《信号与系统》第四章

合集下载

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

4.2 傅里叶级数
3 .f(t)为奇谐函数—f(t) = –f(t±T/2) 此时 其傅里叶级数中只含奇次谐波分量,而不含偶 次谐波分量即 a0=a2=…=b2=b4=…=0
f(t) 0 T/2 T t
4.3 周期信号(Periodic Signal)的频谱
周期信号的频谱 周期矩形脉冲的频谱 从广义上说,信号的某种特征量随信号频率变化的关 系,称为信号的频谱,所画出的图形称为信号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、相位 随频率的变化关系,即将An~ω和n~ω的关系分别画在以ω 为横轴的平面上得到的两个图,分别称为振幅频谱图和相 位频谱图。因为n≥0,所以称这种频谱为单边谱。 也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn为实 数,也可直接画Fn 。
“非周期信号都可用正弦信号的加权积分表示”
——傅里叶的第二个主要论点
4.2 傅里叶级数
周期信号展开的无穷级数成为傅里叶级数,分“三角型傅里 叶级数”和“指数型傅里叶级数”,只有当周期信号满足狄 里赫利条件时,才能展开成傅里叶级数。 狄利赫利条件(Dirichlet condition)

t 0 T
2 T bn 2T f (t )sin(nt ) d t T 2
任意函数f(t)都可分解为奇函数和偶函数两部分, 由于f(-t) = -fod(t) + fev(t) ,所以 f (t ) f (t ) f (t ) f (t ) f e v (t ) f od (t ) 2 2
4.2 傅里叶级数
三角形式 指数形式 奇偶函数的傅里叶级数
e jx e jx 由于 cos x 2
A0 f (t ) An cos( n t n ) 2 n 1

精品文档-信号与系统分析(徐亚宁)-第4章

精品文档-信号与系统分析(徐亚宁)-第4章
F1= w0/(s^2+w0^2)
F2= s/(s^2+w0^2)
第4章 连续时间信号与系统的复频域分析
【例4-10】用MATLAB求解【例4-3】, 设τ=1 解 求解的代码如下: %program ch4-10 R=0.02; t=-2:R:2; f=stepfun(t, 0)-stepfun(t, 1); S1=2*pi*5; N=500; k=0:N; S=k*S1/N; L=f*exp(t′*s)*R; L=real(L);
本例中

的ROC均为
Re[s]>0,
极点均在s=0处。但
有一个s=0的零点,
抵消了该处的极点,相应地ROC扩大为整个s平面。
第4章 连续时间信号与系统的复频域分析 4.2.3 复频移(s域平移)特性
【例4-4】
, s0为任意常数 (4-12)
求e-atcosω0tU(t)及e-atsinω0tU(t)的象函数。
第4章 连续时间信号与系统的复频域分析
1. s 借助复平面(又称为s平面)可以方便地从图形上表示 复频率s。如图4-1所示,水平轴代表s Re[s]或σ, 垂直轴代表s的虚部,记为Im[s]或jω, 水平 轴与垂直轴通常分别称为σ轴与jω轴。如果信号f(t)绝 对可积,则可从拉氏变换中得到傅里叶变换:
f= exp(-t)+2*t*exp(-2*t)-exp(-2*t)
第4章 连续时间信号与系统的复频域分析
【例4-9】 用MATLAB求解【例4-2】 解 求解的代码如下:
%program ch4-9 syms w0t; F1=laplace(sin(w0*t)) F2=laplace(cos(w0*t))
(4-2)

(仅供参考)信号与系统第四章习题答案

(仅供参考)信号与系统第四章习题答案

e −sT
=
−sT
2 − 4e 2
+ 2e −sT
Ts 2
(f) x(t) = sin πt[ε (t)− ε (t − π )]
sin π tε (t ) ↔
π s2 + π 2
L[sin
πtε (t
−π
)]
=
L e jπt
− 2
e− jπt j
ε (t
−π
)
∫ ∫ =
1 2j
∞ π
e
jπt e−st dt
4.3 图 4.2 所示的每一个零极点图,确定满足下述情况的收敛域。
(1) f (t) 的傅里叶变换存在
(2) f (t )e 2t 的傅里叶变换存在
(3) f (t) = 0, t > 0
(4) f (t) = 0, t < 5
【知识点窍】主要考察拉普拉斯变换的零极点分布特性。 【逻辑推理】首先由零极点写出拉普拉斯变换式,再利用反变换求取其原信号,即可求取其收
= cosϕ eω0tj + e−ω0tj − sin ϕ eω0tj − e−ω0tj
2
2j
=
cos 2
ϕ

