分)9.(5分)(2021•二模拟)已知正数a ,b 满足ab =a +b ,则( ) A .1a−1+1b−1≥2B .1a 2+1b 2≥12C .2−a +2−b ≥12D .log 2a +log 2b ≥2【分析】由ab =a +b ,转化为(a ﹣1)(b ﹣1)=1,可判断A ; 由ab =a +b 转化为1a +1b=1,再结合2(a 2+b 2)≥(a +b )2可判断B ;取a =b =3可判断C ;由ab =a +b ≥2√ab ,得ab ≥4,可判断D .【解答】解:因为正数a ,b 满足ab =a +b ,所以(a ﹣1)(b ﹣1)=1,且a >1,b >1,所以1a−1+1b−1≥2√1(a−1)(b−1)=2,∴A 对;由ab =a +b 可得1a+1b=1,所以2(1a 2+1b 2)≥(1a +1b )2=1,即1a 2+1b 2≥12,故B 正确;当a =b =3时,2−3+2−3=14<12,故C 错误;因为ab =a +b ≥2√ab ,所以ab ≥4,所以log 2a +log 2b =log 2(ab )≥log 24=2,故D 正确. 故选:ABD .【点评】本题考查基本不等式应用,考查数学运算能力,属于中档题.10.(5分)(2021•B 卷模拟)已知a ,b ,c 为正数,且满足abc =1,则下列结论正确的是( ) A .(a +b )√c ≥2 B .1a +1b+1c≤a 2+b 2+c 2C .若0<c ≤1,则(a +1)(b +1)<4D .a 2b 2+2b 2c ≥3【分析】(a +b )√c 转化为(a +b )√1ab 可判断A ;1a+1b+1c转化为ab +bc +ac 可判断B ;由0<c ≤1可知ab ≥1,则(a +1)(b +1)=ab +a +b +1,利用基本不等式可判断C ; 2b 2c 转化为2b 2•1ab=2b a可判断D .【解答】解:∵a ,b ,c 为正数,abc =1∴(a +b )√c =(a +b )√1ab ≥2√ab •√1ab =2,∴A 对;∵a ,b ,c 为正数,abc =1,∴1a +1b +1c=ab +bc +ac ≤a 2+b 22+b 2+c 22+a 2+c 22=a 2+b 2+c 2,∴B 对;由0<c ≤1,abc =1可知ab ≥1,∵a ,b 为正数,∴(a +1)(b +1)=ab +a +b +1≥ab +2√ab +1≥4,∴C 错;∵a ,b ,c 为正数,abc =1,∴a 2b 2+2b 2c =a 2b2+2b 2•1ab=a 2b 2+b a+b a≥3√a 2b 2⋅b a ⋅ba3=3,∴D 对. 故选:ABD .【点评】本题考查基本不等式及应用,考查数学运算能力,属于中档题. 11.(5分)(2021•辽宁模拟)设x >0,y >0,则下列结论正确的是( ) A .不等式(x +y)(1x +1y )≥4恒成立B .函数f (x )=3x +3﹣x的最小值为2C .函数f(x)=xx 2+3x+1的最大值为15D .若x +y =2,则12x+1+1y+1的最小值为 56【分析】由已知结合基本不等式分别检验各选项即可判断. 【解答】解:因为x >0,y >0, (x +y )(1x+1y )=2+yx+xy ≥4,当且仅当y x =x y时取等号,A 正确; 因为3x >1,则f (x )=3x +3﹣x ≥2√3x ⋅3−x =2,当且仅当3x =3﹣x ,即x =0时取等号,但x >0,故B 错误; f(x)=xx 2+3x+1=1x+1x +3≤12+3=15,当且仅当x =1x ,即x =1时取等号,C 正确; 因为x +y =2,所以2x +2y =4, 则12x+1+1y+1=12x+1+22y+2=17(12x+1+22y+2)(2x +1+2y +2)=17(3+2y+22x+1+2x+1y+1)≥17(3+2√2), 当且仅当2y+22x+1=2x+1y+1时取等号,D 错误.故选:AC .【点评】本题主要考查了利用基本不等式求解最值,解题的关键是应用条件的检验及配凑.12.(5分)(2021•山东二模)已知实数a ,b 满足a 2﹣ab +b =0(a >1),下列结论中正确的是( ) A .b ≥4B .2a +b ≥8C .1a+1b>1 D .ab ≥274【分析】A .由验证可得:b =a 2a−1=a 2−1+1a−1=a +1+1a−1=a ﹣1+1a−1+2,利用基本不等式即可判断出正误;B .2a +b =2a +a +1+1a−1=3(a ﹣1)+1a−1+4利用基本不等式即可判断出正误; C .由a >1,可得1a∈(0,1),1a+1b=1a+a−1a 2=−1a 2+2a=−(1a−1)2+1>1,利用二次函数的单调性即可判断出正误;D .ab =a •a 2a−1=a 3a−1,令f (x )=x 3x−1,(x >1).求出f ′(x ),利用导数研究函数的单调性即可判断出正误.