(2) 第1章振动测试的基本知识

合集下载

振动和振动测试的基本知识讲义

振动和振动测试的基本知识讲义
振动离平衡位置的最大偏离。
平均绝对值 (Aver. absolute value)
xp
xav

1 T
T
x dt
0
均值 (Mean value)
又称平均值或直流分量。
有效值 (Root mean square value)
1T
x T 0 x dt
xrms
1 T x2 dt T0
基频滤波的作用
波德图和极坐标图的绘制
基频检测是跟踪转速的滤波,得到基频的幅值和相位。 基频检测可用专用仪器实现,也可以用通用计算机完成。
波德图和极坐标图
波德图(Bode Plot)和极坐标图(Polar Plot)两者所含信息相同, 都表示基频振动的幅值和相位随机器转速的变化规律。
相位关系:加速度领先速
a x A 2 sin(t ) 度90º; 速度领先位移90º。
各种振动波形及其频谱
名称 波 形 频 谱 名称 波 形 频 谱
振动的时域参数
瞬时值 (Instant value)
x = x(t)
振动的任一瞬时的数值。
峰值 (Peak value)
1


N i 1
( xi x )3 N 1

1 xr3m s


峭度指标 (Kurtosis)
波形的尖峭程度、有无冲击。

2


N i 1
( xi x )4 N 1

1 xr4m s


振动信号的频率分析
传感器质量较大,对 小型对象有影响。
在传感器固有频率附 近有较大的相移。

初中物理振动试验教案

初中物理振动试验教案

初中物理振动试验教案一、教学目标1. 让学生了解振动的定义和特点,知道振动是由什么引起的。

2. 让学生掌握振动的基本概念,如频率、周期、振幅等。

3. 培养学生进行实验操作的能力,提高学生的观察和分析问题的能力。

二、教学内容1. 振动的概念和特点2. 振动的产生和消失3. 频率、周期和振幅的概念及计算4. 振动试验的原理和操作方法三、教学重点与难点1. 振动的概念和特点2. 频率、周期和振幅的计算3. 振动试验的操作方法四、教学过程1. 导入:通过生活中的实例,如摇摆的秋千、振动的音叉等,引导学生思考振动的概念和特点。

2. 讲解振动的基本概念:振动是由物体围绕平衡位置做往复运动引起的,频率表示振动快慢的物理量,周期表示振动一次完整的往复运动所需的时间,振幅表示物体振动的最大位移。

3. 讲解振动的产生和消失:振动是由外力或内部力作用于物体上产生的,当外力或内部力消失时,振动也会逐渐消失。

4. 实验操作:进行振动试验,观察振动现象,记录频率、周期和振幅等数据。

5. 数据分析:根据实验数据,计算频率、周期和振幅,分析振动的特点和规律。

6. 总结与拓展:总结振动试验的结果,引导学生思考振动在现实生活中的应用,如音乐、工程等领域。

五、教学方法1. 采用问题驱动的教学方法,引导学生通过实验观察和数据分析来解决问题。

2. 运用多媒体教学手段,如图片、视频等,生动形象地展示振动现象。

3. 组织学生进行小组讨论,培养学生的团队合作意识和交流能力。

六、教学评价1. 学生能准确描述振动的概念和特点。

2. 学生能正确计算频率、周期和振幅。

3. 学生能熟练进行振动试验的操作。

4. 学生能分析振动现象的规律和应用。

七、教学资源1. 振动试验设备:振动台、振子、测量仪器等。

2. 教学课件:振动的概念、特点、计算等。

3. 参考资料:振动现象的应用实例。

八、教学步骤1. 引入振动的概念和特点,引导学生思考振动的产生和消失。

2. 讲解振动的基本概念,如频率、周期和振幅。

信号检测理论与技术-第二章

信号检测理论与技术-第二章

2 ( / 0 ) 1 ( / 0 )2
2
其幅频特性曲线如图所示。
(2-5) (2-6)
0
载体运动引起的速度响应图
(3) 测振仪处于加速度计的工作状态下 此时幅频特性和相频特性分别为:
Aa
z01 z1
1/ 02 [1 ( /0)2]2 (2 /0)2
a
arctg
2 / 0 1 ( / 0 )2




(1)简谐振动
➢ 振动以正弦或余弦函数表示。
k
m
o
➢ 自由振动的角频率(固有频率)0
仅由系统本身参数确定,与外界激励、初始条
件无关。
0
k m
(2-1)
(2)复杂(合)周期振动
由两个或两个以上频率之比为有理数的简谐 振动复合而成。
(3)准周期振动
由频率比不全为有理数的简谐振动叠加而成。
工作原理 ➢ 测量时,传感器壳体刚性地固定在振动体上,
随振动体一起振动。 ➢ 传感器的质量块的质量m较大,弹簧较软(弹性
系数k较小),当振动频率足够高时,质量块的 惯性相对很大,来不及跟随振动体振动,以至 接近静止不动。
➢ 线圈与永久磁铁之间有相对运 动,线圈切割磁力线,在线圈 两端产生感应电势。
➢ 其相对运动速度就接近 振动体的振动速度。
➢ 对于一个线性振动系统来说,振动信号可用谱 分析技术分解为许多简谐振动的叠加。
➢ 简谐振动是最基本的振动。
2.1.2 振动测量系统
1、振动测试的目的
➢ 测量设备运行时的振动参量,了解被测对象的 振动状态;
➢ 对设备激振,测试其受迫振动,以求得被测对 象的动态性能,如固有频率、阻尼、机械阻抗 等。

