(word完整版)二次根式提高练习题.doc
二次根式的计算与化简练习题(提高篇)(可编辑修改word版)
2 m 2 + 1- 2 m 2(1- x )2 4a - 4b (a - b )3 二次根式的计算与化简练习题(提高篇)1、已知 m 是 的小数部分,求 的值。
2、化简(1) - (2) 1232x 3 + 2x- x 2(3) + - a 3 - a 2b (a > 0)3、当 x = 2 - 时,求(7 + 4 3)x 2 + (2 +3)x + 的值。
x 2 - 8x +16x 2 50 x3 3b 27a 3b 3 2 2 + 3 x 2 14、先化简,再求值: 2a - + 2ab 6,其中 a = , b = 3 。
96、已知a = -1,先化简 +a -1 + 4a 2 -16 ÷ 4a 2 + 8a ,再求值。
a 2- aa 2- 2a +1 a 2 - 4a + 4 a - 27、已知: a = 1 , b =a 2 -b 2 ,求 的值。
2a + 2b9、已知0 ≤ x ≤ 3 ,化简 + 3ab 33 ab4 a 2- 2a +1 1 2 - 3x 2 - 6x + 9a 2 - 2a + 1 y 2 x x x 2 3a 27a 3110、已知a = 2 - ,化简求值1 - 2a + a 2 - a - 1 a 2 - a -a11、①已知 x = 2 - 3, y = 2 + 3, 求:x 2 + xy + y 2 的值。
②已知 x =+1 ,求 x +1-x 2x -1的值.③ 4 + 6- (7 + 5 )④ ( - 3 ) ÷3 2 y 29a3a a ⎪ ⎭ a -b a - b - ⎛a a + ab -⎝ b b - ab- 1 ( 2)⎪12、计算及化简:⑴. ⎛ 1 ⎫2⎛ + ⎪ 1 ⎫2⑵.- ⎝a ⎭ ⎝a + 2 ab + b ⎫⑷. ÷ a - b ⎭13、已知: a + = 1+ a,求 a 2+ 1a2的值。
(完整)八年级二次根式综合练习题及答案解析.docx
填空题1. 使式子x 4 有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。
【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。
m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。
【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。
【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。
【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。
2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。
【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。
1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。
二次根式单元测试题及答案word
二次根式单元测试题及答案word一、选择题(每题3分,共30分)1. 下列选项中,哪一个是二次根式?A. \(\sqrt{2}\)B. \(2\sqrt{2}\)C. \(\sqrt{2} + 1\)D. \(\sqrt{2} \times 3\)答案:A2. 计算 \(\sqrt{4}\) 的值是多少?A. 1B. 2C. 4D. -2答案:B3. 如果 \(x = \sqrt{9}\),那么 \(x\) 的值是多少?A. 3B. -3C. 3或-3D. 9答案:A4. 将 \(\sqrt{3} \times \sqrt{3}\) 化简,结果是多少?A. \(\sqrt{9}\)B. \(3\sqrt{3}\)C. 3D. \(\sqrt{3}\)答案:C5. 计算 \(\sqrt{16} - \sqrt{4}\) 的值是多少?A. 2B. 4C. 0D. 2\(\sqrt{2}\)答案:A6. 根据二次根式的性质,\(\sqrt{a^2} = |a|\),下列哪个选项是正确的?A. \(\sqrt{(-2)^2} = 2\)B. \(\sqrt{(-2)^2} = -2\)C. \(\sqrt{(-2)^2} = \pm 2\)D. \(\sqrt{(-2)^2} = -\sqrt{2}\)答案:A7. 计算 \(\sqrt{2} + \sqrt{2} = ?\)A. \(2\sqrt{2}\)B. \(\sqrt{4}\)C. 4D. \(\sqrt{8}\)答案:A8. 已知 \(a = \sqrt{7}\),\(b = \sqrt{3}\),那么 \(a^2 - b^2\) 的值是多少?A. 4B. 7C. 10D. 14答案:C9. 下列哪个表达式可以化简为 \(\sqrt{2}\)?A. \(\sqrt{4}\)B. \(\sqrt{8} \div 2\)C. \(\sqrt{2} \times \sqrt{2}\)D. \(\sqrt{2} + \sqrt{2}\)答案:B10. 计算 \(\sqrt{25} \times \sqrt{4}\) 的值是多少?A. 10B. 20C. 50D. 100答案:A二、填空题(每题4分,共20分)1. \(\sqrt{81}\) 的值是 ________。
(完整版)二次根式专题练习(含答案).doc
初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2,第 4 个等式: a 4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化17.,的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.,,⋯,., S=(用含n的代数式表示,其中n 正整数).三.解答18.算或化:(3+);19.算:( 3)(3+)+(2)20.先化,再求:,其中x=3(π 3)0.21.算:(+ )× .22.算:×() +| 2 |+ ()﹣3.23.算:(+1 )(1)+ ()0.24.如,数 a 、b 在数上的位置,化:.25.材料,解答下列.例:当 a >0 ,如 a=6|a|=|6|=6,故此a的是它本身;当a=0 , |a|=0 ,故此 a 的是零;当a <0 ,如 a= 6 |a|=|6|= ( 6),故此 a 的是它的相反数.∴ 合起来一个数的要分三种情况,即,种分析方法渗透了数学的分思想.:( 1)仿照例中的分的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.28.化求:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C .【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A ..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A .【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A . 0 B.2 C .﹣ 2D. 2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A .B. C .D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C 、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A .B. C .D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C .