第四章 matlab的符号运算
matlab符号运算 多项式

matlab符号运算多项式【提纲】1.MATLAB符号运算简介MATLAB是一款功能强大的数学软件,其中符号运算功能允许用户进行高级数学计算、分析和可视化。
符号运算可以帮助工程师、科学家和数学家在各种领域解决问题,如线性代数、微积分、概率论等。
2.多项式基本概念与MATLAB表示多项式是数学中一个重要的概念,它表示为一个无穷级数,其中包含常数、变量及其幂次。
在MATLAB中,多项式可以用符号表达式表示,如:f(x) = 2x^3 + 4x^2 - 3x + 1。
3.多项式运算实例以下是几个MATLAB中进行多项式运算的实例:- 多项式加法:将两个多项式相加,如f(x) + g(x)。
- 多项式减法:将两个多项式相减,如f(x) - g(x)。
- 多项式乘法:将两个多项式相乘,如f(x) * g(x)。
- 多项式除法:将一个多项式除以另一个多项式,如f(x) / g(x)。
- 多项式求导:对一个多项式求导,如diff(f(x))。
- 多项式积分:对一个多项式进行积分,如int(f(x))。
4.多项式函数与应用MATLAB提供了许多与多项式相关的函数,如:- polyfit:根据一组数据拟合多项式。
- polyval:根据多项式系数计算多项式的值。
- roots:求多项式的根。
- legendre:勒让德多项式。
- laguerre:拉格朗日多项式。
这些函数在信号处理、控制系统、优化等领域具有广泛的应用。
5.总结与建议MATLAB的符号运算功能为多项式计算提供了便捷的工具和函数。
掌握这些功能和函数可以帮助用户在各种应用场景中解决问题。
第4章-MATLAB符号运算

simplify与simple命令
• simplify普遍使用于表达式化简。此外,还可以 使用simple函数进行化简; • simplify 函数可以对包含和式、根式、分数、 乘方、指数、对数、三角函数等的表达式化简; • 而simple 函数的目标是寻找最少字符的表达式。 • 例:Jacobi矩阵的Jacobian行列式。
findsym函数的例
syms a b c x >> f=sym('a*x^2+b*x+c'); >> findsym(f,1) %确定符号表达式首选的一个 变量 ans = x >> findsym(f,2) %确定符号表达式首选、次选 的2个变量 ans = x,c
符号微积分运算
• diff(f) 对符号表达式f进行微分运算,符号变量由前面 的规则确定; • diff(f,a) f对指定变量a进行微分运算; • diff(f,n)或diff(f,a,n) 计算f对默认变量或指定变量a 的n 阶导数,n是正整数; • int(f) 对于符号变量f代表的符号表达式,求f关于默认 变量的不定积分; • int(f,v) 计算f关于变量v的不定积分; • int(f,a,b)或int(f,v,a,b) 量v从a到b的定积分。 计算f关于默认变量或指定变
符号变量的定义
使用符号变量之前,应先对其予以声明,命令格式如下: • syms 变量名列表(其中各个变量名用空格分隔,不能 用逗号分隔) 如: syms x a • sym (‘变量名’) • 随后输入的 y = ax和y = a*sin(x) 就成了符号函数; f= ' sin(y)^2 ' 则定义了f为一个符号表达式; eq = ' a-y^2 =0 ' 定义了eq为一个符号方程。 如: sym(' y ' ) 经上述定义后,x, y, a已成为符号变量。
Matlab符号计算

s=log(2*x/y);
simplify(s)
ans =
log(2)+log(x/y)
s=(-a^2+1)/(1-a)
simplify(s)
ans =
a+1
函数simple试用几种不同的化简工具,然后选择在结果中含有最少字符的那种形式。如下例:
syms x y;
syms x y;
V=3*x^2-5*y+2*x*y+6
V =
3*x^2-5*y+2*x*y+6
二.基本的符号运算
1.四则运算:
符号表达式的加减乘除可以分别利用函数symadd、symsub、symmul、symdiv来实现,幂运算可以由sympow来实现。
例:
f=‘2*x^2+3*x-5’ %定义符号表达式
④limit(f,x,a,’right’),求极限,’right’表示变量x从右边趋近于a。
⑤limit(f,x,a,’left’),求极限,’left’表示变量x从左边趋近于a。
例:求下列极限
syms a m x;
f=(x^(1/m)-a^(1/m))/(x-a);
g=‘x^2-x+7’
U=symadd(f,g) %求f+g
V=symsub(f,g) %求f-g
W=symmul(f,g) %求f*g
X=symdiv(f,g) %求f/g
Y=sympow(f,’3*x’) %求f^(3x)
另外,与数值运算一样,也可以用+ - * / ^运算符来实现符号运算。如:
①limit(f,x,a)求符号函数f(x)的极限。当x趋向于a时,f(x)的极限值。
MATLAB的符号计算

