呼吸力学测定讲解学习
呼吸力学监测
气流速度 气流形式 管径大小 流速,容积依赖性
流速(L / s)
R气道=8η l/(π r4)
测定R气道,C的临床意义
气道阻力增加 与人工气道有关 管腔狭小,扭曲,痰 痂形成 与气道有关 气道痉挛。分泌物增 加 弹性阻力增加(顺应性降低) 肺水肿,实变,纤维化, 肺不张 气胸,胸腔积液 脊柱侧弯或其他胸壁畸 形 肥胖,腹胀 动态肺充气
呼吸力学
ICU 郭小燕
呼吸系统的力学
呼吸
肺通气:吸气,呼气
动力,阻力
吸气肌--膈肌,肋间外肌
通气原理
正常呼吸时的力学
吸气相
动力 吸气肌收缩 阻力 弹性回缩力(R弹) 气体与气体、气体与气道摩擦(R气道)
惯性阻力和组织的粘滞阻力(可忽略不计)
正常呼吸时的力学
Fpeak
t
呼气相
吸气相
气道峰压,平台压意义
R气道,C(顺应性)计算
Pplat , PEEP测量
吸气末阻断举例ຫໍສະໝຸດ 举例:计算R气道 和 C ?
举例:R气道计算
举例:肺顺应性
对功的监测(1)
容量
W吸气=P· △V
R气道↑
容量
容量
压力
正常 压力
C↓ 压力
机械通气时的呼吸力学监测
监测阻力
监测动力 监测功
呼吸机工作原理:运动方程
对阻力的监测
P
气道峰压 气道平台压 用以克服 气道阻力(P1) 用以克服 弹性阻力(P2)
C= 1 R弹= C=
肺容积变化( V) 跨肺压变化( P)
P2 Vt
PEE P
t F
平台压可以更好 地反映肺泡内压 R气道= P1
呼吸力学监测
(二)压力监测方法
1.气道压(Pao或Paw)的监测 自主呼吸时,Pao的测定是通过接口器连接了压力传感器来测定。机械通气时,压力传感器的理想位置是位于呼吸机的Y型管近患者端。
1. PEEPI 呼气末持续存在呼气的流量,提示存在PEEPI。
2. 呼气流量受限 呼气相流量曲线表现为典型的衰减形,提示呼气流量受限的存在。
3. 判断对治疗的反应 经过适当的药物治疗或呼吸参数调节后,观察流量-容量曲线的变化,有利于观察对治疗的反应。
4.特殊的曲线形态的意义 例如流量-容量曲线出现锯齿样改变,提示存在气道分泌物;容量环不闭合,提示存在漏气等。
由于没有足够的时间让呼吸系统内的压力达到平衡,其结果不仅与呼吸系统的弹性有关,而且受气道阻力的影响,使Cdyn < Cstat。
当气道阻塞严重(肺排空的时间常数延长)或呼吸频率增快(呼气时间缩短)时,这种影响尤为明显。
(1)呼吸运动过程中,这些压力不是固定的,而是动态变化的,随着肺容量和呼吸流量的改变而变化。引起肺膨胀的动力(Pinf)来源于呼吸机的外加(Pext)和/或
患者肌肉收缩产生的压力(Pmus)。这些压力间的关系为:Pinf=Prs=Pmus+Pext
(2)当患者完全放松时(Pmus=0),Prs=Pext,即呼吸机克服全部的经呼吸系统压力。相反,完全自主呼吸时,Prs=Pmus,即呼吸肌肉克服全部的经呼吸系统压力。
不同类型呼吸机压力的传感器位置不同。例如:Hamilton将压力传感器放置在送气通道、PB7200a和鸟牌6400ST放置在排气通道、熊牌5放置在气道的近端。
呼吸力学医学课件
呼吸力学研究有助于深入了解呼吸系统的生理 和病理机制,为医学教育和科研提供方向和思 路。
对未来研究者的建议与展望
01
掌握呼吸力学研究的基本技能和方法,熟悉相关软件和仪器设 备的使用。