【解答】解:实数a ,b 满足a 2﹣ab +b =0(a >1),A .b =a 2a−1=a 2−1+1a−1=a +1+1a−1=a ﹣1+1a−1+2≥2√(a −1)⋅1a−1+2=4,当且仅当a =2时取等号,因此正确;B .2a +b =2a +a +1+1a−1=3(a ﹣1)+1a−1+4≥2√3(a −1)⋅1a−1+4=2√3+4,当且仅当a =1+√33取等号,因此不正确;C .∵a >1,∴1a∈(0,1),1a+1b=1a+a−1a 2=−1a 2+2a=−(1a−1)2+1<1,因此不正确;D .ab =a •a 2a−1=a 3a−1,令f (x )=x 3x−1,(x >1).f ′(x )=2x 2(x−32)(x−1)2, 可得x =32时,函数f (x )取得极小值,即最小值.f (32)=(32)332−1=274, ∴f (x )≥274,即ab ≥274,因此正确. 故选:AD .【点评】本题考查了基本不等式、二次函数的单调性、利用导数研究函数的单调性,考查了推理能力与计算能力,属于基础题.三.填空题(共4小题,满分20分,每小题5分)13.(5分)(2021•湖南模拟)已知a >b ,关于x 的不等式ax 2+2x +b ≥0对于一切实数x 恒成立,又存在实数x 0,使得ax 02+2x 0+b =0成立,则a 2+b 2a−b的最小值为 2√2 .【分析】不等式ax 2+2x +b ≥0对于一切实数x 恒成立,可得△≤0,存在x 0∈R ,使ax 02+2x 0+b =0成立,则△≥0,可得ab 的等式关系,利用基本不等式的性质求解a 2+b 2a−b的最小值即可.【解答】解:由题意,不等式ax 2+2x +b ≥0对于一切实数x 恒成立,可得{a >04−4ab ≤0,解得ab ≥1,存在x 0∈R ,使ax 02+2x 0+b =0成立,则△≥0,即4﹣4ab ≥0,得ab ≤1, ∴ab =1,∵a >b ,∴a >1,∴a −1a >0, 由b =1a ,a 2+b 2a−b=a 2+1a2a−1a=(a −1a )+2a−1a≥2√2,当且仅当(a−1a)2=2时取等号.故答案为:2√2.【点评】本题考查了基本不等式的性质的运用和构造思想,特别是构造分子,分母适合基本不等式,属于中档题.14.(5分)(2021•鄞州区校级模拟)若实数x,y满足2x2+xy﹣y2=1,则5x2﹣2xy+2y2的最小值为2.【分析】由已知2x2+xy﹣y2=(2x﹣y)(x+y)=1,而5x2﹣2xy+2y2=(2x﹣y)2+(x+y)2,然后利用基本不等式即可求解,【解答】解:因为2x2+xy﹣y2=(2x﹣y)(x+y)=1,令t=2x﹣y,则x+y=1 t,则5x2﹣2xy+2y2=(2x﹣y)2+(x+y)2=t2+1t2≥2√t2⋅1t2=2,当且仅当t2=1t2,即t=±1时取等号,此时5x2﹣2xy+2y2取最小值2.故答案为:2.【点评】本题主要考查了利用基本不等式求解最值,解题的关键是基本不等式的应用条件的配凑,属于基础题.15.(5分)(2021•汕头三模)函数y=a x﹣3+1(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny﹣1=0上,其中m>0,n>0,则mn的最大值为124.【分析】先利用指数函数的性质求出定点A,然后利用点在直线上,得到3m+2n=1,再利用基本不等式求解mn的最值即可.【解答】解:因为当x=3时,y=a3﹣3+1=2,所以函数y=a x﹣3+1(a>0且a≠1)的图象恒过定点A(3,2),又点A在直线mx+ny﹣1=0上,所以3m+2n﹣1=0,即3m+2n=1,因为m>0,n>0,所以mn=16⋅3m⋅2n≤16⋅(3m+2n2)2=16×14=124,当且仅当3m=2n=12,即m=16,n=14时取等号,所以mn的最大值为124.故答案为:124.【点评】本题考查了指数函数恒过定点问题,利用基本不等式求解最值问题,在使用基本不等式求解最值时要满足三个条件:一正、二定、三相等,属于中档题.16.(5分)(2021•嘉定区二模)已知正数x 、y 满足x +4y=1,则1x+y 的最小值为 9 .【分析】利用“乘1法”与基本不等式的性质即可得出. 【解答】解:因为正数x 、y 满足x +4y=1,则1x+y =(1x+y )(x +4y )=5+xy +4xy ≥5+2√xy ⋅4xy =9,当且仅当xy =4xy 且x +4y =1,即x =13,y =6时取等号,此时1x+y 的最小值9.故答案为:9.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题. 四.解答题(共6小题,满分70分)17.(10分)(2021•内江模拟)已知a >0,b >0,4a +b =2ab . (1)求a +b 的最小值;(2)若a +b ≥|2x ﹣1|+|3x +2|对满足题中条件的a ,b 恒成立,求实数x 的取值范围. 【分析】(1)由已知利用乘1法,结合基本不等式即可直接求解;(2)结合(1)中的最值,然后结合不等式恒成立与最值的相互转化关系,结合零点分段讨论即可求解. 