符号数学工具箱中的工具是建立在功能强大 符号数学工具箱中的工具是建立在功能强大 的称作Maple软件的基础上。它最初是由加拿 软件的基础上。 大的滑铁卢( 大的滑铁卢 ( Waterloo ) 大学开发的。 当要 大学开发的 。 求MATLAB进行符号运算时,它就请求Maple 进行符号运算时, 去计算并将结果返回到MATLAB命令窗口。 命令窗口。 因此, 因此 , 在 MATLAB 中的符号运算是 MATLAB 处理数字的自然扩展。 处理数字的自然扩展。
积分 运用函数可以求得符号表达式的积分,该函数用 以演算函数的积分项,这个函数要找出一符号表 达式F使得diff(F)=f。相关的用法如下: 达式F使得diff(F)=f。相关的用法如下: ①int(f)返回f对预设独立变量的积分值。 int(f)返回f ② int(f,’t’)返回f对独立变量t的积分值。 int(f,’ 返回f对独立变量t ③ int(f,a,b)返回f对预设独立变量的积分值,积分 int(f,a,b)返回f对预设独立变量的积分值, 区间为[a,b], 区间为[a,b],a和b为数值表达式。 ④ int(f,’t’,a,b)返回f对独立变量t的积分值,积分区 int(f,’ ,a,b)返回f对独立变量t的积分值, 间为[a,b], 间为[a,b],a和b为数值表达式。 ⑤ int(f,’m’,’n’)返回f对预设独立变量的积分值,积 int(f,’ 返回f对预设独立变量的积分值, 分区间为[m,n], 分区间为[m,n],m和n为符号表达式。
左趋近于a
lim f ( x )
x →a −
limit(f,x,a,’left’)
lim f ( x )
x →a +
右趋近于a limit(f,x,a,’right’)
实验四MATLAB数值计算与符号计算

实验四 MATLAB数值计算与符号计算一、实验目的1.掌握数据插值和曲线拟合的方法2.掌握求数值导数和数值积分的方法3.掌握代数方程数值求解的方法4.掌握常微分方程数值求解的方法5.掌握求解优化问题的方法6.掌握求符号极限、导数和积分的方法7.掌握代数方程符号求解的方法8.掌握常微分方程符号求解的方法二、实验原理1.数据插值a) 一维数据插值 Y1=interp1(X,Y,X1,’method’)b) 二维数据插值 Z1=interp2(X,Y,Z,X1,Y1,’method’)2.曲线拟合[P,S]=polyfit(X,Y,m)3.符号对象的建立(1)符号量名=sym(符号字符串):建立单个的符号变量或常量;(2)syms arg1 arg2,…,argn:建立n个符号变量或常量。
4.基本符号运算(1)基本四则运算:+,-,*,\,^(2)分子与分母的提取:[n,d]=numden(s)(3)因式分解与展开:factor(s),expand(s)(4)化简:simplify, simple(s)5.符号函数及其应用(1)求极限:limit(f,x,a)(2)求导数:diff(f,x,a);(3)求积分:int(f,v)三、实验内容1.按下表用3次样条方法插值计算0~900范围内整数点的正弦值和0~750范围内整数点的正切值,然后用5次多项式拟合方法计算相同的函数值,并将两种计算结果进行比较。
x2=0:75;y1=sin(pi.*x1./180);y2=tan(pi.*x2./180);;a=interp1(x1,y1,45,'cublic')b=interp1(x1,y1,45,'cublic')p1=polyfit(x1,y1,5)p2=polyfit(x2,y2,5)c1=polyval(p1,x1);c2=polyval(p2,x2);subplot(2,1,1);plot(x1,c1,':o',x1,y1,'r');subplot(2,1,2);plot(x2,c2,':o',x2,y2,'r');10203040506070802.(1)求函数33()sin cos f x x x =+在点,,,6432x ππππ=的数值导数。
MATLAB的符号计算