02
关注当前医学领域的热点和难点问题,结合呼吸力学进行深入
研究。
加强国际合作与交流,引进国外先进技术和经验,推动我国呼
呼吸监测
呼吸力学在呼吸监测方面有着重要的应用,可以通过监测呼 吸动力学参数,如呼吸阻力、顺应性等,来评估患者的呼吸 功能状况。
呼吸诊断
通过对呼吸力学参数进行分析,可以辅助医生进行呼吸系统 疾病的诊断,如哮喘、慢性阻塞性肺疾病(COPD)等。
呼吸治疗与干预
呼吸治疗
呼吸力学理论和技术可以用于呼吸治疗,如通过肺康复训练来改善患者的呼 吸功能。
呼吸力学在医学影像学中的应用
CT与MRI
呼吸力学在医学影像学中有着广泛的应用,如通过CT和MRI 等技术来评估患者的肺部通气情况,了解肺部疾病的病变范 围和程度。
影像学分析
通过对医学影像学资料进行分析,可以获得患者的呼吸系统 结构和功能信息,从而为临床诊断和治疗提供帮助。
05
呼吸力学研究的挑战与前景
2023
呼吸力学医学课件
contents
目录
• 呼吸力学概述 • 呼吸系统的生理结构 • 呼吸力学的基本原理 • 呼吸力学在医学上的应用 • 呼吸力学研究的挑战与前景 • 呼吸力学医学课件总结
01
呼吸力学概述
呼吸力学的定义与特点
呼吸力学的定义
呼吸力学是一门研究呼吸器官运动、气体交换过程及其影响 因素的学科。它涉及到呼吸系统动力学、气体交换和呼吸调 节等多个方面。
呼吸力学在医学领域的未来应用
呼吸力学的监测
汇报人:可编辑
2024-01-11
CONTENTS 目录
• 呼吸力学概述 • 呼吸力学监测的方法 • 呼吸力学监测的应用 • 呼吸力学监测的挑战与解决方案 • 未来展望
CHAPTER 01
呼吸力学概述
呼吸力学的定义
呼吸力学是一门研究呼吸过程中气体 流动和呼吸系统力学特性的科学。它 涉及到呼吸系统的气体交换、气流动 力学、呼吸肌肉力学等多个方面。
通过持续监测呼吸力学参数,可以评 估治疗措施的疗效,及时调整治疗方 案。
指导治疗
根据呼吸衰竭的类型和严重程度,呼 吸力学监测可以指导治疗措施的选择 ,如机械通气、药物治疗等。
机械通气的调节
设定通气模式
根据患者的病情和呼吸力学监测 结果,选择合适的通气模式,如
控制通气、辅助通气等。
调整参数
根据患者的生理需求和呼吸力学监 测结果,调整机械通气的参数,如 潮气量、呼吸频率、吸氧浓度等。
对呼吸力学监测数据进行动态监测和趋势分析,以便及时发现异 常变化并采取相应措施。
监测过程中的患者舒适度
设备舒适度
选择舒适度高、易于使用的呼吸力学监测设备,减少对患者造成的 不适感。
操作简便性
简化呼吸力学监测设备的操作步骤,方便医护人员快速、准确地完 成监测过程。
患者教育
对患者进行教育,告知他们如何配合呼吸力学监测,减少因操作不当 导致的不适感。
预防并发症
通过呼吸力学监测,可以及时发现 机械通气相关的并发症,如过度通 气、通气不足、气压伤等,采取相 应措施进行预防和治疗。
呼吸肌疲劳的评估
评估呼吸肌疲劳程度
通过监测呼吸力学参数,可以评估呼吸肌疲劳的程度,如肌肉收 缩力下降、肌肉疲劳等。
呼吸机呼吸力学测定
呼吸机呼吸力学测定呼吸系统的阻力分为非弹性阻力和弹性阻力。
非弹性阻力包括气道阻力(RAW)、惯性阻力、重力和肺组织与胸廓的变形阻力,气道阻力是非弹性阻力最主要的组成部分。