【解答】解:(1)因为a >0,b >0,4a +b =2ab , 所以4b +1a=2,所以a +b =12(a +b )(1a+4b)=12(5+b a+4a b )≥12(5+2√b a ⋅4a b )=92, 当且仅当b a=4a b且4b+1a=2,即a =32,b =3时取等号,a +b 的最小值92;(2)若a +b ≥|2x ﹣1|+|3x +2|对满足题中条件的a ,b 恒成立,则92≥|2x ﹣1|+|3x +2|, 当x ≥12时,原不等式可化为2x ﹣1+3x +2≤92, 所以12≤x ≤710;当−23<x <12时,原不等式可化为﹣2x +1+3x +2≤92, 所以−23<x <12,当x ≤−23时,原不等式可化为﹣2x +1﹣3x ﹣2≤92,所以−1110≤x ≤−23, 综上,x 的取值范围[−1110,710].【点评】本题主要考查了乘1法及基本不等式求解最值,还考查了不等式的恒成立与最值关系的相互转化及利用零点分段求解不等式,分段讨论去绝对值是求解不等式的关键. 18.(12分)(2021春•青山湖区校级期中)已知正数a 、b 满足1a +1b=1.(1)求a +b 的最小值; (2)求4a a−1+9bb−1的最小值.【分析】(1)利用乘1法a +b =(a +b )(1a+1b),展开后结合基本不等式即可求解;(2)先对已知式子进行变形,结合已知条件可得(a ﹣1)(b ﹣1)=1,利用基本不等式可求. 【解答】解:(1)因为a 、b 是正数,所以a +b =(a +b)(1a +1b )=2+ab +ba ≥2+2√ab ×ba =4,当且仅当a =b =2时等号成立,故a +b 的最小值为4.(2)因为a >1,b >1,所以a ﹣1>0,b ﹣1>0,则4a a−1+9b b−1=4+4a−1+9+9b−1≥13+2√4a−1×9b−1=25,当且仅当a =53、b =52时等号成立,故4aa−1+9bb−1的最小值为25.【点评】本题主要考查了利用基本不等式求解最值,解题的关键是应用条件的配凑,属于中档题. 19.(12分)(2020秋•海淀区校级月考)已知x +y =1,x ,y ∈R +. (1)求x 2+y 2+xy 的最小值; (2)求√x +√y 的最大值; (3)求x (1﹣3y )的最小值.【分析】(1)x 2+y 2+xy =(x +y )2﹣xy =1﹣xy ,然后利用基本不等式即可求解; (2)(√x +√y )2=x +y +2√xy =1+2√xy ,然后利用基本不等式即可求解;(3)由x (1﹣3y )=(1﹣y )(1﹣3y )=3y 2﹣4y +1,然后结合二次函数的性质可求解. 【解答】解:(1)x 2+y 2+xy =(x +y )2﹣xy =1﹣xy ≥1﹣(x+y 2)2=34,当且仅当x =y =12时,取得最小值34;(2)因为x+y=1,x,y∈R+,所以(√x+√y)2=x+y+2√xy=1+2√xy≤1+x+y=2,当且仅当x=y时取等号,此时取得最大值2;(3)∵x,y∈R+,x+y=1,∴x(1﹣3y)=(1﹣y)(1﹣3y)=3y2﹣4y+1,结合二次函数的性质可知,当y=23时取得最小值−13.【点评】本题主要考查了基本不等式及二次函数的性质在求解最值中的应用,属于基础题.20.(12分)(2021•江西模拟)设a>0,b>0,且a+b=2ab.(1)若不等式|x+1|+2|x|≤a+b恒成立,求实数x的取值范围;(2)当实数a,b满足什么条件时,a﹣b+3ba取得最小值,并求出最小值.【分析】(1)先利用基本不等式求出a+b的最小值,从而将所求的不等式转化为|x+1|+2|x|≤2,根据绝对值的定义分别讨论,求解不等式即可;(2)利用已知的等式,将b用a表示出来,然后代入a﹣b+3ba中化简变形,由基本不等式求解最值即可.【解答】解:(1)由a>0,b>0,a+b=2ab,可得1a +1b=2,所以a+b=12(a+b)(1a+1b)=12(b a+a b+2)≥12⋅(2√b a⋅a b+2)=12×4=2.当且仅当a=b=1时取等号,不等式|x+1|+2|x|≤a+b恒成立,即|x+1|+2|x|≤2,当x<﹣1时,不等式可化为﹣x﹣1﹣2x≤2,解得x≥﹣1,此时x∈∅;当﹣1≤x≤0时,不等式可化为x+1﹣2x≤2,解得x≥﹣1,此时﹣1≤x≤0;当x>0时,不等式可化为x+1+2x≤2,解得x≤13,此时0<x≤13.综上所述,实数x的取值范围是{x|−1≤x≤13 };(2)由a>0,b>0,a+b=2ab,所以b=a2a−1,故a﹣b+3ba=a−a2a−1+32a−1=2a2−2a+32a−1=a−12+54a−2=14(4a−2)+54a−2,当4a﹣2>0,即a>12时,a﹣b+3ba=14(4a−2)+54a−2≥2√14(4a−2)⋅54a−2=√5,当且仅当a=12+√52,b=12+√510时,a﹣b+3b a有最小值√5.【点评】本题考查了不等式的求解以及基本不等式的应用,主要考查了“1”的代换的应用,在使用基本不等式求解最值时要满足三个条件:一正、二定、三相等,属于中档题.21.(12分)(2020秋•海门市校级月考)(1)已知正实数x,y满足x+2x+3y+4y=10,则xy的取值范围为多少?(2)已知a>b>0,则a2+1ab+1a(a−b)的最小值是多少?