sin 2
ϕ j
e
ω0 t j
+
cosϕ 2
+
sin ϕ 2j
e −ω 0tj
F(s) =
L
cosϕ 2

sin ϕ 2j
eω0tj
+
cos 2
ϕ
+
sin ϕ 2j
e
−ω0
t
j
ε
(t
)
∫ ∫ =

信号与系统第四章习题参考答案13

信号与系统第四章习题参考答案13

《信号与系统》第四章习题参考答案4-1 解 (1)111()ataL es s a s s a -⎡⎤-=-=⎣⎦++ (2)[]2221221sin 2cos 111s s L t t s s s ++=+++++ (3)()2212tL te s -⎡⎤=⎣⎦+(4)[]21sin(2)4L t s =+,由S 域平移性质,得 ()21s i n (2)14tL e t s -⎡⎤=⎣⎦++ (5)因为1!nn n L t s +⎡⎤=⎣⎦,所以 []2211212s L t s s s++=+= 由S 域平移性质,得 ()()23121ts L t e s -+⎡⎤+=⎣⎦+(6)()2211cos sL at s s a -=-⎡⎤⎣⎦+,由S 域平移性质,得 (){}()2211cos ts L at e s s aβββ-⎡⎤-=-⎣⎦+++ (7)232222L t t s s ⎡⎤+=+⎣⎦ (8)732()327tL t es δ-⎡⎤-=-⎣⎦+ (9)[]22sinh()L t s βββ=-,由S 域平移性质,得()22sinh()atL e t s a βββ-⎡⎤=⎣⎦+-(10)由于()211cos ()cos 222t t Ω=+Ω 所以 222221111c o s ()22424ss L t s s s s ⎛⎫⎡⎤Ω=+∙=+ ⎪⎣⎦+Ω+Ω⎝⎭(11)()()()11111at t L e e a a s a s s a s βββββ--⎡⎤⎛⎫-=-= ⎪⎢⎥--++++⎣⎦⎝⎭ (12)由于()221cos()1ts L e t s ωω-+⎡⎤=⎣⎦++所以 ()()()221cos()1a t a s e L et s ωω--++⎡⎤=⎣⎦++(13)因为(2)(1)(1)(1)(1)(1)t t t te u t e t e e u t ------⎡⎤-=-+-⎣⎦且()(1)(1)2(1)(1)(1)11sst t e e L t eu t L eu t s s ------⎡⎤⎡⎤--=-=⎣⎦⎣⎦++所以 ()(1)(2)2211(2)(1)(1)11s t s s e L teu t e e s s s -----⎡⎤+⎡⎤-=+=⎢⎥⎣⎦+++⎣⎦(14)()(1)tL e f t F s -⎡⎤=+⎣⎦,由尺度变换性质,得(1)ta t L e f aF as a -⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎣⎦(15)()t L f aF as a ⎡⎤⎛⎫=⎪⎢⎥⎝⎭⎣⎦,再由s 域平移性质,得 []2()()at t L e f aF a s a aF as a a -⎡⎤⎛⎫=+=+ ⎪⎢⎥⎝⎭⎣⎦(16)31cos(6)cos (3)cos(3)2t t t -=∙13cos(9)cos(3)44t t =+32213cos (3)48149s s L t s s ⎡⎤=+⎣⎦++由s 域微分性质,得()()22322222213181327cos (3)481494819d s s s s L t t ds s s s s ⎡⎤--⎛⎫⎢⎥⎡⎤=-+=+ ⎪⎣⎦⎢⎥++⎝⎭++⎣⎦(17)[]2cos(2)4sL t s =+,连续两次应用s 域微分性质,有 []()2224cos(2)4s L t t s-=+,()3232224cos(2)4s sL t t s-⎡⎤=⎣⎦+(18)111atL es s a -⎡⎤-=-⎣⎦+,由s 域积分性质,得111111(1)at sL e ds t s s a ∞-⎛⎫⎡⎤-=- ⎪⎢⎥+⎣⎦⎝⎭⎰ln()ln ln s s a s s a ⎛⎫=+-=- ⎪+⎝⎭ (19)351135tt L ee s s --⎡⎤-=-⎣⎦++,由s 域积分性质,得 33111115ln 353t t s e e s L ds t s s s --∞⎛⎫⎡⎤-+⎛⎫=-= ⎪ ⎪⎢⎥+++⎝⎭⎣⎦⎝⎭⎰(20)()22sin aL at s a =⎡⎤⎣⎦+,由s 域积分性质,得()1122211sin 1arctan 21s s at s a s L ds d t s a a a s a π∞∞⎡⎤⎛⎫⎛⎫===-⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎛⎫⎣⎦+ ⎪⎝⎭⎰⎰ 4-2 解(1)因为()()sin ()2T f t t u t u t ω⎡⎤⎛⎫=--⎪⎢⎥⎝⎭⎣⎦()sin ()sin 22T T t u t t u t ωω⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以可借助延时定理,得()()sin ()sin 22T T L f t L t u t L t u t ωω⎧⎫⎡⎤⎛⎫⎛⎫=+--⎡⎤⎡⎤⎨⎬ ⎪ ⎪⎢⎥⎣⎦⎣⎦⎝⎭⎝⎭⎣⎦⎩⎭222222221sT T s ee S S S ωωωωωω--⎛⎫=+=+ ⎪+++⎝⎭(2)因为()()()sin sin cos cos sin t t t ωϕωϕωϕ+=+ 所以()222222cos sin cos sin sin s s L t s s s ωϕϕωϕϕωϕωωω++=+=⎡⎤⎣⎦+++ 4-3 解此题可巧妙运用延时性质。