弹性阻力指的是肺和胸壁可扩张性,以顺应性(C)来表示。
临床对于呼吸力学的监测主要包括顺应性(C)和气道阻力(RAW)以及克服上述阻力要做的呼吸功。
(一)气道阻力气道阻力是指气流通过气道进出肺泡所受到的阻力,即气流通过气道进入肺泡过程中,气道会对气流产生阻力,阻力的大小和气流的快慢是成正比的,即气流越快,所受的阻力越大,所以用单位流量所需的压力差来表示。
支气管痉挛、黏膜水肿、局部气道阻塞(如分泌物堵塞、异物、肿瘤等)等气道内径的下降会增加气道阻力,因此RAW的监测可用于发现气道的病变。
计算气道阻力时需要测定的参数主要为气道开口处压力、肺泡压及流量。
气道开口处压力及流量相对容易获得,计算气道阻力的关键在于肺泡压的获取。
气道阻力测定的方法可大致分为体积描记法、脉冲振荡法、气道阻断法、食道压测量法、气道压力检测法和吸气末暂停法。
吸气末暂停法是机械通气时运用最多,也是最为简单的方法(见图8-15)。
该方法下应先排除自主呼吸对测量准确性的影响,选择容量控制通气并使用方形流量波,通过设置足够长的平台时间或使用吸气末暂停功能键用于确保吸气末气流最终降为0,此时气道压力也从气道峰压力同步降低至平台压力(即肺泡压),降低的压力值为克服气道阻力所需的压力。
吸气阻力可通过下列公式计算:吸气阻力(RI)=(气道峰压-平台压)/吸气流量由于呼气过程是胸肺弹性势能的释放过程,气流速度并不恒定,而是呈现先快后慢的特点,呼吸机描记的流量时间曲线通常呈指数递减样变化,因此,在机械通气过程中,通常是结合气道阻断法计算呼气开始瞬间的气道阻力,此时肺泡内压力为平台压,气道开口处压力为PEEP,气体流量为呼气相峰流量:呼气阻力(RE)=(平台压-PEEP)/呼气峰流量但目前临床上多数呼吸机流量传感器位于呼吸机回路远端,呼气开始时流量受回路顺应性及阻力影响较大,因此测定的呼气阻力准确性较低,仅具参考意义。
呼吸力学测定PPT课件
平台压(Pplat)的影响因素
Pplat=Volume/Compliance+PEEP
顺应性 PEEP 潮气量
22 .
C=50,25
23 .
PEEP=0,5
24 .
VT=400,600
25 .
平台压的临床意义
可代表肺泡压的大小 与肺损伤的关系密切 限制平台压不超过30-35 cmH2O
肺过度充气:呼气末肺容积(EELV)超过FRC 静态肺过度充气:恒定外力作用,如PEEP (static pulmonary hyperinflation,SPH)
肺泡压=PEEP
动态肺过度充气:呼气不完全
(dynamic pulmonary hyperinflation,DPH) 肺泡压=内源性呼气末正压(PEEPi)
34 .
PIP:37.2cmH2O Pplat: 20.0 cmH2O PEEP:10.7cmH2O
Pplat
35 .
气道阻力的计算
PIP-Pplat = Flow x Resistance
R=(PIP-Pplat)/Flow
PIP
=(37.2-20.0)/0.5
=34.4 cmH2O/L/S
.
7 .
8 .
呼气末肺容积与压力变化
ΔVdyn ΔVst
FRC
PEEPi
PEEP
Total PEEP
Palv=0
9 .
PEEPi的影响因素
◆ 气道阻力增加 ◆ 呼吸系统弹性下降 ◆ 气道动态塌陷 ◆ 通气量过大 ◆ 呼气时间不足 ◆ 呼气肌的作用
10 .
