动量和能量专题训练(选择题)

合集下载

大学物理习题及解答(运动学、动量及能量)

大学物理习题及解答(运动学、动量及能量)

1-1.质点在Oxy 平面内运动,其运动方程为j t i t r )219(22-+=。

求:(1)质点的轨迹方程;(2)s .t 01=时的速度及切向和法向加速度。

1-2.一质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置矢量i r 100=。

求:(1)在任意时刻的速度和位置矢量;(2)质点在oxy 平面上的轨迹方程,并画出轨迹的示意图。

1-3. 一质点在半径为m .r 100=的圆周上运动,其角位置为342t +=θ。

(1)求在s .t 02=时质点的法向加速度和切向加速度。

(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则角速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=⋅⨯==ωr a22s t t s m 80.4d d -=⋅==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的角位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。

解:在t ∆时间内,从管一端流入(或流出)水的质量为t vS m ∆=∆ρ,弯曲部分AB 的水的动量的增量则为()()A B A B v v t vS v v m p -∆=-∆=∆ρ依据动量定理p I ∆=,得到管壁对这部分水的平均冲力()A B v v I F -=∆=Sv t ρ从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='Sv F F ρ作用力的方向则沿直角平分线指向弯管外侧。

新高考 动量和能量综合题(单选多选)

新高考 动量和能量综合题(单选多选)

新高考动量和能量综合题(单选多选)1.(2020·北京海淀高三检测)(多选)如图所示,在A、B两物体间有一与物体不连接的轻质弹簧,两物体用轻细线连接在一起并使弹簧处于压缩状态,整体静止在光滑水平面上。

现将细线烧断,在弹簧对两物体施加作用力的整个过程中,设弹簧弹力对A、B物体的冲量大小分别为I A 和I B ,弹簧弹力对A、B物体所做的功分别为W A 和W B,若A、B物体的质量关系是m A>m B·则下面关系式中正确的是A . I A=IB A . I A <I B D .W A =W B D .W A<W B2.(2020·福州八中高三质检)(多选)质量分别为m1与m2的甲、乙两球在水平光滑轨道上同向运动,已知它们的动量分别是p1-5kg·m/s,p2=7kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为8kg.m/s,则甲、乙两球质量m1与m2间的关系可能是A. m1一m2B. 2m1一m2C. 5m1=3m2D.4m1=m23.(2020·保定一中阶段性考试)矩形滑块由不同材料的上下两层粘合在一起组成,将其放在光滑的水平面上,如图所示,质量为m的子弹以速度υ水平射向滑块。

若射向上层滑块,子弹刚好不射出;若射向下层滑块,则子弹整个刚好嵌入滑块,由上述两种情况相比较A.子弹嵌入两滑块的过程中对滑块的冲量一样多B.子弹嵌人上层滑块的过程中对滑块做的功较多C.子弹嵌入下层滑块的过程中对滑块做的功较多D.子弹嵌入上层滑块的过程中系统产生的热量较多4.(2020·河北名校高三联考)如图所示,两个完全相同的小球A、B用等长的细线悬于O点,线长为L。

若将A由图示位置静止释放,则B球被碰后第一次速度为零时的高度不可能是A.L/2B.L/4C.L/8D.L/105,(2020·江西十三县联考)(多选)如图所示,一异形轨道由粗糙的水平部分和光滑的四分之一圆弧部分组成,置于光滑的水平面上,如果轨道固定,将可视为质点的物块从圆弧轨道的最高点由静止释放,物块恰好停在水平轨道的最左端。

高三物理单元测试——动量能量(2)

高三物理单元测试——动量能量(2)

武汉外国语学校高三单元测试——动量能量一、单选题1.如图所示,运动员刚开始静止在蹦床上的B 点(未标出),通过调整姿态,多次弹跳后达到最高点A ,然后运动员从A 点保持姿势不变由静止下落至最低点C 。

不计空气阻力,下列说法正确的是()A .运动员从接触蹦床到最低点的过程中,一直做减速运动B .下落过程中,运动员在B 点时速度最大C .从B 点下落至C 点的过程,运动员做匀减速直线运动D .从A 点下落至B 点的过程,运动员的机械能守恒2.水平面上有质量相等的a 、b 两个物体,水平推力F 1、F 2分别作用在a 、b 上。

一段时间后撤去推力,物体继续运动一段距离后停下。

两物体的v—­t 图线如图所示,图中AB ∥CD 。

则整个过程中()A .F1的冲量等于F 2的冲量B .F 1的冲量大于F 2的冲量C .摩擦力对a 物体的冲量等于摩擦力对b 物体的冲量D .合力对a 物体的冲量等于合力对b 物体的冲量3.2024年4月25日我国成功发射神舟十八号载人飞船,飞船进入预定轨道后,在6.5h 内实现与中国空间站自主交会对接,我国该技术处于国际领先水平。

已知飞船变轨前和空间站都在各自轨道绕地球做匀速圆周运动,飞船轨道半径略小于空间站轨道半径。

下列说法正确的是()A .神舟飞船的发射速度大于第二宇宙速度B .变轨前神舟飞船的动能一定比空间站的动能大C .变轨前神舟飞船做圆周运动的周期比空间站做圆周运动的周期大D .变轨前神舟飞船做圆周运动的线速度比空间站做圆周运动的线速度大4.如图所示,宽度为d 的一条小河水速恒定,运动员甲在静水中的速度大小为v ,甲从河岸的A 点以最短的时间来渡河,最后运动到河对岸的B 点,甲从A 点出发的同时,运动员乙从河对岸的C 点沿着河岸向下游游动,结果甲、乙在B 点相遇。

已知C 、B 两点间的距离也为d ,乙在静水中的速度大小为0.5v ,下列说法正确的是()A .乙从C 点运动到B 点的时间为2d v B .水速为0.5vC .A 、B 两点间的距离为2dD .A 、C 两点间的距离为5d5.如图所示为钉钉子的情景。

大学物理题库-第3章-动量守恒定律和能量守恒定律试题

大学物理题库-第3章-动量守恒定律和能量守恒定律试题

大学物理题库 第三章 动量守恒定律和能量守恒定律一、选择题:1、水中有一只静止的小船,船头与船尾各站有一个质量不相同的人。

若两人以不同的速率相向而行,不计水的阻力,则小船的运动方向为: (A)与质量大的人运动方向一致 (B)与动量值小的人运动方向一致 (C)与速率大的人运动方向一致 (D)与动能大的人运动方向一致[ ]2、关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是: (A )不受外力作用的系统,其动量和机械能必然同时守恒;(B )所受合外力为零,内力都是保守力的系统,其机械能必然守恒;(C )不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒; (D )外力对一个系统所作的功为零,则该系统的动量和机械能必然同时守恒。

[ ]3、一质点在外力作用下运动时,下述哪种说法是正确的?(A )质点的动量改变时,质点的动能也一定改变; (B )质点的动能不变时,质点的动量也一定不变; (C )外力的冲量为零,外力的功一定为零; (D )外力的功为零,外力的冲量一定为零。

[ ]4、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 (A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s .[ ]5、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122([ ]6、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同. (C) 动量不同,动能也不同. (D) 动量不同,动能相同.[ ]7、一个质点同时在几个力作用下的位移为k j i r654+-=∆ (SI ),其中一个恒力为k j i F953+--=(SI ),则此力在该位移过程中所作的功为:(A )67J (B )91J (C ) 17J (D ) -67J[ ]8、如图3-12所示,劲度系数为k 的轻质弹簧水平放置,一端固定,另一端接一质量为m 的物体,物体与水平桌面间的摩擦系数为μ,现以恒力F 将物体自平衡位置开始向右拉动,则系统的最大势能为:(A ) ()22mg F k μ- (B ) ()221mg F k μ- (C ) 22F k(D )221F k[ ]9、质量为m 的一艘宇宙飞船关闭发动机返回地面时,可认为该飞船只在地球的引力场中运动。

高考物理选择题热点——动量和能量观点的应用

高考物理选择题热点——动量和能量观点的应用

热点17动量和能量观点的应用(建议用时:20分钟)1.(多选)(2021·广东肇庆市第二次统一测试)质量为m的物块在光滑水平面上与质量为M的物块发生正碰,已知碰撞前两物块动量相同,碰撞后质量为m的物块恰好静止,则两者质量之比Mm可能为()A.1B.2C.3D.42. (多选)(2021·新疆维吾尔自治区第二次联考)如图所示,光滑的水平地面上,质量为m的小球A正以速度v向右运动。

与前面大小相同、质量为3m的B 球相碰,则碰后A、B两球总动能可能为()A.18m v2B.116m v2C.14m v2D.58m v23.(多选)(2021·广西柳州市柳江中学高考模拟)A、B两物体在光滑水平面上沿同一直线运动,图示表示发生碰撞前后的v-t图线,由图线可以判断()A.A、B的质量比为3∶2B.A、B作用前后总动量守恒C.A、B作用前后总动量不守恒D.A、B作用前后总动能不变4. (2021·四川攀枝花市第二次统考)如图所示,水平地面上紧挨着的两个滑块P、Q之间有少量炸药(质量不计),爆炸后P、Q沿水平地面向左、右滑行的最大距离分别为0.1 m、0.4 m。

已知P、Q与水平地面间的动摩擦因数相同,则P、Q的质量之比m1∶m2为()A.4∶1 B.1∶4C.2∶1 D.1∶25. (2021·山东泰安市二轮检测)如图所示,质量为m的滑环套在足够长的光滑水平杆上,质量为M=3m的小球(可视为质点)用长为L的轻质细绳与滑环连接。

滑环固定时,给小球一个水平冲量I,小球摆起的最大高度为h1(h1<L);滑环不固定时,仍给小球以同样的水平冲量I,小球摆起的最大高度为h2,则h1∶h2为()A.6∶1 B.4∶1C.2∶1 D.4∶36.(多选)(2021·福建省名校联盟开学考)如图甲所示,一轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上。

安徽庐江二中高三物理二轮复习----动量和能量(2)

安徽庐江二中高三物理二轮复习----动量和能量(2)

专题训练——动量和能量(2)一、单项选择题1.如图所示,图线表示作用在某物体上的合外力随时间变化的关系,若物体开始时是静止的,那么( )A .前3 s 内合外力对物体做的功为零B .前5 s 内物体的动能变化量为零C .在前5 s 内只有第1 s 末物体的动能最大D .在前5 s 内只有第5 s 末物体的速率最大2.质量为g k 1023⨯、发动机的额定功率为80kw 的汽车在平直公路上行驶,若汽车所受阻力大小恒为N 3104⨯,则下列说法错误的是( )A .汽车的最大速度是20m/sB .若汽车保持额定功率启动,则当其速度为5m/s 时,加速度为6m/s 2C .汽车维持加速度2m/s 2匀加速运动的时间最多为10sD .汽车以加速度2m/s 2匀加速启动,启动后第2s 末时发动机的实际功率是32kw3.如图甲所示,斜面AB 与水平面BC 是由同种材料制成的。