信号与系统(第四版)第四章课后答案

信号与系统(第四版)第四章课后答案

第5-10页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1. (t ) 1, 2.( t) 或1 3. ( t ) s, 4. 指数信号e
1
s
, 0

1 s s0
s0t
(t 2)
f1(t) 1 0 1 f2(t) 1 t
例1:e (t 2) e
-t
2
e
(t 2)
e
2

1 s 1
e
2s
-1 0
第5-17页

1
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.2 拉普拉斯变换性质
1 1e sT
例2: 单边冲激 T(t ) 1 e sT e s 2T 例3: 单边周期信号 fT(t ) (t ) f1(t ) f1(t T ) f1(t 2T ) F1(s )(1 e sT e s 2T )
8 e 2 s
s
f(t ) 1 0 1 y(t ) 2 4 t
二、尺度变换
2s
2
(1 e 2 s 2s e 2 s )
2 e 2 s 2 (1 e 2 s 2s e 2 s ) s
第5-16页

0
2
4
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
拉氏逆变换的物理意义
f (t )
2 j 1

j
j
F (s)est ds

信号与系统第4章

信号与系统第4章
35
正方波为奇谐函数
f (t)
1
OT
2T t
1
f
(t
)
4
sin(t)
1 3
sin(3t)
1 5
sin(5t)
36
傅里叶级数的指数形式
f
(t)
A0 2
n1
An
c os (nt
n)
A0 2
n1
An
1 2
e j (nt n )
e j(nt n )
A0 2
1 2
n1
Ane jn e jnt
t1
(t)
i
(t)dt
0,
i 1,2,, n
则称该函数集为完备正交函数集。函数 ψ (t) 应满足条 件
0 t2 2 (t)dt t1
5
正交的三角函数集 (1)
1, cos 2 1 t , cos 2 2 t ,cos 2 m t ,,
T T
T
sin 2 1 t ,sin 2 2 t ,sin 2 n t ,
1 2
n1
Ane jn e jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e j n
jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e jn
jnt
1 2
Ane jn e jnt
n
37
傅里叶级数的指数形式
f
(t)
1 2
Ane
n
e j n
jnt
Fne jnt
n
上式中,

《信号与系统》教与学第四章

《信号与系统》教与学第四章

j n e 3

j n
e3


1 n
sin

n 3

,
n

0, 1,
2,
2
《信号与系统》教与学第四章答案
4.4 周期信号 f (t ) 的双边频谱 Fn 如图所示,求其三角函数表达式。
【知识要点:】本题主要考查周期信号的频谱概念,单边谱与双边谱的关系。
(3)计算信号的功率。
【知识要点:】本题主要考查周期信号的频谱概念应用;帕斯瓦尔功率等式应用。
T

2

f
t

A0 2

n1
An
cos
nt n

;P
Fn 2 。
n
【解题方法:】利用已知条件观察求出 ,并带入公式计算求出各次谐波分量;
根据单边幅度谱和双边幅度谱的关系、单边相位谱和双边相位谱的关系画出双
边幅度谱和相位谱;最后利用帕斯瓦尔功率等式计算信号的功率。
解:(1)

x

t


16 cos

20
t

4


6
cos

30
t

6


4
cos

40
t

3

10 (rad/s) ,
T

2

2 10

1 (s) , 5
周期信号所含谐波次数为二次,三次,四次;
求得。
(1) cos( t ) sin 2t
解: T1

《信与系统》教与学

《信与系统》教与学

4.14
利用能量等式
f
2 (t )dt
1 2
2
F ( j) d ,计算
sin t
2t
2
dt

【解题方法:】先利用门函数常用对和对称性求出 sin(2t) 的傅里叶变换, t
4.11 如下图所示信号, f1 (t ) 的傅立叶变换 F1 ( j ) 已知,求信号 f 2 (t ) 的傅立叶 变换 F2 ( j ) 。
解:
f2 (t ) f1 (t t0 ) f1(t t0 ) f1(t ) F1( j)
f1(t t0 ) F1( j)e jt0
9
《信号与系统》教与学第四章答案
解: T1
2
2(s )
T2
2 2
(s)
故该信号为非周期信号。
(2)
cos(
t)
sin(
t)
2
4
T1 T2
2
为无理数,
解: cos
2
t
,
2
4
(s),
sin
4
t
,
2
8
(s),
2
4
8 (s)。
4.2 利用奇偶性判断下图所示各周期信号的傅里叶级数中所含的频率量。
【解题方法:】首先根据函数的奇偶特性判断信号的傅立叶级数中包含的正、余 弦分量;再根据函数的谐波特性判断信号的傅立叶级数中包含的 奇谐分量、偶谐分量。
df (t) ( j ) F ( j ) dt
jt
df (t) dt
d( j) F(
d
j)
jF
(j)
j
dF ( j ) d
4t
df (t dt

