2018年浙江省金华市中考数学试卷(含答案解析版)
2018年浙江省金华市、丽水市中考数学试卷(解析版)
2018年浙江省金华市、丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市、丽水市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【解答】解:∠B的同位角可以是:∠4.故选:D.4.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,AB=OD﹣OA=40﹣30=10,∴P(9,10);故选:C.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1.【解答】解:原式=x2﹣1,故答案为:x2﹣112.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣115.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.18.(6分)解不等式组:【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【解答】解:符合条件的图形如图所示;21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴F H=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.。
2018年浙江省金华市中考数学试卷带答案(含答案解析版)
2018年浙江省金华市中考数学试卷带答案(含答案解析版)2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a43.如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65° D.70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.解不等式组:19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20(8分)(2018?金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB 为半径作圆,分别与BC,AB 相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018?金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018?金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018?金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018?金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018?金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【考点】U3:由三视图判断几何体.【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018?金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【考点】X5:几何概率.【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018?金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018?金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018?金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A.55°B.60°C.65° D.70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018?金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A 正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018?金华)化简(x﹣1)(x+1)的结果是x2﹣1.【考点】4F:平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018?金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018?金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018?金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【考点】2C:实数的运算.【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018?金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【考点】LB:矩形的性质;IM:七巧板.【专题】556:矩形菱形正方形.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC的长.16.(4分)(2018?金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【考点】M3:垂径定理的应用;KU:勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018?金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)(2018?金华)解不等式组:【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018?金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018?金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018?金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018?金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.。
浙江省金华、丽水市2018年中考数学试题及答案解析
2018年浙江省丽水市中考数学试卷(解析版)一、一、选择题(共10题;共20分)1.在0,1, ,−1四个数中,最小的数是()A. 0B. 1C. D。
−1【解析】【解答】解: ,, ,即—1是最小的数.故答案为:D。
【分析】这些都是有理数,有正数和负数,0时,比较有理数的大小,一般有两种方法:一是根据比较有理数大小的规则;二是根据有理数在数轴上的位置,数轴上右边的数总比左边的数大2。
计算结果正确的是()A。
B. C。
D.【解析】【解答】解: ,故答案为:B。
【分析】考查同底数幂的除法法则;= ,则可用同底数幂的除法法则计算即可。
3.如图,∠B的同位角可以是()A. ∠1 B。
∠2 C。
∠3 D。
∠4 【解析】【解答】解:直线DE和直线BC被直线AB所截成的∠B与∠4构成同位角,故答案为:D 【分析】考查同位角的定义;需要找一个角与∠B构造的形状类似于“F”4。
若分式的值为0,则x的值是()A. 3B. C。
3或 D. 0【解析】【解答】解:若分式的值为0,则,解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时,则分子为零,分母不能为0.5.一个几何体的三视图如图所示,该几何体是()A。
直三棱柱 B. 长方体 C. 圆锥D。
立方体【解析】【解答】主视图是三角形的几何图形可能是直三棱柱和圆锥,左视图是长方形的,也只有直三棱柱,故答案为:A。
【分析】考查由简单几何图形的三视图描述几何图形;根据三视图分别对应选项中,判断是否符号,并逐个排除.其中,主视图是三角形的可能是直三棱柱(直三棱柱有一个面是三角形),也可能是圆锥;也可以根据三视图直接得到几何图形的形状.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A。
B. C. D.【解析】【解答】解:P(指针停止后落在黄色区域)= ,故答案为:B。
2018年浙江省金华市中考数学试卷
2018年浙江省金华市中考数学试卷10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C. D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,AB=OD﹣OA=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出BC=9,AD=10是解本题的关键.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;与x之间的函数关系式,再利用一次C、利用待定系数法求出:当x≥25时,yA函数图象上点的坐标特征可求出当x=35时y的值,将其与50比较后即可得出A结论C正确;与x之间的函数关系式,再利用一次D、利用待定系数法求出:当x≥50时,yB的值,将其与120比较后即可得出函数图象上点的坐标特征可求出当x=70时yB结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;=kx+b,C、设当x≥25时,yA=kx+b,得:将(25,30)、(55,120)代入yA,解得:,=3x﹣45(x≥25),∴yA=3x﹣45=60>50,当x=35时,yA∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y=mx+n,B=mx+n,得:将(50,50)、(55,65)代入yB,解得:,=3x﹣100(x≥50),∴yB当x=70时,y=3x﹣100=110<120,B∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1 .【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC .【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9% .【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1 .【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC的长.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10 cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)解不等式组:【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示;【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018浙江金华市中考数学试题(卷)
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,AB=OD﹣OA=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出BC=9,AD=10是解本题的关键.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠A BC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC的长.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)解不等式组:【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示;【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年金华市中考数学试卷带答案(含答案解析版)