PEEPi的临床意义
增加肺损伤的危险性 对循环系统产生不良影响 增加呼吸功,导致呼吸肌疲劳
(医学课件)呼吸力学测定
详细描述
潮气量与呼吸频率共同决定了肺通气量,是判断肺功能的基本指标之一。潮气量的大小受到多种因素的影响,如 年龄、性别、身高、体重等。一般来说,成年人的潮气量为500-600毫升,儿童和老年人的潮气量会相对较小。
肺活量
总结词
肺活量是指尽力吸气后缓慢而又完全呼 出的最大气量,是呼吸力学测定中的基 本参数之一。
VS
详细描述
肺活量是反映肺部健康状况的重要指标之 一,可以反映肺部通气功能和胸廓的完整 性。正常成年人的肺活量为3000-4000毫 升,肺活量的大小受到多种因素的影响, 如年龄、性别、身高、体重等。
最大呼气量
总结词
最大呼气量是指尽力呼气时所能呼出的最大 气体量,是呼吸力学测定中的重要参数之一 。
05
呼吸力学测定的优势与局限性
优势
定量评估呼吸功能
呼吸力学测定可以提供关于呼吸功能的 定量数据,有助于准确评估患者的呼吸
状态。
监测病情变化
呼吸力学测定可以动态监测患者病情 的变化,有助于及时发现并处理潜在
的问题。
指导治疗
通过呼吸力学测定,医生可以了解患 者的呼吸力学特征,从而制定更为精 准的治疗方案。
疗效评估
治疗一段时间后,再次进行呼吸力学测定可以评估治疗效果,判断治疗 是否有效。
监测机械通气患者的呼吸功能
机械通气
对于一些严重肺部疾病或呼吸衰竭的患者,可能需要 使用机械通气来辅助呼吸。通过呼吸力学测定可以监 测患者的呼吸功能,判断机械通气是否有效。
调整机械通气参数
根据呼吸力学测定结果,可以调整机械通气的参数, 如潮气量、呼吸频率、吸氧浓度等,以更好地满足患 者的需求。
《呼吸力学》课件
根据患者病情和通气需求,选择合适 的机械通气模式和参数,确保患者安 全和舒适。
睡眠呼吸暂停综合征的诊断与治疗
诊断
通过睡眠监测和相关症状,判断是否存在睡眠呼吸暂停综合征。
治疗
根据患者病情,采取不同的治疗措施,如改变睡姿、减肥、口腔矫治器等,严重者需进行手术治疗。
05
呼吸力学的研究进展与展望
呼吸力学的研究进展
1 2
呼吸力学的起源
呼吸力学作为一门学科,起源于20世纪初,随着 医学和生理学的发展,人们开始对呼吸过程进行 深入研究。
早期研究
在早期,研究者主要关注呼吸的生理机制和肺部 的气流动力学,为后来的研究奠定了基础。
3
近年来的突破
近年来,随着技术的进步,呼吸力学的研究取得 了重大突破,如无创通气技术、肺功能检测等。
详细描述
呼吸力学主要研究呼吸系统的气体流动、压力变化、气体交换等机制,涉及到生理学、流体力学、生物力学等多 个学科领域。它以理论分析为基础,通过数学模型和实验手段深入探究呼吸过程的内在机制,为医学研究和临床 治疗提供重要的理论支持和实践指导。
呼吸力学在医学中的重要性
总结词
呼吸力学在医学中具有重要的应用价值,对于呼吸系统疾病的诊断、治疗和预防具有重 要意义。
《呼吸力学》PPT课 件
• 呼吸力学概述 • 呼吸系统的组成与功能 • 呼吸力学的基本原理 • 呼吸力学在临床中的应用 • 呼吸力学的研究进展与展望
目录
01
呼吸力学概述
呼吸力学的定义与特点
总结词
呼吸力学是一门研究呼吸过程中气体流动和压力变化的学科,具有涉及领域广泛、理论性强、实践应用价值高等 特点。
并将二氧化碳排出体外。
呼吸系统的功能
(医学课件)呼吸力学测定
THANKS
谢谢您的观看
05
呼吸力学测定的未来展望
呼吸力学测定的研究热点和发展趋势
新型传感器与检测技术
随着科技的不断发展,新型传感器和检测技术将不断应用于呼吸力学测定领 域。例如,纳米技术和生物传感器等高灵敏度、低成本、易于携带的技术将 逐渐受到关注。
呼吸康复与训练
未来,呼吸力学测定不仅需要监测患者的呼吸状态,还将需要为患者提供个 性化的呼吸康复和训练方案。这需要对呼吸生理和病理机制有更深入的理解 ,并开发出针对性的评估和治疗方案。