机械振动与故障诊断基本知识

机械振动与故障诊断基本知识

旋转机械状态监测与故障诊断讲义陈国远深圳市创为实技术发展有限公司2005年8月目录第一章状态监测的基本知识 (4)一、有关的名词和术语 (4)1. 振动的基本参量:幅值、周期(频率)和相位 (4)2. 通频振动、选频振动、工频振动 (6)3. 径向振动、水平振动、垂直振动、轴向振动 (6)4. 同步振动、异步振动 (7)5. 谐波、次谐波、亚异步、超异步 (7)6. 相对轴振动、绝对轴振动、轴承座振动 (7)7. 自由振动、受迫振动、自激振动、随机振动 (7)8. 高点和重点 (8)9. 刚度、阻尼和临界阻尼 (8)10. 共振、临界转速、固有频率 (9)11. 分数谐波共振、高次谐波共振和参数激振 (9)12. 涡动、正进动和反进动 (9)13. 同相振动和反相振动 (10)14. 轴振型和节点 (10)15. 转子挠曲 (11)16. 电气偏差、机械偏差、晃度 (11)17. 偏心和轴心位置 (11)18. 间隙电压、油膜压力 (11)二、传感器的基本知识 (12)1. 振动传感器 (12)2. 电涡流振动位移传感器的工作原理 (13)3. 电动力式振动速度传感器的工作原理 (13)⒋压电式加速度传感器的工作原理 (14)第二章状态监测常用图谱 (15)1.波德图 (15)2.极坐标图 (16)3.频谱瀑布图 (16)4.极联图 (17)5.轴心位置图 (18)6.轴心轨迹图 (18)7.振动趋势图 (19)8.波形频谱图 (20)第三章旋转机械的故障诊断 (22)1. 不平衡 (22)2. 不对中 (23)3. 轴弯曲和热弯曲 (26)4. 油膜涡动和油膜振荡 (28)5. 蒸汽激振 (30)6. 机械松动 (33)7. 转子断叶片与脱落 (33)8. 摩擦 (38)9. 轴裂纹 (40)10. 旋转失速与喘振 (40)11. 机械偏差和电气偏差 (43)第一章状态监测的基本知识一、有关的名词和术语机械振动是指物体围绕其平衡位置附近来回摆动并随时间变化的一种运动。

振动的测试专题知识讲座

振动的测试专题知识讲座
2024/10/4
第5章 第1节 振动测试基础
三、振动对象旳理论模型
1、单自由度振动系统 一种单自由振动系统能够抽象为一种二阶系统,其幅频、相 频特征曲线为:
2024/10/4
第5章 第1节 振动测试基础
三、振动对象旳理论模型
2、多自由度振动系统 对复杂旳多自由度振动系统能够看成是多种单自由度振动
第5章 第2节 振动旳鼓励
二、激振器
1、电动式激振器 电动式激振器旳构造如下图所示。它由弹簧﹑壳体﹑磁钢﹑ 顶杆﹑磁极板﹑铁芯和驱动线圈等元件构成。驱动线圈和顶杆 相固连,并由弹簧支撑在壳体上,使驱动线圈恰好位于磁极所 形成旳高磁通密度旳气隙中。当驱动线圈有交变电流经过时, 线圈受电动力旳作用,力经过顶杆传给试件,即为所需旳激振 力。
脉冲连续时间τ。τ取决于锤端旳材料,材料越硬τ越小,则频
率范围越大。 ③阶跃激振 阶跃激振旳激振力来自一根刚度大﹑重量轻旳弦。试验时,
在激振点处,由力传感器将弦旳张力施加在试件上,使之产生 初始变形,然后忽然切断张力弦,所以相当于对试件施加一种 负旳阶跃激振力。阶跃激振属于宽带激振,在建筑构造旳振动 测试中被普遍应用。
2024/10/4
第5章 第2节 振动旳鼓励
二、激振器
激振器是对试件施加激振力,激起试件振动旳装置。激振器 应该在一定频率范围内提供波形良好﹑幅值足够旳交变力。某 些情况下需要施加一定旳稳定力作为预加载荷。另外,激振器 应尽量体积小﹑重量轻。
常用旳激振器有电动式、电磁式和电液式三种。
2024/10/4
二、激振器
2、电磁式激振器
2024/10/4
第5章 第2节 振动旳鼓励
二、激振器
2、电磁式激振器 电磁式激振器使用 时要注意旳两个问题: (1)电磁式激振器 要想正常工作,则必 须加上直流电流(直 流分量)。 (2)应选择: B0>>B1,以此来减 小二次谐波分量旳影 响。

机械振动学总结全

机械振动学总结全

机械振动学总结 第一章 机械振动学基础第二节 机械振动的运动学概念第三节机械振动是种特殊形式的运动。

在这运动过程中,机械振动系统将围绕其平衡位置作往复运动。

从运动学的观点看,机械振动式研究机械系统的某些物理量在某一数值近旁随时间t 变化的规律。

用函数关系式来描述其运动。

如果运动的函数值,对于相差常数T 的不同时间有相同的数值,亦即可以用周期函数来表示,则这一个运动时周期运动。

其中T 的最小值叫做振动的周期,Tf 1=定义为振动的频率。

简谐振动式最简单的振动,也是最简单的周期运动。

一、简谐振动物体作简谐振动时,位移x 和时间t 的关系可用三角函数的表示为式中:A 为振幅,T 为周期,ϕ和ψ称为初相角。

如图所示的正弦波形表示了上式所描述的运动,角速度ω称为简谐振动的角频率简谐振动的速度和加速度就是位移表达式关于时间t 的一阶和二阶导数,即可见,若位移为简谐函数,其速度和加速度也是简谐函数,且具有相同的频率。

