图形初步认识并总结

合集下载

七年级上册数学图形初步认识知识点总结

七年级上册数学图形初步认识知识点总结

七年级上册数学图形初步认识知识点总结图形是指在一个二维空间中可以用轮廓划分出若干的空间形状,图形是空间的一部分不具有空间的延展性,它是局限的可识别的形状。

下面是整理的七年级上册数学图形初步认识知识点,仅供参考希望能够帮助到大家。

七年级上册数学图形初步认识知识点1.我们把实物中抽象的各种图形统称为几何图形。

2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。

3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。

4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5.几何体简称为体。

6.包围着体的是面,面有平的面和曲的面两种。

7.面与面相交的地方形成线,线和线相交的地方是点。

8.点动成面,面动成线,线动成体。

9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。

12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

(公理)13.连接两点间的线段的长度,叫做这两点的距离。

14.角∠也是一种基本的几何图形。

15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1〃。

16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。

18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角19.等角的补角相等,等角的余角相等。

《图形认识初步》知识点

《图形认识初步》知识点

《图形认识初步》1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。

几何图形分为平面图形和立体图形。

(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。

(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。

2、常见的立体图形(1)柱体:A 棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。

B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。

(2)椎体:A 棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

B 圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。

(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。

(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。

3、 常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。

多边形中三角形是最基本的图形。

(2)圆:一条线段绕它的端点旋转一周而形成的图形。

(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。

4、 从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。

例题:1、如图是一些小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体的主视图和左视图:主视图 左视图例题:2、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )5、 立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。

苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思

苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思

苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思一、教材分析:《图形的初步认识(一)》是苏教版(2024)小学数学一年级上册的内容。

本课程旨在引导学生初步认识基本的平面图形,包括圆形、正方形、长方形和三角形。

这部分教材主要通过观察、操作等活动,让学生直观认识长方体、正方体、圆柱和球等立体图形。

通过观察、比较和操作活动,学生将学会辨识这些基本图形,并理解它们的基本特征,同时引导学生认识这些图形的特征,为后续学习几何知识奠定基础。

二、教学目标:【知识与技能目标】:1.能够正确识别并命名圆形、正方形、长方形和三角形。

2.让学生直观认识长方体、正方体、圆柱和球等立体图形,能够辨认和区分这些图形。

3.培养学生的观察能力、动手操作能力和空间观念。

【过程与方法目标】:1.能够从不同的图形中挑选出指定的图形,并能描述这些图形的基本特征。

2.通过观察、操作、交流等活动,让学生经历认识图形的过程。

3.引导学生在实际生活中寻找这些图形,感受数学与生活的联系。

【情感态度与价值观目标】:1.培养学生对数学的兴趣和好奇心,激发学生的学习积极性。

2.培养学生的合作意识和团队精神,激发学生对数学学习的兴趣,感受数学与生活的密切联系。

3.激发学生对几何图形的兴趣,培养学生的观察力和空间想象力。

三、教学重难点:【教学重点】:认识长方体、正方体、圆柱和球的形状特征,能够正确辨认和区分这些图形。

2.识别并描述圆形、正方形、长方形和三角形的基本特征。

【教学难点】:1.区别不同形状的图形,建立空间观念,培养学生的空间观念。

2.区分长方形和正方形,理解它们的相似性和差异性。

四、学情评估:一年级的学生处于形象思维阶段,对直观的事物比较感兴趣。

但对抽象概念的理解有限。

他们喜欢通过具体的操作和游戏来学习新知识;在生活中已经接触过一些立体图形,但对这些图形的特征还没有系统的认识。

在教学中,要充分利用学生的生活经验,通过直观的教学手段,引导学生认识图形的特征。

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

1)立体图形长方体、正方体、球、圆柱、圆锥等。

2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。

(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。

棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

幼儿识图知识点总结

幼儿识图知识点总结

幼儿识图知识点总结1. 图形的种类在传统的认知过程中,幼儿需要学会辨认各种不同的图形,包括基本的几何图形如正方形、圆形、三角形等,以及其他图形如动物、植物、交通工具等。