呼吸力学测定的学科交叉与融合
生物医学工程
呼吸力学测定与生物医学工程紧密相关。 该领域的技术发展将为呼吸力学测定提供 新的工具和方法。例如,生物材料、纳米 技术、人工智能等领域的最新研究成果将 为呼吸力学测定提供新的思路和解决方案 。
VS
生理学和医学
呼吸力学测定需要深入理解和应用生理学 和医学的基本原理和方法。同时,这些原 理和方法也将为呼吸力学测定提供理论支 持和技术指导。例如,生理学中的气体交 换原理、医学中的影像学检查技术等将对 呼吸力学测定产生重要影响。
热敏式传感器法
热敏式传感器法是一种常用的呼吸力学测定技术,其原理是利用热敏传感器测量气体的温度变化,从而推算出气体流量。 该方法具有测量精度高、稳定性好、响应速度快等优点。
声波法
声波法是一种新型的呼吸力学测定技术,其原理是利用声波在气体中传播的特性,测量声波传播时间和气体流量之间的关 系,从而推算出气体流量。该方法具有测量精度高、稳定性好、操作简单等优点。
经验和技能。
操作安全性
呼吸力学测定过程中,需要保 证操作的安全性,避免因操作 不当导致的意外事故或危险情
况。
操作便捷性
呼吸力学的监测课件
该技术可以实时监测呼吸频率、 潮气量、气道阻力等指标,有助 于评估患者的呼吸功能和通气状
态。
阻抗呼吸监测特别适用于重症监 护病房、呼吸科病房等需要密切
监测患者呼吸状态的场所。
呼出气CO2监测
呼出气CO2监测是通过测量呼 出气体中CO2的浓度来评估呼 吸力学参数的一种方法。
该技术可以实时监测CO2排出 量、CO2分压等指标,有助于 评估患者的通气功能和CO2代 谢状态。
目 录
• 呼吸力学基础 • 呼吸力学监测技术 • 呼吸力学监测的临床应用 • 呼吸力学监测的局限性与发展方向 • 呼吸力学监测的护理与注意事项
contents
01
呼吸系统的组成与功能
呼吸力学的基本概念
呼吸力学在临床中的应用
。
02
阻抗呼吸监测
阻抗呼吸监测是一种无创、无痛、 无辐射的呼吸监测技术,通过测 量胸部阻抗变化来评估呼吸力学 参数。
设备成本高昂
呼吸力学监测设备通常比较昂贵, 使得其在临床应用中受到限制。
设备体积庞大
一些呼吸力学监测设备体积较大, 不便于移动和使用,限制了其应 用范围。
设备操作复杂
一些呼吸力学监测设备的操作较 为复杂,需要专业人员进行操作
和维护。
监测技术的不准确性
信号干扰
测量误差
算法局限性
未来研究方向与技术发展
呼出气CO2监测常用于麻醉手 术、呼吸衰竭等需要密切监测 患者通气状态的场合。
脉搏血氧饱和度监测
脉搏血氧饱和度监测是一种无创、无痛、无辐射的血液氧合监测技术,通过测量指 尖或耳垂部位的脉搏血氧饱和度来评估患者的氧合状态。
该技术可以实时监测血氧饱和度、脉率等指标,有助于评估患者的通气功能和氧合 状态。
呼吸力学测定
在其他领域的应用
呼吸力学测定在医学领域的应用如呼吸衰竭、慢性阻塞性肺疾病等疾病的诊断和治疗。
呼吸力学测定在运动科学领域的应用如运动员呼吸训练、运动强度监测等。
呼吸力学测定在航空航天领域的应用如飞行器座舱压力调节、飞行员呼吸训练等。
呼吸力学测定在环境科学领域的应用如环境空气质量监测、工业废气排放检测等。
呼吸力学测定是评估呼吸系统功能的重要手段
测定目的和意义
了解呼吸系统的功能和机制
评估呼吸系统的健康状况
诊断呼吸系统疾病
监测呼吸系统治疗的效果
测定方法简介
呼吸力学测定方法:通过测量呼吸气体流量、压力和阻力的变化评估呼吸系统的功能状态。
测定仪器:包括呼吸气体分析仪、呼吸机、阻抗仪等。
测定原理:基于流体力学原理通过测量呼吸气体流量和压力的变化推算呼吸系统的力学特性。
数据分析:根据呼吸力学测定数据分析呼吸力学参数如呼吸阻力、肺顺应性等。
结果解读:结合呼吸力学理论知识解读测定结果为临床诊断和治疗提供依据。
报告撰写:将测定结果和分析写成报告便于医生参考和使用。