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,﹣12,﹣1四个数中,最小的数是( ) A .0 B .1 C .−12 D .﹣12.计算(﹣a )3÷a 结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 43.如图,∠B 的同位角可以是( )A .∠1B .∠2C .∠3D .∠44.若分式x−3x+3的值为0,则x 的值为( )A .3B .﹣3C .3或﹣3D .05.一个几何体的三视图如图所示,该几何体是()A .直三棱柱B .长方体C .圆锥D .立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .7127.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( )A .(5,30)B .(8,10)C .(9,10)D .(10,10)8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tanαtanβB .sinβsinαC .sinαsinβD .cosβcosα9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~20XX年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y=ax+by.若1*(﹣1)=2,则(﹣2)*2的值是.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则ABBC的值是.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.18.解不等式组:{x3+2<x2x+2≥3(x−1)19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B .(1)求证:AD 是⊙O 的切线.(2)若BC=8,tanB=12,求⊙O 的半径.22.如图,抛物线y=ax 2+bx (a <0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018•金华)在0,1,﹣12,﹣1四个数中,最小的数是( ) A .0 B .1 C .−12 D .﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣12<0<1, ∴最小的数是﹣1,故选:D .【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018•金华)计算(﹣a )3÷a 结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018•金华)如图,∠B的同位角可以是()A.∠1B.∠2C.∠3D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018•金华)若分式x−3x+3的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【考点】U3:由三视图判断几何体.【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712【考点】X5:几何概率.【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为90360=14, 即转动圆盘一次,指针停在黄区域的概率是14, 故选:B .【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tanαtanβB.sinβsinαC.sinαsinβD.cosβcosα【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=ACsinβ,∴AB:AD=ACsinα:ACsinβ=sinβsinα,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B 的值,将其与120比较后即可得出结论D 错误.综上即可得出结论.【解答】解:A 、观察函数图象,可知:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确;B 、观察函数图象,可知:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确;C 、设当x ≥25时,y A =kx +b ,将(25,30)、(55,120)代入y A =kx +b ,得:{25k +b =3055k +b =120,解得:{k =3b =−45,∴y A =3x ﹣45(x ≥25),当x=35时,y A =3x ﹣45=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确;D 、设当x ≥50时,y B =mx +n ,将(50,50)、(55,65)代入y B =mx +n ,得:{50m +n =5055m +n =65,解得:{m =3n =−100,∴y B =3x ﹣100(x ≥50),当x=70时,y B =3x ﹣100=110<120,∴结论D 错误.故选:D .【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1.【考点】4F:平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中{∠BEC=∠ADC ∠EBC=∠DAC AC=BC,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018•金华)如图是我国2013~20XX年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%, 则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018•金华)对于两个非零实数x ,y ,定义一种新的运算:x*y=a x +b y.若1*(﹣1)=2,则(﹣2)*2的值是 ﹣1 .【考点】2C :实数的运算.【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴a 1+b −1=2 即a ﹣b=2∴原式=a −2+b 2=−12(a ﹣b )=﹣1 故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD在边AD 上,则AB BC 的值是 √2+14.【考点】LB :矩形的性质;IM :七巧板.【专题】556:矩形 菱形 正方形.【分析】设七巧板的边长为x ,根据正方形的性质、矩形的性质分别表示出AB ,BC ,进一步求出AB BC 的值.【解答】解:设七巧板的边长为x ,则AB=12x +√22x , BC=12x +x +12x=2x , AB BC =12x+√22x 2x =√2+14. 故答案为:√2+14. 【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB ,BC 的长.16.(4分)(2018•金华)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30√3cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10√5﹣10cm.【考点】M3:垂径定理的应用;KU:勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30̂的圆心,∴D1是B1AC1∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15√3,∴B1C1=30√3∴弓臂两端B1,C1的距离为30√3(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=120⋅π⋅30180,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2=√302−202=10√5∴D1D2=10√5﹣10.故答案为30√3,10√5﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018•金华)计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2√2+1﹣4×√2 2+2=2√2+1﹣2√2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)(2018•金华)解不等式组:{x3+2<x2x+2≥3(x−1)【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式x3+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018•金华)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B .(1)求证:AD 是⊙O 的切线.(2)若BC=8,tanB=12,求⊙O 的半径.【考点】ME :切线的判定与性质;T7:解直角三角形.【专题】55A :与圆有关的位置关系.【分析】(1)连接OD ,由OD=OB ,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r ,利用锐角三角函数定义求出AB 的长,再利用勾股定理列出关于r 的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD ,∵OB=OD ,∴∠3=∠B ,∵∠B=∠1,∴∠1=∠3,在Rt △ACD 中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD ⊥AD ,则AD 为圆O 的切线;(2)设圆O 的半径为r ,在Rt △ABC 中,AC=BCtanB=4,根据勾股定理得:AB=√42+82=4√5,∴OA=4√5﹣r ,在Rt △ACD 中,tan ∠1=tanB=12, ∴CD=ACtan ∠1=2,根据勾股定理得:AD 2=AC 2+CD 2=16+4=20,在Rt △ADO 中,OA 2=OD 2+AD 2,即(4√5﹣r )2=r 2+20,解得:r=3√52.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018•金华)如图,抛物线y=ax 2+bx (a <0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.【考点】HF :二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t ,据此知AB=10﹣2t ,再由x=t 时AD=﹣14t 2+52t ,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax (x ﹣10),∵当t=2时,AD=4,∴点D 的坐标为(2,4),∴将点D 坐标代入解析式得﹣16a=4,解得:a=﹣14, 抛物线的函数表达式为y=﹣14x 2+52x ;(2)由抛物线的对称性得BE=OA=t ,∴AB=10﹣2t ,当x=t 时,AD=﹣14t 2+52t , ∴矩形ABCD 的周长=2(AB +AD )=2[(10﹣2t )+(﹣14t 2+52t )] =﹣12t 2+t +20 =﹣12(t ﹣1)2+412, ∵﹣12<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为41 2;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=12OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=m x与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,m4),进而得出A(4﹣t,m4+t),即:(4﹣t)(m4+t)=m,即可得出点D (4,8﹣m 4),即可得出结论. 【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=4x, 当x=4时,y=1,∴B (4,1),当y=2时,∴2=4x, ∴x=2,∴A (2,2),设直线AB 的解析式为y=kx +b ,∴{2k +b =24k +b =1, ∴{k =−12b =3, ∴直线AB 的解析式为y=﹣12x +3;②四边形ABCD 是菱形,理由如下:如图2,由①知,B (4,1),∵BD ∥y 轴,∴D (4,5),∵点P 是线段BD 的中点,∴P (4,3),当y=3时,由y=4x 得,x=43, 由y=20x 得,x=203, ∴PA=4﹣43=83,PC=203﹣4=83, ∴PA=PC ,∵PB=PD ,∴四边形ABCD 为平行四边形,∵BD ⊥AC ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,∴PA=PB=PC=PD ,(设为t ,t ≠0),当x=4时,y=m x =m 4, ∴B (4,m 4), ∴A (4﹣t ,m 4+t ),C (4+t ,m 4+t ), ∴(4﹣t )(m 4+t )=m , ∴t=4﹣m 4, ∴C (8﹣m 4,4),∴(8﹣m 4)×4=n , ∴m +n=32,∵点D 的纵坐标为m 4+2t=m 4+2(4﹣m 4)=8﹣m 4, ∴D (4,8﹣m 4), ∴4(8﹣m 4)=n , ∴m +n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB 上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)①只要证明△ACF ∽△GEF ,推出FG AF =EG AC,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题; (2)分四种情形:①如图2中,当点D 中线段BC 上时,此时只有GF=GD ,②如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,③如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE 中,DG=GE=6,中Rt △AEG 中,AG=√AE 2+EG 2=6√5,∵EG ∥AC ,∴△ACF ∽△GEF ,∴FG AF =EG AC, ∴FG AF =612=12, ∴FG=13AG=2√5.②如图1中,正方形ACDE 中,AE=ED ,∠AEF=∠DEF=45°,∵EF=EF ,∴△AEF ≌△DEF ,∴∠1=∠2,设∠1=∠2=x ,∵AE ∥BC ,∴∠B=∠1=x ,∵GF=GD ,∴∠3=∠2=x ,在△DBF 中,∠3+∠FDB +∠B=180°,∴x +(x +90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt △ABC 中,BC=AC tan30°=12√3. (2)在Rt △ABC 中,AB=√AC 2+BC 2=√122+92=15,如图2中,当点D 中线段BC 上时,此时只有GF=GD ,∵DG ∥AC ,∴△BDG ∽△BCA ,设BD=3x ,则DG=4x ,BG=5x ,∴GF=GD=4x ,则AF=15﹣9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴AE BC =AF BF, ∴9−3x 9=15−9x 9x, 整理得:x 2﹣6x +5=0,解得x=1或5(舍弃)∴腰长GD 为=4x=4.如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,设AE=3x ,则EG=4x ,AG=5x ,∴FG=DG=12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF ,∴AE BC =AF BF, ∴3x 9=9x+129x+27, 解得x=2或﹣2(舍弃),∴腰长DG=4x +12=20.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,过点D 作DH ⊥FG .设AE=3x ,则EG=4x ,AG=5x ,DG=4x +12,∴FH=GH=DG•cos ∠DGB=(4x +12)×45=16x+485, ∴GF=2GH=32x+965, ∴AF=GF ﹣AG=7x+965,∵AC ∥DG , ∴△ACF ∽△GEF ,∴AC EG =AF FG,∴124x =7x+96532x+965, 解得x=12√147或﹣12√147(舍弃), ∴腰长GD=4x +12=84+48√147, 如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,作DH ⊥AG 于H . 设AE=3x ,则EG=4x ,AG=5x ,DG=4x ﹣12,∴FH=GH=DG•cos ∠DGB=16x−485, ∴FG=2FH=32x−965, ∴AF=AG ﹣FG=96−7x 5,∵AC ∥EG , ∴△ACF ∽△GEF ,∴AC EG =AF FG, ∴124x =96−7x 532x−965, 解得x=12√147或﹣12√147(舍弃), ∴腰长DG=4x ﹣12=−84+48√147, 综上所述,等腰三角形△DFG 的腰长为4或20或84+48√147或−84+48√147.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年浙江省金华市中考数学试卷带答案[附答案解析版]