diff(s,’v’,n)
【例】求导数: 2 d s in x dx x = sym('x'); diff(sin(x^2),x) ans = 2*cos(x^2)*x
%定义符号变量 %求导运算
3.积分函数 积分函数int(s ,v,a,b)可以对被积函 数或符号表达式s求积分。其引用格式为: int(s ,v,a,b) 说明:
1、建立m-文件rigid.m如下: function dy=rigid(t,y) dy=zeros(3,1); dy(1)=y(2)*y(3); dy(2)=-y(1)*y(3); dy(3)=-0.51*y(1)*y(2);
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 2 4 6 8 10 12
例1
解
d2y dx
2
0 应表达为:D2y=0.
求
du 1 u 2 的通解. dt
输入命令:dsolve('Du=1+u^2','t')
结 果:u = tg(t-c)
例2
求微分方程的特解.
d 2 y dy 2 4 29 y 0 dx dx y (0) 0, y ' (0) 15
解
2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
3、结果如图 图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.
matlab中的数学符号与运算

matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。
MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。
以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。
例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。
-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。
-转置:使用单引号`'` 来进行转置操作。
例如,`A'` 表示矩阵A的转置。
-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。
例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。
2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。
例如,`result = 2 + 3`。
-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。
例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。
-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。
-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。
-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。
这些是MATLAB中一些常见的数学符号和运算。
MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。
如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。
MATLAB8.5教程第4章 符号计算

• MATLAB为符号计算提供了一种引入符号对象的数学运 算工具箱,包含函数的复合、简化、极限、导数、积分, 泰勒展开式、级数求和,以及求解代数方程和微分方程 等函数命令。其计算指令的调用比较简单,基本上与数 学函数表示法相同。
本章重点
• • • • 符号对象的创建 符号极限、导数、积分 方程求解 级数求和
4.1.2 符号表达式运算
• 8.复合函数的运算 • 格式:compose(f,g) %返回f=f(x)和g=g(y)的复合函数 f(g(y))。x是为findsym定义的f的符号变量,y是为 findsym定义的g的符号变量 • compose(f,g,t) %返回f=f(x)和g=g(y)的复合函数f(g(t)), 返回的函数以t为自变量。x是为findsym定义的f的符号变 量,y是为findsym定义的g的符号变量。例如, • >>syms x y t • >>f=1/(1+x^2) • >>g=sin(y) • >>compose(f,g) • ans = • 1/(sin(y)^2 + 1) • >> compose(f,g,t) • ans = • 1/(sin(t)^2 + 1)
4.5 符号级数
• 2.级数和
• 格式:S=symsum(f) %对符号表达式f中的符号变量k (由命令findsym(f)确定的)从0到k-1求级数和
• S=symsum(f,x) 0到k-1求级数和
%对符号表达式f中指定的符号变量x从
• S=symsum(f,a,b) %对符号表达式f中的符号变量k(由 命令findsym(f)确定的)从a到b求级数和 • S=symsum(f,x,a,b) %对符号表达式f中指定的符号变量x 从a 到b求级数和
MATLAB的符号运算V精简版

ans=[2+y,4+y,6+y]
>> subs(f,x,[1:3]) >> subs(f,{x,y},{[1:3],[5:7]})
ans=[7 10 13]
>> subs(f,{x,y},{a+b,a-b}) >> subs(f,{x,y},{x+y,x-y})
Copyright © CUGB
2024/4/3
Matlab的符号运算
符号对象建立时可以附加属性: real、positive 和 unreal
>> x=sym('x','real') >> k=sym('k','positive') >> x=sym('x','unreal')
表明 x 是实的 表明 k 是正的 去掉 x 的附加属性
Copyright © CUGB 2024/4/3
Matlab的符号运算
符号表达式的建立
>> syms x >> f1=sin(x)+cos(x)
推荐!
>> f2=sym(’sin(x)+cos(x)’)
Copyright © CUGB 2024/4/3
Matlab的符号运算
相关函数
➢ findsym: 查找符号表达式中的符号变量
findsym(f) 按字母顺序列出符号表达式 f 中的所有自由变量 findsym(f,N) 列出 f 中距离 x 最近的 N 个自由变量(i,j 除外)
Matlab的符号运算
其它运算
4MATLAB符号计算