05
呼吸力学测定应用
在临床医学中的应用
呼吸力学测定用于评估呼吸系统疾病患者的呼吸功能
呼吸力学测定可用于指导机械通气治疗优化呼吸机参数
测定步骤:包括设置仪器、记录呼吸气体流量和压力等参数、分析数据并得出结论。
03
呼吸力学测定原理
呼吸力学基本原理
添加标题
添加标题
添加标题
呼吸力学测定原理:通过测量呼吸气体流量、压力和阻力的变化推导出呼吸力学参数以评估呼吸功能和通气效率。
呼吸力学测定方法:包括静态呼吸力学测定和动态呼吸力学测定前者主要测量呼吸阻力和顺应性后者则评估呼吸功和呼吸肌肉效率。
(医学课件)呼吸力学测定
学参数,同时还能记录和存储数据。
超声呼吸计
03
利用超声波技术测定呼吸运动和呼吸力学参数,具有无创、无
辐射等特点,但测量精度和稳定性相对较低。
呼吸力学测定仪器的组成和使用方法
机械呼吸计
由流量传感器、压力传感器、容积传感器等组成,使用时将传感器与受试者连接,通过调 节呼吸环路和参数设置进行测定。
电子呼吸计
由传感器、计算机和打印机等组成,使用时将传感器放置在受试者胸部或口鼻处,通过软 件设置参数并进行测定。
超声呼吸计
由超声波探头、信号处理系统和显示终端等组成,使用时将探头放置在受试者胸部或口鼻 处,通过软件设置参数并进行测定。
呼吸力学测定仪器的维护和保养
01
机械呼吸计
定期检查流量传感器、压力传感器和容积传感器的灵敏度和精度,保
机械通气应用
如机械通气模式选择、参数设置和 效果评估等。
呼吸肌肉锻炼
如呼吸肌功能锻炼、呼吸操和神经 电刺激等。
03
呼吸力学测定仪器及使用
呼吸力学测定仪器的种类和特点
机械呼吸计
01
用于测量气体流量、压力和容积等呼吸力学参数,具有测量精
度高、稳定性好等特点。
电子呼吸计
02
采用电子传感器和计算机技术,能够快速、准确地测定呼吸力
局限性
虽然呼吸力学测定在临床上有一定的应用价值,但是也存在一定的局限性,如对 患者的配合度和年龄有一定的要求,无法完全反映患者的整体呼吸功能等。
注意
在进行呼吸力学测定时,需要综合考虑患者的实际情况和医生的建议,避免盲目 相信测定结果而忽略临床实践经验的重要性。
06
呼吸力学测定研究进展
呼吸力学测定研究的历史和现状
研究多学科交叉的呼吸力学问题,探讨呼吸力学与其他 学科的相互影响和作用。
呼吸力学测定
关系需要更加深入的研究。
未来需要加强多学科协作,推动呼吸力学测定与其他领域的交
03
叉融合,为临床医疗提供更多创新性的解决方案。
对未来的建议
建议加强对于呼吸力学测定技术的培训和普及 ,提高临床医生和技术人员的使用水平。
建议在未来的研究中注重研究多因素对呼吸力 学的影响,包括年龄、性别、体位、情绪等。
03
呼吸力学测定的技术和仪器
呼吸力学测定的技术
直接测定法
通过直接测量气体压力、流量、容积等参数,计算呼吸力学指标,如闭合容积、 最大通气量等。
间接测定法
通过测量人体呼出气体中的某些成分,如二氧化碳分压、氧气分压等,推算出呼 吸力学指标,如肺泡通气量、弥散功能等。
呼吸力学测定的仪器
肺量计
01
用于测量肺活量、潮气量等指标,一般由传感器和记录仪组成
2
呼吸力学测定可以评估呼吸肌的力学性质、呼 吸系统顺应性和气道阻力等,从而为临床诊断 提供依据。
3
呼吸力学测定还可以用于评估机械通气效果和 呼吸机设置的合理性。
研究展望
01
呼吸力学测定技术仍有待进一步发展和完善,ห้องสมุดไป่ตู้其是在测量准 确性和操作简便性方面需要提高。
02
对于呼吸系统疾病患者的病理生理机制和呼吸力学测定之间的
呼吸力学测定在呼吸系统疾病诊断、治疗和基础研究中具有 重要意义,有助于了解呼吸系统的生理和病理状态。
测定目的
了解呼吸系统的生理状态和功能状况。 评估治疗措施的有效性和安全性。
判断呼吸系统疾病的类型、程度和进展。 研究呼吸系统的生物力学和生理学机制。
测定方法
电阻抗成像技术