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C. D.﹣12.计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a43.如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°, 0°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.67.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB= 0°,则∠ADC的度数是()A.55°B.60°C.65°D. 0°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B 1D1C1= 0°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:+(﹣2018)0﹣ sin 5°+|﹣2|.18.解不等式组:<19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C. D.﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【考点】U3:由三视图判断几何体.【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°, 0°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.6B.C.D.【考点】X5:几何概率.【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为9060=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB= 0°,则∠ADC的度数是()A.55°B.60°C.65°D. 0°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB= 0°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣ 0°= 0°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC= 0°,∵∠EDC+∠E+∠DCE= 0°,∴∠ADC=∠E+ 0°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC= 5°在△ADC中,∠ADC+∠DAC+∠DCA= 0°,即 5°+ 0°+∠ADC= 0°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;C、设当x≥25时,yA=kx+b,将(25,30)、(55,120)代入yA=kx+b,得:5 0 55 0,解得:5,∴yA=3x﹣45(x≥25),当x=35时,yA=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,yB=mx+n,将(50,50)、(55,65)代入yB=mx+n,得:50 50 55 65,解得:00,∴yB=3x﹣100(x≥50),当x=70时,yB=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1 .【考点】4F:平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC .【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠ ∠ ∠ ∠ ,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9% .【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1 .【考点】2C:实数的运算.【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【考点】LB:矩形的性质;IM:七巧板.【专题】556:矩形菱形正方形.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB ,BC 的长.16.(4分)(2018•金华)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm ,∠B 1D 1C 1= 0°.(1)图2中,弓臂两端B 1,C 1的距离为 30 cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10 5﹣10 cm .【考点】M3:垂径定理的应用;KU :勾股定理的应用;M5:圆周角定理. 【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B 1C 1交DD 1于H .解直角三角形求出B 1H ,再根据垂径定理即可解决问题;(2)如图3中,连接B 1C 1交DD 1于H ,连接B 2C 2交DD 2于G .利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B 1C 1交DD 1于H . ∵D 1A=D 1B 1=30 ∴D 1是 的圆心, ∵AD 1⊥B 1C 1,∴B 1H=C 1H=30×sin60°= 5 ,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr= 0 0 0,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2= 0 0=105∴D1D2=105﹣10.故答案为30,105﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018•金华)计算:+(﹣2018)0﹣ sin 5°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.<18.(6分)(2018•金华)解不等式组:【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠ =90°,∴∠ = 0°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==45,∴OA=45﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(45﹣r)2=r2+20,解得:r=5.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A (t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+5t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+5 x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+5t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+5 t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y= 0得,x=,∴PA=4﹣=,PC= 0﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),C(4+t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB 上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠ = 0°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==65,∵EG∥AC,∴△ACF∽△GEF,∴=,∴=6=,∴FG=AG=25.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF= 5°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B= 0°,∴x+(x+90°)+x= 0°,解得x= 0°,∴∠B= 0°,∴在Rt △ABC 中,BC=0°=12 . (2)在Rt △ABC 中,AB= = 9 =15,如图2中,当点D 中线段BC 上时,此时只有GF=GD ,∵DG ∥AC ,∴△BDG ∽△BCA ,设BD=3x ,则DG=4x ,BG=5x ,∴GF=GD=4x ,则AF=15﹣9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴ =, ∴9 9= 5 9 9, 整理得:x 2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD 为=4x=4.如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,设AE=3x ,则EG=4x ,AG=5x ,∴FG=DG=12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF ,∴ =, ∴ 9=9 9, 解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×5=65,∴GF=2GH=96 5,∴AF=GF﹣AG=96 5,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=965965,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB= 65,∴FG=2FH=96 5,∴AF=AG﹣FG=965,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=965965,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年浙江省金华市中考数学试卷
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C. D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C. D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,AB=OD﹣OA=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出BC=9,AD=10是解本题的关键.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;与x之间的函数关系式,再利用一次C、利用待定系数法求出:当x≥25时,yA函数图象上点的坐标特征可求出当x=35时y的值,将其与50比较后即可得出A结论C正确;与x之间的函数关系式,再利用一次D、利用待定系数法求出:当x≥50时,yB的值,将其与120比较后即可得出函数图象上点的坐标特征可求出当x=70时yB结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;=kx+b,C、设当x≥25时,yA=kx+b,得:将(25,30)、(55,120)代入yA,解得:,=3x﹣45(x≥25),∴yA当x=35时,y=3x﹣45=60>50,A∴每月上网时间为35h时,选择B方式最省钱,结论C正确;=mx+n,D、设当x≥50时,yB=mx+n,得:将(50,50)、(55,65)代入yB,解得:,∴y=3x﹣100(x≥50),B=3x﹣100=110<120,当x=70时,yB∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1 .【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC .【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是% .【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是%、%、%、%、%,则这5年增长速度的众数是%,故答案为:%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1 .【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x ,BC=x+x+x=2x ,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB ,BC 的长.16.(4分)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉弓的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm ,∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1的距离为 30cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10﹣10 cm .【分析】(1)如图1中,连接B 1C 1交DD 1于H .解直角三角形求出B 1H ,再根据垂径定理即可解决问题;(2)如图3中,连接B 1C 1交DD 1于H ,连接B 2C 2交DD 2于G .利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B 1C 1交DD 1于H . ∵D 1A=D 1B 1=30 ∴D 1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)解不等式组:【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示;【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形若能,求此时m,n之间的数量关系;若不能,试说明理由.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形若存在,求该三角形的腰长;若不存在,试说明理由.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年全国中考数学真题浙江金华中考数学(解析版-精品文档)