质量相等的可视为质点的a 、b 两物块,从斜面上的同一位置A 由静止开始下滑,经B 点在水平面上滑行一段时间后停止。

不计经过B 点时的能量损失,用传感器采集到它们的速度—时间图象如图乙所示,则由上述信息判断下列说法正确的是( )A .在斜面上滑行的加速度物块a 比物块b 的小B .在水平面上滑行的距离物块a 比物块b 的小C .与斜面间的动摩擦因数物块a 比物块b 的小D .在整个运动过程中克服摩擦力做的功物块a 比物块b 多4.如图所示,一条轻绳一端通过定滑轮悬挂一个质量为m 的重物,在另一端施加拉力F ,使重物从地面由静止开始加速向上运动。

当重物上升高度为h 时,轻绳断开,不计一切摩擦,则( )A .重物从开始向上加速到轻绳断开的过程中重力势能的增量为FhB .轻绳断开瞬间重物重力的瞬时功率为-2(F -mg )mg 2hC .重物上升过程中机械能守恒D .重物落地前瞬间的动能为Fh ﹢mgh5.质量分别为2m 和m 的A 、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上。

高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题

高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题

考点规范练40电磁感应中的动力学、能量与动量问题一、单项选择题1.如图所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,磁场区域宽度大于线圈宽度,则( )A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时即已停下C.线圈在磁场中某个位置停下D.线圈能通过场区不会停下2.如图所示,两光滑平行金属导轨间距为l ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。

电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。

现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BlvC.电容器所带电荷量为CBlvD.为保持MN 匀速运动,需对其施加的拉力大小为B 2l 2vR3.(2021·辽宁模拟)如图所示,间距l=1 m 的两平行光滑金属导轨固定在水平面上,两端分别连接有阻值均为2 Ω的电阻R 1、R 2,轨道有部分处在方向竖直向下、磁感应强度大小为B=1 T 的有界匀强磁场中,磁场两平行边界与导轨垂直,且磁场区域的宽度为d=2 m 。

一电阻r=1 Ω、质量m=0.5 kg 的导体棒ab 垂直置于导轨上,导体棒现以方向平行于导轨、大小v 0=5 m/s 的初速度沿导轨从磁场左侧边界进入磁场并通过磁场区域,若导轨电阻不计,则下列说法正确的是( )A.导体棒通过磁场的整个过程中,流过电阻R 1的电荷量为1 CB.导体棒离开磁场时的速度大小为2 m/sC.导体棒运动到磁场区域中间位置时的速度大小为3 m/sD.导体棒通过磁场的整个过程中,电阻R 2产生的电热为1 J4.如图所示,条形磁体位于固定的半圆光滑轨道的圆心位置,一半径为R 、质量为m 的金属球从半圆轨道的一端沿半圆轨道由静止下滑,重力加速度大小为g 。

专题07动量(选择题)

专题07动量(选择题)

专题07 动量目录考点01 动量定理的理解及应用 (1)考点02 动量守恒定律及其应用 (15)考点01 动量定理的理解及应用A.速度的变化量等于曲线与横轴围成的面积B.动量大小先增大后减小A .助滑阶段,运动员深蹲是为了减小与滑道之间的摩擦力B .起跳阶段,运动员猛蹬滑道主要是为了增加向上的速度C .飞行阶段,运动员所采取的姿态是为了增加水平方向速度D .着陆阶段,运动员两腿屈膝是为了减少与地面的作用时间【答案】B【详解】A .助滑阶段,运动员深蹲是为了减小与空气之间的摩擦力,A 错误;B .起跳阶段,运动员猛蹬滑道主要是通过增大滑道对人的作用力,根据动量定理可知,在相同时间内,为了增加向上的速度,B 正确;C .飞行阶段,运动员所采取的姿态是为了减小水平方向的阻力,从而减小水平方向的加速度,C 错误;D .着陆阶段,运动员两腿屈膝下蹲可以延长落地时间,根据动量定理可知,可以减少身体受到的平均冲击力,D 错误。

故选B 。

4.(2022·海南·高考真题)在冰上接力比赛时,甲推乙的作用力是1F ,乙对甲的作用力是2F ,则这两个力( ) A .大小相等,方向相反B .大小相等,方向相同C .1F 的冲量大于2F 的冲量D .1F 的冲量小于2F 的冲量【答案】A【详解】根据题意可知1F 和2F 是相互作用力,根据牛顿第三定律可知1F 和2F 等大反向、具有同时性;根据冲量定义式I Ft =可知1F 和2F 的冲量大小相等,方向相反。

故选A 。

5.(2022·湖北·统考高考真题)一质点做曲线运动,在前一段时间内速度大小由v 增大到2v ,在随后的一段时间内速度大小由2v 增大到5v 。

前后两段时间内,合外力对质点做功分别为W 1和W 2,合外力的冲量大小分别为I 1和I 2。

下列关系式一定成立的是( )A . 213W W =,213I I ≤B . 213W W =,21I I ≥C .217W W =,213I I ≤D .217W W =,21I I ≥ 【答案】D【详解】根据动能定理可知A.火箭的加速度为零时,动能最大止。

动量和能量训练专题(含详细解析过程)

动量和能量训练专题(含详细解析过程)