计算机辅助呼吸监测
利用电流在人体组织中的传导特性,根据不 同电阻抗分布成像,反映呼吸过程中肺部气 体分布和气流特征。
呼吸力学监测操作方法
呼吸力学监测操作方法
呼吸力学监测是一种通过监测呼吸系统的力学参数来评估呼吸功能的方法。
下面是一种常见的呼吸力学监测操作方法:
1. 检查设备:确保呼吸力学监测设备的正常工作。
包括确认传感器、监测仪器、连接线等是否完好,并且已正确安装和连接。
2. 准备患者:将患者放置在适当的体位,通常是半卧位或直立位。
确保患者舒适,并准备好所需的辅助设备,例如口罩或鼻子夹等。
3. 连接传感器:根据设备说明书的指导,将传感器正确连接到患者的呼吸系统。
通常,传感器可以通过插入呼吸机管道、测压管道、面罩或鼻管等方式与呼吸系统连接。
4. 校准设备:在监测开始之前,需要校准呼吸力学监测设备。
这通常包括将设备的零点校准到大气压力,并校准其测量范围。
校准的具体方法可以参考设备说明书。
5. 开始监测:打开呼吸力学监测仪器,并开始记录数据。
监测可以连续进行,也可以根据需要进行定时抽样。
6. 记录数据:根据设备的要求,将监测到的呼吸力学参数记录下来。
常见的呼
吸力学参数包括呼气末正压(PEEP)、潮气量(VT)、呼吸频率(RR)、吸气时间(TI)等。
7. 分析数据:通过分析监测到的呼吸力学数据,评估呼吸系统的功能。
可以根据需要计算一些相关的指数,例如肺顺应性、阻力、吸气末正压-肺容积曲线等。
8. 采取措施:根据分析结果,采取相应的措施。
例如,调整呼吸机参数、更换或调整呼吸辅助器具、改变患者体位等,以改善呼吸功能。
9. 监测完毕:完成呼吸力学监测后,及时关闭设备并清理传感器。
将记录的数据保存和整理,并及时报告相关医疗人员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雾化吸入疗效
PIP
Pplat
PEEP
Rrs
C
(cmH2O) (cmH2O) (cmH2O) (cmH2O/L/s) (ml/cmH2O)
0min 37.2
20.0
10.7
34.4
36.6
15min 29.4
18.0
8.4
22.8
35.4
R改善率为33.7%
平均气道压(Pmean)
数个周期中气道压的平均值 与影响PIP的因素及吸气时间长短有关 近似于平均肺泡压 其大小与对心血管系统的影响直接相关
用于克服气道阻力、弹性阻力和PEEP • Pplat=Volume/Compliance+PEEP
PIP Pplat
用于克服弹性阻力和PEEP
• PIP- Pplat = Flow x Resistance
用于克服气道阻力
关键是测Pplat 及PEEP
Pplat和PEEP的测量
吸气末阻断法(inspiration hold) 呼气末阻断法(expiration hold)
平台压的临床意义
可代表肺泡压的大小 与肺损伤的关系密切 限制平台压不超过30-35 cmH2O
气道峰压(PIP)的影响因素
PIP= Flow x Resistance +Volume/compliance+PEEP
顺应性 潮气量 PEEP 气道和气管内导管阻力 吸气流速
R=5,20
PIP Pplat
=34.4 cmH2O/L/S
顺应性的计算
Pplat=Volume/Compliance+PEEP
C=VT/(Pplat-PEEP)
=340/(20.0-10.7) =36.6 ml/cmH2O
Pplat
PEEP
MDI+Spacer雾化吸入万托林 400ug 15min后
Ppeak:29.4cmH2O Pplat: 18.0 cmH2O PEEP:8.4cmH2O
弹性阻力增加(顺应性降低)
肺水肿,实变,纤维化,肺不张 气胸、胸腔积液 脊柱侧弯或其他胸壁畸形 肥胖、腹胀 动态肺充气
呼气末肺充气状态