2018年浙江省金华/丽水市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018浙江金华丽水,1,3分)在0,1,12-,-1四个数中,最小的数是( ).A . 0B .1C . 12- D . -1【答案】D .【解析】∵-1<12-<0<1,∴最小的数是-1,故选D .【知识点】有理数的大小比较2.(2018浙江金华丽水,2,3分)计算()3a a -÷结果正确的是( ). A . 2a B . 2a - C . 3a - D . 4a - 【答案】B .【解析】根据同底数幂的除法法则,有()3a a -÷=3a a -÷=2a -.故选B . 【知识点】同底数幂的除法3.(2018浙江金华丽水,3,3分)如图,∠B 的同位角可以是( ). A .∠1 B .∠2 C .∠3 D .∠4【答案】D .【解析】根据同位角的定义,得∠B 的同位角是∠4,故选D . 【知识点】同位角的识别ABD CE 1234第3题图4.(2018浙江金华丽水,4,3分)若分式33x x -+的值为0,则x 的值是( ). A .3 B .3- C .3或3- D .0 【答案】A . 【解析】分式33x x -+的值为0,则3=030x x -⎧⎨+≠⎩,,,解得x =3.故选A . 【知识点】分式的值为0的条件5.(2018浙江金华丽水,5,3分)一个几何体的三视图如图所示,该几何体是( ). A . 直三棱柱 B . 长方体 C . 圆锥 D .立方体【答案】A .【解析】由三视图可得该几何体是直三棱柱.故选A . 【知识点】,三视图6.(2018浙江金华丽水,6,3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°. 让转盘自由转动,指针停止后落在黄色区域的概率是( ). A .61 B .41 C .31 D .127【答案】B .【解析】∵黄色扇形的圆心角度数为90°,占周角的41,∴黄色扇形面积占圆面积的41,∴指针红黄蓝第6题图主视图左视图俯视图第5题图停止后落在黄色区域的概率是41,故选B . 【知识点】概率7.(2018浙江金华丽水,7,3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( ).A .(5,30)B .(8,10)C .(9,10)D .(10,10)【答案】C .【解析】由图示得,点P 的横坐标是9,纵坐标是10,故选C .【知识点】平面直角坐标系中点的坐标;8.(2018浙江金华丽水,8,3分)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( ). A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα第8题图βαFE D CB A【答案】B .【解析】由锐角三角函数的定义,得AB =sin AC α,AB =sin AC α,∴AB 与AD 的长度之比为sin sin βα,故选yPx单位:mm4030 10 1650O第7题图B .【知识点】锐角三角函数9.(2018浙江金华丽水,9,3分)如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是( ). A .55° B .60° C .65° D .70°【答案】C .【解析】将△ABC 绕点C 顺时针旋转90°得到△EDC ,则∠ECD =∠ACB =20°,∠ACE =90°,EC =AC ,∴∠E =45°,∴∠ADC =65°.故选D . 【知识点】图形的旋转10.(2018浙江金华丽水,10,3分)某通讯公司就上宽带网推出A ,B ,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h )的函数关系如图所示,则下列判断错误..的是( ).A .每月上网时间不足25 h 时,选择A 方式最省钱B .每月上网费用为60元时,B 方式可上网的时间比A 方式多C .每月上网时间为35h 时,选择B 方式最省钱D .每月上网时间超过70h 时,选择C 方式最省钱【答案】D .A BDCE第9题图O120 y (元) 6550 30x (h)25 50 55 A 方式B 方式C 方式第10题图【解析】图中x 轴表示上网时间x (h ),y 轴表示所需的费用y (元) .由图象得, A .每月上网时间不足25 h 时,选择A 方式最省钱,该选项正确;B .每月上网费用为60元时,B 方式可上网的时间比A 方式多,该选项正确;C .每月上网时间为35h 时,选择B 方式最省钱,该选项正确;D .每月上网时间超过55h 时,选择C 方式最省钱, 该选项有误; 故选D .【知识点】函数图象二、填空题:本大题共6小题,每小题4分,共24分.不需写出解答过程,请把最后结果填在题中横线上.11.(2018浙江金华丽水,11,4分)计算()()11x x -+的结果是 . 【答案】x 2-1.【解析】根据平方差公式,有(x -1)(x +1)= x 2-1.故答案为x 2-1. 【知识点】.平方差公式;12.(2018浙江金华丽水,12,4分)如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 .【答案】答案不唯一,如CA =CB ,CE =CD 等.【解析】已知两角对应相等,可考虑全等三角形的判定ASA 或AAS .故答案不唯一,如CA =CB ,CE =CD 等.【知识点】全等三角形的判定13.(2018浙江金华丽水,13,4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 .ABDCE F第12题图【答案】6.9%【解析】由众数定义知,众数是一组数据中出现次数最多的数,由统计图得这5年增长速度的众数是6.9%.故答案为6.9%. 【知识点】众数;折线统计图14.(2018浙江金华丽水,14,4分)对于两个非零实数x ,y ,定义一种新的运算:a b x y xy*=+.若()112*-=,则()22-*的值是 .【答案】-1. 【解析】∵a b x y x y*=+,()11*-=1-1a b +=a -b =2,∴()22-*=-22a b +=2b a -=-1.故答案为-1.【知识点】分式的加法;阅读理解15.(2018浙江金华丽水,15,4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则ABBC的值是 .【答案】214+. 图1 图2A DBC EF G① 第15题图2013~2017年国内生产总值增长速度统计图2013年 2014年 2015年 2016年 6.5% 7% 8% 6%选自国家统计局2018年2月统计公报7.5% 7.3%6.9%6.7%6.9%2017年7.8% 8.5% 第13题图2013~2017年国内生产总值增长速度统计图2013年 2014年 2015年 2016年 6.5% 7% 8% 6%选自国家统计局2018年2月统计公报7.5% 7.3%6.9%6.7%6.9%2017年7.8% 8.5% 第12题图 第13题图 第15题图【解析】设如图1中正方形的边长为2x ,则AB BC =AE EBAG GD++=24x x x +=214+.故答案为214+.【知识点】正方形的性质;矩形的性质;平行四边形的性质;勾股定理16.(2018浙江金华丽水,16,4分)如图1是小明制作的一副弓箭, 点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm .沿AD 方向拉弓的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm , ∠B 1D 1C 1=120°. (1)图2中,弓臂两端B 1,C 1的距离为 cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 cm .【答案】(1)303;(2)105-10.【解析】(1)连结B 1C 1交AD 1于E ,则AD 1垂直平分B 1C 1.在Rt △B 1D 1E 中,∵∠B 1D 1C 1=120°,∴∠B 1D 1E =60°.∵B 1D 1=30,∴B 1E =153.∴B 1C 1 =303.故答案为303; (2)图2中,∵AD 1=30cm , ∠B 1D 1C 1=120°,∴弓臂B 1AC 1的长=12030180π⋅⋅=20π. 图3中,∵弓臂B 2AC 2为半圆,∴20π= 12d π,∴半圆的半径12d =20. 连结B 2C 2交AD 2于E 1,则AD 2垂直平分B 2C 2.在Rt △B 2D 2E 1中, D 2E 1 = 222221()()D E B E - = 223020- =105.∴AD 2=105+20. ∵AD 1=30cm ,∴D 1D 2 = AD 2-AD 1=105-10.故答案为105-10. 【知识点】勾股定理;特殊角的锐角三角函数值;弧长公式;三、解答题(本大题共8小题,满分66分,各小题都必须写出解答过程) 17.(2018浙江金华丽水,17,6分)计算:8+0(2018)--4sin45°+2-【思路分析】本题考查了实数的运算.先分别求出8、0(2018)-、4sin45°、2-的值,然后进行第16题图D 1图1 图2 图3B 1A CD B C 1A CBDB CA D 1 D 2 DB 1 B 2C 1 C 2实数的运算.【解题过程】解:原式=22+1-2+2=32.【知识点】算术平方根;零指数幂的运算;特殊角的三角函数值;绝对值18.(2018浙江金华丽水,18,6分)解不等式组:232+23(1).xx x x +<-⎧⎪⎨⎪⎩,①≥②【思路分析】分别解不等式①、②,取不等式①、②解集的公共部分为不等式组的解. 【解题过程】解:由可得x +6<3x ,解得x >3, 由①可得x +6<3x ,解得x >3, 由②可得2x +2≥3x -3,解得x ≤5. ∴原不等式组的解为3<x ≤5. 【知识点】解不等式组19.(2018浙江金华丽水,19,6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图. 请根据图中信息解答下列问题:(1)求参与问卷调查的总人数. (2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数. 【思路分析】(1)参与问卷调查的总人数=支付宝支付的人数÷所对应的百分比; (2)总人数-已知人数=未知人数,图略;第19题图各种支付方式的扇形统计图A 支付宝支付B 微信支付C 现金支付D 其他C 15% A40%BD10%2060 90 120各种支付方式中不同年龄段人数条形统计图 20~40岁41~60岁1208030751530 A支付方式人数100 BCD(3)8000×最喜欢微信支付的人数所占的百分比. 【解题过程】解:(1)∵(120+80)÷40%=500(人), ∴参与问卷调查的总人数为500人. (2)如图.支付方式人数120801007515203060各种支付方式中不同年龄段人数条形统计图41~60岁20~40岁D CBA306090120(3)∵8000×(1―40%―10%―15%)=8000×35%=2800(人), ∴这些人中最喜欢微信支付方式的人数约为2800人. 【知识点】条形统计图;扇形统计图20.(2018浙江金华丽水,20,8分)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【思路分析】根据题意画出符合相应条件的图形. 【解题过程】解:如图,图1:以点A 为顶点的三角形 图3:以点A 为对角线交 点的平行四边形图2:以点A 为顶点的 平行四边形 AA A图3图2图1AAA【知识点】平行四边形的面积;三角形的面积21.(2018浙江金华丽水,21,8分)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B . (1)求证:AD 是⊙O 的切线. (2)若BC =8,tan B =12,求⊙O 的半径.【思路分析】本题考查了切线的判定;勾股定理;锐角三角函数的综合运用.(1)连结OD ,利用等角代换证得OD ⊥AD 即可.(2)设⊙O 的半径为r .在Rt △ACD 中,利用勾股定理构建方程(45-r )2=r 2+20,解方程可得r 的值.【解题过程】解:(1)连结OD ,∵OB =OD ,∴∠3=∠B ,1234EO D CBA∵∠B =∠1,∴∠3=∠1. 在Rt △ACD 中,∠1+∠2=90°, ∴∠3+∠2=90°,EOABDC∴∠4=180°-(∠2+∠3)=180°-90°=90°.