1.两相同的物体a 和b ,分别静止在光滑的水平桌面上,因分别受到水平恒力作用,同时开始运动.若b 所受的力是a 的2倍,经过t 时间后,分别用I a ,W a 和I b ,W b 分别表示在这段时间内a 和b 各自所受恒力的冲量的大小和做功的大小,则 A .W b =2W a ,I b =2 I a B .W b =4W a ,I b =2 I a C .W b =2 W a ,I b =4 I a D .W b =4 W a ,I b =4 I a2.木块A 从斜面底端以初速度v 0冲上斜面,经一段时间,回到斜面底端.若木块A 在斜面上所受的摩擦阻力大小不变.对于木块A ,下列说法正确的是 A .在全过程中重力的冲量为零 B .在全过程中重力做功为零C .在上滑过程中动量的变化量的大小大于下滑过程中动量的变化量D .在上滑过程中机械能的变化量大于下滑过程中机械能的变化量 3.质量为m 的小物块,在与水平方向成α角的力F 作用下,沿光滑水平面运动,物块通过A 点和B 点的速度分别是v A 和v B ,物块由A 运动到B 的过程中,力F 对物块做功W 和力F 对物块作用的冲量I 的大小是 A .221122B A W mv mv =-B .221122B B W mv mv >-C .B A I mv mv =-D .B A I mv mv >-4.A 、B 两物体质量分别为m A 、m B ,且3m A =m B ,它们以相同的初动能在同一水平地面上滑行.A 、B 两物体与地面的动摩擦因数分别为μA 、μB ,且μA =2μB ,设物体A 滑行了s A 距离停止下来,所经历的时间为t A 、而物体B 滑行了s B 距离停止下来,所经历的时间为t B .由此可以判定 A .s A >s B t A >t BB .s A >s B t A < t BC .s A <s B t A >t BD .s A <s B t A <t B5.质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为p 1、p 2和E 1、E 2,比较它们的大小,有 A .1212p p E E >>和 B .1212p p E E ><和 C .1212p p E E <>和D .1212p pE E <<和6.竖直向上抛出的物体,从抛出到落回到抛出点所经历的时间是t ,上升的最大高度是H ,所受空气阻力大小恒为f ,则在时间t 内 A .物体受重力的冲量为零B .在上升过程中空气阻力对物体的冲量比下降过程中的冲量大C .物体动量的增量大于抛出时的动量D .物体机械能的减小量等于f H7.如图所示,水平地面上放着一个表面均光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中 A .系统的动量守恒,机械能不守恒B .系统的动量守恒,机械能守恒C .系统的动量不守恒,机械能守恒D .系统的动量不守恒,机械能不守恒8.汽车拉着拖车在平直公路上匀速行驶.突然拖车与汽车脱钩,而汽车的牵引力不变,各自受的阻力不变,则脱钩后,在拖车停止运动前,汽车和拖车系统 A .总动量和总动能都保持不变 B .总动量增加,总动能不变 C .总动量不变,总动能增加D .总动量和总动能均增加9.一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和10.如图所示,质量为m 的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体A .重力势能增加了34mghB .重力势能增加了mghC .动能损失了mghD .机械能损失了12mgh提示:设物体受到摩擦阻力为F ,由牛顿运动定律得3sin304F mg ma mg +︒==,解得14F mg =重力势能的变化由重力做功决定,故△E p =mgh动能的变化由合外力做功决定33(sin30)4sin302k F mg s ma s mg mgh +︒==-=-︒机械能的变化由重力以外的其它力做功决定 故114sin302h E F s mg mgh ∆===︒机械 综合以上分析可知,B 、D 两选项正确.11.高速公路上发生了一起交通事故,一辆总质量2000kg 向南行驶的长途客车迎面撞上了一辆总质量为4000kg 向北行驶的卡车,碰后两辆车连接一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前的速率是20m/s ,由此可知卡车碰前瞬间的动能 A .等于2×105J B .小于2×105JC .大于2×105JD .大于2×105J ,小于8×105J12.一个人稳站在商店的自动扶梯的水平踏板上,随扶梯向上加速,如图所示.则A .踏板对人做的功等于人的机械能的增加量B .踏板对人的支持力做的功等于人的机械能的增加量C .克服人的重力做的功等于人的机械能增加量D .对人做功的只有重力和踏板对人的支持力13.“神舟”六号载人飞船顺利发射升空后,经过115小时32分的太空飞行,在离地面343km的圆轨道上运行了77圈.运动中需要多次“轨道维持”.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行“轨道维持”,由于飞船受轨道上稀薄空气的影响,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能的变化情况将会是 A .动能、重力势能和机械能逐渐减小B .重力势能逐渐减小、动能逐渐增大,机械能不变C .重力势能逐渐增大,动能逐渐减小,机械能不变D .重力势能逐渐减小、动能逐渐增大,机械能逐渐减小提示:“神舟”六号飞船在每一圈的运行中,仍可视为匀速圆周运动,由万有引力提供向心力得:22Mm v Gm r r =,所以飞船的动能为:21,22k GMm E mv r==轨道高度逐渐降低,即轨道半径逐渐减小时,飞船的动能将增大;重力做正功,飞船的重力势能将减小;而大气阻力对飞船做负功,由功能关系知,飞船的机械能将减小.故选项D 正确. 14.质量为m 1=4kg 、m 2=2kg 的A 、B 两球,在光滑的水平面上相向运动,若A 球的速度为v 1=3m/s ,B 球的速度为v 2=-3m/s ,发生正碰后,两球的速度的速度分别变为v 1'和v 2',则v 1'和v 2'可能为 A .v 1'=1m/s ,v 2'=1m/s B .v 1'=4m/s ,v 2'=-5m/s C .v 1'=2m/s ,v 2'=-1m/sD .v 1'=-1m/s ,v 2'=5m/s15.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg ·m/s ,B 球的动量为7kg·m/s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为A .p A ′=6kg ·m/s ,pB ′=6kg ·m/s B .p A ′=3kg ·m/s ,p B ′=9kg ·m/sC .p A ′=-2kg·m/s ,p B ′=14kg ·m/sD .p A ′=-5kg ·m/s ,p B ′=17kg ·m/s16.利用传感器和计算机可以测量快速变化的力的瞬时值.下图是用这种方法获得的弹性绳中拉力F 随时间的变化图线.实验时,把小球举高到绳子的悬点O 处,然后放手让小球自由下落.由此图线所提供的信息,以下判断正确的是 A .t 2时刻小球速度最大B .t 1~t 2期间小球速度先增大后减小C .t 3时刻小球动能最小D .t 1与t 4时刻小球动量一定相同17.如图所示,木块静止在光滑水平面上,子弹A 、B 从木块两侧同时射入木块,最终都停12 3 4 5t在木块中,这一过程中木块始终保持静止.现知道子弹A 射入深度d A 大于子弹B 射入的深度d B ,则可判断A .子弹在木块中运动时间t A >tB B .子弹入射时的初动能E kA >E kBC .子弹入射时的初速度v A >v BD .子弹质量m A <m B18.质量为m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图所示,设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是 A .木块静止,d 1= d 2 B .木块向右运动,d 1< d 2 C .木块静止,d 1< d 2D .木块向左运动,d 1= d 2提示:由动量守恒和能量守恒求解.19.矩形滑块由不同材料的上、下两层粘在一起组成,将其放在光滑的水平面上,如图所示.质量为m 的子弹以速度v 水平射向滑块.若射击上层,则子弹刚好不穿出,如图甲所示;若射击下层,整个子弹刚好嵌入,如图乙所示.则比较上述两种情况,以下说法正确的是A .两次子弹对滑块做功一样多B .两次滑块所受冲量一样大C .子弹击中上层过程中产生的热量多D .子弹嵌入下层过程中对滑块做功多20.一个半径为r 的光滑圆形槽装在小车上,小车停放在光滑的水平面上,如图所示,处在最低点的小球受击后获得水平向左的速度v 开始在槽内运动,则下面判断正确的是 A .小球和小车总动量不守恒 B .小球和小车总机械能守恒 C .小球沿槽上升的最大高度为r甲 乙D .小球升到最高点时速度为零21.半圆形光滑轨道固定在水平地面上,如图所示,并使其轨道平面与地面垂直,物体m 1、m 2同时由轨道左、右最高点释放,二者碰后粘在一起向左运动,最高能上升到轨道M 点,如图所示,已知OM 与竖直方向夹角为60°,则两物体的质量之比为m 1︰m 2为 A.1)∶1) B1 C.1)∶1)D.1提示:由对称性可知,m 1、m 2同时到达圆轨道最低点,根据机械能守恒定律可知,它们到达最低点的速率应相等v 2112()()m m v m m v '-=+,以后一起向左运动,由机械能守恒定律可得,212121()(1cos 60)()2m m gR m m v '+-︒=+, 联立以上各式解得12∶1)∶1)m m =22.如图所示,在光滑的水平面上,物体B 静止,在物体B 上固定一个轻弹簧.物体A 以某一速度沿水平方向向右运动,通过弹簧与物体B 发生作用.两物体的质量相等,作用过程中,弹簧获得的最大弹性势能为E P .现将B 的质量加倍,再使物体A 通过弹簧与物体B 发生作用(作用前物体B 仍静止),作用过程中,弹簧获得的最大弹性势能仍为E P .则在物体A 开始接触弹簧到弹簧具有最大弹性势能的过程中,第一次和第二次相比A .物体A 的初动能之比为2:1B .物体A 的初动能之比为4:3C .物体A 损失的动能之比为1:1D .物体A 损失的动能之比为27:3223.如图所示,竖直的墙壁上固定着一根轻弹簧,将物体A 靠在弹簧的右端并向左推,当压缩弹簧做功W 后由静止释放,物体A 脱离弹簧后获得动能E 1,相应的动量为P 1;接着物体A 与静止的物体B 发生碰撞而粘在一起运动,总动能为水平面的摩擦不计,则 A .W =E 1=E 2 B .W =E 1>E 2 C .P 1=P 2D .P 1>P 224.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块-v甲B的速度随时间变化的规律如图乙所示,从图象信息可得A .在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1∶m 2 = 1∶2D .在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶825.如图所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度,对于m 、M 和弹簧组成的系统A .由于F 1、F 2等大反向,故系统机械能守恒B .当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的动能最大C .由于F 1、F 2大小不变,所以m 、M 各自一直做匀加速运动D .由于F 1、F 2等大反向,故系统的动量始终为零提示:F 1、F 2为系统外力且做功代数和不为零,故系统机械能不守恒;从两物体开始运动以后两物体作的是加速度越来越小的变加速运动,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的速度最大,动能最大;由于F 1、F 2等大反向,系统合外力为零,故系统的动量始终为零. 26.如图所示,一轻弹簧与质量为m 的物体组成弹簧振子,物体在一竖直线上的A 、B 两点间做简谐运动,点O 为平衡位置,C 为O 、B之间的一点.已知振子的周期为T ,某时刻物体恰好经过C 向上运动,则对于从该时刻起的半个周期内,以下说法中正确的是 A .物体动能变化量一定为零B .弹簧弹性势能的减小量一定等于物体重力势能的增加量C .物体受到回复力冲量的大小为mgT /2D .物体受到弹簧弹力冲量的大小一定小于mgT /2提示:这是弹簧振子在竖直方向上做简谐运动,某时刻经过C 点向上运动,过半个周期时间应该在C 点大于O 点对称位置,速度的大小相等,所以动能的变化量为零,A 选项正确;由系统机械能守恒得,弹簧弹性势能的减少量一定等于物体重力势能的增加量,B 选项正确;振子在竖直方向上做简谐运动时,是重力和弹簧的弹力的合力提供回复力的,由动量定理I 合=△p ,设向下为正方向,22TI mgI mv =+=合弹,又因为C 点为BO 之间的某一点,v ≠0,所以,C 选项错误,D 选项正确.27.固定在水平面上的竖直轻弹簧,上端与质量为M 的物块B 相连,整个装置处于静止状态时,物块B 位于P 处,如图所示.另有一质量为m 的物块C ,从Q 处自由下落,与B 相碰撞后,立即具有相同的速度,然后B 、C 一起运动,将弹簧进一步压缩后,物块B 、C 被反弹.下列结论中正确的是 A .B 、C 反弹过程中,在P 处物块C 与B 相分离 B .B 、C 反弹过程中,在P 处物C 与B 不分离 C .C 可能回到Q 处 D .C 不可能回到Q 处28.如图所示,AB 为斜轨道,与水平面夹角30°,BC 为水平轨道,两轨道在B 处通过一小段圆弧相连接,一质量为m 的小物块,自轨道AB 的A 处从静止开始沿轨道下滑,最后停在轨道上的C 点,已知A 点高h ,物块与轨道间的动摩擦因数为μ,求:(1)整个过程中摩擦力所做的功?(2)物块沿轨道AB 段滑动的时间t 1与沿轨道BC 段滑动的时间t 2之比t 1/t 2等于多少? 【答案】(1)mgh ;(2解析:(1)设物块在从A 到B 到C 的整个过程中,摩擦力所做的功为W f ,则由动能定理可得mgh -W f =0,则W f =mgh(2)物块在从A 到B 到C 的整个过程中,根据动量定理,有12(sin30cos30)0mg mg t mgt μμ︒-︒-=解得12sin30cos30t g t g mg μμ==︒-︒ 29.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v =滑上B的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取210m /s ).求: (1)A 、B 最后的速度;(2)木块A 与木板B 间的动摩擦因数. 【答案】(1)1m/s ;(2)0.3解析:(1)A 、B 最后速度相等,由动量守恒可得()M m v mv +=0解得01m /s 4v v == (2)由动能定理对全过程列能量守恒方程μmg L mv M m v ⋅=-+21212022()解得0.3μ=30.某宇航员在太空站内做了如下实验:选取两个质量分别为m A =0.1kg 、m B =0.2kg 的小球A 、B 和一根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.1m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动,从弹簧与小球B 刚刚分离开始计时,经时间t =3.0s,两球之间的距离增加了s =2.7m ,求弹簧被锁定时的弹性势能E p ? 【答案】0.027J解析:取A 、B 为系统,由动量守恒得0()A B A A B B m m v m v m v +=+ ① 又根据题意得:A B v t v t s -=②由①②两式联立得:v A =0.7m/s ,v B =-0.2m/s由机械能守恒得:2220111()222p A B A A B BE m m v m v m v ++=+ ③代入数据解得E p =0.027J31.质量为m 1=0.10kg 和m 2=0.20kg 两个弹性小球,用轻绳紧紧的捆在一起,以速度v 0=0.10m/s沿光滑水平面做直线运动.某一时刻绳子突然断开,断开后两球仍在原直线上运动,经时间t =5.0s 后两球相距s =4.5m .求这两个弹性小球捆在一起时的弹性势能. 【答案】2.7×10-2J解析:绳子断开前后,两球组成的系统动量守恒,根据动量守恒定律,得2211021)(v m v m v m m +=+绳子断开后,两球匀速运动,由题意可知12()v v t s -=或21()v v t s -=代入数据解得120.7m/s 0.2m/s v v ==-,或120.5m/s 0.4m/s v v =-=,两球拴在一起时的弹性势能为2021222211)(212121v m m v m v m E P +-+==2.7×10-2J32.一块质量为M 长为L 的长木板,静止在光滑水平桌面上,一个质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为v 05.若把此木板固定在水平桌面上,其他条件相同.求:(1)求滑块离开木板时的速度v ;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.v【答案】(1;(2)208(12)25v m g Mμ- 解析:(1)设长木板的长度为l ,长木板不固定时,对M 、m 组成的系统,由动量守恒定律,得005v mv m Mv '=+ ① 由能量守恒定律,得22200111()2252v mgl mv m Mv μ'=-- ② 当长木板固定时,对m ,根据动能定理,有2201122mgl mv mv μ-=- ③ 联立①②③解得v =(2)由①②两式解得208(12)25v m l g Mμ=- 33.如图所示,光滑轨道的DP 段为水平轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内).这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g .求撤去外力前的瞬间,弹簧的弹性势能E 是多少?【答案】解析:对A 、B 、C 及弹簧组成的系统,当弹簧第一次恢复原长时,设B 、C 共同速度大小为v 0,A 的速度大小为v A ,由动量守恒定律有0)(2v m m mv A +=①则v A =v 0由系统能量守恒有E =12 2mv A 2+12 (m +m )v 02 ②此后B 、C 分离,设C 恰好运动至最高点Q 的速度为v ,此过程C 球机械能守恒,则mg ·2R =12 mv 02-12 mv 2 ③在最高点Q ,由牛顿第二定律得Rmv mg 2= ④ 联立①~④式解得E =10mgR34.如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上的O 点,此时弹簧处于原长.另一质量与B 相同的块A 从导轨上的P 点以初速度v 0向B 滑行,当A 滑过距离l 时,与B 相碰.碰撞时间极短,碰后A 、B 粘在一起运动.设滑块A 和B 均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g .求:(1)碰后瞬间,A 、B 共同的速度大小;(2)若A 、B 压缩弹簧后恰能返回到O 点并停止,求弹簧的最大压缩量.【答案】(1;(2)20168v l g μ- 解析:(1)设A 、B 质量均为m ,A 刚接触B 时的速度为v 1,碰后瞬间共同的速度为v 2,以A 为研究对象,从P 到O ,由功能关系22011122mgl mv mv μ=- 以A 、B 为研究对象,碰撞瞬间,由动量守恒定律得mv 1=2mv 2解得2v =(2)碰后A 、B 由O 点向左运动,又返回到O 点,设弹簧的最大压缩量为x , 由功能关系可得221(2)2(2)2mg x m v μ=解得20168v l x g μ=- 35.如图所示,质量M =1kg 的滑板B 右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木板A之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 质量m =1kg ,开始时木块A 与滑块B 以v 0=2m/s 的速度水平向右运动,并与竖直墙碰撞.若碰撞后滑板B 以原速v 0弹回,g 取10m/s 2.求:滑板B 向左运动后,木块A 滑到弹簧C 墙压缩弹簧过程中,弹簧具有的最大弹性势能.【答案】5.4J解析:木块A 先向右减速后向左加速度,滑板B 则向左减速,当弹簧压缩量最大,即弹性势能最大为E p 时,A 和B 同速,设为v .对A 、B 系统:由动量守恒定律得 00()Mv mv m M v -=+① 解得v =1.2m/s 由能量守恒定律得22200111()222p mv Mv m M v E mgL μ+=+++ ②由①②解得 5.4p E =J36.如图所示,质量M =4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木块A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 以速度v 0=0.2,由滑板B 左端开始沿滑板B 表面向右运动.已知A 的质量m =1kg ,g 取10m/s 2 .求:(1)弹簧被压缩到最短时木块A 的速度;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.【答案】(1)2m/s ;(2)39J解析:(1)弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为V ,从木块A 开始沿滑板B 表面向右运动至弹簧被压缩到最短的过程中,A 、B 系统的动量守恒,则mv 0=(M +m )V① V =m M m +v 0 ②木块A 的速度:V =2m/s③ (2)木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大.由能量守恒,得E P =22011()22mv m M v mgL μ-+- ④解得E P =39J37.设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.求该宇航员乘坐的返回舱至少需要获得多少能量,才能返回轨道舱? 已知:返回过程中需克服火星引力做功(1)R W mgR r=-,返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ;不计火星表面大气对返回舱的阻力和火星自转的影响. 【答案】(1)2R mgR r - 解析:物体m 在火星表面附近2mMG mg R =,解得2GM gR =设轨道舱的质量为0m ,速度大小为v .则2002m Mv Gm r r = 联立以上两式,解得返回舱与轨道舱对接时具有动能22122k mgR E mv r== 返回舱返回过程克服引力做功(1)R W mgR r=-返回舱返回时至少需要能量k E E W =+ 解得(1)2R E mgR r =- 38.美国航空航天局和欧洲航空航天局合作研究的“卡西尼”号土星探测器,在美国东部时间2004年6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族.“卡西尼”号探测器进入绕土星飞行的轨道,先在半径为R 的圆形轨道Ⅰ上绕土星飞行,运行速度大小为v 1.为了进一步探测土星表面的情况,当探测器运行到A 点时发动机向前喷出质量为△m 的气体,探测器速度大小减为v 2,进入一个椭圆轨道Ⅱ,运动到B 点时再一次改变速度,然后进入离土星更近的半径为r 的圆轨道Ⅲ,如图所示.设探测器仅受到土星的万有引力,不考虑土星的卫星对探测器的影响,探测器在A 点喷出的气体速度大小为u .求:(1)探测器在轨道Ⅲ上的运行速率v 3和加速度的大小;(2)探测器在A 点喷出的气体质量△m .【答案】(11v ,212R v r;(2)122v v m u v -- 解析:(1)在轨道I 上,探测器m 所受万有引力提供向心力,设土星质量为M ,则有212v MmG m RR = 同理,在轨道Ⅲ上有232()()v M m m G m m rr -∆=-∆由上两式可得31v v = 探测器在轨道Ⅲ上运行时加速度设为a ,则23v a r= 解得212Ra v r = (2)探测器在A 点喷出气体前后,由动量守恒定律,得mv 1=(m -△m )v 2+△mv 解得122v v m m u v -∆=- 78.如图所示,光滑水平路面上,有一质量为m 1=5kg 的无动力小车以匀速率v 0=2m/s 向前行驶,小车由轻绳与另一质量为m 2=25kg 的车厢连结,车厢右端有一质量为m 3=20kg的物体(可视为质点),物体与车厢的动摩擦因数为μ=0.2,开始物体静止在车厢上,绳子是松驰的.求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移(设物体不会从车厢上滑下);(2)从绳拉紧到小车、车厢、物体具有共同速度所需时间.(取g =10m/s 2)【答案】(1)0.017m ;(2)0.1s解析:(1)以m 1和m 2为研究对象,考虑绳拉紧这一过程,设绳拉紧后,m 1、m 2的共同速度为v 1这一过程可以认为动量守恒,由动量守恒定律有m 1v 0=(m 1+m 2)v 1,解得10112521m/s 5253m v v m m ⨯===++. 再以m 1、m 2、m 3为对象,设它们最后的共同速度为v 2,则m 1v 0=(m 1+m 2+m 3)v 2, 解得102123520.2m/s 52520m v v m m m ⨯===++++ 绳刚拉紧时m 1和m 2的速度为v 1,最后m 1、m 2、m 3的共同速度为v 2,设m 3相对m 2的位移为Δs ,则在过程中由能量守恒定律有221213123211()()22m m v m g s m m m v μ+=∆+++ 解得Δs =0.017m .(2)对m 3,由动量定理,有μm 3gt =m 3v 220.20.1s 0.210v t g μ===⨯ 所以,从绳拉紧到m 1、m 2、m 3有共同速度所需时间为t =0.1s .79.已知A 、B 两物块的质量分别为m 和3m ,用一轻质弹簧连接,放在光滑水平面上,使B 物块紧挨在墙壁上,现用力推物块A 压缩弹簧(如图所示).这个过程中外力F 做功为W ,待系统静止后,突然撤去外力.在求弹簧第一次恢复原长时A 、B 的速度各为多大时,有同学求解如下:解:设弹簧第一次恢复原长时A 、B 的速度大小分别为v A 、v B系统动量守恒:0=m v A +3m v B系统机械能守恒:W =22B A 11322mv mv +⨯解得:A v =B v =“-”表示B 的速度方向与A 的速度方向相反) (1)你认为该同学的求解是否正确.如果正确,请说明理由;如果不正确,也请说明理由并给出正确解答.(2)当A 、B 间的距离最大时,系统的弹性势能E P =?【答案】(1)不正确.A v =v B =0;(2)34W 解析:(1)该同学的求解不正确.在弹簧恢复原长时,系统始终受到墙壁给它的外力作用,所以系统动量不守恒,且B 物块始终不动,但由于该外力对系统不做功,所以机械能守恒,即在恢复原长的过程中,弹性势能全部转化为A 物块的动能.2A 12W mv =解得A v =v B =0 (2)在弹簧恢复原长后,B 开始离开墙壁,A 做减速运动,B 做加速运动,当A 、B 速度相等时,A 、B 间的距离最大,设此时速度为v ,在这个过程中,由动量守恒定律得 mv A =(m +3m )v解得A 14v v ==根据机械能守恒,有W =22P 11322mv mv E +⨯+ 解得P 34E W =80.1930年发现用钋放出的射线,其贯穿能力极强,它甚至能穿透几厘米厚的铅板,1932年,英国年轻物理学家查德威克用这种未知射线分别轰击氢原子和氮原子,结果打出一些氢核和氮核.若未知射线均与静止的氢核和氮核正碰,测出被打出的氢核最大速度为v H =3.5×107m/s ,被打出的氮核的最大速度v N =4.7×106m/s ,假定正碰时无机械能损失,设未知射线中粒子质量为m ,初速为v ,质子的质量为m ’.(1)推导打出的氢核和氮核速度的字母表达式;(2)根据上述数据,推算出未知射线中粒子的质量m 与质子的质量m ’之比(已知氮核质量为氢核质量的14倍).【答案】(1)H H 2m v v m m =+,N N 2m v v m m =+;(2) 1.0165m m=' 解析:(1)碰撞满足动量守恒和机械能守恒,与氢核碰撞时,有21H H v m mv mv +=,2212212121H H v m mv mv += 解得H H 2m v v m m =+.同理可得N N2m v v m m =+。