通过学习认识这些不同的图形,幼儿可以增强对事物的认知,提高观察和辨认能力。

2. 图形的特征除了认识不同的图形外,幼儿还需要学会观察和理解图形的特征。

比如,正方形有四条边,四个角都是直角;圆形没有边和角,是由曲线组成的。

通过了解图形的特征,幼儿可以更好地识别和理解图形。

3. 图形的数量在培养幼儿的识图能力时,还需要让幼儿学会数图形的数量。

通过数图形的数量,幼儿可以更好地理解和掌握图形之间的关系,比如哪种图形数量多,哪种图形数量少等等。

4. 图形的组合除了单独的图形外,幼儿还需要学会认识图形的组合。

比如,三个正方形可以组成一个长方形,两个三角形可以组成一个正方形等等。

通过学会认识图形的组合,幼儿可以增强对图形的理解和观察能力。

5. 图形的比较在培养幼儿的识图能力时,还需要让幼儿学会比较不同图形之间的大小、形状等特征。

比如,三角形的边是圆形的多少倍,长方形的面积是正方形的多少倍等等。

通过比较图形,幼儿可以更好地理解图形之间的关系,提高分析和推理能力。

6. 图形的应用最后,幼儿还需要学会认识图形在生活中的应用。

比如,正方形可以用来做房屋的平面结构,圆形可以用来做轮子等等。

通过认识图形的应用,幼儿可以更好地理解图形和生活的联系,提高观察和想象能力。

通过以上的总结,可以看出,幼儿识图能力的培养不仅仅是让幼儿对图形有一个简单的认知,更是让幼儿通过图形的学习,开发他们的观察、表达、分析和推理能力。

幼儿识图知识点的掌握可以帮助幼儿更好地适应学习生活,为其未来的发展奠定坚实的基础。

因此,在幼儿园阶段,注重幼儿识图能力的培养是非常重要的。

图形认识初步知识点概括

图形认识初步知识点概括

图形认识初步一.几何图形有长方体、圆柱、直线、三角形、圆、球、圆锥、棱锥……等等.这是一个长方体的纸盒,它有两个面是正方形,其余各面是长方形.从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?长方体、圆柱、圆锥、球、圆、线段、点、三角形、四边形等,都是从形形色色的物体外形中得出的.我们把这些图形称为几何图形.立体图形:长方体、正方体、球、圆柱、圆锥等它们的各部分不都在同一平面内,它们是立体图形. 平面图形:线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形. 立体图形与平面图形的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形.如长方体的侧面是长方形.⎧→⎨⎩平面图形小结:观察物体外形几何图形立体图形1.从不同方向看立体图形对于一些立体图形,我们常常把它们转化为平面图形来研究. 从正面看到的平面图形叫主视图,从左面看到的平面图形叫左视图,从上面看到的平面图形叫俯视图.2.立体图形的展开有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.圆柱圆锥三棱柱长方体思考:把立方体剪了几刀才展成平面图形的?剪了七刀,一条棱剪开成两条棱,展开图的周边一共有14条棱,所以剪了七刀.小结:由一些平面图形围成的几何体可以沿某些棱剪开展成平面图形;反之,由展开的平面图形也可以围成相应的几何体.长方体 长方形正方形线段 点左视图 主视图 俯视图3.点、线、面、体像长方体、正方体、圆柱体、圆锥体、球体、棱锥体等都是几何体,简称体;包围着体的是面,面有平面和曲面两种;面与面相交的地方形成线,线有直线和曲线两种;线与线相交的地方是点.从静态的一面看:体是由面围成的,面与面相交成线,线与线相交成点. 从动态的一面看:点动成线,线动成面,面动成体.二.直线、射线、线段1、直线经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线. 直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示.平面上一个点与一条直线的位置有什么关系?①点在直线上;②点在直线外.一个点在一条直线上,也可以说这条直线经过这个点,一个点在直线外,也可以说这条直线不经过这个点.当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点.2、射线和线段直尺给我们线段的形象,手电筒发出的光给我们射线的形象,射线和线段都是直线的一部分.图①中的线段记作线段AB 或线段a ;图②中的射线记作射线OA 或射线m .注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面. 直线、射线和线段有什么联系和区别联系:线段、射线都是直线的一部分,将线段向一端延长得到射线,向两端延长得到直线,将射线向另一方向延长得到直线,它们都有“直”的特征,它们都可以用一个小写字母或两个大写字母来表示.区别:直线没有端点,射线有一个端点,线段有两个端点;直线可以向两个方向延伸,射线可以向一个方向延伸,线段不能再延伸;表示直线和线段的两个大写字母可以交换位置,而表示射线的两个大写字母不能交换位置.例 已知线段a 、b ,求作线段AB=a+b解:(1)作射线AM ;(2)在AM 上顺次截取AC=a ,CB= b 则AB= a+b 为所求。