【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3..【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.( 2016? 聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 ..【点】本考了二次根式的算:先把各二次根式化最二次根式,再行二次根式的乘除运算,然后合并同二次根式.在二次根式的混合运算中,如能合目特点,灵活运用二次根式的性,恰当的解途径,往往能事半功倍.14.( 2016? 黄石)察下列等式:第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2,第 4 个等式: a 4= = 2,按上述律,回答以下:( 1)写出第 n 个等式: a n= = ;;( 2) a 1+a 2+a 3+⋯+a n = 1 .【分析】( 1)根据意可知,a 1= = 1,a 2 = = ,a 3= =2,a4==2,⋯由此得出第 n 个等式: a n = = ;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2 ,第 4 个等式: a 4= =2,∴第 n 个等式: a n= = ;(2) a 1+a 2+a 3+⋯+a n=(1)+()+(2)+(2) +⋯ +()故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a=0∴a=1 或 1∵a <0∴a= 1∴原式 =0 2= 2.【点】解决本的关是根据二次根式内的数非数得到 a 的.17.,,,⋯,., S=(用含n的代数式表示,其中n 正整数).【分析】由 S n =1++===,求,得出一般律.【解答】解:∵ S n =1++===,∴==1+=1+,∴S=1+1+1++⋯ +1+=n+1==.故答案:.【点】本考了二次根式的化求.关是由S n形,得出一般律,找抵消律.三.解答(共11 小)18.( 2016? 泰州)算或化:( 3+);【解答】解:(1)﹣( 3 + )=﹣( + )=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:( 3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=× 4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当a=0 时, |a|=0 ,故此时 a 的绝对值是零;当a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点】本关是先求出a+b 、ab 的,再将被开方数形,整体代.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.【分析】(1 )中,通察,:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到分的目的;( 2)中,注意找律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出抵消的情况.【解答】解:(1)=,=;.(2)原式 =+⋯+=++⋯+=.【点】学会分母有理化的两种方法.28.化求:,其中.【分析】由 a=2+,b=2,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,分后得+,接着分母有理化和通分得到原式=,然后根据整体思想行算.【解答】解:∵ a=2+>0,b=2>0,∴a+b=4 ,ab=1 ,∴原式 =+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点】本考了二次根式的化求:先把各二次根式化最二次根式,再合并同二次根式,然后把字母的代入(或整体代入)行算.。
(完整word版)【精华版】二次根式计算专题训练(附答案)(可编辑修改word版)
﹣ ﹣ ﹣ 二次根式计算专题训练一、解答题(共 30 小题)1. 计算:(1)+; (2)( +)+( ).2. 计算:(1)(π﹣3.14)0+| ﹣2|﹣ +()-2. (2) ﹣4 ﹣( ).(3)(x ﹣3)(3﹣x )﹣(x ﹣2)2.3. 计算化简:(1) ++ (2)2 ﹣6 +3.4. 计算(1) +(2) ÷×.5. 计算:(1)×+3×2 (2)2 ﹣6 +3.6. 计算:(1)( )2﹣20+|﹣ |(2)()×﹣﹣ ﹣ ﹣ ﹣ (3)2 ﹣3 +; (4)(7+4 )(2﹣ )2+(2+ )(2﹣ )7. 计算(1)•(a ≥0) (2) ÷(3)+ (4)(3+ )( )8. 计算::(1) +(2)3+()+ ÷ .9. 计算(1)﹣4 +÷ (2)(1﹣ )(1+ )+(1+ )2.10. 计算:(1) ﹣4 + (2) +2﹣( )﹣﹣﹣ ﹣﹣(3)(2+)(2); (4) +﹣( ﹣1)0.11. 计算:(1)(3 + ﹣4 )÷ (2) +9﹣2x 2• .12. 计算:①4 +﹣ +4 ; ②(7+4 )(7﹣4 )﹣(3 ﹣1)2.13. 计算题(1) ×× (2)+2(3)(﹣1﹣ )(﹣+1) (4)÷( )(5)÷ ×+(6).﹣14.已知:a=,b= ,求a2+3ab+b2的值.15.已知x,y 都是有理数,并且满足,求的值.16.化简:﹣a .17.计算:(1)9 +5﹣3 ;(2)2 ;﹣(3)()2016()2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c 是△ABC 的三边长,化简.= = ﹣1 == ==﹣21.已知 1<x <5,化简:﹣|x ﹣5|.22. 观察下列等式:①= ③; ②==;=………回答下列问题:(1)利用你观察到的规律,化简:(2)计算: +++…+ .23. 观察下面的变形规律:= ,= ,= ,= ,…解答下面的问题:(1)若 n 为正整数,请你猜想= ;(2)计算:(++…+)×()24. 阅读下面的材料,并解答后面的问题:;(1)观察上面的等式,请直接写出 (n 为正整数)的结果 ;(2)计算()( )=;==﹣﹣(3)请利用上面的规律及解法计算:(+ + +…+ )().25. 计算:(1)6﹣2 ﹣3(2)4+26. 计算(1)| ﹣2|﹣ +2(2)27. 计算.+4.×+.28. 计算(1)9 +7 ﹣5 +2 (2)(2 ﹣1)(2 +1)﹣(1﹣2 )2.29. 计算下列各题.(1)(30. 计算)×+3 (2)× .﹣ ﹣ ﹣(1)9 +7 ﹣5 +2 (2)( ﹣1)( +1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共 30 小题) 1.计算:(1)+ = 2+5= 7;(2)(+)+(= 4+2+2= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+( )﹣2 =1+2﹣﹣4 +9(2)﹣4﹣()= 2﹣4× =12﹣5; +2=+(3)(x ﹣3)(3﹣x )﹣(x ﹣2)2 =﹣x 2+6x ﹣9﹣(x 2﹣4x +4)=﹣2x 2+10x ﹣133.计算化简: (1) ++ = 2+3+2 = 5+2; (2)2﹣6+3= 2×2﹣6× +3×4 = 144.计算(1) += 2+4﹣2 = 6﹣2.(2)÷× = 2÷3×3 = 2.5.计算:(1)×+3×2 = 7+30 = 37 (2)2﹣6+3 = 4﹣2+12= 146.计算:(1)( )2﹣20+|﹣ | = 3﹣1+ =(2)()× =(3 )× = 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4 )(2﹣ )2+(2+ )(2﹣ )﹣﹣ ﹣ ﹣﹣ ﹣ ﹣﹣ =(2+ )2(2﹣ )2+(2+ )(2﹣ ) = 1+1 = 27.