专题(42)动力学 动量和能量观点在电学中的应用(解析版)

专题(42)动力学 动量和能量观点在电学中的应用(解析版)

2021年(新高考)物理一轮复习专题强化练专题(42)动力学、动量和能量观点在电学中的应用(解析版)一、选择题(本题共8小题,每小题6分,满分48分。

在每小题给出的四个选项中,有一个或一个以上选项符合题目要求,全部选对的得6分,选不全的得3分,有选错或不答的得0分。

)1、(多选)(2020·江苏卷)如图所示,两匀强磁场的磁感应强度1B 和2B 大小相等、方向相反。

金属圆环的直径与两磁场的边界重合。

下列变化会在环中产生顺时针方向感应电流的是( )A .同时增大1B 减小2B B .同时减小1B 增大2BC .同时以相同的变化率增大1B 和2BD .同时以相同的变化率减小1B 和2B【答案】B【解析】AB .产生顺时针方向的感应电流则感应磁场的方向垂直纸面向里。

由楞次定律可知,圆环中的净磁通量变化为向里磁通量减少或者向外的磁通量增多,A 错误,B 正确。

CD .同时以相同的变化率增大B 1和B 2,或同时以相同的变化率较小B 1和B 2,两个磁场的磁通量总保持大小相同,所以总磁通量为0,不会产生感应电流,CD 错误。