重庆邮电大学信号与系统课件第4章

重庆邮电大学信号与系统课件第4章

f
(t )
etch tU
(t )
F (s)
(s
(s ) )2
2
23
通信与信息基础教学部
典型信号的拉普拉斯变换(1)
原函数
f (t)
像函数
F (s)
(t)
(t)
t (t)
Ae at (t)
sin0t (t)
cos0t (t)
24
通信与信息基础教学部
1
1 s 1 s2 A
sa
0 s2 02
1 2
s
1
s
1
1 2
s2
2s
2
s2
s
2
22
通信与信息基础教学部
典型信号的拉氏变换
同理
f
(t)
s ht
F (s)
s2
2
f
(t)
s h tU (t)
F (s)
s2
2
f
(t)
c h tU (t)
F (s)
s2
s
2
f (t) et s h tU (t) F (s)
(s )2 2
f (t) 1
2 j
j j
Fb
(
s)e
st
ds
拉普拉斯变换是将时域函数f(t)变为复频域函数Fb(s);或作相 反的变换。此处时域变量t是实数,复频域变量s是复数。
(拉普拉斯变换建立了时域和复频域(s 域)间的联系。)
6
通信与信息基础教学部
拉普拉斯变换的收敛域(1)
拉普拉斯变换的收敛域
02
18
通信与信息基础教学部
典型信号的拉氏变换
同理

信号与系统基础-第4章

信号与系统基础-第4章
5
4.1 傅氏级数 随时间的变化
是时间的函数,我们关心的是信号大小、快慢和延迟
关系,时间是研究信号和系统的基本出发点,因此,系统分析自然也就围绕着时间变量
展开。在时域分析中,信号f (t)
但是我们还注意到一个事实,一些信号的大小(幅度)和延迟(相位)还直接与另 一个变量
——频率有关,比如正弦型信号、复指数信号等。或者说,一些信号的幅度和相位还是 频率的函数。
【例题4-4】如图4-(6a) 所示的周期信号f1(t) 的傅里叶系数为F,n 试用其表示图4-(6b)、
(c) 、(d) 所示各信号的傅里叶系数。
【解】因为
f 2 (t)
f1
(t
T 2
)
所以,根据傅里叶级数的时移特性有
由题意可知
f
2
(t
)
F S
e
jn
T 2
0
Fn
(1)n Fn
f3 (t) f1 (t) f 2 (t)
c0 cn cos(n0t n ) (4-5)
n1
c0 a0
(4-6)
式(4-5)表明任何满足狄里赫利条件的周期函数可分解为直流和各次谐波分量之和。
12
4.1 傅氏级数
式(4-5)表明,任何满足狄里赫利条件的周期信号都可分解为一个常数和无数个不同频率 不同相位的余弦信号分量之和。其中,第一c0 项常数项是f (t) 在一个周期内的平均值,
式(4-1)说明
f (t) a0 (an cos n0t bn sin n0t)
n 1
(4-1)
任一周期信号可以用三角正交函数的线性组合表示。显然,这是信号分解特性 的体现。
9
4.1 傅氏级数
傅氏级数采用三角函数集的主要特点: (1)三角函数是基本函数; (2)三角函数同时具有时间和频率两个物 理量。 (3)三角函数容易产生、传输和处理。 (4)三角函数通过线性时不变系统后仍为 同频三角函数,仅幅值和相位会有所变化。

信号与系统张晔版第四章ppt

信号与系统张晔版第四章ppt

L[u(t)] est dt est 1
0
s
s
0
u(t) 1 s
(2) 单边指数信号 f (t) eatu(t)
延时信号
→ 对比傅里叶变换? 双边
L[eat ] eat est dt e(as)t 1
0
as
as
0
eat u(t) 1 sa
( a)
哈尔滨工业大学图象与信息技术研究所
L f (t t0 )u(t t0 ) F (s)est0

L
f
(at
t0 )u(at
t0 )
1 a
F
s a
e
s a
t0
(2) 先尺度、后平移
L
f
(at)u(at)
1 a
F
s a

L
f
(at
t0 )u(at
t0 )
1 a
F
s a
e
s a
t0
哈尔滨工业大学图象与信息技术研究所
4.2.6 时域微分特性
推而广之:
L
d n f (t)
dt n
sn F (s)
n 1 r 0
snr 1
f
(r) (0)
式中
f
(r)
(0)是r阶导数
d
r f (t) dt r
在0-时刻的取值。特别是,如果它们都为0,则
L
df (t dt
)
sF
(s)
L
d
2f dt
(t
2
)
s2F(s)
i 1
i 1
在应用中,可实现复杂信号的分解。
4.2.2 时域平移特性