华东师大版七年级数学上册第四章《图形的初步认识》知识点汇总

华东师大版七年级数学上册第四章《图形的初步认识》知识点汇总

华东师大版七年级数学上册
第四章《图形的初步认识》知识点汇总
复习内容:立体图形的三视图、展开图,最基本的图形——点和线,角,相交线,平行线.
(一)立体图形的三视图:正视图、左视图、俯视图
(二)立体图形的展开图
(三)最基本的图形——点和线
1、两点之间,线段最短.
2、连结两点的线段的长度,叫做这两点的距离.
3、经过两点有一条直线,并且只有一条直线.(两点确定一条直线)
4、把一条线段分成两条相等线段的点叫做线段的中点.(四)角
1、一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.
2、⑴如果两个角的和是90º,这两个角叫做互为余角.
⑵如果两个角的和是180º,这两个角叫做互为补角.
说明:①若∠1与∠2互余,则∠1+∠2=90º.
②若∠1与∠2互补,则∠1+∠2=180º.
3、⑴同角(或等角)的余角相等.
⑵同角(或等角)的补角相等.
4、用角度表示方向: 一般以正北、正南为基准,向东旋转的角度表示方向.如图,OA 示为北偏西60º.
5、对顶角相等.。

第二章平面几何图形的初步认识知识点总结

第二章平面几何图形的初步认识知识点总结

第二章几何图形的初步认识2.1从生活中认识几何图形几何图形包括平面图形和立体图形。

2.2 点和线1,位于线段AB两端的点AB,叫做这条线段的端点吗。

2,将线段AB沿这条线段向两方无限延申所形成的图形,叫做直线。

3,位于线段AB沿AB方向(或BA方向)无限延伸所形成的图形叫做射线。

点A(或点B)叫做射线的端点。

4,基本事实,经过两点有一条直线,并且只有一条直线。

2.3线段的长短1,比较线段的长短的两种方法:1),测量法,2)将线段一段对齐,比较另一端。

2,学会作一条线段等于已知线段。

3,基本事实,两点之间的所有连线中,线段最短。

2.4 线段的和与差线段AB上的一点M,把线段AB分成两条线段AM和MB,那么M就叫做线段AB的中点。

在等式两边分别加上相等的量,等式仍然成立。

2.5 角以及角的度量1.有公共端点的;两条射线所组成的图形叫做角。

角可以看做一条射线绕着端点旋转到另一个位置所形成的图形。

在不作特殊说明的情况下,今后所说的角都是小于平角的角。

2,角的度量:度,分,秒。

一度等于60分,一分等于60秒。

2.6 角的大小比较角的大小的方法,1),测量法,2),比较法,把两个角的顶点和一条边分别重合在一起,即可比较。

2.7角的和与差1,如果从一个角的顶点引出的一条射线把这个角分成的两个角相等,那么这条射线叫做这个角的平分线。

2,如果有个角的和等于90度,那么这两个角互为余角,简称互余;3,如果有个角的和等于180度,那么这两个角互为补角,简称互补;4,同角(或等角)的余角相等,同角(或等角)的补角相等。