【分析】(1)令t=xy,t>0,则y=tx,然后代入后结合基本不等式即可求解,(2)由已知a2+1ab+1a(a−b)=a2−ab+ab+1ab+1a(a−b),=ab+1ab+a(a﹣b)+1a(a−b),然后结合基本不等式即可求解.【解答】解:(1)令t=xy,t>0,则y=t x,∴10=x+2x+3y+4y=x+2x+3t x+4x t=(1+4t)x+2+3tx≥2√(1+4t)x⋅2+3tx=2√(2+3t)(t+4)t,整理可得,3t2﹣11t+8≤0,解可得,1≤t≤8 3,故1≤xy≤8 3,(2)∵a>b>0,∴a﹣b>0,则a2+1ab+1a(a−b)=a2−ab+ab+1ab+1a(a−b),=ab+1ab+a(a﹣b)+1a(a−b),≥2√ab⋅1ab+2√a(a−b)⋅1a(a−b)=2+2=4,当且仅当ab=1ab且a(a﹣b)=1a(a−b)即a=√2,b=√22时取等号,此时取得最小值4.【点评】本题主要考查利用基本不等式求解最值,解题的关键是应用条件的配凑.22.(12分)(2019秋•濮阳期末)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=920υυ2+3υ+1600(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式) (2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内? 【分析】(1)根据基本不等式性质可知y =920υυ2+3υ+1600=9203+(v+1600v)≤92083,进而求得y 的最大值.根据等号成立的条件求得此时的平均速度.(2)在该时间段内车流量超过10千辆/小时时,解不等式即可求出v 的范围. 【解答】解:(1)依题意,y =920υυ2+3υ+1600=9203+(v+1600v)≤92083, 当且仅当v =1600v,即v =40时,上式等号成立, ∴y max =92083(千辆/时). ∴如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25km /h 且小于64km /h .当v =40km /h 时,车流量最大,最大车流量约为92083千辆/时;(2)由条件得920υυ2+3υ+1600>10,整理得v 2﹣89v +1600<0,即(v ﹣25)(v ﹣64)<0.解得25<v <64.【点评】本题主要考查了基本不等式在最值问题中的应用.要特别留意等号取得的条件.。
【高考第一轮复习数学】数列专题
专题三、数列一、等差数列:1、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.2、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a c b +=,则称b 为a 与c 的等差中项. 3、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.()n m a a n m d =+-4、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 5、等差数列的性质:(1)m n p q +=+(m 、n 、p 、*q ∈N ),则m np q a a a a +=+; 特别地,若2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+.(2)n S ,2n n S S -,32n n S S -成等比数列.(3)若项数为()*2n n ∈N ,则S S nd -=偶奇,.(4)若项数为()*21n n -∈N ,则()2121n n S n a -=-,1S n S n =-奇偶 二、等比数列:1、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.2、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.3、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.n m n m a a q -=4、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩ 5、等比数列的前n 项和的性质:(1)m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅.(2)n S ,2n n S S -,32n n S S -成等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一:集合
一、集合的基本概念及表示方法
1、集合的概念
一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合,简称集.通常用大写英文字母A、B、C、····表示。
集合中的每个对象叫做这个集合的元素,通常用小写字母a、b、c、····表示.