计算(1)•(a ≥0)== 6a (2)÷ = =(3)+(4)(3+)(8.计算:(1) +(2)3+( = 2+3﹣2 ﹣4 = 2﹣3)= 3﹣3+2﹣5 =﹣2=+3﹣2 =2 ; )+÷ =+﹣2+ =.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣ )(1+ )+(1+ )2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4 + =3 ﹣2 + =2 ;(2) +2﹣( (3)(2 +)(2 )=2+2﹣3+=3;)=12﹣6 =6;(4)+﹣( ﹣1)0 =+1+3﹣1 =4.11. 计算:(1)(3+﹣4 )÷=(9 +﹣2)÷4=8÷4=2;12. 计算:(2)+9﹣2x 2•=4+3﹣2x 2×=7 ﹣2=5.①4+ +4 =4 +3﹣2 +4 =7 +2;②(7+4 )(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6) =﹣45+6.13. 计算题(1) ×× = ==2×3×5 =30;﹣ ﹣﹣ ﹣ ﹣﹣ ﹣﹣ ﹣﹣ ÷ ﹣×+=4=(2)+2= ×4 ﹣2 +2× =2 ﹣2 + =;(3)(﹣1﹣ )(﹣+1)=﹣(1+ )(1﹣ )=﹣(1﹣5) =4;(4)÷((5))=2 ÷( ÷ )=2 ÷ =12;+2 =4+ ;(6)==.14. 已知:a=,b= ,求 a 2+3ab +b 2 的值. 解:a==2+,b=2﹣,则 a +b=4,ab=1, a 2+3ab +b 2=(a +b )2+ab=17.15. 已知 x ,y 都是有理数,并且满足,求的值.【分析】观察式子,需求出 x ,y 的值,因此,将已知等式变形:,x ,y 都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x ,y 都是有理数,∴x 2+2y ﹣17 与 y +4 也是有理数, ∴ 解得∵有意义的条件是 x ≥y ,∴取 x=5,y=﹣4, ∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16. 化简:﹣a . 【分析】分别求出=﹣a,=﹣,代入合并即可.﹣ ﹣﹣﹣ 【解答】解:原式=﹣a + =(﹣a +1) .【点评】本题考查了二次根式性质的应用当 a ≥0 时,=a ,当 a ≤0 时,=﹣a .17. 计算:(1)9 +5﹣3 = 9+10 ﹣12 = 7;(2)2= 2×2×2×=;(3)( )2016( =[( +)( )2015.)]2015•( +)=(5﹣6)2015•( +)=﹣( +)=﹣ .18. 计算:.解:原式=+()2﹣2+1﹣ +=3+3﹣2 +1﹣2+=4﹣ .19. 已知 y=+﹣4,计算 x ﹣y 2 的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得 x 的值,进而可求出 y 的值,然后代入 x ﹣y 2 求值即可.【解答】解:由题意得:, 解得:x=, 把 x=代入 y=+﹣4,得 y=﹣4,当 x=,y=﹣4 时 x ﹣y 2=﹣16=﹣14 .20. 已知:a 、b 、c 是△ABC 的三边长,化简.﹣ ﹣==【解】解:∵a 、b 、c 是△ABC 的三边长,∴a +b >c ,b +c >a ,b +a >c , ∴原式=|a +b +c |﹣|b +c ﹣a |+|c ﹣b ﹣a |=a +b +c ﹣(b +c ﹣a )+(b +a ﹣c ) =a +b +c ﹣b ﹣c +a +b +a ﹣c=3a +b ﹣c .21.已知 1<x <5,化简:﹣|x ﹣5|. 解:∵1<x <5,∴原式=|x ﹣1|﹣|x ﹣5| =(x ﹣1)﹣(5﹣x )= 2x ﹣6. 22.观察下列等式: ①= ;② == ;③=…回答下列问题:(1)利用你观察到的规律,化简:(2)计算: +++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化. 【解答】解:(1)原式= =;)(2)原式=+ ++…+=(﹣1).23. 观察下面的变形规律: = , = , = ,=,…解答下面的问题: (1) 若 n 为正整数,请你猜想=﹣ ;(2) 计算:(+ +…+ )×()= ﹣1 ==﹣ 解:原式=[(﹣1)+( )+( )+…+( )](+1)=( ﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24. 阅读下面的材料,并解答后面的问题:==; =(1)观察上面的等式,请直接写出 (n 为正整数)的结果﹣ ;(2)计算()()= 1 ;(3)请利用上面的规律及解法计算:(+ + +…+ )().=( ﹣1+ +…+)()=( ﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣ 3 = 6﹣ 5 = 6﹣ ;(2)4+ +4= 4+3﹣2 +4 = 7+2.26.计算(1)| ﹣2|﹣ +2= 2﹣﹣2+2 =;(2)×+= ×5+ =﹣1+ =﹣ .27.计算.=(10 ﹣6 +4)÷ =(10 ﹣6 +4)÷=(40 ﹣18 +8)÷=30 ÷ =15.﹣ ﹣ ﹣ ﹣﹣ ﹣ ﹣ ﹣ ﹣﹣ 28.计算(1)9+7 ﹣5 +2 = 9 +14 ﹣20 + = ; (2)(2﹣1)(2 +1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29. 计算下列各题.(1)( )×+3 = + =6﹣6 + =6﹣5 ;(2)×=+1﹣= 2+1﹣2.30. 计算(1)9 +7 ﹣5 +2 = 9 +14 ﹣20 + = ;(2)( ﹣1)( +1)﹣(1﹣2 )2=3﹣1﹣(1+12﹣4 )=2﹣13+4 =﹣11+4.﹣ ﹣。
二次根式计算及化简练习题.doc
二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。
m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x 3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。
4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。
6 4 96、已知aa2 2a 1 a 1 4a2 16 4a2 8a2 1,先化简2 a a2 2a 1 a2 4a 4,再求值。
a a 27、已知: a1 ,b 1 ,求a2 b 22 2a 的值。
2 3 3 2b 9、已知0x 3 ,化简x2x26x910、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x23, y 23, 求: x2xy y2的值。
x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④ ( 3a 3 27a 3 ) ax 9 312、计算及化简:22⑴.11aaa a⑷.a 2ab baa ba ab ba b a b 2 ab⑵.bababaabbab13、已知: a1 1 10 ,求 a 2a12a的值。
x 3yx 291的值。