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(第4章)【圣才出品】

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(第4章)【圣才出品】

3.全通函数 如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于 jω 轴互为镜像,这种系统函数称为全通函数,此系统则称为全通系统或全通网络。它的幅频特 性是常数。
4.最小相移函数 零点仅位于左半平面或 jω轴的网络函数称为“最小相移函数”,该网络称为“最小相 移网络”。非最小相移函数可以表示为最小相移函数与全通函数的乘积,即非最小相移网络 可以用最小相移网络与全通网络的级联来代替。

(1)部分分式展开法求解
首先将 F(s)展开成部分分式之和的形式,再对各部分分式分别取逆变换后叠加即可
得出 f(t)。
(2)留数定理求解
将拉氏逆变换的积分运算转化为求被积函数 F(s)est 在围线中所有极点的留数之和。
L 1[F (s)] 1 j F (s)estds [F (s)est的留数]
1 s
s2
s 2
,故
7 / 122
圣才电子书 十万种考研考证电子书、题库视频学习平台

L
[1 cos(t)]et
s
1
s (s )2 2

(7) L
[t 2
2t]
d2 ds2
1 s
d ds
2 s
2 s3
2 s2
(8) L [2 (t) 3e7t ] 2 3 s7
图 子书、题库视频学习平台

二、系统函数与系统特性 1.系统函数 系统的零状态响应的拉氏变换与激励的拉氏变换之比称为系统函数,即 H(s)=RZS (s)/E(s)。且冲激响应 h(t)↔H(s)。
2.零极点分布
H (s)

(9)e-αtsinh(βt);
(10)cos2(Ωt);

信号与系统 第4章-作业参考答案

信号与系统 第4章-作业参考答案

题图 4-3-1 解:
11
第四章 傅立叶分析
第 4 章 习题参考答案
4-3-7
1)x(t)是实周期信号,且周期为 6; 3)x(t) = −x(t − 3)
1 3
设某信号x(t)满足下述条件:
2)x(t)的傅里叶系数为ak ,且当k = 0 和 k > 2时,有ak = 0;
1
4) ∫−3 |x(t)|2dt = 6 2 5)a1是正实数。
第四章 傅立叶分析
第 4 章 习题参考答案
第 4 章 习题参考答案
4-1 思考题 答案暂略 4-1 练习题 4-2-2 已知三个离散时间序列分别为 x1 ( n) = cos
2πn 2πn , x3 (n) = e , x 2 (n) = sin 25 10
π x (t ) = sin 4π t + cos 6π t + 时,试求系统输出 y (t ) 的傅立叶级数。 4
解:
3
第四章 傅立叶分析
第 4 章 习题参考答案
4因果系统: y(t) + 4y(t) = x(t)
式中x(t) 为系统输入,y(t)是系统输出。在下面两种输入条件下,求输出y(t)的傅里叶级数 展开: 1)x(t) = cos2πt ;
2
2
= 3 ) f ( t ) Sa (100t ) + Sa
解:
( 60t ) 4)
sin(4π t ) , −∞ < t < ∞ πt
9
第四章 傅立叶分析
第 4 章 习题参考答案
4)T=1/4 4-2-27 设 x(t ) 是一实值信号,在采样频率 ω s = 10000π 时, x(t ) 可用其样本值唯一确定

信号与系统第四章知识点

信号与系统第四章知识点

第四章 拉普拉斯变换—连续信号s 域分析一、考试内容(知识点)1.拉普拉斯变换的定义及其性质、拉普拉斯逆变换; 2.系统的复频域分析法; 3.系统函数)(s H ;4.系统的零极点分布决定系统的时域、频域特性; 5.线性系统的稳定性;6.拉普拉斯变换与傅里叶变换之间的关系。

二、内容(知识点)详解1.拉普拉斯变换的定义、收敛域(1)变换式与反变换式dt e t f t f s F st -∞⎰-==0)()]([)(L ds e s F js F t f stj j ⎰∞+∞--==σσπ)(21)]([)(1L )(s F 称为)(t f 的象函数,)(t f 称为)(s F 的原函数。