∴OD ⊥AD .∴AD 是⊙O 的切线.(2)设⊙O 的半径为r .在Rt △ABC 中,AC =BC ·tan B =8×12=4, ∴AB =22AC BC +=2248+=45.∴OA =45-r .在Rt △ACD 中,tan ∠1=tan ∠B =12. ∴CD =AC ·tan ∠1=4×12=2, ∴AD 2=AC 2+CD 2=42+22=20.在Rt △ADO 中,OA 2=OD 2+AD 2,∴(45-r )2=r 2+20.解得r =352. 【知识点】切线的判定;勾股定理;锐角三角函数22.(2018浙江金华丽水,22,10分)如图,抛物线2y ax bx =+(a ≠0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t =2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t =2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线..GH 平分矩形的面积时,求抛物线平移的距离.D CE B A O yx第22题图【思路分析】本题主要考查了抛物线的平移.(1)设抛物线的函数表达式为y =ax (x -10) .把点D 的坐标代入计算可得a 值.(2)根据矩形ABCD 的周长=2(AB +AD )得到关于t 的二次函数解析式,利用顶点式可求得矩形ABCD 的周长的最大值.(3)抛物线平移的距离就是△OBD 的中位线PQ 的值.【解题过程】解:(1)设抛物线的函数表达式为y =ax (x -10) .∵当t =2时,AD =4,∴点D 的坐标是(2,4).∴4=a ×2×(2-10),解得a =-14. ∴抛物线的函数表达式y =-14x 2+52x . (2)由抛物线的对称性得BE =OA =t ,∴AB =10-2t .当x =t 时,y =-14t 2+52t . ∴矩形ABCD 的周长=2(AB +AD )=2[(10-2 t )+(-14t 2+52t )] =-12t 2+t +20 =-12(t -1)2+412. ∵-12<0, ∴当t =1时,矩形ABCD 的周长有最大值,最大值是412. (3)当t =2时,点A ,B ,C ,D 的坐标分别为(2,0),(8,0),(8,4),(2,4). ∴矩形ABCD 对角线的交于点P 的坐标为(5,2). xy(10,0)H G QP C B DE O A当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分.当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分. ∴当G ,H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形面积平分.∴当点G ,H 分别落在线段AB ,DC 上时,直线GH 过点P ,必平分矩形ABCD 的面积.∵AB ∥CD ,∴线段OD 平移后得到线段GH .∴线段OD 的中点Q 平移后的对应点是P .在△OBD 中,PQ 是中位线,∴PQ =12OB =4. 所以抛物线向右平移的距离是4个单位.【知识点】待定系数法求抛物线的函数表达式;抛物线的平移;最值;三角形中位线定理;平分矩形面积;23.(2018浙江金华丽水,23,10分)如图,四边形ABCD 的四个顶点分别在反比例函数y x m =与y x n=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4.(1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.【思路分析】本题综合考查了一次函数、反比例函数与四边形的综合运用.(1)①根据题意,先求得点A 、点B 的坐标,然后用待定系数法可得直线AB 的函数表达式.②点P 是BD 的中点,且BD ⊥AC 于点P ,根据菱形的判定只需证PA =PC 即可.(2)假设四边形ABCD 能成为正方形.由正方形的性质设PA =PB =PC =PD =t ,则点A 的坐标是(4-t ,4m +t ),点D 的坐标是(4,8-4m ).由y x n =得4×(8-4m )=n .整理可得m +n 的值. 【解题过程】解:(1)①当x =4时,y =4x =1,∴点B 的坐标是(4,1). 第23题备用图 B y x O m y x =n y x=P y x OABC Dmy x =n y x =第23题图当y =2时,由y =4x得x =2,∴点A 的坐标是(2,2). 设直线AB 的函数表达式为y =kx +b .∴22,4 1.k b k b +=⎧⎨+=⎩解得1,23.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的函数表达式为y =-12x +3. ②四边形ABCD 为菱形.理由如下:由①得点B (4,1),点D (4,5),∵点P 为线段BD 的中点,∴点P 的坐标为(4,3).当y =3时,由y =4x 得x =43,由y =20x 得x =203, ∴PA =4-43=83,PC =203-4=83, ∴PA =PC .而PB =PD ,∴四边形ABCD 为平行四边形.又∵BD ⊥AC ,∴四边形ABCD 为菱形.(2)四边形ABCD 能成为正方形.当四边形ABCD 是正方形时,PA =PB =PC =PD (设为t ,t ≠0),当x =4时,y =m x =4m ,∴点B 的坐标是(4,4m ). 则点A 的坐标是(4-t ,4m +t ). ∴(4-t )(4m +t )=m .化简得t =4-4m , ∴点D 的坐标是(4,8-4m ). 所以4×(8-4m )=n .整理得m +n =32. 【知识点】待定系数法求一次函数表达式;反比例函数;菱形的判定;正方形的性质;24.(2018浙江金华丽水,24,12分)在Rt △ABC 中,∠ACB =90°,AC =12.点D 在直线CB 上,以CA ,CD 为边作矩形ACDE ,直线AB 与直线CE ,DE 的交点分别为F 、G .(1)如图,点D 在线段CB 上,四边形ACDE 是正方形.①若点G 为DE 中点,求FG 的长.②若DG=GF ,求BC 的长.(2)已知BC =9,是否存在点D ,使得△DFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【思路分析】本题综合考查了三角形、四边形的判定与性质.(1)①由勾股定理可得AG ,由相似三角形的性质得FG AF =EG AC =12,进而得FG 的方程方程值;②根据题意先证得∠1=∠2(设为x ),∠1=∠2=∠B =∠3=x .根据三角形内角和定理列方程,解得x =30°. 在Rt △ABC 中,由BC =tan 30AC 可得解. (2)存在.分情况讨论:①点D 在线段BC 上;②点D 在线段BC 的延长线上,且直线AB ,CE 的交点在AEF 上方;③点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方;④点D 在线段CB 的延长线上.【解题过程】解:(1)①在正方形ACDE 中有DG =GE =6.在Rt △AEG 中,AG =22AE EG +=22126+=65.∵EG ∥AC ,∴△ACF ∽△GEF .∴FG AF =EG AC ,∴FG AF =612=12. ∴FG =13AG =25. ②如图1,在正方形ACDE 中, AE =ED ,∠AEF =∠DEF =45°,AB DC FG E第24题图231(图1)F B GE A C D又EF =EF ,∴△AEF ≌△DEF .∴∠1=∠2(设为x ).∵AE ∥BC ,∴∠B =∠1=x .∵GF =GD∴∠3=∠2=x .在△DBF 中,∠3+∠FDB +∠B =180°,∴x +(x +90°)+x =180°,解得x =30°,∴∠B =30°.∴在Rt △ABC 中,BC =tan 30AC =123. (2)在Rt △ABC 中,AB =22AC BC +=22129+=15.如图2,当点D 在线段BC 上时,此时只有GF =GD .(图2)FB GE C DA∵DG ∥AC ,∴△BDG ∽△BCA .设BD =3x ,则DG =4x ,BG =5x , ∴GF =GD =4x ,则AF =15-9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴AE BC =AF BF ,∴939x -=15-99x x,即x 2-6x +5=0. 解得x 1=1,x 2=5(舍去),∴腰长GD =4x =4.如图3,当点D 在线段BC 的延长线上,且直线AB ,CE 的交点在AEF 上方时,(图3)GFBAD C E此时只有GF =DG .设AE =3x ,则EG =4x ,AG =5x ,∴FG =DG =12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF ,∴AE BC =AF BF ,∴39x =9+129+27x x ,即x 2=4. 解得x 1=2,x 2=-2(舍去),∴腰长GD =4x +12=20.如图4,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方时,(图4)H F GB A D CE此时只有DF =DG ,过点D 作DH ⊥FG .设AE =3x ,则EG =4x ,AG =5x ,DG =4 x +12.∴FH =GH =DG ·cos ∠DGB =(4x +12)×45=16485x +, ∴GF =2GH =32965x +. ∴AF =GF -AG =32965x +-5x =7965x +.∵AC ∥DG ,∴△ACF ∽△GEF ,∴AC EG =AF FG, ∴124x =17+965132+965x x ()(),即7x 2=288. 解得x 1=12147,x 2=-12147(舍去), ∴腰长GD =4x +12=84+48147. 如图5,当点D 在线段CB 的延长线上时,(图5)HFG EAC BD此时只有DF =DG ,过点D 作DH ⊥AG .设AE =3x ,则EG =4x ,AG =5x ,DG =4 x -12.∴FH =GH =DG ·cos ∠DGB =(4x -12)×45=16485x -, ∴FG =2FH =32965x -. ∴AF =AG -FG =5x - 32965x -=9675x -. ∵AC ∥EG ,∴△ACF ∽△GEF ,∴AC EG =AF FG, ∴124x =19675132965x x --()(),即7x 2=288. 解得x 1=12147,x 2=-12147(舍去), ∴腰长GD =4x -12=84+48147-.综上所述,等腰△DFG的腰长为4,20,84+48147,84+48147.【知识点】勾股定理;相似三角形的判定与性质;锐角三角函数;一元二次方程;分类讨论的思想;从特殊到一般的思想SMNQPOABCDEFGH。
金华中考数学含答案
金华中考数学含答案 The pony was revised in January 20212018年浙江省金华市中考数学试卷(含答案)一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,-1/2,-1四数中,最小的数是()A.0B.1C.-1/2D.-12.计(-a)3÷a结果正确的是()A.a2B.-a2C.-a3D.-a43.如图,B的同位角可()A.∠1B.∠2C.∠3D.∠44.若分式(x-3)/(x+3)的为,则x的为()A.3B.-3C.3或-3D.05.一个几体视图如图示,该几何体是()直三柱长方体圆锥立方体6.图,一个游戏转盘中红、黄蓝形的圆心角度数分别为6°,90,210让转盘自由转动,指针停止后落在黄色区域率()A.1/6B.1/4C.1/3D.7/127.小为画个零件的面,以该轴底边在的直线为轴,对轴为y轴建如图所的平面直角坐标系.若坐标轴的单位长取1m,则图中转折点P坐标示正确的是( )A.(5,30)B.(,10)C.(9,10)D.(10,0)8.如图,两根竿AB和AD斜靠在C,量得∠ABC=α,ADC=β,竹AB与D的长度之比为)9.如图,将△ABC点时旋转0°到△EDC若点A,D,E在同条线,∠ACB=20°,则∠AC的数是()A.55°B.60°C.65°D.70°10.某通讯司上宽带推出A,BC三种月收费式.这收费方式月所需的费用y()上网间x(h)的函数关系图所,则下列判错误的()A.每月网间不25 h时,选择A方式省钱B.每月上费用为0时B方式可网的时间比A方式多C.每月上时间为3h,选择B方式省钱D.每月上网时间超过70h时,选择式钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x-1)(x+1)的果是.12.图△AB的两条高A,BE相交于点F,请添加一条,使得△ADC≌BE不添加其他字母及辅助线),添加件是.13.如图是我国2013~2017年国内生产增长速度统计,则这年速度的众是.14.对于两个非零实数x,y,定义一新的:x*y=a/x + b/y .若1*(-1)=2,(-2)*2的值是.15.如图2靓用七巧板拼成幅装,放入长方形ABCD,装饰图中的角形顶点EF分别在边B,BC上,角形的GD边A上,则AB/BC的值是16.图2中弓臂两端B1C的距离为 cm.如图3将弓到点D,使弓臂B2AC2为半圆,则D1D2长为 cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:√8+(-2018)0 -sin45°+|-2|19.为了解朝阳社区20~60岁居民最欢的支付式,某兴趣小组对社区内该龄段的部分居民展开随机调查(每人只能选择其一项,并调整后绘成如下两幅不整的统计图.根图中信息解答列问题:①求参与问卷调的总数.②补全条形统计图③该社区0~6岁的约800人,估算这些人中最喜欢信支付式的人数.20.如图,66的网中每个正形的边为1,A在格点(正方的顶点)上.试在各网格中画出在格点上,面积为6,且合相应条的图形.21.如图,在Rt△ABC中点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D、E,连接AD,已知∠CAD=∠B①求证:AD是⊙O的切线②若BC=8,tanB=1/2,求⊙O的半径.22.如图,抛物线y=ax2+bx(a<0),过点E(10,0),矩形ABCD的边AB在线段OE上,点A在点B的左边,点C,D在抛物线上,设A(t,0),当t=2时,A=4①求抛物线的函数式.②当t为何值时,矩形BCD的周长有值最大值是多?③保持=2时矩形ABCD不动,向右平抛线.当平移后的线矩形的边有个交GH,直线G分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=m/x与y=n/x(x>0,0<m <n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.(3)。