14、已知20,求x x 3 y 1二次根式提高测试一、判断题:(每小题 1 分,共 5 分)1. ( 2)2ab =- 2ab. ()2.3- 2 的倒数是3+ 2.() 3. (x 1)2 = ( x 1) 2. ()1 a 3b 、2 a4.ab 、 3 xb是同类二次根式.()1x 25. 8x,3 , 9 都不是最简二次根式. ()二、填空题:(每小题 2 分,共 20 分)16.当 x__________时,式子x 3有意义.15 2 10257.化简-827 ÷ 12 a 3 = _.8.a - a21的有理化因式是 ____________ .9.当 1< x <4 时, |x - 4| + x 2 2x 1= ________________.10.方程2( x -1)= x + 1 的解是 ____________.ab c 2 d 211.已知 a 、 b 、 c 为正数, d 为负数,化简abc 2d 2 = ______.1112.比较大小:- 2 7_________ -4 3.13.化简: (7- 5 2)2000 (·- 7-52)2001= ______________.14.若 x 1 +y3= 0,则 (x - 1)2+(y + 3)2= ____________.15. x , y 分别为 8- 11的整数部分和小数部分,则 2xy - y2= ____________.三、选择题:(每小题 3 分,共 15 分)16.已知 x33x 2=- x x3,则( )(A )x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y <0,则x22xy y2 + x 22xy y 2 = ()(A )2x( B )2y (C )- 2x ( D )- 2y( x 1 )2 4(x1 )2 418.若 0< x <1,x -x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯()22(A ) x(B )- x(C )- 2x( D ) 2xa 319.化a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a( B )-a( C )-a( D )a20.当 a <0, b < 0 ,- a + 2ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) ( ab)2(B )-( ab )2 (C )(ab ) 2( D )(ab) 2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m n25.( a2m-mmn +mn)÷ a2b2 m ;26.(a +b aba b )÷(aab b +bab a -a bab )( a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy 227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x2 y3 的值.x 2x x2 a2 128.当 x= 1- 2 时,求 x2 a2 x x2 a2 + x2 x x2 a2 +x2 a2 的值.七、解答题:(每小题 8 分,共 16 分)1 1 1 129.计算( 2 5+ 1)(12 + 23 + 34 ++ 99 100 ).1 x2 y x 2 y30.若 x, y 为实数,且 y=14x +4x 1 + 2 y x -yx的值..求《二次根式》提高测试(一)判断题: (每小题 1 分,共 5 分)1. ( 2) 2ab =- 2 ab . ()【提示】( 2)2 = | -2| = 2.【答案】×.2. 3 - 2 的倒数是 3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 x 1)2. (x 1) 2 = ( x . ( )【提示】 (x 1) 2 = | x - 1| , ( = - 1 3x ( x ≥1).两式相等,必须 x ≥ 1.但等式左边 x 可取任何数. 【答案】×. 4. ab 、 1a 3b 、 2a是同类二次根式.()【提示】 1a 3b 、 2 a3 x b3x b化成最简二次根式后再判断. 【答案】√.5. 8x ,1, 9 x 2 都不是最简二次根式. ()9 x 2 是最简二次根式.【答3案】×.(二)填空题: (每小题 2 分,共 20 分)6.当 x__________ 时,式子1 有意义.【提示】x 何时有意义 x ≥ 0.分式何时x3有意义分母不等于零. 【答案】 x ≥ 0 且 x ≠ 9.7.化简- 152 10 ÷25 = _.【答案】- 2a a .【点评】注意除法法则和积的82712a 3算术平方根性质的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a - a2 1 )( ________)=a 2- ( a 2 1) 2 . a + a 2 1 .【答案】 a + a 2 1 ..当< < 4 时,- +x22 x1 = ________________ .91 x| x 4|【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1 <x < 4 时, x - 4, x -1 是正数还是负数x - 4 是负数, x -1 是正数.【答案】 3. 10.方程 2 (x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成 ax = b 的形式后, a 、 b 分别是多少2 1 , 2 1.【答案】 x = 3+ 2 2 .11.已知 a 、b 、c 为正数, d 为负数,化简ab c 2 d 2 = ______.【提示】 c 2 d 2 =ab c 2d 2| cd| =- cd .【答案】 ab + cd .【点评】∵ ab = ( ab )2 ( ab > 0),∴ ab -c 2d 2=(ab cd )( ab cd ).12.比较大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 7 4 3【答案】<.【点评】先比较 28 , 48 的大小,再比较 1 1的大小,最后 ,48 28 比较- 1 与- 1 的大小.284813.化简: (7-52 )2000·(-7-5 2 )2001=______________.【提示】 (- 7-5 2 )2001=(- 7- 5 2 )2000·( _________) [- 7- 5 2 . ] ( 7- 5 2 ) ·(- 7- 5 2 )= [1. ]【答案】- 7- 5 2 .【点 】注意在化 程中运用 的运算法 和平方差公式. 14.若 x 1 + y 3= 0, (x -1)2+(y + 3)2= ____________.【答案】 40.【点 】x 1 ≥0, y3 ≥ 0.当x1 + y 3=0 , x + 1=0, y - 3= 0.15. x , y 分 8- 11 的整数部分和小数部分,2xy - y 2= ____________. 【提示】 ∵3< 11 < 4,∴ _______< 8- 11 < __________.[4,5].由于 8- 11介于 4 与 5 之 , 其整数部分 x =小数部分y = [x = 4, y = 4- 11 ]【答案】 5. 【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次 根式的取 范 后,其整数部分和小数部分就不 确定了. (三) : (每小3 分,共 15 分)16.已知x 33x 2 =- x x3 , ⋯ ⋯⋯⋯⋯⋯()(A )x ≤ 0( B )x ≤- 3(C )x ≥- 3( D )- 3≤ x ≤ 0【答案】 D .【点 】本 考 的算 平方根性 成立的条件,( A )、( C )不正确是因 只考 了其中一个算 平方根的意 .17.若 x < y < 0,x 22xy y 2 + x 2 2xy y2=⋯ ⋯⋯⋯⋯⋯⋯⋯⋯()(A )2x ( B )2y(C )- 2x( D )- 2y【提示】∵x < y < 0,∴ x - y < 0, x + y < 0.∴x 2 2xy y 2 = ( x y)2 =| x -y| = y - x .x 2 2xy y 2 = ( x y) 2 = | x + y| =- x -y .【答案】 C .【点 】本 考 二次根式的性a 2 = | a| .18.