下限值取-0,主要是考虑信号)(t f 在t =0时刻可能含有冲激函数及其导数项也能包含在积分区间之内。

(2)收敛域在s 平面上,能使式0)(lim =-→∞t t e t f σ满足和成立的σ的取值范围(区域),称为)(t f 或)(s F 的收敛域。

2.常用时间函数的拉普拉斯变换(1)冲激函数 )()(t t f δ= 1)(=s F)()()(t t f n δ= n s s F =)((2)阶跃函数 )()(t u t f = ss F 1)(= (3)n t (n 是正整数) t t f =)( 21)(s s F =2)(t t f = 32)(s s F =n t t f =)( 1!)(+=n s n s F(4)指数信号 t e t f α-=)( α+=s s F 1)(t te t f α-=)( ()21)(α+=s s F t n e t t f α-=)( ()1!)(++=n s n s F αt j e t f ω-=)( ωj s s F +=1)( (5)正弦信号、余弦信号系列)sin()(t t f ω= 22)(ωω+=s s F)cos()(t t f ω= 22)(ω+=s ss F)sin()(t e t f t ωα-= 22)()(ωαω++=s s F)cos()(t e t f t ωα-= 22)()(ωαα+++=s s s F )sin()(t t t f ω= 222)(2)(ωω+=s ss F )cos()(t t t f ω= 22222)()(ωω+-=s s s F )()(t sh t f ω= 22)(ωω-=s s F )()(t ch t f ω= 22)(ω-=s ss F (6) ∑∞=-=0)()(n nT t t f δ sT e s F --=11)(∑∞=-=00)()(n nT t f t f sTes F s F --=1)()(0 3.拉普拉斯变换的基本性质象函数)(s F 与原函数)(t f 之间的关系为:)]([)(t f s F L = (1)线性(叠加性)∑∑===⎥⎦⎤⎢⎣⎡ni i i n i i i s F a t f a 11)()(L ,其中i a 为常数,n 为正整数。

信号与系统(段哲民)第三版 第四章答案全解

信号与系统(段哲民)第三版 第四章答案全解

信号与系统(段哲民)第三版第四章答案全解4.1 选择题答案解析(C)伯努利信号是一个具有有限时间持续性的信号,因此是非因果信号。

解析:伯努利信号只在有限时间内存在,而非因果信号是只存在于负时间的信号。

(D)和三角函数的区别是,余弦函数的相位是0,而不是1。

解析:和三角函数不同,余弦函数的相位是0,表示相位没有滞后。

(B)碰撞行为是随机过程,因此其幅度表示为随机变量是正确的。

解析:碰撞行为是随机过程,其幅度表示为随机变量。

4.2 填空题答案解析1.以下哪个信号不是周期信号?(B)解析:周期信号是指在时间轴上具有循环性质的信号。

正方脉冲信号和方波信号都是周期信号,而冲击信号不是周期信号。

2.正弦信号频率是50Hz,则周期为______。

解析:频率和周期的关系为$f=\\frac{1}{T}$。

根据公式可知,周期$T=\\frac{1}{f}=0.02s$。

3.已知信号$y(t)=3\\sin(2\\pi t + \\frac{\\pi}{6})$,则相位为______。

解析:相位指信号相对于某参考信号的滞后程度。

对于正弦信号,相位为$\\theta = 2\\pi t + \\frac{\\pi}{6}$4.3 解答题答案解析1.请证明复指数函数$e^{j\\theta}$是周期信号。

解析:复指数函数$e^{j\\theta}$可以表示为$e^{j(\\omega_0t+\\phi)}=e^{j\\omega_0t}e^{j\\phi}$,其中$\\omega_0$为角频率。

由于$|\\phi| < \\pi$,所以$e^{j\\phi}$是一个衰减的振荡函数,它是一个周期信号。

2.指出以下信号的类型:(1)冲击信号 (2)阶跃信号 (3)斜坡信号解析:(1) 冲击信号是一个非周期信号;(2) 阶跃信号是一个非周期信号;(3) 斜坡信号是一个非周期信号。

3.已知信号y[y]=2y[y−y],请将该信号分解为若干复指数信号的叠加形式。

信号与系统第四章习题

信号与系统第四章习题

1 3
s +1 ) ,复频移性质、尺度变换、S 域微分 3
b
b ⎤ 1 s - s ⎡ (4) f (at − b) = f ⎢a(t − )⎥ ↔ F( )e a ,时移性质、尺度变换 a ⎦ a a ⎣
4.7 题图 4.2 所示为从 t=0 起始的周期信号。求 f(t)的单边拉氏变换。
解: (a) f (t ) = f a (t ) *
∑ δ (t − nT )
n =0