浙江省金华、丽水市中考数学真题试卷(解析版)
浙江省金华市·2018·中考数学试卷一、一、选择题(共10题;共20分)1、在0,1,,−1四个数中,最小数是()A、 0B、 1C、D、−1【解析】【解答】解:,,,即-1是最小数、故答案为:D。
【分析】这些都是有理数,有正数和负数,0时,比较有理数大小,一般有两种方法:一是根据比较有理数大小规则;二是根据有理数在数轴上位置,数轴上右边数总比左边数大2、计算结果正确是()A、 B、C、 D、【解析】【解答】解:,故答案为:B。
【分析】考查同底数幂除法法则;= ,则可用同底数幂除法法则计算即可。
3、如图,∠B同位角可以是()A、∠1B、∠2C、∠3D、∠4【解析】【解答】解:直线DE和直线BC被直线AB所截成∠B与∠4构成同位角,故答案为:D【分析】考查同位角定义;需要找一个角与∠B构造形状类似于“F”4、若分式值为0,则x值是()A、 3B、C、 3或D、 0【解析】【解答】解:若分式值为0,则,解得、故答案为:A、【分析】分式指是分母是含字母整式且分母值不为0代数式;当分式为0时,则分子为零,分母不能为0、5、一个几何体三视图如图所示,该几何体是()A、直三棱柱B、长方体C、圆锥D、立方体【解析】【解答】主视图是三角形几何图形可能是直三棱柱和圆锥,左视图是长方形,也只有直三棱柱,故答案为:A。
【分析】考查由简单几何图形三视图描述几何图形;根据三视图分别对应选项中,判断是否符号,并逐个排除、其中,主视图是三角形可能是直三棱柱(直三棱柱有一个面是三角形),也可能是圆锥;也可以根据三视图直接得到几何图形形状。
6、如图,一个游戏转盘中,红、黄、蓝三个扇形圆心角度数分别为60°,90°,210°、让转盘自由转动,指针停止后落在黄色区域概率是()A、B、C、D、【解析】【解答】解:P(指针停止后落在黄色区域)= ,故答案为:B。
【分析】角度占360°比例,即为指针转到该区域概率。
浙江省金华市、丽水市2018年中考数学真题试题(含解析)
浙江省金华市、丽水市2018年中考数学真题试题一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −1【解析】【解答】解:,,,即-1是最小的数.故答案为:D。
【分析】这些都是有理数,有正数和负数,0时,比较有理数的大小,一般有两种方法:一是根据比较有理数大小的规则;二是根据有理数在数轴上的位置,数轴上右边的数总比左边的数大2.计算结果正确的是()A. B. C. D.【解析】【解答】解:,故答案为:B。
【分析】考查同底数幂的除法法则;= ,则可用同底数幂的除法法则计算即可。
3.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠4【解析】【解答】解:直线DE和直线BC被直线AB所截成的∠ B与∠ 4构成同位角,故答案为:D 【分析】考查同位角的定义;需要找一个角与∠ B构造的形状类似于“F”4.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0,则,解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时,则分子为零,分母不能为0.5.一个几何体的三视图如图所示,该几何体是()A. 直三棱柱B. 长方体C. 圆锥D. 立方体【解析】【解答】主视图是三角形的几何图形可能是直三棱柱和圆锥,左视图是长方形的,也只有直三棱柱,故答案为:A。
【分析】考查由简单几何图形的三视图描述几何图形;根据三视图分别对应选项中,判断是否符号,并逐个排除.其中,主视图是三角形的可能是直三棱柱(直三棱柱有一个面是三角形),也可能是圆锥;也可以根据三视图直接得到几何图形的形状。
6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A. B. C. D.【解析】【解答】解:P(指针停止后落在黄色区域)= ,故答案为:B。
(完整版)2018年浙江省金华市中考数学试卷带答案(含答案解析版),推荐文档
2018 年浙江省金华市中考数学试卷一、选择题(本题有10 小题,每小题3 分,共30 分)11.在0,1,﹣2,﹣1 四个数中,最小的数是()‒1A.0 B.1 C.2 D.﹣12.计算(﹣a)3÷a 结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.如图,∠B 的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4x‒ 34.若分式+ 3的值为0,则x 的值为()A.3 B.﹣3 C.3 或﹣3 D.0 5.一个几何体的三视图如图所示,该几何体是()第1 页(共47 页)A.直三棱柱B.长方体C.圆锥D.立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()1A.61B.41C.37D.127.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P 的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹第2 页(共47 页)第 3 页(共 47 页) 竿 AB 与 AD 的长度之比为( )A . B.C .D .9. 如图,将△ABC 绕点 C 顺时针旋转 90°得到△EDC .若点 A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10. 某通讯公司就上宽带网推出 A ,B ,C 三种月收费方式.这三种收费方式每月所需的费用 y (元)与上网时间 x (h )的函数关系如图所示,则下列判断错误的是( )A. 每月上网时间不足 25h 时,选择 A 方式最省钱B.每月上网费用为60 元时,B 方式可上网的时间比A 方式多C.每月上网时间为35h 时,选择B 方式最省钱D.每月上网时间超过70h 时,选择C 方式最省钱二、填空题(本题有6 小题,每小题4 分,共24 分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC 的两条高AD,BE 相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~2017 年国内生产总值增长速度统计图,则这5 年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y= + .若1*(﹣1)=2,则(﹣2)*2 的值是.第4 页(共47 页)15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的AB三角形顶点E,F 分别在边AB,BC 上,三角形①的边GD 在边AD 上,则BC的值是.16.如图1 是小明制作的一副弓箭,点A,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm.沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2 中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8 小题,共66 分,各小题都必须写出解答过程)17. 计算:8+(﹣2018)0﹣4sin45°+|﹣2|.第5 页(共47 页)第 6 页(共 47 页){+ 2<3 18.解不等式组: 2x + 2 ≥ 3(x ‒ 1)19.为了解朝阳社区 20~60 岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1) 求参与问卷调查的总人数.(2) 补全条形统计图.(3) 该社区中 20~60 岁的居民约 8000 人,估算这些人中最喜欢微信支付方式的人数.20(8 分)(2018•金华)如图,在 6×6 的网格中,每个小正方形的边长为 1,点 A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21. 如图,在 Rt △ABC 中,点 O 在斜边 AB 上,以 O 为圆心,OB 为半径作圆,分别与BC,AB 相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD 是⊙O 的切线.1(2)若BC=8,tanB=2,求⊙O 的半径.22.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C,D 在抛物线上.设A(t,0),当t=2 时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2 时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH 平分矩形的面积时,求抛物线平移的距离.第7 页(共47 页)23.如图,四边形ABCD 的四个顶点分别在反比例函数y= 与y=x(x>0,0<m<n)的图象上,对角线BD∥y 轴,且BD⊥AC 于点P.已知点B 的横坐标为4.(1)当m=4,n=20 时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m,n 之间的数量关系;若不能,试说明理由.24.在Rt△ABC 中,∠ACB=90°,AC=12.点D 在直线CB 上,以CA,CD 为边作矩形ACDE,直线AB 与直线CE,DE 的交点分别为F,G.(1)如图,点D 在线段CB 上,四边形ACDE 是正方形.第8 页(共47 页)①若点G 为DE 中点,求FG 的长.②若DG=GF,求BC 的长.(2)已知BC=9,是否存在点D,使得△DFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.第9 页(共47 页)2018 年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10 小题,每小题3 分,共30 分)11.(3 分)(2018•金华)在0,1,﹣2,﹣1 四个数中,最小的数是()‒1A.0 B.1 C.2 D.﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.1【解答】解:∵﹣1<﹣2<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3 分)(2018•金华)计算(﹣a)3÷a 结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4第10 页(共47 页)【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3 分)(2018•金华)如图,∠B 的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B 的同位角可以是:∠4.故选:D.第11 页(共47 页)【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.x‒ 34.(3 分)(2018•金华)若分式x + 3的值为0,则x 的值为()A.3 B.﹣3 C.3 或﹣3 D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x 的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0 的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3 分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体第12 页(共47 页)【考点】U3:由三视图判断几何体.【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3 分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()1 A.61B.41C.37D.12【考点】X5:几何概率.【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,第13 页(共47 页)90 1所以黄区域所占的面积比例为360=4,1即转动圆盘一次,指针停在黄区域的概率是4,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3 分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P 的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P 的横坐标,结合图形中相关线段的和差关系求得点P 的纵坐标.【解答】解:如图,第14 页(共47 页)第 15 页(共 47 页) 过点 C 作 CD ⊥y 轴于 D ,∴BD=5,CD=50÷2﹣16=9,OA=OD ﹣AD=40﹣30=10,∴P (9,10);故选:C .【点评】此题考查了坐标确定位置,根据题意确定出 CD=9,AD=10 是解本题的关键.8.(3 分)(2018•金华)如图,两根竹竿 AB 和 AD 斜靠在墙 CE 上,量得∠ABC=α,∠ADC=β,则竹竿 AB 与 AD 的长度之比为()A. B. C . D .【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD 即可解决问题;【解答】解:在Rt△ABC 中,AB=sinα,在Rt△ACD 中,AD=sinβ,∴AB:AD=sinα:sinβ=sinα,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3 分)(2018•金华)如图,将△ABC 绕点C 顺时针旋转90°得到△EDC.