若 0< x < 1,(x1 )2 4 - ( x 1 )2 4 等于 ⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2(B )-2( C )- 2xxx【提示】 (x -1 2+4= (x + 1 21 2= (x -1 x )x ) , (x + x ) - 4 x( D ) 2x)2.又∵0< x < 1,∴ x + 1>0 ,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.x19.化a 3( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a(A ) a(B )- a( C )-a( D ) a【提示】a 3 = a a 2 = a · a 2 = | a|a =- a a .【答案】 C .20.当 a <0, b < 0 ,- a + 2 ab -b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) b ) 2 ( B )- ( a b) 2 ( C )( a b) 2( D )( ab ) 2( a【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = (a )2 ,-b = ( b)2 ,ab = ( a)( b) .【答案】 C .【点 】本 考 逆向运用公式( a ) 2 = a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b < 0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2;【提示】用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 ( 2 x +1)2( 2 x - 1)2. 6 分,共 24 (五)计算题: (每小题 分)23.( 5 3 2 )( 5 3 2 );【提示】将53 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 5 3 )2- ( 2) 2= 5 - 2 15 + - = - 15 .3 2 6 224. 5 - 4 - 2 ;【提示】先分别分母有理化,再合并同类二次根11 1177 43式.【解】原式=5( 411) - 4( 11 7) - 2(3 7 )= 4+ 11 -11 - 7 - 3+16 11 11 79 7 7 = 1.25.( a2n - ab mn +nm)÷ a 2b 2n ;mmm nm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=( a2n - ab mn +n m ) · 1 mm mmna 2b 2n= 1n m -1 mn m+ n m mb 2m nmab n ma 2b 2n n= 1 - 1 + 1= a 2ab 1 .b 22ba 2b 2ab a226.( a +bab)÷(a+ b - a b)(a ≠b ).abab b ab aab 【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=aab bab ÷ a a ( ab) b b ( a b ) (a b)( a b)==ab a b ÷a 2 a ab b ab a bab( a b )( a b · ab( a b )( a abab (a b)ab ( a b )( a b ) b 2 a 2 b 2a b )b ) =- ab .【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值: (每小题 7 分,共 14 分)27.已知 x =32, y =3 2,求x 3 xy 2 x 2 y 3 的值.323 2x 4 y 2x 3 y 2 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =32=(32) 2 = 5+ 2 6 ,32y =3 2= ( 32) 2 = 5- 2 6 .32∴ x + y =10, x - y =4 6 , xy = 52-(26 )2=1.x 3xy 2x 2 y 3 = x( x y)( x y) = x y = 46 = 26 .x 4 y 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点评】 本题将 x 、y 化简后, 根据解题的需要, 先分别求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求值的过程更简捷.28.当 x = 1-2 时,求x 2a 2x a 2 + 2xx 2 a 2 +1 的值.x x 2x 2x x 2 a 2 x 2 a 2【提示】注意: x 2+ a 2 = ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x 2 a 2 = x 2 a 2( x 2 a 2 - x ),x 2- x x 2 a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x2a 2+x 2 a 2x)x)= x 2x 2a 2 (2x x 2a 2 ) x( x 2a 2x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2a 2 ( x 2 a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2 x)x x 2a 2 ( x 2 a 2x)x 2 a 2 ( x 2 a 2x)x x 2a 2 ( x 2 a 2 x)= 1.当 x =1- 2 时,原式=1 1 =- 1-2 .【点评】本题如果将前两个“分式”x2分拆成 两个“分式” 之差,那 么化简会更简 便.即原 式=x-x 2 a 2 ( x 2 a 21x)2x x 2 a 2+22x( x 2 a 2 x)x a= (11 ) -( x 2 1 x1) +1 a2 = 1. x 2a 2 x x 2 a 2a 2 xx 2 x七、解答题: (每小题 8 分,共 16 分)29.计算( 2 5 + 1)( 1+1+1+ +1).23991 234100【提示】先将每个部分分母有理化后,再计算.【解】原式=( 25 + 1)( 2 1 + 3 2 + 43+ + 100 99 ) 2 1 3 2 4 3100 99= ( 2 5 + 1 ) [ ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + + ( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做裂项相消法.30.若 x ,y 为实数,且 y = 14x + 4x 1 + 1.求 x 2 y - x2 y 的2 y x y x值.1 4 x 0x14 ]【提示】要使 y 有意义,必须满足什么条件[] 你能求出 x ,y 的值吗 [4x 1 0.y 1 .21 4xx14 ∴ x = 1 .当 x = 1时, y = 1.【解】要使 y 有意义,必须 [,即4x 1 0x 1 . 4424又∵x 2y - x y =(xy 2 -xy2y x y2y)()xxy x = | xy| - | xy| ∵ x = 1, y = 1,∴x < y .yxyx42yx∴原式= xy - y x= 2 x 当 x = 1, y = 1时,yxxyy4 21原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。
(完整版)二次根式的计算与化简练习题(提高篇).doc
二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。