- s 1 f a (t ) = ε (t ) − ε (t − T / 2) ↔ (1 - e 2 ) s - s 1 1 1- e 2 1 = = ∴ F(s) = (1 - e 2 ) T -s ⎞ s 1 - e -sT s 1 - e -sT ⎛ ⎜ s ⎜1 + e 2 ⎟ ⎟ ⎝ ⎠ T T - s
2
K1 =
2 jπ / 6 2 − jπ / 6 e , K2 = e 3 3
∴ h(t ) =
π 4 −t 2 −t e cos( 3t + )ε (t ) = e 6 3 3
2
(
3cos 3t - sin 3t ε (t )
)
当 u s (t ) = ε (t ) 时, U( s ) = H ( s) =
−2 t 解:(1) e f (2t ) ↔
1 s+2 F( ) ,复频移性质、尺度变换 2 2 ⎡1 ⎤
2 2 -2s (2) (t − 2) f ( t − 1) = (t − 2) f ⎢ (t − 2)⎥ ↔ 2F′′(2s)e ,时移性质、尺度变换、S 域微分 2 ⎣2 ⎦
1
−t (3) te f (3t ) ↔ − F′(
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 两个矢量正交
矢量的分解
c2V2
V
V2
2
o
1
V1
c1V1
图 平面矢量的分解
c3V3
V3
V
o V1
V2
c2V2
c1V1
V c1V1 c2V2 c3V3
图 三维空间矢量的分解
推广到n维空间
1 正交函数的定义
在区间 (t1,t内2 ),函数集 {0 (t),1(t中),的,各N个(t)函} 数间,若满足下列 正交条件:
➢在波形任一周期内,其第二个半波波形与第一个半波波形相同;
x(t) x(t T0 / 2)
➢这时x(t)是一个周期减半为
的周期非正弦波,其基波频率