故选B 。

2、如图所示,在匀强磁场中,两根平行的金属导轨上放置两条平行的金属棒ab 和cd ,假定它们沿导轨运动的速率分别为v 1和v 2,且v 1<v 2,若金属导轨和金属棒的电阻不能忽略,要使回路中产生的感应电流最大,则棒ab 、cd 的运动情况应该为( )A.ab 和cd 都向右运动B.ab 和cd 都向左运动C.ab 向右、cd 向左做相向运动D.ab 向左、cd 向右做背向运动【答案】C【解析】根据右手定则,当金属棒运动方向相同时,棒中产生的电流方向相同,回路中的总电流为两电流之差,故A 、B 项中电流不是最大;当两金属棒运动方向相反时,棒中产生的电流方向相反,回路中的总电流为两电流之和,但随着棒的运动,D 项中ab 向左、cd 向右做背向运动时,回路中的电阻在变大,电流不一定最大,选项C 正确。

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析一、选择题1.对动量和冲量,正确的是(B )(A)动量和冲量的方向均与物体运动速度方向相同。

(B)质点系总动量的改变与内力无关。

(C)动量是过程量,冲量是状态量。

(D)质点系动量守恒的必要条件是每个质点所受到的力均为0。

2如图所示,子弹入射在水平光滑地面上静止的木块后而穿出,以地面为参考系,下列说法中正确的是( C )(A)子弹减少的动能转变成木块的动能(B)子弹—木块系统的机械能守恒(C)子弹动能的减少等于子弹克服木块阻力所做的功(D)子弹克服木块阻力所做的功等于这一过程中产生的热。

3.对质点组有下列几种说法:(1)质点组总动量的改变与内力无关(2)质点组总动能的改变与内力无关(3)质点组机械能的改变与内力无关(4)质点组机械能的改变与保守内力无关正确的是( C )(A)(1)和(3)正确(B)(2)和(3)正确(C)(1)和(4)正确(D)(2)和(4)正确4.对于保守力,下列说法错误的是(C)(A)保守力做功与路径无关(B)保守力沿一闭合路径做功为零(C)保守力做正功,其相应的势能增加(D)只有保守力才有势能,非保守力没有势能。

5.对功的概念有以下几种说法:(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零.在上述说法中:(4)摩擦力一定做负功( C )(A) (1) 、(2)、(4)是正确的.(B) (2) 、(3) 、(4)是正确的.(C)只有(2)是正确的.(D)只有(3)是正确的.6.当重物减速下降时,合外力对它做的功( B )(A)为正值(B)为负值(C)为零(D)无法确定。

7、考虑下列四个实例,你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)(A)物体在拉力作用下沿光滑斜面匀速上升(B)物体作圆锥摆运动(C)抛出的铁饼作斜抛运动(不计空气阻力)(D)物体在光滑斜面上自由滑下8.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,判断下列说法中正确的是( A )(A)重力和绳子的张力对小球都不作功。

经典课时作业 动量和能量综合训练

经典课时作业  动量和能量综合训练

经典课时作业动量和能量综合训练(含标准答案及解析)时间:45分钟分值:100分一、选择题1.一铅球正在做平抛运动.下列说法正确的是(不计空气阻力)( )A.在连续相等的时间内铅球的动量变化量都相等B.在连续相等的时间内铅球的动能变化量都相等C.在相等的时间内铅球动能增加量一定等于它重力势能的减少量D.重力对铅球做功不影响它水平方向的匀速运动2.质量不同而初动量相同的两个物体,在水平地面上由于摩擦力的作用而停止运动,它们与地面间的动摩擦因数相同,比较它们的滑行时间和滑行距离,则( )A.两个物体滑行的时间一样长B.质量大的物体滑行的时间较长C.两个物体滑行的距离一样长D.质量小的物体滑行的距离较长3.质量为5 kg的A球静止在光滑水平面上,质量为2 kg的B球以10 m/s的速度与A 正碰,则碰后A和B的速度可能的是(设B球初速度方向为正)( )A.v A=2m/s,v B=5m/sB.v A=5m/s,v B=2m/sC.v A=-2m/s,v B=15m/sD.v A=4m/s,v B=04.一质点以一定的初速度飞入一个恒定有界引力场(进入后该质点受到一个恒力),又从该引力场飞出来,从质点进入到离开该有界场,可能的情况有( )A.动量和动能都变化B.动量和动能都不变C.只有动能变化,而动量不变D.只有动量变化,而动能不变5.如图a所示,物块A、B间拴接一个压缩后被锁定的弹簧,整个系统静止放在光滑水平地面上,其中A物块最初与左侧固定的挡板相接触,B物块质量为2 kg.现解除对弹簧的锁定,在A 离开挡板后,B物块的v-t图象如图b所示,则可知( )A.在A离开挡板前,A、B系统动量不守恒,之后守恒B.在A离开挡板前,A、B与弹簧组成的系统机械能守恒,之后不守恒C.弹簧锁定时其弹性势能为9 JD.A的质量为1 kg,在A离开挡板后弹簧的最大弹性势能为3 J6.如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑.弹簧开始时处于原长,运动过程中始终处在弹性限度内.在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有( )A.当A、B加速度相等时,系统的机械能最大B.当A、B加速度相等时,A、B的速度差最大C.当A、B速度相等时,A的速度达到最大D.当A、B速度相等时,弹簧的弹性势能最大7.质量为m=1 kg的物块A从倾角为θ=37°的固定斜面顶端由静止开始下滑到斜面底端,在此过程中重力对物块的冲量为5 N·s,重力做的功为4.5 J.若将该斜面放在光滑水平地面上,仍让物块A从斜面顶端由静止开始下滑,当物块到达斜面底端时(取g=10m/s2,sin37°=0.6,cos37°=0.8)( )A.物块和斜面的总动量为3 kg· m/sB.物块和斜面的总动量为5 kg· m/sC.物块和斜面的总动能为4.5 JD.物块的动能为4.5 J8.如图所示, 该物体从斜面的顶端由静止开始下滑,经过A点时的速度与经过C点时的速度相等,已知AB=BC,则下列说法正确的是( )斜面上除了AB段粗糙外,其余部分均是光滑的,小物体与AB段的动摩擦因数处处相等.今使A.物体在AB段与BC段的加速度大小相等B.物体在AB段与BC段的运动时间相等C.重力在这两段中所做的功相等D.物体在AB段与BC段的动量变化相等9.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b 两块,若质量较大的a块物体的速度方向仍沿原来的方向,则有( )A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等10.如图所示将一光滑的半圆槽置于光滑水平面上,让一小球自左侧槽口A的正上方从静止开始下落,与圆弧槽相切自A点进入槽内,到达最低点B,再上升到C点后离开半圆槽,则以下结论中不正确的是( )A.小球在半圆槽内从A到B的运动的过程中,只有重力对它做功,所以小球的机械能守恒B.小球在半圆槽内运动的过程中,小球与半圆槽组成的系统的机械能守恒C.小球在半圆槽内运动的过程中,小球与半圆槽的水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动11.同一粗糙水平面上有两个完全相同的滑块并排放置,现分别用方向相同的恒定拉力F1与F2(F1>F2)作用于滑块,使滑块从静止开始运动一段时间后撤去拉力,最终两滑块位移相同,滑块运动的v-t图象如图所示(两图线速度减小阶段平行),则( )A.两拉力的冲量I1>I2B.两拉力的冲量I1<I2C.两拉力做的功W1>W2D.两拉力做的功W1=W212.物体只在力F作用下运动,力F随时间变化的图象如图所示,在t=1 s时刻,物体的速度为零,则下列论述正确的是( )A.0~3 s内,力F所做的功等于零,冲量也等于零B.0~4 s内,力F所做的功等于零,冲量也等于零C.第1 s内和第2 s内的速度方向相同,加速度方向相反D.第3 s内和第4 s内的速度方向相反,加速度方向相同13.(1)下列是一些有关高中物理实验的描述,其中错误的是________.A.在“验证力的平行四边形定则”实验中,拉橡皮筋的细绳要稍长,并且实验时要使弹簧与木板平面平行B.在“用单摆测定重力加速度”实验中,如果摆长测量无误,但测得的g值偏小,其原因可能是将全振动的次数n误计为n-1C.在“验证机械能守恒定律”的实验中,需要用天平测物体(重锤)的质量D.在做“验证动量守恒定律”实验中,确定小球落后的方法是:用尽可能小的圆把所有的小球落点圈在里面,圆心就是小球落点的平均位置(2)下列说法中正确的是________.A.在用落体法“验证机械能守恒定律”的实验中,所用的重锤的质量宜大一些B.做“验证力的平行四边形定则”实验时,两个测力计可以和木板成一定的角度C.做“碰撞中的动量守恒”的实验时,必须让斜槽末端的切线水平D.在“用单摆测定重力加速度”实验中,应该在摆球摆到最高点时开始计时14.如图所示的实验装置,水平桌面上固定一个曲面斜面体C,曲面下端的切平面是水平的,并且曲面是不光滑的.桌上还有质量不等的小滑块A、B,小滑块A、B放在曲面上时放手后均能沿曲面向下滑动且能滑出斜面体C.另外还有实验器材:天平,重锤线,刻度尺,白纸,复写纸.(1)要想比较准确地测出小滑块A从曲面顶端滑到曲面底端(曲斜面体最右端)的过程中,滑块A克服摩擦力所做的功:(重力加速度g为已知)①写出实验中需要直接测量的物理量:(用字母表示,并对字母简要说明)_______________________________________________________________②滑块A克服摩擦力做功W f的表达式:________________________________________________________________(2)应用以上器材和测量仪器,还可以完成的物理实验有:_________________________________________________________________15.2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注.冰壶在水平冰面上的一次滑行可简化为如下过程:如下图,运动员将静止于O点的冰壶(视为质点)沿直线OO′推到A点放手,此后冰壶沿AO′滑行,最后停于C点.已知冰面和冰壶间的动摩擦因数为μ,冰壶质量为m,AC=L,CO′=r,重力加速度为g.(1)求冰壶在A点的速率;(2)求冰壶从O点到A点的运动过程中受到的冲量大小;(3)若将BO′段冰面与冰壶间的动摩擦因数减小为0.8μ,原只能滑到C点的冰壶能停于O′点,求A点与B点之间的距离.16.某机械打桩机原理可简化为如图所示,直角固定杆光滑,杆上套有m A=55 kg和m B=80 kg两滑块,两滑块用无弹性的轻绳相连,绳长为5 m,开始在外力作用下将A滑块向右拉到与水平夹角为37°时静止释放,B滑块随即向下运动,并带动A滑块向左运动,当运动到绳与竖直方向夹角为37°时,B滑块(重锤)撞击正下方的桩头C,桩头C的质量m C=200 kg.碰撞时间极短,碰后A滑块由缓冲减速装置让其立即静止,B滑块反弹上升h1=0.05 m,C桩头朝下运动h2=0.2 m静止.取g=10 m/s2.求:(1)滑块B碰前的速度;(2)泥土对桩头C的平均阻力.17.竖直平面内有一半径为R=3.2 m的光滑圆弧轨道,O为轨道的最低点,A点距O点的高度为h1=0.2 m,B点距O点的高度为h2=0.8 m.现从A点释放一质量为M的大球(半径远小于R),且每隔适当的时间从B点释放一质量为m的小球,它们和大球碰撞后都结为一体,已知M=4m,g取10 m/s2.(1)若大球向右运动到O点时,第一个小球与之碰撞,求碰撞后大球的速度;(2)若大球向右运动到O点时,第一个小球与之碰撞,当大球第一次向左运动到O点时,第二个小球恰好与之碰撞,求第一、二两个小球释放的时间差;(3)若大球第一次向右运动到O点时与小球碰撞,以后每当大球向左运动到O点时,就会与一个小球碰撞,求经过多少次碰撞后,大球将越过A点?标准答案及解析: 一、选择题 1.解析:由动量定理可知,铅球在连续相等时间内动量的变化等于重力的冲量mgΔt,因此是相等的,A 正确;由动能定理得动能的变化等于重力做的功,相等时间内位移不等,重力做功不等,因此动能的变化不等,B 错;由于机械能守恒,铅球动能的增量总等于重力势能的减少量,C 正确;重力做功改变物体的动能,由于重力产生的加速度在竖直方向上,因此不影响水平方向的匀速运动,D 正确.答案:ACD 2.解析:由动量定理P=μmgt,由动能定理得22P m=μmgs,即P 2=2μm 2gs,显然P 相同,m 大则时间长、滑行距离长,D 对.答案:D 3.解析:本题考查碰撞,动量守恒定律.此类碰撞问题中对于碰撞速度、质量可能性分析的试题主要从以下三个方面分析:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理.两球在碰撞过程中动量守恒即P A +P B =P A′+P B′,代入数据发现B 选项动量不守恒;由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有:22222222A B A B A B A BP P P P m m m m ''++≥,代入数据发现C 选项机械能增加了,同时也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景;同理发现A 项也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景.经上分析可知只有D 选项正确.答案:D 4.解析:相当于质点受恒力作用一段时间而做类抛体运动,由动量定理可知质点的动量是一定要变化的,B 、C 错;质点的动能是否改变就要看质点速度的大小是否改变,若恒力先做负功后做正功,且总功为零,则动能不变,所以质点的动能可能变,也可能不变,A 、D 正确.质点受到的恒力可以是重力与引力场恒力的合力,也可以仅受引力场恒力,结果都是一样的.答案:AD 5.解析:在A 离开挡板前,由于挡板对A 有作用力,所以,A 、B 系统所受合外力不为零,则系统动量不守恒;A 离开挡板后,系统所受合外力为零,动量守恒,A 选项正确.在A 离开挡板前,挡板对A 的作用力不做功,A 、B 及弹簧组成的系统在整个过程中机械能都守恒,B 选项错误.解除对弹簧的锁定后至A 刚离开挡板的过程中,弹簧的弹性势能释放,全部转化为B 的动能,根据机械能守恒定律,有:E p =201,2B m v 由图象可知,v 0=3m/s,解得:E p =9 J,C 选项正确.分析A 离开挡板后A 、B 的运动过程,并结合图象数据可知,弹簧伸长到最长时A 、B 的共同速度为v 共=2 m/s,根据机械能守恒定律和动量守恒定律,有:m B v 0=(m A +m B )v共,E′p =22011(),22B A B m v m m v -+共联立解得:E′p =3 J,D 选项正确. 答案:ACD 6.解析:本题通过弹簧连接AB 两物体,考查对牛顿运动定律、功能规律的综合运用能力.根据牛顿运动定律,对A 物体,,A F kx a m -=对B 物体,B kxa m=.可见随着弹簧压缩量x 增加,A 的加速度逐渐减小,B 的加速度逐渐增大.AB 物体运动过程利用速度图象表示,如图,很方便地判断出B 、C 、D 项正确,A 项错误.答案:BCD 7.解析:当斜面固定时,物块在斜面上滑动可能受到重力、斜面支持力和滑动摩擦力的作用,下滑到底端的过程中重力的冲量为5 N\5s=mgt,t=0.5 s;重力做的功为4.5 J=mgh,h=0.45 m;斜面长21237hL at sin ==。