m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。
4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。
6 4 96、已知a 2 1,先化简a2 2a 1 a 1 4a2 16 4a2 8a, 再求值。
a2 a a2 2a 1 a2 4a 4 a 27、已知:a 1 ,b 1 ,求a 2 b22 2a 的值。
2 3 3 2b9、已知0 x 3 ,化简x 2 2 6 9xx10、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x 23, y 23, 求: x2xy y2的值。
x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④( 3a 3 27a3 ) ax 9 312、计算及化简:1 22a b a b 2 ab⑴.1⑵ .aaababaa⑷.a 2 ab ba b a a baab bab bab13、已知: a1 1 10 ,求 a2 1 的值。
aa 2x 3yx 291的值。
14、已知20,求x x 3y 1二次根式提高一、判断 :(每小1 分,共 5 分)1. ( 2)2ab =- 2ab .⋯⋯⋯⋯⋯⋯⋯()2. 3- 2 的倒数是3+ 2.() 3.(x 1)2( x 1) 2. ⋯ ()=1a 3b 、2 a4.ab 、 3 xb是同 二次根式.⋯ ()1x 25.8x ,3 , 9 都不是最 二次根式. ()二、填空 :(每小2 分,共 20 分)16.当 x__________ ,式子x3有意 .15 2 10257.化 -827 ÷ 12 a 3 = _.8. a - a21的有理化因式是 ____________.9.当 1< x < 4 , |x - 4|+ x 2 2x1= ________________ .10.方程2( x - 1)= x +1 的解是 ____________ .ab c 2 d 211.已知 a 、 b 、c 正数, d 数,化abc 2d 2 = ______.1112.比 大小:- 27_________ -43 .13.化 : (7-5 2)2000 (·- 7- 52)2001= ______________.14.若x1+ y3= 0, (x - 1)2+ (y + 3)2= ____________.15. x , y 分 8-11的整数部分和小数部分,2xy - y2= ____________.三、 :(每小3 分,共 15 分)16.已知 x33x 2=- x x3, ⋯ ⋯⋯⋯⋯⋯()(A ) x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y < 0,x 2 2 xy y 2 + x 22xy y 2 =⋯ ⋯⋯⋯⋯⋯⋯⋯⋯( )(A ) 2x(B )2y (C )- 2x ( D )- 2y( x1 )2 4(x1 )2 418.若 0<x < 1,x-x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯ ⋯()22(A ) x( B )- x( C )- 2x(D ) 2xa 319.化 a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a(B )-a( C )-a ( D )a20.当 a < 0,b < 0 , - a + 2 ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )(A )( ab) 2 ( B )-(ab )2 ( C )(ab )2 ( D )(ab )2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m25.( a2m-mmn +m nn)÷ a2b2m;b ab a b a b26.(a+a b)÷(ab b+ab a-ab)(a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x 2 y3 的值.x 2x x2 a 2 1 28.当 x=1- 2 ,求 x2 a2 x x2 a2 + x2 x x2 a2 + x2 a2 的.七、解答:(每小 8 分,共 16 分)1 1 1 129.算( 2 5+ 1)(12 + 23 + 34 +⋯+ 99 100 ).1 x2 y x 2 y30.若 x, y 数,且 y=14x +4x 1 + 2 y x -yx的..求《二次根式》提高(一)判断 : (每小1 分,共 5 分)1.( 2) 2 ab =- 2 ab .⋯⋯⋯⋯⋯⋯⋯()【提示】( 2) 2= |- 2|= 2.【答案】×.2.3 -2 的倒数是3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 2 =1) 2. (x 1) 2 = (x .⋯( )【提示】 ( x 1) |x - 1| , ( x = x -13( x ≥ 1).两式相等,必 x ≥ 1.但等式左 x 可取任何数. 【答案】×.4. ab 、1 a 3b 、 2a是同 二次根式.⋯()【提示】1 a 3b 、2 a3 xb3x b化成最 二次根式后再判断. 【答案】√.5. 8x ,1 , 9 x2 都不是最 二次根式. ()9x 2 是最 二次根式.【答3案】×.(二)填空 : (每小 2 分,共 20 分)6.当 x__________ ,式子1有意 .【提示】 x 何 有意 ? x ≥0.分式何x3有意 ?分母不等于零. 【答案】 x ≥0 且 x ≠ 9.7.化 -15 2 10 ÷25= _.【答案】- 2aa .【点 】注意除法法 和 的82712a 3算 平方根性 的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a -a 21 )( ________)=a 2- ( a 21) 2 . a + a 2 1 .【答案】 a + a 2 1 .9.当 1< x < 4 , |x - 4|+ x22x 1 = ________________ .【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1< x < 4 , x - 4, x - 1 是正数 是 数? x - 4 是 数, x -1 是正数.【答案】 3.10.方程2 ( x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成ax =b 的形式后, a 、 b 分 是多少? 2 1 , 2 1.【答案】 x = 3+2 2 .11.已知 a 、b 、c 正数, d 数,化ab c 2d 2 =______ .【提示】 c 2 d 2 =ab c 2 d 2|cd|=- cd .【答案】ab + cd .【点 】∵ab = ( ab )2(ab > 0),∴ ab - c 2d 2 =( abcd )( ab cd ).12.比 大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 74 3【答案】<.【点 】先比 28, 48 的大小,再比1 1的大小,最后,4828比 -1 与- 1 的大小.284813.化 : ( 7-52 ) 2000·(-7- 52 ) 2001= ______________.【提示】 ( - 7-52 ) 2001= ( - 7- 5 2 ) 2000·( _________) [ - 7- 5 2 . ]( 7- 5 2 ) ·(- 7- 5 2 )=? [ 1. ] 【答案】- 7-5 2 . 【点 】注意在化 程中运用 的运算法 和平方差公式.14.若 x 1 + y 3 =0, ( x -1) 2+ ( y + 3) 2= ____________.【答案】 40. 【点 】x1 ≥0,y 3 ≥ 0.