若点A,D,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A.55° B.60° C.65° D.70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.第16 页(共47 页)【解答】解:∵将△ABC 绕点 C 顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E 在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC 中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3 分)(2018•金华)某通讯公司就上宽带网推出A,B,C 三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()第17 页(共47 页)A.每月上网时间不足25h 时,选择A 方式最省钱B.每月上网费用为60 元时,B 方式可上网的时间比A 方式多C.每月上网时间为35h 时,选择B 方式最省钱D.每月上网时间超过70h 时,选择C 方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h 时,选择 A 方式最省钱,结论A 正确;B、观察函数图象,可得出:当每月上网费用≥50 元时,B 方式可上网的时间比A 方式多,结论B 正确;C、利用待定系数法求出:当x≥25 时,y A与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35 时y A的值,将其与50 比较后即可得出结论C 正确;D、利用待定系数法求出:当x≥50 时,y B与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70 时y B的值,将其与120 比较后即可得出结论D 错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h 时,选择A 方第18 页(共47 页)第 19 页(共 47 页){ {{ {式最省钱,结论 A 正确;B 、观察函数图象,可知:当每月上网费用≥50 元时,B 方式可上网的时间比A 方式多,结论B 正确;C 、设当 x ≥25 时,y A =kx +b ,将(25,30)、(55,120)代入 y A =kx +b ,得:25 + = 30 = 355k + b = 120,解得: b =‒ 45,∴y A =3x ﹣45(x ≥25),当 x=35 时,y A =3x ﹣45=60>50,∴每月上网时间为 35h 时,选择 B 方式最省钱,结论 C 正确;D 、设当 x ≥50 时,y B =mx +n ,将(50,50)、(55,65)代入 y B =mx +n ,得:50 + = 50 = 355m + n = 65,解得: n =‒ 100,∴y B =3x ﹣100(x ≥50),当 x=70 时,y B =3x ﹣100=110<120,∴结论 D 错误. 故选:D .【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6 小题,每小题4 分,共24 分)11.(4 分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1 .【考点】4F:平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4 分)(2018•金华)如图,△ABC 的两条高AD,BE 相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC .【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC 可利用AAS 判定△ADC≌△BEC.第20 页(共47 页)【解答】解:添加AC=BC,∵△ABC 的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC 和△BEC 中∠B E C = ∠ADC∠EBC = ∠DAC= ,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4 分)(2018•金华)如图是我国2013~2017 年国内生产总值增长速度统计图,则这5年增长速度的众数是6.9% .{第21 页(共47 页)【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5 年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5 年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4 分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=x+ .若1*(﹣1)=2,则(﹣2)*2 的值是﹣1 .【考点】2C:实数的运算.【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,+∴1 ‒ 1=2即a﹣b=2∴原式= ‒ 2+ ‒12= 2(a﹣b)=﹣1第22 页(共47 页)2 + 1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4 分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E,F 分别在边AB,BC 上,三角形①的边GD 在边AD 上,则的值是 4 .【考点】LB:矩形的性质;IM:七巧板.【专题】556:矩形菱形正方形.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则1AB=2x+ 2 x,1 1BC=2x+x+2x=2x,1 + 22 22 = 4 .=22 + 1第23 页(共47 页)故答案为:4 .【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC 的长.16.(4 分)(2018•金华)如图1 是小明制作的一副弓箭,点A,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm.沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2 中,弓臂两端B1,C1的距离为 30 3cm .(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10 5﹣10 cm.【考点】M3:垂径定理的应用;KU:勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1 中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3 中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;2 + 1第24 页(共47 页)第 25 页(共 47 页) 2 【解答】解:(1)如图 2 中,连接 B 1C 1 交 DD 1 于 H .∵D 1A=D 1B 1=30∴D 1是B 1AC 1的圆心,∵AD 1⊥B 1C 1,∴B 1H=C 1H=30×sin60°=15 3,∴B 1C 1=30 ∴弓臂两端 B 1,C 1 的距离为 303(2)如图 3 中,连接 B 1C 1 交 DD 1 于 H ,连接 B 2C 2 交 DD 2 于 G .120 ⋅ π ⋅ 30设半圆的半径为 r ,则 πr= 180 ,∴r=20,∴AG=GB 2=20,GD 1=30﹣20=10,在 Rt △GB 2D 2 中 ,GD = 302 ‒ 202=10∴D 1D 2=10 5﹣10.故答案为 30 3,10 5﹣10,35【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8 小题,共66 分,各小题都必须写出解答过程)17.(6 分)(2018•金华)计算:8+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.2【解答】解:原式=2 2+1﹣4×2 +2=2 2+1﹣2 2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.第26 页(共47 页){+ 2<318.(6 分)(2018•金华)解不等式组:2x + 2 ≥ 3(x‒ 1)【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式3+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6 分)(2018•金华)为了解朝阳社区20~60 岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.第27 页(共47 页)(2)补全条形统计图.(3)该社区中20~60 岁的居民约8000 人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60 岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60 岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500 人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800 人.第28 页(共47 页)【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60 岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8 分)(2018•金华)如图,在6×6 的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:第29 页(共47 页)【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8 分)(2018•金华)如图,在Rt△ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC,AB 相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD 是⊙O 的切线.1(2)若BC=8,tanB=2,求⊙O 的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4 为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB 的长,再利用勾股定理第30 页(共47 页)第 31 页(共 47 页) 4 2 + 82 列出关于 r 的方程,求出方程的解即可得到结果.【解答】(1)证明:连接 OD ,∵OB=OD ,∴∠3=∠B ,∵∠B=∠1,∴∠1=∠3,在 Rt △ACD 中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD ⊥AD ,则 AD 为圆 O 的切线;(2)设圆 O 的半径为 r ,在 Rt △ABC 中,AC=BCtanB=4,5,根据勾股定理得:AB= =4∴OA=4 5﹣r ,1在 Rt △ACD 中,tan ∠1=tanB=2,∴CD=ACtan ∠1=2,根据勾股定理得:AD 2=AC 2+CD 2=16+4=20,在Rt△ADO 中,OA2=OD2+AD2,即(4 5﹣r)2=r2+20,第32 页(共47 页)解得:r= 2 .【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10 分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C,D 在抛物线上.设A(t,0),当t=2 时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2 时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH 平分矩形的面积时,求抛物线平移的距离.【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.3 5第33 页(共47 页)【分析】(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t 时1 5AD=﹣4t2+2t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2 得出点A、B、C、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P,根据AB∥CD 知线段OD 平移后得到的线段是GH,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2 时,AD=4,∴点D 的坐标为(2,4),∴将点 D 坐标代入解析式得﹣16a=4,1解得:a=﹣4,1 5抛物线的函数表达式为y=﹣4x2+2x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,1 5当x=t 时,AD=﹣4t2+2t,∴矩形ABCD 的周长=2(AB+AD)第34 页(共47 页)1 5=2[(10﹣2t)+(﹣4t2+2t)]1=﹣2t2+t+201 41=﹣2(t﹣1)2+ 2 ,1∵﹣2<0,41∴当t=1 时,矩形ABCD 的周长有最大值,最大值为2 ;(3)如图,当t=2 时,点A、B、C、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分;∴当G、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平第35 页(共47 页)分,当点G、H 分别落在线段AB、DC 上时,直线GH 过点P 必平分矩形ABCD 的面积,∵AB∥CD,∴线段OD 平移后得到的线段GH,∴线段OD 的中点Q 平移后的对应点是P,在△OBD 中,PQ 是中位线,1∴PQ=2OB=4,所以抛物线向右平移的距离是 4 个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10 分)(2018•金华)如图,四边形ABCD 的四个顶点分别在反比例函数y= x与y=x(x>0,0<m<n)的图象上,对角线BD∥y 轴,且BD⊥AC 于点P.