因此在物体运动前加速度是最早出现的量。

可以看出,简谐振动的加速度,其大小与位移成正比,而方向与位移相反,始终指向平衡位置。

这是简谐振动的重要特征。

在振动分析中,有时我们用旋转矢量来表示简谐振动。

图P6旋转矢量的模为振幅A ,角速度为角频率ω若用复数来表示,则有)sin()cos()(ψωψωψω+++==+t jA t A z Ae z t j用复指数形式描述简谐振动,给计算带来了很多方便。

因为复指数t j e ω对时间求导一次相当于在其前乘以ωj ,而每乘一次j ,相当于有初相角2π。

二.周期振动满足以下条件:1)函数在一个周期内连续或只有有限个间断点,且间断点上函数左右极限存在;2)在一个周期内,只有有限个极大和极小值。

则都可展成Fourier 级数的形式,若周期为T 的周期振动函数,则有式中22n n n b a A += nn n b a =ψt a n 三、简谐振动的合成一、同方向振动的合成1.俩个同频率的简谐振动)sin(222ψω+=t A x ,)sin(2222ψω+=t A x它们的合成运动也是该频率的简谐振动2.俩个不同频率振动的合成若21ωω≤,则合成运动为若21ωω≥ ,对于A A A ==21 ,则有上式可表示为二、两垂直方向振动的合成1.同频率振动的合成如果沿x 方向的运动为沿y 方向的运动为2不同频率振动的合成对于俩个不等的简谐运动它们的合成运动也能在矩形中画出各种曲线。

机械振动测试与分析.docx机械振动测试与分析.docx

机械振动测试与分析.docx机械振动测试与分析.docx

第8章机械振动测试与分析8.1 概述机械振动是自然界、工程技术和日常生活中普遍存在的物理现象。

各种机器、仪器和设备运行时,不可避免地存在着诸如回转件的不平衡、负载的不均匀、结构刚度的各向异性、润滑状况的不良及间隙等原因而引起受力的变动、碰撞和冲击,以及由于使用、运输和外界环境下能量传递、存储和释放都会诱发或激励机械振动。

所以说,任何一台运行着的机器、仪器和设备都存在着振动现象。

在大多数情况下,机械振动是有害的。

振动往往会破坏机器的正常工作和原有性能,振动的动载荷使机器加速失效、缩短使用寿命甚至导致损坏造成事故。

机械振动还直接或间接地产生噪声,恶化环境和劳动条件,危害人类的健康。

因此,要采取适当的措施使机器振动在限定范围之内,以避免危害人类和其他结构。

随着现代工业技术的发展,除了对各种机械设备提出了低振级和低噪声的要求外,还应随时对生产过程或设备进行监测、诊断,对工作环境进行控制,这些都离不开振动测量。

为了提高机械结构的抗振性能,有必要进行机械结构的振动分析和振动设计,找出其薄弱环节,改善其抗振性能。

另外,对于许多承受复杂载荷或本身性质复杂的机械结构的动力学模型及其动力学参数,如阻尼系数、固有频率和边界条件等,目前尚无法用理论公式正确计算,振动试验和测量便是唯一的求解方法。

因此,振动测试在工程技术中起着十分重要的作用。

振动测试的目的,归纳起来主要有以下几个方面:(1) 检查机器运转时的振动特性,以检验产品质量;(2) 测定机械系统的动态响应特性,以便确定机器设备承受振动和冲击的能力,并为产品的改进设计提供依据;(3) 分析振动产生的原因,寻找振源,以便有效地采取减振和隔振措施;(4) 对运动中的机器进行故障监控,以避免重大事故。

一般来讲,振动研究就是对“机械系统”、“激励”和“响应”三者已知其中两个,再求另一个的问题。

振动研究可分为以下三类:(1) 振动分析,即已知激励条件和系统的振动特性,欲求系统的响应;(2) 系统识别,即已知系统的激励条件和系统的响应,要确定系统的特性,这是系统动态响应特性测试问题;(3) 环境预测,即已知系统的振动特性和系统的响应,欲确定系统的激励状态,这是寻求振源的问题。

振动测试分析技术 ppt课件

振动测试分析技术 ppt课件
形式:绝对、相对 定位:标记 环境:温度、湿度、方向等
ppt课件
36
§ 3.3振动测试方案
3 测试位置(监测点)
电涡流位移传感器测量轴振动的示意图
ppt课件
37
§ 3.3 振动测试方案
3 测试位置(监测点)
ppt课件
38
§ 3.3 振动测试方案
3 测试位置(监测点)
ppt课件
39
§ 3.3 振动测试方案
23ppt课件32振动测试的仪器设备传感器的安装24ppt课件32振动测试的仪器设备传感器的安装表31测量典型设备时振动传感器的安装法25ppt课件32振动测试的仪器设备2数据采集器频谱分析仪26ppt课件32振动测试的仪器设备2数据采集器频谱分析仪27ppt课件32振动测试的仪器设备2数据采集器频谱分析仪28ppt课件32振动测试的仪器设备2数据采集器频谱分析仪29ppt课件32振动测试的仪器设备22数据采集器频谱分析仪图39数据采集器的工作过程30ppt课件32振动测试的仪器设备22数据采集器频谱分析仪功能参数
表3-2 水电部汽轮机发电机组振动标准(轴承振幅允许值)
转速/rpm
标准/mm