当 x 1 + y 3 = 0 , x +1= 0, y -3= 0.15. x , y 分 8- 11 的整数部分和小数部分, 2xy - y 2=____________ .【提示】 ∵3< 11 < 4,∴ _______ < 8-11 < __________.[ 4,5] .由于 8- 11 介于 4 与 5 之 , 其整数部分 x =?小数部分 y =? [ x =4, y = 4-11 ] 【答案】 5.【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次根式的取 范 后,其整数部分和小数部分就不 确定了.(三) : (每小3 分,共15 分)16.已知x 33x 2 =- x x3 , ⋯⋯⋯⋯⋯⋯()(A ) x ≤0( B ) x ≤- 3( C ) x ≥- 3(D )- 3≤ x ≤ 0【答案】D .(A )、( C )不正确是因 只考 了【点 】本 考 的算 平方根性 成立的条件, 其中一个算 平方根的意 .17.若 x < y < 0, x 2 2 xy y 2 + x 2 2 xy y 2 =⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) 2x(B ) 2y( C )- 2x (D )- 2y【提示】∵x <y < 0,∴ x - y < 0,x +y < 0.∴x 2 2xy y 2 = ( x y)2 = |x - y|= y - x .x 2 2xy y 2 = ( x y) 2 = |x + y|=- x - y .【答案】 C .【点 】本 考 二次根式的性a 2 = |a|.18.若 0< x < 1,(x1 )2 4 - ( x 1) 2 4 等于⋯⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2( B )-2( C )- 2x( D ) 2xxx【提示】 ( x -1) 2+ 4= ( x +1) 2, ( x +1) 2 -4= ( x -1) 2.又∵0< x < 1,xxxx∴ x + 1> 0,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.xa 319 . 化a( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a ( B )- a( C )-a ( D ) a【提示】a 3 = a a 2 =a · a 2 = |a|a =- aa .【答案】 C .20.当 a <0, b < 0 ,- a +2ab - b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )( A ) ( a b) 2( B ) - ( ab)2( C ) (ab) 2( D )( ab )2【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = ( a )2,- b = ( b )2 , ab = ( a)( b) .【答案】 C .【点评】本题考查逆向运用公式( a )2 =a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b <0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2 ;【提示】 用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+ 1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 (2 x+ 1) 2( 2 x - 1) 2.(五)计算题: (每小题 6 分,共 24 分)23.( 5 32 )( 5 32 );【提示】将 5 3 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 53 ) 2- ( 2) 2 = 5- 2 15 + 3- 2= 6- 2 15 .24.5-4-2;【提示】先分别分母有理化,再合并同类二次根117 37 411式.【解】原式=5( 411) - 4( 11 7 7 ) - 2(3 7 )= 4+ 11 - 11 - 7 - 3+16 11 11 9 77 = 1.25.( a 2n - ab mn + n m)÷ a 2b 2 n ;mmmnm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=( a2n - abmn +nm ) · 1mm mmna 2b 2n= 1n m -1 mn m+n m mb 2m nmab nma 2b 2 n n= 1 - 1 + 1 =a 2 ab 1 .a 2b 2b 2 ab a 2b 226.( a +bab)÷(a + b- a b)(a ≠ b ).abab b ab a ab【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=aab bbab ÷ a a ( a b) b b ( a b ) (a b)( a b)aab ( a b )( a b )=a b÷ a2a ab b ab b 2 a 2 b 2a bab( ab )( a b )=a b · ab ( a b)( ab) =-ab .a bab(a b) 【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值: (每小题 7 分,共 14 分)27.已知 x =3 2,y =3 2,求x 3 xy 2x 2 y 3 的 .3232x 4 y 2x 3 y 2【提示】先将已知条件化 ,再将分式化 最后将已知条件代入求 .【解】∵x =3 2= ( 32) 2 = 5+ 2 6 ,3 2y =3 2= ( 32) 2 = 5-2 6 .32∴ x + y =10, x - y =4 6 , xy =52-( 26 ) 2= 1.x 4 y x 3xy 2x 2 y 3 = x( x y)( x y) = x y =4 6 = 26 . 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点 】 本 将 x 、y 化 后, 根据解 的需要, 先分 求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求 的 程更捷.28.当 x = 1-2 ,求x 2a 2x a 2 + 2xx 2 a 2 + 1的 .x x 2x 2 x x 2 a 2x 2 a 2【提示】注意: x 2 +a 2= ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x2a 2= x2a 2(x2a 2 - x ),x 2-x x 2a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x 2a 2+x 2 a 2x) x)= x 2x 2a 2 (2xx 2 a 2 ) x( x 2a 2 x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2 a 2 ( x 2a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2x)x x 2 a 2 ( x 2 a 2 x)x 2 a 2 ( x 2 a 2 x) x x 2a 2 ( x 2a 2 x)= 1.当 x = 1- 2 ,原式=1 =- 1-2 .【点 】本 如果将前两个“分式”x12分拆 成两个“分式”之差,那么化 会更便.即原 式=x-x 2a 2 (x 2a 2x)2xx 2 a 2 +1x( x 2 a 2 x)x 2 a 2= (11) - (11 ) +1= 1.a 2x 2x 2 a 2xx x 2 a 2x 2 xa 2x七、解答 : (每小8 分,共 16 分)29. 