静息平衡位(resting equilibrium position) 功能残气量(functional residual capacity,FRC) 肺泡压=大气压
PEEPi的临床意义
增加肺损伤的危险性 对循环系统产生不良影响 增加呼吸功,导致呼吸肌疲劳
内源性PEEP=6 cmH2O
肺
外源性PEEP=0 cmH2O
泡 内
触发灵敏度=2 cmH2O
压
力
呼吸系统力学模型
Resistance
Elastance/Compliance
呼吸机工作原理:运动方程(equation of motion)
VT=340,RR=15,FLOW=30, PEEP=5
PIP:37.2cmH2O Pplat: 20.0 cmH2O PEEP:10.7cmH2O
Pplat
气道阻力的计算
PIP-Pplat = Flow x Resistance
R=(PIP-Pplat)/Flow =(37.2-20.0)/0.5
床旁呼吸力学监测及临床应用
首都医科大学附属北京朝阳医院 北京呼吸疾病研究所
詹庆元
呼吸系统的力学特性
动力 阻力 肺充气状态
呼吸系统的阻力
粘性阻力(resistive resistance)
气道阻力:人体气道+人工气道
Raw=8ηl/(πr4)
具有流速和容积依赖性 单位:cmH2O/L/S
呼吸系统的阻力
弹性阻力(elastic resistance)
顺应性(compliance):单位压力引起的容积变化
C=ΔV/ΔP
具有容积依赖性 单位:ml/cmH2O
ΔP
ΔV
监测气道阻力和肺顺应性的临床意义
气道阻力增加
与人工气道有关
管腔狭小,扭曲,痰痂形成
与气道有关
气道痉挛,分泌物增加
F=50,35
F=50,26
气道峰压的临床意义
气道峰压是设置压力报警限的根据
实际气道峰压之上5-10cmH2O 以不理???
• 流速或气道阻力对气道 峰压产生影响,但对平 台压无影响
• 顺应性的变化对气道峰 压和平台压都产生相同 影响
Paw
P1= Flow x Resistance
P2=Volume/Compliance P3=PEEP
Paw= Flow x Resistance +Volume/Compliance+PEEP
IPPV基本设PIP置Pplat
PIP与Pplat的影响因素
VCV通气:Volume和Flow已知
• PIP= Flow x Resistance +Volume/compliance+PEEP
胸内压(Ppl)/食道压(Pes)
胸内压与食道压的关系
食道内压能较好地反映胸内压 绝对值有一定的差别 两者的变化幅度和趋势一致
测量方法:食道球囊法
关于跨肺压
与肺容积变化直接相关 与肺损伤直接相关
特定情况下跨肺压:控制通气与自主呼吸;肥胖/腹内压增高
PEEPi
应用阻断法的注意事项
消除自主呼吸的影响 采用定容控制通气 流速恒定,并固定潮气量 阻断时间足够长 所测值为平均值
平台压(Pplat)的影响因素
Pplat=Volume/Compliance+PEEP
顺应性 PEEP 潮气量
C=50,25
PEEP=0,5
VT=400,600
呼气末肺容积与压力变化
ΔVdyn ΔVst
FRC
PEEPi
PEEP
Total PEEP
Palv=0
PEEPi的影响因素
◆ 气道阻力增加 ◆ 呼吸系统弹性下降 ◆ 气道动态塌陷 ◆ 通气量过大 ◆ 呼气时间不足 ◆ 呼气肌的作用
PEEPi的临床意义
增加肺损伤的危险性 对循环系统产生不良影响 增加呼吸功,导致呼吸肌疲劳
肺过度充气:呼气末肺容积(EELV)超过FRC 静态肺过度充气:恒定外力作用,如PEEP (static pulmonary hyperinflation,SPH)
肺泡压=PEEP
动态肺过度充气:呼气不完全
(dynamic pulmonary hyperinflation,DPH) 肺泡压=内源性呼气末正压(PEEPi)