良 合格
1500 3000
30
50
70
20
30
50
ppt课件
45
§ 3.2 振动测试方案
5 振动评定标准:
绝对法 (1)以轴承振动位移峰峰值作评定标准:
表3-3 机电部离心风机和压缩机振动标准
标准
转速 / (rmin1)
振动测试的基本参数:幅值、频率和相位
✓ 幅值 幅值是振动强度大小的标志,它可以用不同 的方法表示,如单峰值、有效值、峰—峰值等;

振动测试知识要点及要求1了解振动测试的目的和分类

振动测试知识要点及要求1了解振动测试的目的和分类

第六章振动测试一、知识要点及要求1)了解振动测试的目的和分类;2)掌握单自由度系统受迫振动的原理;3)掌握振动的激励方法,以及激振器的种类和选用原则;4)掌握振动的测量方法,以及测振传感器的种类和选用原则;5)掌握振动的分析方法,以及机械系统振动参数的估计方法;6)了解测振装置的校准方法及设备。

二、重点内容及难点(一)振动测试的目的和分类机械振动是工程技术和日常生活中常见的现象。

在大多数的情况下,机械振动是有害的。

但振动也有可以被利用的一面,如振动机械具有能耗少、效率高、结构简单的特点。

机械运转中的振动及其产生的噪声,一般都具有相同的频率组成。

振动测试在生产和科研的许多方面都占有重要地位。

振动测试大致可分为两类:1)测量设备和结构所存在的振动;目的是监测工况、估计振源、评价运转质量等。

2)对设备或结构施加某种激励,使其产生振动,然后测量其振动;目的是研究设备或结构的力学动态特性。

(二)单自由度系统的受迫振动测试工作中的许多工程问题,往往可以用弹簧-阻尼器-质量块构成的单自由度模型来描述,但是在不同的场合下所处理的输入、输出量往往是不同的,从而其频率响应函数及幅频、相频特性也不同。

1、质量块受力所引起的受迫振动2、基础运动所引起的受迫振动(三)振动的激励1、激振方式包括稳态正弦激振、随机激振、瞬态激振。

2、常用激振器激振器是对被测对象施加某种预定要求的激振力,激起被测对象振动的装置。

常用的为电动式、电磁式、电液式;此外还有用于小型、薄壁对象的压电晶体片激振器,用于高频的磁致伸缩激振器和高声强激振器;以及用于脉冲激振的脉冲锤,用于阶跃激振的张弛弦等。

(四)振动的测量1、测振方法振动测量方法按振动信号转换后的形式可分为:电测法、机械法、光学法。

目前广泛使用的是电测法,而电测法中测振用的传感器又称为拾振器。

1)按测振时拾振器是否与被测件接触可分为:接触式和非接触式。

2)按所测的振动性质可分为:绝对式和相对式。

航空航天领域中的振动测试 课设报告

航空航天领域中的振动测试 课设报告

《航空测试系统》课程设计报告课题:航空航天中的振动测试技术时间:2011年11月2日目录第一章引言第二章振动测试的使用设备第三章振动测试的方法及原理第四章振动测试的分类第五章振动传感器转换原理第六章振动测试的发展与前景第七章参考文献第一章引言一、进行“振动测试”的原因为了确保飞行器能够适应太空环境,在奔赴发射场前,它们都需要经过一系列科学、严格、全面的“体检”。

科技工作者常常采用各种先进的测试手段,模仿飞行器从发射升空到太空飞行的各种环境,通过振动试验、噪声试验、真空热试验、泄复压试验等对其进行详细的“体检”,并对发现的各种问题进行分析与排查。

统揽世界各国的航空航天史,大多数的火箭发射失利,都是由于振动隐患引发了故障,只要能克服这个难题,就能保障火箭顺利升空。

因为航天器发射时,需要巨大的推动力,但同时这巨大的力量也会产生巨大的振动,所谓“地动山摇”也不过如此了。

因此航天器一定要能够经受住巨大的振动,才能保障不发生故障。

为了解决这一问题,人们需要在航天器发射前,对它进行振动测试,看看它是否能够经受的住巨大的振动所带来的破坏。

二、“振动测试”的基本内容对航天器进行振动测试,有两方面需要考虑,这两方面也是航天器成功发射必须经受的两大考验。

一是力学试验,包括几十万个零部件,也包括安装后的整体。

如果航天器不能经受的住极端振动,那么很可能会在升空后出现发热、疲劳等故障。

二是气象试验,太空气象环境和地球上并不一样,可能会极端恶劣复杂,因此航天器必须要经受气象试验。

第二章振动测试的使用设备一、“振动台”简介振动试验是贯穿整个航天器测试始末的,这还需要足够强大的振动仪器。

电动式振动台是目前使用最广泛的一种振动设备。

它的频率范围宽,小型振动台频率范围为0~10kHz,大型振动台频率范围为0~2kHz;动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。