,即其只含有偶次谐T0波2;
20
4.4波形对称性与傅里叶系数
4 奇半波对称
➢在波形任一周期内,其第二个半周波形恰为第一个半周波形的
负值; x(t) x(t T0 / 2)
交函数集 {0 (t),1(t), ,N (t)} 是完备的,即再也找不到一个函数 (t)
能满足
t2
(t)
* m
(t
)dt
0
t1
m 0,1, , N
则在区间 (t1,t2 ) 内,任意函数x(t)可以精确地用N+1个正交函数地加权和
表示:
N
x(t) c00 (t) c11(t) cN N (t) cnn (t)
T0
3 傅里叶级数系数的确定
➢正弦—余弦形式傅里叶级数的系数
2Bk
2 T0
x(t) cos k0tdt
T0
2Dk
2 T0
x(t) sin k0tdt
T0
➢极坐标形式的傅里叶级数的系数
Ak Bk2 Dk2
由正弦—余弦形式傅里叶级数的
tgk Dk Bk
➢另一种求法:
系数确定
Bk Re{ck }, Dk Im{ck }, k 0
根据欧拉公式
ejt=cos(t)+jsin(t) e-jt=cos(t)-jsin(t)
sin(t)=(ejt-e-jt)/(2j) cos(t)=(ejt+e-jt)/2
得 x(t) 1 (1/ 2)cos 2t cos4t (2 / 3)cos6t
X(t)是实信号
因为 x(t) x(t)
2 Dk sin k0t k 1
❖任何 2信D号k x(Tt4)0都0T可0 以2 x分(t)解sin为k偶0函t d数t 和奇函数两部分。
Ev{x(t)} {[ x(t) x(t)]}/ 2 Od{x(t)} {[ x(t) x(t)]}/ 2
4.4波形对称性与傅里叶系数
3 偶半波对称
例4-7
习题1
如图所示信号为周期信号的一个周期,其付氏级数包含 ( ) A. 直流 、 偶次余弦项 B. 直流 、奇 次余弦项 C. 直流 、 偶次正弦项 D. 直流 、 奇次正弦项
习题2
信号如图所示,其三角型付氏级数为( )
A.
n 为奇数
B.
n 为偶数
C.
n 为奇数
D.
n 为偶数
4.5周期信号的频谱与功率谱
4.4波形对称性与傅里叶系数
1 偶对称 x(t) x(t)
❖波形对纵轴对称 ❖奇函数在对称区间积分为零 ❖傅里叶级数中只有常数项和余弦项
x(t) c0 2B1 cos0t 2B2 cos 20t 2Bk cos k0t
c0 2 Bk cos k0t k 1
2Bk
4 T0
T0
第四章 连续时间傅立叶变换
连续时间信号的谱分析和时-频分析
4.1 引言
➢时域中,连续信号的基本信号是冲激函数,离散信号的 基本信号是抽样序列;以冲激(抽样)响应作为基本响 应。
➢频域中以复指数函数或序列作为基本信号。系统响应表 示为不同频率的复指数信号响应的加权或积分。 ➢原因:1)它是LTI系统的特征函数。
➢正弦函数 sin n0t 和余弦函数 cos n0t 在区间 (t1, t1 T0 ) 内是正交函数。
4.3 周期信号的表示 连续时间傅里叶级数
1 用指数函数表示周期信号:复指数形式的傅里叶级数
➢复指数函数集 k e jk0t , k 0,1, ,
加权组合的信号 x(t) ck e jk0t
k 1
3 傅里叶级数系数的确定
➢周期信号的复指数形式的傅里叶级数:
x(t)
ck e jk0t
k
ck
1 T0
x(t )e jk0t dt
T0
➢已知x(t)可以分析出所含的频谱;
➢系数 ck 称为x(t)的傅里叶系数或频谱; ➢系数 c0 是x(t)中的直流或常数分量
1
c0
T0
x(t )d t
2)
c0
1 T0
T0
x(t)dt= 1 T0
T1 / 2 -T1 / 2
A dt
AT1
/ T0
ck
1 T0
x(t )e jk0t dt
T0
1 T0
T1 / 2 Ae jk0t dt
T1 / 2
(2 A / k0T0 ) sin(k0T1 / 2) ( A / k ) sin(kT1 / T0 )
3)
x(t)
ck e jk0t
复指数形式的傅立叶级数
k
正-余弦形式的傅立叶级数
例 4-4 已知 x(t) 7 cos0t 3sin0t 5,求cos其2复0t 指4数sin形2式0t 的傅 立叶级数
解:
x(t) c0 2 [Bk cos k0t Dk sink0t]
k 1
对比
2B1 7, 2D1 3, 2B2 5, 2D2 4, 其余系数2Bk 0, 2Dk 0
k
k 1
将| ck | 和 argck 对k0 的函数关系绘成图,称为复指数频谱 图4-10 (b)
| ck || ck | Ak
argck argck k , k 0
➢为镜像对称方式;
➢这时x(t) 只含有奇次谐波;
0 k为偶数
2Bk
4
T0
T0
2
x(t) cos k0t
dt
0
k为奇数
0 k为偶数
2Dk
4
T0
T0
2
x(t) sin k0t
dt
0
k为奇数
4.4波形对称性与傅里叶系数
5 双重对称
➢X(t)是奇函数或偶函数,同时又具有奇半波对称或偶半波对称; ➢这种波形对与纵轴相隔 的垂线对称,又称为1/4波对称; ➢通过例4-6说明双重对称T0有4与傅里叶系数的关系。 ➢ 表4-1 波形对称性、对称条件及其对应的傅里叶系数; ➢求复杂函数的傅里叶系数时,可以先求其偶部和奇部的傅里叶 系数,然后相加。
k 1
傅里叶级数的 三角函数形式
2 三角函数形式的傅里叶级数
在连续时间情况下,实周期信号的傅里叶级数的三角函数形式:
➢极坐标形式:令 ck Ak e jk
x(t) c0 2 Ak cos(k0t k ) k 1
➢正弦—余弦形式形式:
数学上等效
令 ck Bk jDk
x(t) c0 2 (Bk cos k0t Dk sin k0t)
2
x(t) cos k0t
dt
0
4.4波形对称性与傅里叶系数
2 奇对称 x(t) x(t)
❖波形对原点对称 ❖ x(t) cosk0t 为奇函数,x(t) sin k0t 为偶函数;奇函数 在对称区间积分为零 ❖傅里叶级数中只有正弦项
x(t) 2D1 sin 0t 2D2 sin 20t 2Dk sin k0t
x(t) ck e jk0t
k
两边取共轭 x(t)
ck*e jk0t
k
以-k替代k
x(t)
c-k*e jk0t
k
比较
ck c*k 或 ck* ck
2 三角函数形式的傅里叶级数
x(t)
ck e jk0t
k
重写
x(t) c0 [ck e jk0t ck e jk0t ]
x(t)
ck e jk0t
k 3
式中 c0 1, c1 c1 1/ 4, c2 c2 1/ 2,c3 c3 1/ 3,0 2
求(a)其三角函数表示式;(b)用图解方法表示各谐波分量的
波形及其合成波形x(t).
解: x(t) 1 (e j2t e j2t )/ 4 (e j4t e j4t )/ 2 (e j6t e j6t )/3
➢三角函数形式的傅里叶级数: x(t) c0 2 Ak cos(k0t k ) k 1 将 Ak 对 k0 的函数关系,绘成图,称为振幅频谱图,简称为频谱图; 将 k 对 k0 的函数关系,绘成图,称为相位频谱。
➢ x(t) 频谱 ➢图4-10 (a)
单边频谱
x(t)
ck e jk0t c0 (ck e jk0t ck e jk0t )
2)复指数是正交函数。 3)信号频率和信号本身是现实可观测。
➢信号的谱分析:把信号表示为一组不同频率的复指数函
数或正弦信号的加权和,称为信号的频谱分析或傅里叶
分析。
本章主要内容
4.2 复指数函数的正交性
V2
两矢量V1与V2正时的夹角为
90°。不难得到两正交矢量
的点积为零, 即
90°
o
V1
V1V 2 V1 V2 cos90 0
掌握 式 4-44,4-45,4-46
例 4-2 已知x(t)是一周期的矩形脉冲,如图所示,求其傅 里叶级数。
相关文档
最新文档