2、集合中元素的三个特征
(1)确定性
设A使一个给定的集合,a是某一具体的对象,则a是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.
(2)互异性
集合中的元素必须是互异的,也就是说,对于一个给定的集合,它的任何两个元素都是不同的.即集合中的元素不重复,两个或两个以上的相同的元素都认为是一个元素,在用列举法表示时也只能写一个.例如方程x2+2x+1=0的解组成的集合A,必须写成A={-1}.
(3)、无序性
集合中的元素不考虑顺序,对于元素相同而排列顺序不同的集合认为是相同的集合.例如集合{1,2,3,4}与集合{4,3,2,1}是相同的集合.
3、集合的分类
集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集.
4、集合的表示方法
(1)列举法
把集合中的元素一一列举出来,并用花括号括起来表示集合的方法.
使用列举法时应注意一下几点:
①元素间用分隔号“,”;②元素不重复;③元素无顺序;④对于含较多元素的集合如果构成该集合的元素有明显规律,可用列举法,但必须把元素间的规律显示清楚后才能用省略号.如:由方程x2-1=0的所有解组成的集合可以表示为{-1,1}.
(2)描述法
用确定的条件表示某些对象是否属于这个集合,并把这个条件写在花括号内表示集合的方法,即{x∈A│p(x)}.
对于描述法,不能只把注意力放在竖号“│”右边“p”适合的条件,还要对竖号“│”左边的形式引起足够的重视.
如:所有的直角三角形的集合可以表示为{x│x是直角三角形}.
(3)图示法
为了形象的表示集合,我们常常画一条封闭的曲线,
用它的内部来表示一个集合.
如图所示,表示集合{1,3,5,8}.
5、空集
不含任何元素的集合叫做空集,记作φ.
注意:(1)空集中没有任何元素,要区分φ和{0},集合{0}中有1个元素0,而φ中没有任何元素,两者有着本质的不同.
(2)空集在实际问题中是实实在在存在的,如在实数范围内方程x2+1=0的解集和不等式x2+1<0的解集都是空集.
6、常用数集的符号
为了书写方便对于常用数集用特定的字母表示:
(1)全体非负整数组成的集合通常简称非负整数集(或自然数集),记作N;
(2)非负整数集内排除0的集合,称为正整数集,表示成N*(或N+);
(3)全体整数组成的集合通常简称为整数集,记作Z;
(4)全体有理数组成的集合通常简称为有理数集,记作Q;
(5)全体实数组成的集合通常简称为实数集,记作R;
二、集合间的关系
1、包含关系
如果任意x∈A,=>x∈B,则集合A是集合B的子集,记作A ⊆B 或B⊇A.显然,任何集合是他自身的子集,即A ⊆A,空集是任何集合的子集,即φ⊆A.
2、相等关系
对于两个集合A、B,如果A ⊆B同时B ⊆A,那么成集合A和集合B相等,记作A=B.显然,两个相等的集合的元素完全相同.
3、真包含关系
对于两个集合A和B,如果A ⊆B,并且A≠b,称集合A是集合B的真子集,记作A B,显然,空集是任何非空集合的真子集,若A B,则B中至少存在一个元素不属于A.
三、集合与集合间的运算
1、交集
一般的对于两个给定的集合A、B,由属于集合A且属于集合B的所有元素构成的集合,叫做A和B的交集,记作A∩B.
2、并集
一般的对于两个给定的集合A、B,由属于集合A或属于集合B的所有元素组成的集合,叫做A与B的并集,记作A∪B.
3、全集与补集
含有所要研究的各集合的全部元素的集合称为全集,一般可记作U,全集是相对的.若A是全集U的子集,则由全集中不属于A的元素组成的集合称为A的补集,记作C U A.。