动量能量试题及答案

动量能量试题及答案

动量能量试题及答案一、选择题(每题5分,共20分)1. 动量守恒定律适用于:A. 只有重力作用的系统B. 只有弹力作用的系统C. 没有外力作用的系统D. 有外力作用但外力为零的系统答案:C2. 一个物体的动能与其速度的关系是:A. 与速度成正比B. 与速度的平方成正比C. 与速度的立方成正比D. 与速度的四次方成正比答案:B3. 以下哪个选项是正确的能量守恒定律表述?A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量可以在不同形式之间转化答案:C4. 一个物体的动量与其质量、速度的关系是:A. 动量等于质量与速度的乘积B. 动量等于质量与速度的平方的乘积C. 动量等于质量的平方与速度的乘积D. 动量与质量和速度无关答案:A二、填空题(每题5分,共20分)1. 动量守恒定律的数学表达式为:\( p_{总} = p_{1} + p_{2} + ... + p_{n} \),其中p代表______,n代表______。

答案:动量;物体数量2. 动能的计算公式为:\( E_k = \frac{1}{2}mv^2 \),其中E_k代表______,m代表______,v代表______。

答案:动能;质量;速度3. 能量守恒定律表明,能量在转换过程中______。

答案:总量保持不变4. 动量与动能的关系是:动量是矢量,而动能是______。

答案:标量三、简答题(每题10分,共20分)1. 请简述动量守恒定律的条件。

答案:动量守恒定律的条件是系统不受外力或所受外力之和为零,或者外力远小于内力。

2. 请解释为什么在碰撞过程中动量守恒,而动能不守恒。

答案:在碰撞过程中,动量守恒是因为系统不受外力或外力远小于内力,动量在碰撞前后保持不变。

而动能不守恒是因为碰撞过程中可能存在能量的损失,如转化为内能、热能等,导致动能减少。

四、计算题(每题20分,共40分)1. 一个质量为2kg的物体以10m/s的速度向东运动,与一个质量为3kg的物体以5m/s的速度向西运动发生碰撞。

动量守恒定律与能量守恒定律

动量守恒定律与能量守恒定律

第三章动量守恒定律与能量守恒定律1)一.选择题:1.一质量为M的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A)保持静止.(B)向右加速运动.(C)向右匀速运动.(D)向左加速运动.2.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒.[3.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A和B,用L和E K分别表示卫星对地心的角动量及其动能的瞬时值,则应有(A)L A>L B,E KA>E KB. (B)L A=L B,E KA V E KB.(C)L A=L B,E KA>E KB.(D)L A V L B,E KA V E KB.[]二.填空题:1.一质量为5kg的物体,其所受的作用力F随时间的变化关系如图所示.设物体从静止开始沿直线运动,则20秒末物体的速率v=.2.一物体质:量M=2kg,在合外力F=(3+2t)i(SI)的作用下,从静止开始运动,式中「为方向一定的单位矢量,则当t=1s时物体的速度v:=三.计算题:如图所示,质量为M的滑块正沿着光滑水平地面向右滑动.一质量为m的小球水平向右飞行,以速度v i(对地)与滑块斜面相碰,碰后竖直向上弹起,速率为V2(对地).若碰撞时间为&,试计算此过程中滑块对地的平均作用力和滑块速度增量的大小.答案:一.选择题ACC二.填空题15m/s22m/s三.计算题:解:(1)小球m在与M碰撞过程中给M的竖直方向冲力在数值上应等于球的竖直冲力.而此冲力应等于小球在竖直方向的动量变化率即:一mv2f2.:t由牛顿第三定律,小球以此力作用于M,其方向向下.对M,由牛顿第二定律,在竖直方向上N—Mg—f=0,又由牛顿第三定律,M给地面的平均作用力也为mv2F=fMg=Mg方向竖直向下.(2)同理,M受到小球的水平方向冲力大小应为7'=——.:t方向与m原运动方向一致根据牛顿第二定律,对M有f'=M包,_寸利用上式的「,即可得Av=mv1/M第三章动量守恒定律与能量守恒定律(2)一 .选择题:3分3分M对小2分1分1分1分1分1.质量为20g的子弹沿X轴正向以500m/s的速率射入一木块后,与木块一起仍沿X轴正向以50m/s的速率前进,在此过程中木块所受冲量的大小为(A)9Ns-.(B)-9Ns•.(C)10Ns.(D)-10Ns•.[2.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达.(B)乙先到达.(C)同时到达.(D)谁先到达不能确定.[3.一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变.(B)它的动量不变,对圆心的角动量不断改变.(C)它的动量不断改变,对圆心的角动量不变.(D)它的动量不断改变,对圆心的角动量也不断改变.[二 .填空题:1.质量为M的车以速度V0沿光滑水平地面直线前进,车上的人将一质量为m的物体相对于车以速度u竖直上抛,则此时车的速度v=2.如图所示,流水以初速度V I进入弯管,流出时的速度为V2,且V1=V2=V.设每秒流入的水质量为q,则在管子转弯处,水对管壁的平均冲力大小是,方向A:(管内水受到的重力不考虑)三 .计算题:1.有一水平运动的皮带将砂子从一处运到另一处,砂子经一竖直的静止漏斗落到皮带上,皮带以恒定的速率v水平地运动.忽略机件各部位的摩擦及皮带另一端的其它影响,试问:(1)若每秒有质量为q m=dM/dt的砂子落到皮带上,要维持皮带以恒定速率v运动,需要多大的功率?(2)若q m=20kg/s,v=1.5m/s,水平牵引力多大?所需功率多大?2.人造地球卫星绕地球中心做椭圆轨道运动,若不计空气阻力和其它星球的作用,在卫星运行过程中,卫星的动量和它对地心的角动量都守恒吗?为什么?答案一.选择题ACC二.填空题1V03分2qv2分竖直向下1分三.计算题:1.解:(1)设t时刻落到皮带上的砂子质量为M,速率为v,t+dt时刻,皮带上的砂子质量为M+dM,速率也是v,根据动量定理,皮带作用在砂子上的力F的冲量为:Fdt=(M+dM)v—(Mv+dM-0)=dMv2分F=vdM/dt=vq m1分由第三定律,此力等于砂子对皮带的作用力F,即F=F.由于皮带匀速运动,动力源对皮带的牵引力F〃=F,1分因而,F"=F,F”与v同向,啰力源所供给的功率为:P=Fv=vvdM/dt=v2q m2分(2)当q m=dM/dt=20kg/s,v=1.5m/s时,水平牵引力F"=vq m=30N2分所需功率P=v2q m=45W2分2.答:人造卫星的动量不守恒,因为它总是受到外力——地球引力的作用.2分人造卫星对地心的角动量守恒,因为它所受的地球引力通过地心,而此力对地心的力矩为零.3分一 .选择题:1.用一根细线吊一重物,重物质量为5kg,重物下面再系一根同样的细线,细线只能经受70N的拉力.现在突然向下拉一下下面的线.设力最大值为50N,则(A)下面的线先断.(B)上面的线先断.(C)两根线一起断.(D)两根线都不断.[]2.质量分别为m A和m B(m A>m B)、速度分别为V A和V B(V A>V B)的两质点A和B,受到相同的冲量作用,则(A)A的动量增量的绝对值比B的小.(B)A的动量增量的绝对值比B的大.(C)A、B的动量增量相等.(D)A、B的速度增量相等.[]3.如图所示,砂子从h=0.8m高处下落到以3m/s的速率水平向右运动的传送带上.取重力加速度g=10m/s2.传送带给予刚落到传送带上的砂子的作用力的方向为(A)与水平夹角530向下.(B)与水平夹角530向上.(C)与水平夹角370向上.(D)与水平夹角37°向下.二 .填空题:1.一质量为m的典点沿着二条曲线运动,其位置矢量在空间直角座标系中的表达式为r=acosccti+bsin«tj,其中a、b、e皆为常量,则此质点对原点的角动量L=;此质点所受又t原点的力矩M=.2.地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常量为G,则地球绕太阳作圆周运动的轨道角动量为L=.3.质量为m的质点以速度—沿一直线运动,则它对该直线上任一点的角动量为.三 .计算题:一炮弹发射后在其运行轨道上的最高点h=19.6m处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S I=1000m,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g=9.8m/s2)。