2.8 平面图形的旋转1,旋转:在平面内,一个图形绕一个顶点沿某一个方向转过一个角度,这样的图形运动叫做旋转。

旋转中心,旋转角,对应点,对应线段。

2,在平面内,一个图形旋转后得到的图形与原来的图形之间有如下的结果:对应点到旋转中心的距离相等,每对对应点与旋转中心的连线所成的角都是相等的角,它们都是旋转角。

华师版七年级数学上册第3章 图形的初步认识小结与复习

华师版七年级数学上册第3章 图形的初步认识小结与复习
别由四位同学补画,其中正确的是( C )
A.
C.
B.
D.
重难剖析
4.如右图,是一块圆柱体形状的木头,用锯子把这个
木头锯成两部分,锯开的这个面不可能是( A )
A.
B.
C.
D.
重难剖析
5. 下图水杯的杯口与投影面平行,投影线的方向如箭头所示,它
的正投影图是( D )
重难剖析
6.下列叙述正确的是( A
(2)它们之间的关系是六十进制的,即1°=60′,1′=60″.
5.方向角
借助角表示方向,通常以正北或正南为基准,配以偏
西或偏东的角度来描述方向.
知识回顾
十二、角的比较
1.角的比较方法
(1)直接观察法;(2)度量法;(3)叠合法.
2.角的平分线
从一个角的顶点引出的一条射线,把这个角分成
两个相等
__________的角,这条射线叫作这个角的平分线.
形,并求出 CD的长;比较(1)(2)的结果,你发现了什么规律?
解:(1)因为C,D分别是线段OA,OB的中点,
1
2
1
2
所以OC= AO,OD= BO.
1
1
1
所以CD=OC+OD= (OA+OB)= AB= a.
2
2
2
能力提升
A
C
B D O
解:(2)当点O在线段AB的延长线上时,如图所示,
因为C,D分别是线段OA,OB的中点,
8.如图所示,把一副三角板叠放在一起,则∠ACD=
15
________°.
重难剖析
9.如图,∠AOB=∠COD=90° ,∠BOC=42° ,
则∠AOD=( C )

新冀教版数学七年级上册第二章几何图形的初步认识 小结与复习

新冀教版数学七年级上册第二章几何图形的初步认识 小结与复习

考点三 线段的相关计算
例3 在直线a上任取一点A,截取AB=16 cm,再截取 AC=40 cm,求AB的中点D与AC的中点E之间的距离.
[解析] 题中没有指明点C的具体位置,故应该分两种 情况进行分析,从而求得DE的长.
解:(1)如图,因为AB=16 cm,AC=40 cm,
点D,E分别是AB,AC的中点, 所以AD=1/2AB=8 cm,AE=1/2AC=20 cm, 所以DE=AE-AD=20-8=12(cm);
6.如图,D是线段AB的中点, E是线段BC的中 点,BE=1/5AC=2 cm,则线段DE的长为 5cm 点A,O,E在同一直线上,∠AOB=40°, ∠EOD=25°,OD平分∠COE.
(2)如图,因为AB=16 cm,AC=40 cm,
点D,E分别是AB,AC的中点, 所以AD=1/2AB=8 cm,AE=1/2AC=20 cm, 所以DE=AE+AD=20+8=28(cm);
针对训练
5.点A,B,C 在同一条直线上,AB=3 cm, BC=1cm.则AC的长是 2cm或4cm .
射线只有一个端点,以点 A,B,C,D 为端点的 射线分别有 2 条,由图可知共有 8 条射线;直线只有 1 条.
针对训练
3.如图,图中共有___6_____个角.
4.乘火车从A站出发,沿途经过3个车站方可到达B站, 那么A,B两站之间需要安排____2_0___种不同的车票.
[解析] 如图,从A到B共有AC, AD,AE,AB,CD,CE,CB, DE,DB,EB10条线段,因为两站之间,出发点不同, 车票就不同,如A到C与C到A不同,故应有20种车票.
(1)角是有公共端点的两条射线所组成的图形.这个 公共端点叫做角的顶点,两条射线叫做角的边. (2)角可以看做一条射线绕着端点旋转到另一个位置所 形成的图形. 2.角的表示方法