二、振动台基本原理电动式振动台是根据电磁感应原理设计的,当通电导体处在恒定磁场中将受到力的作用,当导体中通以交变电流时将产生振动。

振动测试技术

振动测试技术

振动测试技术振动测试技术孙利民编郑州⼤学2004.6振动测试技术⽬录第1 章振动测试技术概论 (1)1.1振动试验的⽬的和意义 (1)1.2试验⽅法和内容 (3)1.3⼯程振动中的被测参数 (6)1.4⼯程振动测试及信号分析的任务 (13)1.5⼯程振动测试⽅法及分类…………………………………………15 第2 章机械式传感器⼯作原理 (17)2.1传感器的作⽤ (17)2.2相对式机械接收原理 (18)2.3惯性式机械接收原理 (18)2.4⾮简谐振动测量时的技术问题……………………………………26 第3 章机电式传感器⼯作原理 (29)3.1振动传感器的分类 (29)3.2电动式传感器 (30)3.3压电式传感器 (32)3.5 参量型传感器………………………………………………………41 第4 章振动测量系统………………………………………………………I474.1微积分放⼤器 (47)4.2滤波器………………………………………………………………544.3压电加速度传感器测量系统 (60)4.4电涡流式传感器的测量系统 (65)4.5动态电阻应变仪 (67)4.6参量型传感器测量系统...................................................73 第5 章激振设备 (77)5.1激振器……………………………………………………………775.2振动台……………………………………………………………805.3液压式振动台 (82)5.4其它激振⽅法............................................................84 第6 章基本振动参数的测量及仪器设备 (87) I6.1简谐振动频率的测量 (87)6.2机械系统固有频率的测量 (92)6.3简谐振动幅值的测量 (96)6.4同频简谐振动相位差的测6.5衰减系数的测量…………………………………………………103 第7 章模拟平稳信号分析 (109)7.1波形分析的简单⽅法 (109)7.2模拟式频率分析 (114)7.3 模拟式实时频谱分析简介................................................120 第8 章振动测试仪器的校准 (123)8.1分部校准与系统校准 (123)8.2静态校准法 (125)8.3绝对校准法 (126)8.4相对校准法…………………………………………………………127 第9章数字信号分析 (131)9.1基本知识……………………………………………………………1319.2离散傅⾥叶变换 (134)9.3快速傅⾥叶变换II(F F T) (137)9.4泄漏与窗函数 (141)9.5噪声与平均技术 (145)9.6数字信号分析仪的⼯作原理及简介....................................148 第10 章实验模态分析简介 (154)10.1基本概念 (154)10.2多⾃由度系统的传递函数矩阵和频响函数矩阵………………10.3传递函数的物理意义 (162)10.4多⾃由度系统的模态参数识别 (164)10.5模态分析中的⼏种激振⽅法 (170)10.6模态分析的实验过程 (172)II第1 章概述1.1 振动试验的⽬的和意义唯物史观认为,世界上的⼀切都在运动着,运动是物质存在的形式。

第2章振动分析基础第1节

第2章振动分析基础第1节

Harbin Institute of Technology
哈尔滨工业大学机电工程学院
机械动力学
若系统有阻尼,振动位移与激振 力之间的相位差随频率比的增加 而逐渐增大,不会发生突然的变 化,但在共振点前后变化较大。 系统阻尼越小,共振点附近相位 差随频率的变化越大。 振动测试中,常应用共振点前 后响应与激振力之间的相 位差发生较大变化这个事实作为 确定共振点的一个指标。
哈尔滨工业大学机电工程学院
机械动力学
Harbin Institute of Technology
哈尔滨工业大学机电工程学院
机械动力学
由于阻尼耗散的能量与振幅的平方成正比, 故P点常称为半功率点,半功率点公式提供了一 种确定系统阻尼比的实用方法, 由以上分析可见,当阻尼大时,带宽△。就 宽,过共振时振辐变化平缓,振幅较小,反之 ,阻尼小时,带宽就窄,过共振时振幅变化较 陡,振幅就大。所以,品质因数Q反映了系统阻 尼的强弱性质和共振峰的陡峭程度。在机床系 统中,为了过共振时比较平稳,希望Q值小些。
2
固有频率 有阻尼固有角频率 Harbin Institute of Technology
哈尔滨工业大学机电工程学院
机械动力学
Harbin Institute of Technology
哈尔滨工业大学机电工程学院
机械动力学
1、临界阻尼振动系统
临界阻尼
阻尼比
Harbin Institute of Technology
机械动力学
例: 实验观察到一有阻尼单自由度系统的振动幅值在5个完整 的周期后衰减了50%,设系统阻尼为粘性阻尼,试计算系统的 阻尼。
Harbin Institute of Technology

振动试验参数详解

振动试验参数详解

振动试验参数详解振动试验是一种用来评估物体结构在振动条件下的性能和稳定性的实验方法。

通过对振动试验参数的详细了解和合理设置,可以更好地掌握试验过程,获取准确的数据,为后续的分析和设计提供可靠的依据。

下面将对振动试验参数进行详细解析。

振动试验参数包括振动频率、振动幅值、振动方向和振动时间等。

振动频率是指单位时间内振动的次数,通常以赫兹(Hz)为单位。

振动幅值是指振动物体在运动过程中的最大位移,通常以毫米(mm)或微米(μm)为单位。

振动方向是指振动力作用的方向,可以是单向、双向或多向。

振动时间是指振动试验持续的时间,通常以分钟(min)或小时(h)为单位。

在进行振动试验时,首先需要根据被试验物体的特性和试验的目的来确定合适的振动频率。

振动频率的选择应考虑到物体的固有频率和试验的要求,通常可以通过频率响应分析或模态分析来确定。

振动频率过高或过低都会影响试验结果的准确性,因此需要进行充分的调研和分析。

振动幅值的设置也是非常重要的。

振动幅值的大小会直接影响到物体的响应和破坏情况,因此需要根据被试验物体的强度和耐久性来确定合适的振动幅值。

通常可以通过有限元分析或试验验证来确定振动幅值的范围,以保证试验的安全性和有效性。

振动方向的选择也需要根据具体的试验要求来确定。

在某些情况下,需要同时对物体进行多向振动,以模拟实际工况下的振动情况。

在确定振动方向时,还需要考虑物体的结构特点和受力情况,以保证试验的真实性和可靠性。

振动时间的设置也是需要注意的。

振动时间过长或过短都会影响试验结果的准确性,因此需要根据试验的目的和要求来确定合适的振动时间。

在进行振动试验时,还需要注意监测和记录振动过程中的数据,以便后续的分析和评估。

总的来说,振动试验参数的设置对于试验结果的准确性和可靠性起着至关重要的作用。

通过合理设置振动频率、振动幅值、振动方向和振动时间等参数,可以更好地掌握试验过程,获取准确的数据,为工程设计和结构分析提供可靠的依据。

振动测试实验报告(一)