动量能量试题及答案

动量能量试题及答案

动量能量试题及答案一、选择题1. 一个质量为 \( m \) 的物体以速度 \( v \) 运动,其动量大小为:A. \( mv \)B. \( \frac{m}{v} \)C. \( \frac{v}{m} \)D. \( \frac{1}{mv} \)答案:A2. 根据能量守恒定律,如果一个系统没有外力作用,那么系统的总能量:A. 保持不变B. 增加C. 减少D. 先增加后减少答案:A3. 一个物体从静止开始自由下落,其势能会:A. 增加B. 减少C. 不变D. 先减少后增加答案:B二、填空题4. 动量守恒定律表明,在没有外力作用的系统中,系统总动量______。

答案:保持不变5. 一个物体的动能与其速度的平方成正比,公式为 \( E_k =\frac{1}{2}mv^2 \),其中 \( E_k \) 表示______。

答案:动能三、简答题6. 解释为什么在碰撞过程中,如果系统没有外力作用,动量守恒。

答案:在没有外力作用的情况下,根据牛顿第三定律,作用力和反作用力大小相等、方向相反,因此它们对系统动量的改变相互抵消,导致系统总动量保持不变。

四、计算题7. 一个质量为 2kg 的物体以 3m/s 的速度运动,求其动量大小。

答案:根据动量公式 \( p = mv \),动量大小为 \( 2 \times 3= 6 \) kg·m/s。

8. 一个物体从 10m 高处自由下落,忽略空气阻力,求其落地时的动能。

答案:首先计算势能 \( E_p = mgh \),其中 \( g \) 为重力加速度,取 \( 9.8 \) m/s²。

假设物体质量为 \( m \),落地时的动能 \( E_k \) 等于势能,即 \( E_k = mgh = 10 \times 9.8 \times m \)。

若物体质量为 1kg,则动能为 \( 98 \) J。

五、论述题9. 讨论在实际生活中,如何应用动量守恒和能量守恒定律来解决实际问题。

《大学物理学》动量守恒和能量守恒定律部分练习题(马)

《大学物理学》动量守恒和能量守恒定律部分练习题(马)

《大学物理学》动量守恒和能量守恒定律部分练习题一、选择题1. 用铁锤把质量很小的钉子敲入木板,设木板对钉子的阻力与钉子进入木板的深度成正比。

在铁锤敲打第一次时,能把钉子敲入 1.00cm 。

如果铁锤第二次敲打的速度与第一次完全相同,那么第二次敲入多深为 ( )(A ) 0.41cm ; (B ) 0.50cm ; (C ) 0.73cm ; (D ) 1.00cm 。

【提示:首先设阻力为f k x =,第一次敲入的深度为x 0,第二次为∆x ,考虑到两次敲入所用的功相等,则0000x x x x kxd x kxd x +∆=⎰⎰】 2.一质量为0.02 kg 的子弹以200m/s 的速率射入一固定墙壁内,设子弹所受阻力与其进入墙壁的深度x 的关系如图所示,则该子弹能进入墙壁的深度为 ( )(A )0.02m ; (B ) 0.04 m ; (C ) 0.21m ; (D )0 .23m 。

【提示:先写出阻力与深度的关系53100.022100.02x x F x ⎧≤=⎨⨯>⎩,利用212W m v =有0.0253200.021102100.02(200)2x xd x d x +⨯=⨯⨯⎰⎰,求得0.21x m =】 3.对于质点组有以下几种说法:(1)质点组总动量的改变与内力无关; (2)质点组总动能的改变与内力无关;(3)质点组机械能的改变与保守内力无关。

对上述说法判断正确的是 ( )(A ) 只有(1)是正确的; (B )(1)、(2)是正确的;(C )(1)、(3)是正确的; (D )(2)、(3)是正确的。

【提示:(1)见书P55,只有外力才对系统的动量变化有贡献;(2)见书P74,质点系动能的增量等于作用于质点系的一切外力作的功与一切内力作的功之和;(3)见书P75,质点系机械能的增量等于外力与非保守内力作功之和】4.有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则 ( )(A )物块到达斜面底端时的动量相等; (B ) 物块到达斜面底端时的动能相等;(C )物块和斜面(以及地球)组成的系统,机械能不守恒;(D )物块和斜面组成的系统水平方向上动量守恒。

动量守恒和能量守恒定律习题

动量守恒和能量守恒定律习题

第三章 动量守恒定律和能量守恒定律(一)教材外习题1 功与能习题一、选择题:1.一质点受力i x F 23 (SI )作用,沿X 轴正方向运动。

从x = 0到x = 2m 过程中,力F 作功为(A )8J. (B )12J. (C )16J. (D )24J.( )2.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,下列说法正确的是(A )重力和绳子的张力对小球都不作功.(B )重力和绳子的张力对小球都作功.(C )重力对小球作功,绳子张力对小球不作功.(D )重力对小球不作功,绳子张力对小球作功.( )3.已知两个物体A 和B 的质量以及它们的速率都不相同,B 的大,则A 的动能E KA 与B 的动能E KB 之间的关系为(A )E KB 一定大于E KA . (B )E KB 一定小于E KA(C )E KB =E KA(D )不能判定谁大谁小 ( )4.如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑,则小球滑到两面的底端Q 时的(A )动量相同,动能也相同(B )动量相同,动能不同(C )动量不同,动能也不同(D )动量不同,动能相同 ( )5.一质点在外力作用下运动时,下述哪种说法正确?(A )质点的动量改变时,质点的动能一定改变(B )质点的动能不变时,质点的动量也一定不变(C )外力的冲量是零,外力的功一定为零(D )外力的功为零,外力的冲量一定为零( )二、填空题: 1.某质点在力F =(4+5x )i (SI )的作用下沿x 轴作直线运动,在从x =0移动到x =10m 的过程中,力F 所作功为___________________。

QP l 2 l 12.如图所示,一斜面倾角为θ,用与斜面成α角的恒力F 将一质量为m 的物体沿斜面拉升了高度h ,物体与斜面间的摩擦系数为μ,摩擦力在此过程中所作的功W f =____________________________。

安徽庐江二中高三物理二轮复习——动量和能量(1)

安徽庐江二中高三物理二轮复习——动量和能量(1)

专题训练——动量和能量(1)一、单项选择题1.如图所示,物体A、B与地面间的动摩擦因数相同,质量也相同,在斜向下的推力作用下,由静止开始一起沿水平面运动,则下列说法正确的是()A.摩擦力对A、B两物体所做的功相等B.推力F对A、B两物体做功相等C.推力F对A所做的功与A对B所做的功相等D.合外力对A、B两物体做功相等2. 如图所示,光滑水平面OB与足够长粗糙斜面BC交于B点.轻弹簧左端固定于竖直墙面,现将质量为m1的滑块压缩弹簧至D点,然后由静止释放,滑块脱离弹簧后经B点滑上斜面,上升到最大高度,并静止在斜面上。

不计滑块在B点的机械能损失;换用相同材料质量为m2的滑块(m2>m1)压缩弹簧至同一点D后,重复上述过程,下列说法正确的是( ).A.两滑块到达B点的速度相同B.两滑块沿斜面上升的最大高度相同C.两滑块上升到最高点过程克服重力做的功不相同D.两滑块上升到最高点过程机械能损失相同3.运动员从悬停在空中的直升机上跳伞,伞打开前可看作是自由落体运动,开伞后减速下降,最后匀速下落。

如果用h表示下落高度、t表示下落的时间、F表示人受到的合外力、E表示人的机械能、Ep表示人的重力势能、v表示人下落的速度。

在整个过程中,下列图象可能符合事实的是( )4.甲、乙两人站在静止的小车左右两端,小车在光滑的水平面上,如图所示,当他俩同时相向而行时,发现小车向右运动,下列说法不正确的是()A.乙的速度一定大于甲的速度B.乙对小车的冲量一定大于甲对小车的冲量C.乙的动量必定大于甲的动量D.甲、乙的动量总和必定不为零5.用长度为l的细绳悬挂一个质量为m的小球,将小球移至和悬点等高的位置使绳自然伸直,放手后小球在竖直平面内做圆周运动,取小球在最低点的重力势能为零,则小球运动过程中动能和重力势能第一次相等时,重力的功率为()A.mg glB.12mg gl C.132mg gl D.133mg gl6.如图所示,分别用恒力F1、F2先后将质量为m的物体由静止开始沿同一粗糙的固定斜面由底端拉至顶端,两次所用时间相同,第一次力F1沿斜面向上,第二次力F2沿水平方向。

2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习(附答案)

2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习(附答案)

2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习1. (多选)一个质量为m 的小型炸弹自水平地面朝右上方射出,在最高点以水平向右的速度v 飞行时,突然爆炸为质量相等的甲、乙、丙三块弹片,如图所示。