算( 25 +1)(1 + 1 + 1 +⋯+1).23991001 2 3 4【提示】先将每个部分分母有理化后,再 算.【解】原式=(2 5 + 1)(2 1 +3 2 + 43+⋯+ 10099 )2 13 24 3 100 99= ( 25 + 1 ) [ ( 21 ) + ( 32 )+ ( 43 )+ ⋯ +( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做 裂项相消法. 30.若 x ,y 为实数,且 y =1 4x + 4x1 + 1.求 x 2 y - x 2 y 的2 y x y x 值.【提示】要使 y 有意义,必须满足什么条件?[ 1 4x 0x , y 的值吗?4x 1 ] 你能求出0.x 14[]y1.214 x 0 x14x =1.当 x = 1时, y =1【解】要使 y 有意义,必须 [,即∴ .4x1 0x 1 .4424又∵x 2y - x 2y = x y2-x y 2y x yx()()yxyx= | xy|- | xy|∵ x = 1, y = 1,∴x < y .yxyx42y x∴原式= xy - y x= 2 x 当 x = 1, y =1时,yxxyy421原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式提高训练二次根式:
1.使式子x 4 有意义的条件是。
2. 当 __________ 时,x 2 1 2x 有意义。
3. 若m 1 有意义,则 m 的取值范围是。
m 1
4. 当 x __________ 时,
2
是二次根式。
1 x
5. 在实数范围内分解因式: x4 9 __________, x2 2 2x 2 __________ 。
6. 若 4 x2 2x ,则x的取值范围是。
7. 已知x 2 2 2 x ,则 x 的取值范围是。
8. 化简:x2 2x 1 ( x p 1)的结果是。
9. 当 1 xp 55 时,x 1 2 x 5 _____________ 。
10. 使等式x 1 x 1 x 1g x 11 成立的条件是。
11. 若 a b 1 与 a 2b 4 互为相反数,则 a b 2005
_____________。
12. 在式子x x f 0 , 2, y 1 y 2 , 2 x x p 0 , 3 3, x 2 1, x y (f为;p 为)中,
2
二次根式有()
A. 2 个
B. 3 个
C. 4 个
D. 5 个
13. 下列各式一定是二次根式的是()
A. 7
B. 3 2m
C. a2 1
D. a
b
14. 若 2 p a p 3 (p 为),则 2 a 2 a 3 2 等于()
A. 5 2a
B. 1 2a
C. 2a 5
D. 2a 1
15. 若 A a2
4
,则 A ()4
A. a2 4
B. a2 2
C. a2
2
D. a 2
2 2 4
16. 若 a 1 ,则 1 a 3 化简后为()
A. a 1 a 1
B. 1 a 1 a
C. a 1 1 a
D. 1 a a 1
18. 能使等式x x 成立的 x 的取值范围是()
x 2 x 2
A. x 2
B. x 0
C. x f 2 (f 为)
D. x 2
19. 计算:2a
2
1 2a
2
)1 的值是(
A. 0
B. 4a 2
C. 2 4a
D. 2 4a 或 4a 2
20. 若 x y y2 4 y 4 0 ,求 xy 的值。
21.当a取什么值时,代数式2a 1 1 取值最小,并求出这个最小值。
22. 已知x2 3x 1 0 ,求 x2 1 2 的值。
x2
23.已知a,b为实数,且 1 a b 1 1 b 0 ,求a2005b2006的值。
二次根式的乘除
1. 当 a 0 , b p 0 时( p 为),ab3 __________。
2. 若2m n 2 和33 m 2n 2都是最简二次根式,则 m _____,n ______ 。
3. 计算: 2 3 ________; 36 9 __________ 。
4. 计算:48 3 27 3 _____________ 。
5. 长方形的宽为 3 ,面积为2 6 ,则长方形的长约为(精确到0.01 )。
6. 下列各式不是最简二次根式的是()
A. a2 1
B. 2x 1
C. 2b
D. 0.1y
4
7. 已知 xy f 0 (f为),化简二次根式 x x 2y
的正确结果为()
A. y
B. y
C. y
D. y
8. 对于所有实数 a, b ,下列等式总能成立的是()
A. a b 2
a b B. a2 b2 a b
C.
a2 b2 2
b2 D.
2
a b
a2 a b
9. 2 3 和 3 2 的大小关系是()
A. 2 3 f 3 2 (f为)
B. 2 3 p 3 2 (p为)
C. 2 3 3 2
D. 不能确定
10. 对于二次根式x2 9 ,以下说法中不正确的是()
A. 它是一个非负数
B. 它是一个无理数
C. 它是最简二次根式
D. 它的最小值为 3
11.计算:
1 .
2
3 2 2 .5 x 3 x3
3 .5 ab
4 a3b a 0,b 0 4 . a3b6ab a f 0,b f 0 (f 为)
二次根式的加减
1. 下列根式中,与 3 是同类二次根式的是()
A. 24
B. 12
C. 3
D. 18 2
2. 下面说法正确的是()
A. 被开方数相同的二次根式一定是同类二次根式
B. 8 与 80 是同类二次根式
C. 2 与1
不是同类二次根式 D. 同类二次根式是根指数为 2 的根式50
3. 与a3 b 不是同类二次根式的是()
A. ab
B.
b
C.
1
D.
b 2 a ab a3
4. 下列根式中,是最简二次根式的是()
A. 0.2b
B. 12 a 12b
C. x2 y2
D. 5ab2
5. 若 1 p x p 2 (p 为),则 4 4x x2 x2 2x 1 化简的结果是()
A. 2x 1
B. 2x 1
C. 3
D. -3
6. 若 18x
2 x x 2 10 ,则 x 的值等于(
)
2 x
A. 4
B.
2 C. 2 D. 4
7. 若 3 的整数部分为 x ,小数部分为 y ,则 3x y 的值是(
)
A.
3 3
3
B.
3
C.1
D.3 8. 下列式子中正确的是( )
A.
5
2
7
B.
a 2
b 2
a b
C. a x b x a b x
D.
6 8
34
3 2
2
9. 在 8, 12, 18, 20 中,与 2 是同类二次根式的是。
10. 若最简二次根式 a 1 2a 5 与 3b
4a 是同类二次根式,则 a ____, b ____ 。
11. 一个三角形的三边长分别为8cm, 12cm, 18cm ,则它的周长是cm 。
12. 若最简二次根式
3
4a
2
1 与 2
6a 2
1 是同类二次根式,则 a ______ 。
2 3
13. 已知 x 3 2, y 3
2 ,则 x
3 y xy 3
_________ 。
14. 已知 x
3
,则 x 2 x 1 ________ 。
3
15.
3 2 2000
3 2 2001
______________ (g 为. )。
g
16. 计算:
⑴ .
212 31
1
5
1 2
48
⑵ .
48 5423
3 1
1
3
3 3
3
⑶.743743
2 ⑷ . 1
2 2 2 2
3 5 1
2 1
3 1 2 1 3
17. 计算及化简:
1 2
2
a b a b 2 ab
⑴ .
1 ⑵.
a
a
a
b
a
b
a
a
x y y x y x x y ⑶ .
y y x
y x x y
x
18. 已知: x
3 2
, y
3 2
,求
x 3 xy 2 x 2 y 3 的值。
3 2
3 2
x 4 y 2x 3 y 2
19. 已知: a
1 1 10 ,求 a
2 1 的值。
a
a 2
x 3y
x 2 9
1 的值。
20. 已知
3 2
0,求
x
x
y 1。