振动测试实验报告(一)

振动测试实验报告(一)振动测试实验报告引言•介绍振动测试实验的背景和目的实验设备•列点介绍用于振动测试的设备和仪器实验过程•描述实验的具体步骤和操作流程•列出实验所使用的参数和测量方法实验结果•展示实验所得的振动数据和曲线图•列出实验的统计数据和分析结果实验讨论与分析•分析实验结果的差异和变化趋势•论述可能的原因和影响因素实验结论•总结实验结果和分析的关键点•概括实验的主要发现和结论实验改进和展望•提出对实验方法和设备的改进意见•展望进一步深入研究的方向和潜在应用领域参考文献•列出引用的相关文献以上是一份基于Markdown格式的振动测试实验报告的标题副标题形式的文章。

注意文章内不应包含HTML字符、网址、图片和电话号码等内容。

实验设备振动测试仪•型号:XYZ-123•产商:ABC公司•主要功能:用于测量和分析物体的振动特性加速度传感器•型号:123-Accel•产商:DEF公司•主要功能:测量物体在振动过程中的加速度变化数据采集系统•型号:DataLogger-456•产商:GHI公司•主要功能:用于实时采集和记录振动测试数据实验过程准备工作1.将振动测试仪和加速度传感器连接至数据采集系统。

2.确保设备之间的连接稳固可靠。

实验步骤1.将待测试物体放置在振动测试台上。

2.设置振动测试仪的参数,包括频率范围和振动幅值。

3.启动数据采集系统,开始记录振动测试数据。

4.逐步增加振动仪的频率,记录相应的加速度值。

5.按照设定的频率范围和步长进行振动测试,直至测试完成。

实验结果振动数据•频率(Hz) 加速度(m/s^2)•10 0.53•20 1.27•30 2.18•40 3.08•50 3.95振动曲线图振动曲线图振动曲线图实验讨论与分析结果分析•实验数据显示,随着振动频率的增加,加速度值也呈逐渐增大的趋势。