爆炸之后乙由静止自由下落,丙沿原路径回到原射出点。

若忽略空气阻力,则下列说法正确的是( )A .爆炸后乙落地的时间最长B .爆炸后甲落地的时间最长C .甲、丙落地点到乙落地点O 的距离比为4∶1D .爆炸过程释放的化学能为7m v 232. (2023ꞏ湖南永州市模拟)如图所示,质量均为m 的木块A 和B ,并排放在光滑水平地面上,A 上固定一竖直轻杆,轻杆上端的O 点系一长为L 的细线,细线另一端系一质量为m 0的球C(可视为质点),现将C 球拉起使细线水平伸直,并由静止释放C 球,重力加速度为g ,忽略空气阻力,则下列说法不正确的是( )A .A 、B 两木块分离时,A 、B 的速度大小均为m 0m mgL2m +m 0B .A 、B 两木块分离时,C 的速度大小为2mgL2m +m 0C .C 球由静止释放到最低点的过程中,A 对B 的弹力的冲量大小为2m 0mgL2m +m 0D .C 球由静止释放到最低点的过程中,木块A 移动的距离为m 0L2m +m 03. (多选)如图所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧轨道,BC 段是长为L 的粗糙水平轨道,两段轨道相切于B 点。

一质量为m 的可视为质点的滑块从小车上的A 点由静止开始沿轨道下滑,然后滑入BC 轨道,最后恰好停在C 点。

已知小车质量M =4m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g ,则( )A .全过程滑块在水平方向上相对地面的位移的大小为R +LB .小车在运动过程中速度的最大值为gR 10C .全过程小车相对地面的位移大小为R +L5 D .μ、L 、R 三者之间的关系为R =μL4. (多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量和能量专题训练(选择题)1、质量为M 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手。

首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。

当两颗子弹均相对木块静止时,下列说法正确的是( )A .最终木块静止,d 1=d 2B .最终木块向右运动,d 1<d 2C .最终木块静止,d 1<d 2D .最终木块向左运动,d 1=d 2 2、如图所示,在光滑绝缘水平面上的M 、N 两点各放有一个电荷量分别为+q 和+2q 的完全相同的金属球A 、B 。

在某时刻,使A 、B 以相等的初动能E 开始沿同一直线相向运动(这时它们的动量大小为P ),若它们刚好能发生接触,碰后又各自返回。

它们返回M 、N 两点时的动能分别为E 1和E 2,动量大小分别为P 1和P 2,则下列结论正确的是( )A . E 1=E 2>E ,P 1=P 2>PB .E 1=E 2=E ,P 1=P 2=PC .碰撞一定发生在M 、N 连线中点的左侧D .两球不可能同时返回到M 、N 两点3、质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能。

与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为P 1、P 2和E 1、E 2,比较它们的大小,有( ) A. P 1>P 2和E 1>E 2 B. P 1>P 2和E 1<E 2 C. P 1<P 2和E 1>E 2 D. P 1<P 2和E 1<E 24、在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m .现B 球静止,A 球向B 球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E p ,则碰前A 球的速度等于()5、质量分别为m 1、m 2的物体,分别受到不同的恒力F 1、F 2的作用,由静止开始运动( ) A .若在相同位移内它们动量变化相同,则F 1/F 2=m 2/m 1 B .若在相同位移内它们动量变化相同,则F 1/F 2=12m m C .若在相同时间内它们动能变化相同,则F 1/F 2=m 2/m 1D .若在相同时间内它们动能变化相同,则F 1/F 2=12m m6、如图所示,在一个足够大的光滑平面内有A 、B 两个质量相同的木块,中间用轻质弹簧相连 .今对B 施以水平冲量F △t (△t 极短).此后A 、B 的情况是( )(A)在任意时刻,A 、B 加速度大小相同 (B)弹簧伸长到最长时,A 、B 速度相同 (C)弹簧恢复到原长时,A 、B 动量相同 (D)弹簧压缩到最短时,系统总动能最小7、如图所示,固定在水平面上的竖直轻弹簧上端与质量为M 的物块A 相连,静止时物块A位于P 处.另有一质量为m 的物块B ,从A 的正上方Q 处自由下落,与A 发生碰撞立即具有相同的速度,然后A 、B 一起向下运动,将弹簧继续压缩后,物块A 、B 被反弹.下面是有关的几个结论,其中正确的是( )①A 、B 反弹过程中,在P 处物块B 与A 相分离 ②A 、B 反弹过程中,在P 处物块B 与A 仍未分离 ③B 可能回到Q 处 ④B 不可能回到Q 处A .①③B .①④C .②③D .②④8、斜面小车的质量为M ,高为h ,一个质量为m 的物体从小车的顶点滑下,物块滑离斜面小车底端时的速度设为v ,不计一切摩擦,下列说法:①物块滑离小车时的速度gh v 2=;②物块滑离小车时的速度gh v 2<;③物块滑离小车时小车的速度Mmv V =;④物块滑离小车时小车的速度Mmv V <。

其中正确的是 ( )A .只有①③正确B .只有①④正确C .只有②③正确D .只有②④正确9、如图3所示,两根足够长的固定平行金属光滑导轨位于同一水平面,导轨上横放着两根相同的导体棒ab 、cd 与导轨构成矩形回路.导体棒的两端连接着处于压缩状态的两根轻质弹簧,两棒的中间用细线绑住,它们的电阻均为R ,回路上其余部分的电阻不计.在导轨平面内两轨道间有一竖直向下的匀强磁场.开始时,导体棒处于静止状态.剪断细线后,导体棒在运动过程中( )A .回路中有感应电动势B .两根导体棒所受安培力的方向相同C .两根导体棒和弹簧构成的系统动量守恒、机械能守恒D .两根导体棒和弹簧构成的系统动量守恒、机械能不守恒10、如上图所示,水平轻弹簧与物体A 和B 相连,放在光滑水平面上,处于静止状态,物体A 的质量为m ,物体B 的质量为M ,且M> m 。

现用大小相等的水平恒力F 1、F 2拉A 和B ,从它们开始运动到弹簧第一次最长的过程中( )A .因M>m ,所以B 的动量大于A 的动量 B .A 的动能最大时,B 的动能也最大C .F 1和F 2做的总功为零D .弹簧第一次最长时A 和B 总动能最大 11、如图所示,(a)图表示光滑平台上,物体A 以初速度v 0滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计,(b)图为物体A 与小车B 的v-t 图像,由此可知( )A 、小车上表面长度B 、物体A 与小车B 的质量之比C 、A 与小车B 上表面的动摩擦因数D 、小车B 获得的动能图312、质量为m 的小球A 以水平初速度v 0与原来静止在光滑水平面上的质量为3m 与A 球等大的小球B 发生正碰。

已知碰撞过程中A 球的动能减少了75%,则碰撞后B 球的动能可能是( )A .2081mv B .2083mv C .2161mv D .2241mv13、如图所示,半径和动能都相等的两个小球相向而行.甲球质量m 甲大于乙球质量m 乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下述哪些情况?( )A .甲球速度为零,乙球速度不为零B .两球速度都不为零C .乙球速度为零,甲球速度不为零D .两球都以各自原来的速率反向运动14、科学家们使两个带正电的离子被加速后沿同一条直线相向运动而发生猛烈碰撞,试图用此模拟宇宙大爆炸的情境.为了使碰撞前的动能尽可能多地转化为内能,关键是设法使这两个重离子在碰撞前的瞬间具有( )A .相同大小的动量B .相同的质量C .相同的动能D .相同的速率15、物体在恒定的合力作用下做直线运动,在时间△t 1内动能由零增大到E 1,在时间△t 2内动能由E 1增大到2E 1. 设合力在△t 1内做的功是W 1,冲量是I 1;在△t 2内做的功是W 2,冲量I 2,那么( )A .I 1<I 2,W 1=2WB .I 1>I 2,W 1=W 2C .I 1<I 2,W 1<W 2D .I 1=I 2,W 1<W 216、如图,质量为M 的小车静止于光滑的水平面上,小车上AB 部分是半径R 的四分之一光滑圆弧,BC 部分是粗糙的水平面。

今把质量为m 的小物体从A 点由静止释放,m 与BC 部分间的动摩擦因数为μ,最终小物体与小车相对静止于B 、C 之间的D 点,则B 、D 间距离x 随各量变化的情况是( ) A .其他量不变,R 越大x 越大 B .其他量不变,μ越大x 越大 C .其他量不变,m 越大x 越大 D .其他量不变,M 越大x 越大17、如图,两物体A 、B 用轻质弹簧相连,静止在光滑水平面上,现同时对A 、B 两物体施加等大反向的水平恒力F 1、F 2使A 、B 同时由静止开始运动,在弹簧由原长伸到最长的过程中,对A 、B 两物体及弹簧组成的系统,正确的说法是( )A .A 、B 先作变加速运动,当F 1、F 2和弹力相等时,A 、B 的速度最大;之后,A 、B 作变减速运动,直至速度减到零B .当A 、B 作变减速运动速度减为零时,弹簧伸长最长,系统的机械能最大 C .因F 1、F 2等值反向,故系统的机械能守恒 D .因F 1、F 2等值反向,故系统的动量守恒图1218、如图7所示,在光滑的水平面上,物体B 静止,在物体B 上固定一个轻弹簧。

物体A 以某一速度沿水平方向向右运动,通过弹簧与物体B 发生作用。

两物体的质量相等,作用过程中,弹簧获得的最大弹性热能为E P 。

现将B 的质量加倍,再使物体A 通过弹簧与物体B 发生作用(作用前物体B 仍静止),作用过程中,弹簧获得的最大弹性势能仍为E P 。

则在物体A 开始接触弹簧到弹簧具有最大弹性势能的过程中,第一次和第二次相比( ) A .物体A 的初动能之比为2 : 1 B .物体A 的初动能之比为4 : 3 C .物体A 损失的动能之比为1 : 1 D .物体A 损失的动能之比为27 : 3219、离子发动机飞船,其原理是用电压U 加速一价惰性气体离子,将它高速喷出后,飞船得到加速,在氦、氖、氩、氪、氙中选用了氙,理由是用同样电压加速,它喷出时 ( )A .速度大B .动量大C .动能大D .质量大20、甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P 1=5kg.m/s,P 2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg.m/s ,则二球质量m 1与m 2间的关系可能是下面的哪几种?( )A 、m 1=m 2B 、2m 1=m 2C 、4m 1=m 2D 、6m 1=m 221、在光滑水平面上,动能为E 0、动量的大小为0p 的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反。

将碰撞后球1的动能和动量的大小分别记为E 1、1p ,球2的动能和动量的大小分别记为E 2、p 2,则必有( )A .E 1<E 0B .p 1<p 0C .E 2>E 0D .p 2>p 022、如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑 A .在以后的运动过程中,小球和槽的动量始终守恒 B .在下滑过程中小球和槽之间的相互作用力始终不做功 C .桩弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处图16。

相关文档
最新文档