已知点B 的横坐标为4.(1)当m=4,n=20 时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m,n 之间的数量关系;若不能,试说明理由.第36 页(共47 页)【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A,B 坐标,再利用待定系数法即可得出结论;②先确定出点 D 坐标,进而确定出点P 坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,4 ),进而得出A(4﹣t,4 +t),即:(4﹣t)(4 +t)=m,即可得出点D(4,8﹣4 ),即可得出结论.【解答】解:(1)①如图1,∵m=4,4∴反比例函数为y=x,当x=4 时,y=1,∴B(4,1),当y=2 时,4∴2=x,第37 页(共47 页)第 38 页(共 47 页){ ∴x=2,∴A (2,2),设直线 AB 的解析式为 y=kx +b ,2{+ = 2∴ 4k + b = 1, k =‒ 1 2 ∴ b = 3,1∴直线 AB 的解析式为 y=﹣2x +3;②四边形 ABCD 是菱形,理由如下:如图 2,由①知,B (4,1),∵BD ∥y 轴,∴D (4,5),∵点 P 是线段 BD 的中点,∴P (4,3),4 4当 y=3 时,由 y= 得,x=3,2020 由 y= 得,x= 3 ,4 8 20 8∴PA=4﹣3=3,PC= 3 ﹣4=3,∴PA=PC,∵PB=PD,∴四边形ABCD 为平行四边形,∵BD⊥AC,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC,BD 的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4 时,y= = 4 ,∴B(4,4 ),∴A(4﹣t,4 +t),C(4+t,4 +t),∴(4﹣t)(4 +t)=m,∴t=4﹣4 ,第39 页(共47 页)∴C(8﹣4 ,4),∴(8﹣4 )×4=n,∴m+n=32,∵点D 的纵坐标为4 +2t= 4 +2(4﹣4 )=8﹣4 ,∴D(4,8﹣4 ),∴4(8﹣4 )=n,∴m+n=32.第40 页(共47 页)【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.24.(12 分)(2018•金华)在Rt△ABC 中,∠ACB=90°,AC=12.点D 在直线CB 上,以CA,CD 为边作矩形ACDE,直线AB 与直线CE,DE 的交点分别为F,G.(1)如图,点D 在线段CB 上,四边形ACDE 是正方形.①若点G 为DE 中点,求FG 的长.②若DG=GF,求BC 的长.(2)已知BC=9,是否存在点D,使得△DFG 是等腰三角形?若存在,求该三第41 页(共47 页)角形的腰长;若不存在,试说明理由.【考点】LO:四边形综合题.【专题】152:几何综合题.E【分析】(1)①只要证明△ACF∽△GEF,推出AF=AC,即可解决问题;②如图1 中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2 中,当点D 中线段BC 上时,此时只有GF=GD,② 如图3 中,当点D 中线段BC 的延长线上,且直线AB,CE 的交点中AE 上方时,此时只有GF=DG,③如图4 中,当点D 在线段BC 的延长线上,且直线AB,EC 的交点中BD 下方时,此时只有DF=DG,如图5 中,当点D 中线段CB 的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE 中,DG=GE=6,E2 + E中Rt△AEG 中,AG= 2=6 5,∵EG∥AC,∴△ACF∽△GEF,E∴AF=AC,第42 页(共47 页)6 1∴AF=12=2,1∴FG=3AG=2 5.②如图 1 中,正方形ACDE 中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF 中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC 中,BC=tan30°=12 3.第43 页(共47 页)第 44 页(共 47 页)(2)在 Rt △ABC 中,AB= 122 + 92=15, =如图 2 中,当点 D 中线段 BC 上时,此时只有 GF=GD ,∵DG ∥AC ,∴△BDG ∽△BCA ,设 BD=3x ,则 DG=4x ,BG=5x ,∴GF=GD=4x ,则 AF=15﹣9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,E∴BC =BF ,9 ‒ 3x ∴9 =15 ‒ 9x 9 , 整理得:x 2﹣6x +5=0,解得 x=1 或 5(舍弃)∴腰长 GD 为=4x=4.如图 3 中,当点 D 中线段 BC 的延长线上,且直线 AB ,CE 的交点中 AE 上方时,此时只有 GF=DG ,设 AE=3x ,则 EG=4x ,AG=5x ,∴FG=DG=12+4x ,2 +2第 45 页(共 47 页) ∵AE ∥BC ,∴△AEF ∽△BCF ,E∴BC =BF ,3 9 + 12∴ 9 =9x + 27,解得 x=2 或﹣2(舍弃),∴腰长 DG=4x +12=20.如图 4 中,当点 D 在线段 BC 的延长线上,且直线 AB ,EC 的交点中 BD 下方时,此时只有 DF=DG ,过点 D 作 DH ⊥FG .设 AE=3x ,则 EG=4x ,AG=5x ,DG=4x +12,4 ∴FH=GH=DG•cos ∠DGB=(4x +12)×5= 16 + 485 ,∴GF=2GH= 32 + 96 5 ,∴AF=GF ﹣AG=7+ 96 5 ,∵AC ∥DG ,∴△ACF ∽△GEF ,∴E G =FG ,第 46 页(共 47 页) 12 14 7 + 96 12 532 + 96∴4x = 5 ,解得 x= 12 14 7 或 7 (舍弃), ﹣∴腰长 GD=4x +12=7 ,如图 5 中,当点 D 中线段 CB 的延长线上时,此时只有 DF=DG ,作 DH ⊥AG 于H .设 AE=3x ,则 EG=4x ,AG=5x ,DG=4x ﹣12,∴FH=GH=DG•cos ∠DGB= 16x ‒ 48 5 ,∴FG=2FH= 32x ‒ 96 5 ,∴AF=AG ﹣F G=96 ‒ 7x 5 ,∵AC ∥EG ,∴△ACF ∽△GEF ,∴E G =FG ,96 ‒ 7x 12532x ‒ 96 ∴4x =5 , 84 + 48 1412 14‒84 + 48 14‒ 84 + 48 14 解得x=12 147 或 7 (舍弃),﹣∴腰长7 ,DG=4x﹣12=综上所述,等腰三角形△DFG 的腰长为4 或20 或84 + 48 147 或7 .第47 页(共47 页)。
2018年浙江省金华市中考数学试卷含解析(完美打印版)
2018年浙江省金华市中考数学试卷(含解析)一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1B.∠2C.∠3D.∠44.(3分)若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB =20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F 分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB 相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A 在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE的中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.3.(3分)如图,∠B的同位角可以是()A.∠1B.∠2C.∠3D.∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.4.(3分)若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题.【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB =20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣112.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣115.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.18.(6分)解不等式组:【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB 相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B=,求⊙O的半径.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BC tan B=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tan B=,∴CD=AC tan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A 在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ 是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),∵直线GH平分矩形的面积,∴点P是GH和BD的中点,∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出P A,PC,即可得出结论;(2)先确定出B(4,),D(4,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴P A=4﹣=,PC=﹣4=,∴P A=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=3224.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE的中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D在线段BC上时,此时只有GF=GD,②如图3中,当点D在线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题.【解答】解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D在线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD=4x=4.如图3中,当点D在线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃)∴腰长GD=4x+12=,如图5中,当点D在线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰△DFG的腰长为4或20或或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.(3分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018•金华)化简(x﹣1)(x+1)的结果是.12.(4分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD 在边AD上,则的值是.16.(4分)(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.<18.(6分)(2018•金华)解不等式组:19.(6分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A (t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB 上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【考点】U3:由三视图判断几何体.【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【考点】X5:几何概率.【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1.【考点】4F:平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【考点】2C:实数的运算.【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD 在边AD上,则的值是.【考点】LB:矩形的性质;IM:七巧板.【专题】556:矩形菱形正方形.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC的长.16.(4分)(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【考点】M3:垂径定理的应用;KU:勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.<18.(6分)(2018•金华)解不等式组:【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A (t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),C(4+t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB 上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。