•在低频段时,加速度值的增长幅度较小,但在高频段时,加速度值的增长幅度明显加大。

影响因素讨论•物体的质量和刚度对振动特性有影响,可能导致加速度值的变化。

高中物理实验测量机械振动的周期与频率

高中物理实验测量机械振动的周期与频率

高中物理实验测量机械振动的周期与频率在高中物理学习中,实验是非常重要的一部分,通过实验可以帮助我们更直观地理解和巩固所学的理论知识。

测量机械振动的周期与频率是高中物理实验中的一个重要内容。

本文将介绍一种常用的实验方法,帮助同学们准确测量机械振动的周期与频率。

实验名称:测量机械振动的周期与频率实验目的:本实验旨在通过测量机械振动的周期与频率,加深学生对振动的理解,巩固相关理论知识,并掌握测量的方法与技巧。

实验器材:1. 弹簧振子装置2. 记时器3. 尺子或标尺4. 实验笔记本实验步骤:1. 准备弹簧振子装置,确保其安全稳定。

2. 使用标尺或尺子测量振子的长度,并记录下来。

确保测量精确。

3. 轻轻将振子拉至一侧,然后松手使其自由振动起来。

4. 启动记时器,并开始计时,记录下振子完成十个完整振动周期所用的时间。

5. 停止记时器,计算出十个周期的均值,即为振动的平均周期。

6. 根据平均周期的倒数,即可求得振动的频率。

实验数据处理:1. 根据实验步骤所得到的数据,计算出振动的平均周期。

2. 将平均周期的倒数,即频率,计算出来,并记录下来。

实验注意事项:1. 操作时需小心谨慎,避免振子或其他器材的损坏,以防生命安全事故的发生。

2. 测量尺子或标尺应与振子垂直,并确保测量起点准确。

3. 计时器应准确启动与停止,以保证测量的准确性。

实验结果分析:通过上述实验步骤,我们可以获得振动的平均周期和频率。

根据振动的周期与频率的关系公式:频率=1/周期,我们可以进一步得到振动的频率。

本实验的目的就是通过测量实际数值,验证振动的周期与频率的关系。

实验结果的准确性与精确性取决于实际测量的过程和仪器的精度。

因此,在进行实验前,我们要仔细检查实验仪器的状态,并确保其精确度和可靠性。

在进行实验时,要求同学们共同合作,互相监督,尽量提高测量的准确性。

总结:通过本实验,我们学习了一种快速测量机械振动周期与频率的方法,并且掌握了操作实验器材的技巧。

振动测量方法

振动测量方法
机械振动的测试
第一节 振动的概念
从狭义上说,通常把具有时间周期性的运动称为振动。
从广义上说,任何一个物理量在某一数值附近作周期
性的变化,都称为振动。
力学量(如位移)
机械振动
电磁量(如I 、V、 E、 B) 电磁振动
机械振动
机械振动是物体在一定位置附近所作的周期性往
复的运动。 机械振动系统,就是指围绕其静平衡位置作来回往 复运动的机械系统,单摆就是一种简单的机械振动 系统。
(二)电磁式激振器
电磁激振器是非接触式的,其频率上限约为500- 800Hz。
激振器是由通入线圈中的交变电流产生 交变磁场,而被测对象作为衔铁,在交变磁 场作用下产生振动.
由于在电磁铁与衔铁之间的作用力F(t)只 会是吸力,而无斥力,为了形成往复的正弦 激励,应该在其间施加一恒定的吸力F0,然 后才能叠加上一个交变的谐波力F(t),如图 所示,即:
目前常用的瞬态激励方法有快速正弦扫描、 脉冲锤击和阶跃松弛激励等方法,下面分别 讨论和介绍。
(一)快速正弦扫描
这种测试方法是使正弦激励信号在所需 的频率范围内作快速扫描(在数秒钟内完 成),激振信号频率在扫描周期T内成线 性增加,而幅值保持恒定。扫描信号的 频谱曲线几乎是一根平坦的曲线,从而 能达到宽频带激励的目的。
3. 准周期振动
准周期振动是由频率比不全为有理数的 简谐振动叠加而成。
4. 瞬态振动、冲击
瞬态振动是指在极短时间内仅持续几个 周期的振动。
冲击是单个脉冲。 特点:过程突然发生,持续时间短,能
量很大。通常它由零到无限大的所有频 率的谐波分量构成。
5. 随机振动
没有确定的周期,振动量与时间也无一 定的关系。
2)拾振部分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


光测法:将 机械振动转 换为光信息 进行测量的 方法。 电测法:机 电变换原理。 (重点)
光测法 测量范围: 1/4 波长或更低—m 频率范围: 中低频 可选传感器: 较少 电源或光源: 激光或其它光源 体积: 大 灵敏度: 价格: 测试环境: 高<光波长(如<1 微米) 贵 要求隔振、现场测量较困 难、不接触式、温度及腐 蚀要求低 读数显微镜 激光干涉仪(麦克尔逊干 涉条纹) 激光散斑法( ESPI 电子 散斑) 高速摄影法

(3)可以根据被测参量的不同选用不同的振动传感器;
(4)能进行远距离测量或遥测; (5)便于对测得的信号进行贮存,以便进一步分析;

(6)适合于多点同步测量和对信号进行实时分析。
1.3 工程振动测试及信号分析的任务
1、已知输入力{F},在被测试系统维持一定的 [M],[C],[K]之下来求输出{x},{x},{x, } 这便是 求系统的响应,这是结构动力学的正问题。 2、对于还不清楚的系统,包括正在设计中的系统 的模型,给一定的{F},并测知{x},{x},{x},从而 通过模态参数(模态频率,振型,阻尼等)来求系 统的物理特性参数[M],[C],[K],这就是“参 数识别”和“系统识别”。通常这一类问题为结 构动力学的第一类逆问题,这类问题对振动测试 {x},{x},{x} 外,还要应用模 的要求,除了要精确测定 态分析的方法来识别参数。
在区间(a,b)内函数仅有有限个最大和最小值点; 在区间(a,b)内函数仅有有限个不连续点,不存在无 限不连续点。
傅立叶变换收敛。
傅立叶变换的数学表达式为:
X(f ) x (t )




x (t )e j ft dt


X ( f )e j 2 ft df
式中 f 为频率变量, X ( f ) 是频率的复函数,将 X ( f ) 转化成: X ( f ) X ( f ) e j ( f )

例:
电测法 宽(大、中、小量程均有) 宽(大、中、小量程均有) 规格型号多 需要 中、小(Kistler 公司 1mm 注塑监控用力传感器) 高、中、低均有 高、中、低档均有 接触式、需考虑温度、湿 度、腐蚀及电磁干扰等影 响 伺服式加速度计 压电式加速度计 惯性式速度计 角位移计
传感器生产 商:

3、 在已知系统参数的情况, 测出 {x},{x},{x} 即可求出输入{F}。这便是载荷识别,是结 构动力学的第二类逆问题。这类问题对振动 测试的要求,除了精确测出{x},{x},{x} 外,往 往还要选进行第一类逆问题的计算与测试, 求得系统参数,然后方能进行载荷识别。通 过这类问题的研究,可以查清外界干扰力的 水平和规律,以便采取措施来控制振动。
x(t ) x(t kT )
用Fourer级数展开:
x(t ) a0 (an cosn1t bn sin n1t )
n 1
1 2 / T
x(t ) a0 cn sin(n1t n )
n 1
1 a0 T

T 2 T 2
xdt
第1章 振动测试的基本知识
1.1 振动过程分类方法
自由振动 按振动产生原因 强迫振动
自激振动 线性振动 按振动系统结构参数分类 非线性振动
机械振动 按振动的时间规律 确定性振动 周期振动
非周期振动 随机振动
单自由度振动
按确定振动的独立坐标数分类
多自由度振动 连续弹性体振动
周期振动 确定性振动 非周期振动
c0 a0
cn a b
2 n 2 n
2 an T
2 bn T


T 2 T 2
x cos n1tdt
x sin n1tdt
T 2 T 2
bn n arctg an
c0 —均值 cn—谐波分量 n—相位差 ω1 —基频
1.2.4
准周期振动的测试参数
两个或两个以上的无关联的周期性振动的(各 频率之比不为有理数)混合,称为准周期 性振动。 例如 x(t ) x1 sin( 2t ) x2 sin( 3t ) x3 sin( 50t )