图形的初步认识复习课件

图形的初步认识复习课件

ASA全等判定
两角和它们的夹边 分别相等的两个三 角形全等。
HL全等判定
斜边和一条直角边 分别相等的两个直 角三角形全等。
05 多边形及其内角和
多边形定义和分类
多边形的定义
由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。
多边形的分类
按照边数可以分为三角形、四边形、五边形等;按照形状可以分为凸多边形和凹多边形。
圆的定义
平面上到定点的距离等于定长的所有点 组成的图形。
VS
相关术语
圆心、半径、直径、弦、弧、圆周角等。
圆的基本性质
圆的对称性
圆是中心对称图形,也是 轴对称图形。
圆的旋转不变性
圆绕圆心旋转任意角度, 其形状和大小均不发生变 化。
圆的切线性质
圆的切线垂直于半径,且 切线与半径的交点是切点。
圆心角、弧、弦间关系定理
用两个大写字母表示,如线段AB; 或用一个小写字母表示,如线段a。
线段性质
线段有两个端点,可以度量长度, 是有限长的。
直线、射线和线段间关系
联系
射线、线段都是直线的一部分;任意两点确定一条直线,也 可以确定一条线段;把线段向一方无限延伸可得到射线,向 两方无限延伸可得到直线。
区别
直线没有端点,射线有一个端点,线段有两个端点;直线可 向两方无限延伸,射线可向一方无限延伸,线段不能延伸; 直线没有方向性,射线有方向性。
03 角度与角平分线
角度概念及度量单位
01
பைடு நூலகம்
02
03
角度概念
两条射线或线段在一个平 面上相交,所形成的夹角 的度量。
度量单位
角度的度量单位有度、分、 秒,其中1度等于60分,1 分等于60秒。

浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(提高)知识讲解

浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(提高)知识讲解

《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1.直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线. (2)线段:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图:4.线段的比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PN要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.5.余角、补角(1)定义:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小. (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、几何图形1.对于棱柱体而言,不同的棱柱体由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面,5个侧面,共7个面构成;六棱柱由2个底面,6个侧面,共8个面构成;(1)根据以上规律判断,十二棱柱共有多少个面?(2)若某个棱柱由24个面构成,那么这个棱柱是什么棱柱?(3)棱柱底面多边形的边数为n,则侧面的个数为多少?棱柱共有多少个面?(4)底面多边形边数为n的棱柱,其顶点个数为多少个?有多少条棱?【答案与解析】解:(1)十二棱柱由2个底面,12个侧面,共14个面构成.(2)这个棱柱有24个面,由于底面有2个,故其侧面共有22个,从而这个棱柱是二十二棱柱.(3)棱柱底面多边形的边数与侧面的个数是相等的,即底面多边形的边数为n,则侧面的个数也为n,棱柱的面数为(n+2).(4)底面多边形的边数为n的棱柱,其顶点个数为2n个,共有3n条棱.【总结升华】根据立体图形的特点,从特殊到一般,寻找规律.举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的几何体是()A. B. C. D.【答案】B类型二、线段和角的概念或性质2.下列判断错误的有( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA=PB,只有当点P在线段AB上时,才是线段AB的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.举一反三:【变式】下列说法正确的个数有( )①若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.②互补的两个角一定是一个锐角和一个钝角.③因为钝角没有余角,所以,只有当角为锐角时,“一个角的补角比这个角的余角大”这个说法才正确.A.0个B.1个C.2个D.3个【答案】B 提示:③正确3. (安徽芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7等于().A.330°B.315°C.310°D.320°【答案】B【解析】通过网格的特征首先确定∠4=45°.由图形可知:∠l与∠7互余,∠2与∠6互余,∠3与∠5互余,所以∠l+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.【总结升华】互余的两个角只与数量有关,而与位置无关.举一反三:【变式】如图所示,AB和CD都是直线,∠AOE=90°,∠3=∠FOD,∠1=27°20′,求∠2,∠3.【答案】解:因为∠AOE =90°,所以∠2=90°-∠1=90°-27°20′=62°40′. 又∠AOD =180°-∠1=152°40′,∠3=∠FOD .所以∠3=12∠AOD =76°20′. 答:∠2为62°40′,∠3为76°20′.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x °时,与分针第一次重合,依题意有: 12x =90+x 解得9011x =答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决. 举一反三:【变式】125°÷4= °= ° ′ 【答案】31.25,31、15类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法5. 如图所示,B 、C 是线段AD 上的两点,且32CD AB =,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm ) 所以BC =35-x =35-18=17(cm )33182722CD x ==⨯=(cm ) 所以AD =AB+BC+CD =18+17+27=62(cm )【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm ). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得87AB =(cm ).(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得11253AB =(cm ).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得11253AB =(cm ).综上可得:AB的长为14cm,87cm,11253cm.【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.。