1 位移绝对平均值 x T
( x , x )

T
0
X (t ) dt
2

A

位移有效值 ( xRMS )
xRMS
1 T

T
0
1 A sin (t )dt A 2
2 2

为了计算、分析方便,常用“dB”(分贝)数来表 示,称为振动级。其规定如下:
adB a1 20 log dB a2 v1 dB v2
绝对式 — 选惯性空间(大地)作
振动测试参考坐标 测量时的参考坐标 相对式 — 选空间动点或不法:杠杆(相 对式接触式)或惯 性原理(绝对式接 触式)接收并记录 振动的方法。
测量范围: 频率范围: 供电电源: 体积: 灵敏度: 价格: 测试环境: 例: 相对式 0.01—15mm 0—330Hz 无 大 低 惯性式 0.01—20mm 2—330Hz 无 大 低 便宜 无电磁干扰、但须考虑温度、安装及腐蚀问题 手持式振动仪、测振表 盖格尔振动仪
简谐振动 复杂周期振动 准周期振动 瞬态振动
平稳随机振动 随机振动 非平稳振动
各态历经振动 非各态历经振动
1.2 工程振动中的被测参数



1.2.1 简谐振动中的测试参数 主要参数有:位移、速度、加速度、 激振力、频率、振幅等 位移
2
位移 加速度 速度
x(t)=Asin(ωt)= Asin(2πft)


速度
v(t)=ωAcos(ωt)= ωAsin(2πft+π/2)


加速度
a(t)=–ω2Asin(ωt)=ω2 Asin(2πft+π)

由此可见,位移振幅A和频率ω (或f)是两个十分重要的特征量

在测量中,振动参数的大小常用其峰值,绝 对平均值和有效值来表示。
峰值(或用Peak–Peak)表示XPeak =max[ x(t)]; ( XPeak ,XP_P) XP_P =max[ x(t)]-min[ x(t)]
1.2.2 有阻尼的自由衰减振动的测试 参数 m cx kx 0 x
解得x(t )
Ae
nt
sin( p n t
2 n 2
Ae Ae
nt nt
sin( Pd t sin( 2f d t
A–位移振幅,C–阻尼系数,n–衰减系数 (2n c / m)
因 但它的频谱仍为离散谱。
2 3 , 50 50 不是有理数,所以就不是周期函数;
1.2.5 非周期振动的测试参数
非周期振动的频谱分析法是十分有效的。 非周期振动的频谱分析法则是基于傅立叶积分变 换的 傅立叶变换存在的条件是: 被积函数满足狄里赫莱条件(Dirichlet’s Condition);
Pn–无阻尼时固有频率( Pn k )
衰减系数或阻尼系数是一个重要特征值,且 只能通过振动测试测出。
m
可测得周期 Td f d
1 Td
=ln
n
Ai 1 A1 = ln Ai 1 i Ai 1

Td

n

=
A 1 ln 1 2 i Ai 1
1.2.3 复杂周期振动的测试参数
| X ( f ) |与 f )都是频率 f 的实函数 | X ( f ) |—幅频曲线
f ) —相频曲线 根据振动信号的频谱,可以判断振动系统 的动力学特性。
1.3 振动测试方法及分类
机械法 — 适用被测振动频率较低、振幅
较大和精度不高的场合。
测试方法 光学法 — 可实现无接触测量,但只能作 相对测试,故需良好隔振。 电测法 — 是瞬态、冲击和随机振动等复 杂参数的唯一测试手段。
VdB 20 log x dB

式中:a1,v1,x1是指测量得到的有效值(或峰 值) a2,v2,x2是指某一参考值(一般取
a2=10-2mm/s2,v2=10-5mm/s,x2=10-8mm;
x1 20 log dB x2
或者取为1)


例如:声级计的p2=20μpa 有的仪表1mv 0dB 或者 1v 0dB 某放大器的增益为40dB,表示输入信号的 幅值是输入信号幅值的100倍。 这种所谓的分贝标尺起到了将大范围的变 化加以等精度压缩的作用。
• (4)振动测试及信号分析的任务,还包括监测机 器设备工作状况是否稳定,正常和诊断设备故障 等。机器和设备在工作过程中发生不正常的运转 或故障,往往会使系统的振动情况或噪声水平发 生变化,因此,振动与噪声的监测,即对机械在 工况下产生的振动和噪声的测试结果进行分析是 判断机器是否正常工作的重要信息。 • (5)振动控制。通过振动控制主要为达到以下两 个目的: • ①通过振动控制减少振动量,降低振动水平,以 减少甚至消除振动的危害; • ②通过控制振动所需的振动激励信号使振动水平 始终保持在一定的范围之内。
作业
• 1、在振动测试过程中,分贝(dB)是怎样 定义的,举例说明。 • 2、有阻尼系统的自由衰减振动有哪几个特 征参数?
丹麦 B&K、瑞士 Kistler、 美 国 Endevoc 、 上 海 B&W、扬州无线电二厂、 秦皇岛传感器研究所等

电测法的优点:
是目前用得最广泛的测量方法,与机械式和光学 式的测试方法比较,具有以下的优点:

(1)频带宽,灵敏度和分效率高,动态测量范围较大;
(2)传感器质量大小可选择余地大,可减小传感器质 量的附加影响,有必要的话,可选择触式的传感器
相关文档
最新文档