幼儿园小班科学活动教案《认识图形》含反思(通用19篇)

幼儿园小班科学活动教案《认识图形》含反思(通用19篇)

•••••••••••••••••幼儿园小班科学活动教案《认识图形》含反思幼儿园小班科学活动教案《认识图形》含反思(通用19篇)作为一无名无私奉献的教育工作者,通常需要准备好一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么问题来了,教案应该怎么写?下面是小编为大家收集的幼儿园小班科学活动教案《认识图形》含反思,希望能够帮助到大家。

幼儿园小班科学活动教案《认识图形》含反思篇1活动目标:1、认识圆形、正方形、三角形的基本特征。

(重点)2、能按照物体的形状进行简单的分类。

(难点)3、培养幼儿对事物的好奇心,乐于大胆探究和实验。

4、愿意大胆尝试,并与同伴分享自己的心得。

5、激发幼儿对科学活动的兴趣。

活动准备:大的三角形、圆形、正方形各一个、小的三角形、圆形、正方形每人一份、小动物屋3个活动过程:一、认识正方形、圆形、三角形的基本特征。

1、今天,我们去图形王国里玩一玩,小朋友们,闭上眼睛,我们出发了。

2、提问:王国里有哪些图形宝宝啦?(出示圆形、正方形、三角形)这是什么形状的图形宝宝?它有长得怎么样的呢?3、图形宝宝自我介绍(小结):小朋友们好,我是圆形宝宝,我的身体是胖乎乎的一个角都没有。

小朋友们好,我是正方形宝宝,我的身体有四条边和四个角,很高兴能和你们做朋友。

小朋友们好,我是三角形宝宝,我有三个角三条边,大家愿意和我们做朋友吗?二、游戏“喂饼干”1、按形状给小动物喂饼干。

师:小朋友们,图形王国里还有好多有趣的东西,你们看,这是什么啦?(出示三个形状小动物的家)教师分别扮演小动物,说喜欢什么形状的饼干。

2、师:小朋友们,现在拿起小椅子下的三种形状的饼干,你们手里有什么形状的饼干啦?小动物饿啦,给他们喂一下吧。

3、小朋友喂饼干。

三、经验迁移。

1、师提问:在小朋友的家里或在幼儿园,你知道生活中哪些物品是圆形,三角形,正方形的呢?回家之后,我们在去找找其他的物品吧。

活动反思:活动刚开始,我以带小朋友去图形王国参观的形式,来吸引小朋友的注意力。

第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)

第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)

第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。

4.几何图形的结构:点、线、面、体组成几何图形。

点是构成图形的基本元素。

4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。

2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。

(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。

简述为,两点确定一条直线。

(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。

(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。

(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。

(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。

(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。

4.线段:直线上两点和它们之间的部分叫做线段。

(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。

(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。

(3)线段的基本性质:两点的所有连线中,线段最短。

华东师大版七年级上册数学第4章 图形的初步认识的小结

华东师大版七年级上册数学第4章  图形的初步认识的小结

自学互研
知识模块一 立体图形和平面图形
典例1:如图,写出下列图形的名称.
知识模块二 立体图形的三视图
典例2:如图,是由一些小立方块所搭几何体的三种 视图,若在所搭几何体的基础上(不改变原几何体中 小立方块的位置),继续添加相同的小立方块,以搭 成一个大正方体,至少还需_5_4__个小立方块.
知识模块三 立体图形的展开图
第4章 图形的初步认识小结
学习目标
【学习目标】 1.让学生能从实物图中抽象出立体图形和平面图形,了解简 单立体图形与三视图的联系,能根据立体图的展开图识别出立 体图形; 2.理解并掌握直线、射线、线段、线段的中点、角、角的平 分线的概念及两个基本事实; 3.会比较两条线段的长短和两个角的大小,掌握余角和补角 的概念,能运用线段和角的和、差、倍、分的知识进行有关计 算.
学习目标
【学习重点】 三视图和直线、射线、线段、角的有关概念及计算. 【学习难点】 立体图形的三视图、立体图形的展开图及运用几何语 言进行简单的推理.
情景导入
知识结构:
情景导入
知识梳理:
一、几何图形 1.长方体、正方体、球、圆柱、圆锥等它们各部分 不都在同一平面内,它们是_立__体__图__形___. 2.线段、射线、直线、角、三角形、长方形、圆等 它们的各部分都在同一平面内,它们是_平__面__图__形___, 从不同方向看立体图形得到的视图是_平__面__图__形___. 3.有些立体图形是由一些平面图形围成的,将它们 的表面适当的剪开,可以展开成立体图形的_展__开__图__, 立体图形的展开图各有不同.
典例3:如图所示的正方体盒子的外表面上画有3条 粗黑线,将这个正方体盒子的表面展开(外表面朝 上),展开图可能是( D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形初步认识并总结
.直线、射线、线段
(1)直线、射线、线段的表示方法
①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.
②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:
①点经过直线,说明点在直线上;
②点不经过直线,说明点在直线外.
两点间的距离
(1)两点间的距离
连接两点间的线段的长度叫两点间的距离.
(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.
角平分线的定义
(1)角平分线的定义
从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
(2)性质:若OC是∠AOB的平分线
则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
(3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.
角的计算
(1)角的和差倍分
①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=
∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC
=∠AOB﹣∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB =3∠BOC或∠BOC=∠AOB.
(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.
(3)度、分、秒的乘除运算.①乘法:度、分、秒分别相乘,结果逢60要进位.②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除.
余角和补角
(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.
(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.
(3)性质:等角的补角相等.等角的余角相等.
(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联.
注意:余角(补角)与这两个角的位置没有关系.不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系.
对顶角、邻补角
(1)对顶角:有一个公共顶点,并且一个角的两边分别是
另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.
(2)邻补角:只有一条公共边,它们的另一边互为反向延
长线,具有这种关系的两个角,互为邻补角.
(3)对顶角的性质:对顶角相等.
(4)邻补角的性质:邻补角互补,即和为180°.
(5)邻补角、对顶角成对出现,在相交直线中,一个角的
邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.
垂线
(1)垂线的定义
当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
(2)垂线的性质
在平面内,过一点有且只有一条直线与已知直线垂直.
注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”
“过一点”的点在直线上或直线外都可以.
作图—复杂作图
复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.
解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。

相关文档
最新文档