第四节MATLAB符号计算在自然科学的各个领域不但需要解决数值分析和计算问题,同时也要解决符号运算的问题,MA TLAB中的符号计算功能是以Maple V为基础开发的。
MATLAB的符号数学工具箱的主要功能包括:符号表达式的创建、符号矩阵的运算,符号表达式的化简和替换、符号微积分、符号代数方程等。
一、符号表达式的创建MATLAB的符号数学工具箱提供了两个基本函数,用来创建符号变量和表达式,分别是sym 和syms。
●函数sym的调用形式为:x=sym(‘x’)创建一个符号变量x,它可以是字符、字符串、表达式或字符表达式。
●函数syms用于方便地一次创建多个符号变量,其调用形式为:syms a b c…例1 使用sym 和syms函数创建符号变量。
a=sym('a') %定义符号变量aa =ab=sym('1+sqrt(5)/2') %定义符号变量bb =1+sqrt(5)/2syms a b c d %定义4个符号变量使用函数可以创建符号矩阵,可以直接输入或从数值矩阵转换。
例2 创建一个循环矩阵。
syms a b c dn=[a b c d ;b c d a ; c d a b ; d a b c]输出结果为:n =[ a, b, c, d][ b, c, d, a][ c, d, a, b][ d, a, b, c]例3 将3阶的Hilbert 矩阵转化为符号矩阵。
h=hilb(3) %创建Hilbert矩阵h =1.0000 0.5000 0.33330.5000 0.3333 0.25000.3333 0.2500 0.2000h1=sym(h) %用函数sym转化为符号矩阵h1 =[ 1, 1/2, 1/3][ 1/2, 1/3, 1/4][ 1/3, 1/4, 1/5]注意:符号矩阵与普通数值矩阵的区别是:在命令窗口的显示中,数值矩阵只显示元素的数值,而符号矩阵的每行元素均放在一对方括号内;在工作空间窗口显示的变量图标也不同,数值图标为,符号矩阵的图标为。
MATLAB符号运算

MATLAB符号运算前⾔有时候,你可能会遇到较复杂的⽅程(组),希望⽤MATLAB来求解。
MATLAB的符号运算正好可⽤于求解⽅程(组)。
此外,它还有许多其他功能。
例如,展开和简化、因式分解以及微积分运算等。
MATLAB的符号运算虽然是数值运算的补充,但是它仍然是科学计算研究中不可替代的重要内容。
与数值运算相⽐,符号运算不需要预先对变量赋值,其运算结果以标准的符号形式表达。
⽐如说计算sin(π),数值运算的结果是1.2246e-16,符号运算的结果是0。
前者是近似的,后者是精确的。
正⽂MATLAB符号运算功能⾮常强⼤,本⽂只介绍⼤部分常⽤的符号运算功能。
注:本⽂代码的运⾏环境是MATLAB R2016b。
1. 创建符号数、符号变量和符号矩阵这⼀步骤是符号运算的第⼀步,后⾯的步骤都是在此基础上进⾏的。
%创建符号数 (只能⽤sym函数)s0 = 1 / sym(7) %符号数,不适合⼤型符号数s1 = sym('1/7') %符号数s2 = sym('3 + 4i') %符号复数%创建符号变量 (sym函数和syms函数都⾏)%--sym函数s3 = sym('x') %符号变量%--syms函数syms a b c %创建多个符号变量,值为本⾝syms(sym('[d e; e d]')) %⽤已存在的符号变量矩阵创建多个符号变量%创建符号矩阵 (sym函数和syms函数都⾏)s4 = sym('[2 5 6; 9 8 6]') %符号数矩阵s5 = sym('x', [2 3]) %符号变量矩阵,矩阵内的元素不会被创建为符号变量A = [a b c; c b a] %⽤已存在的符号变量创建符号变量矩阵% syms A B [2 3] %仅2017及以上版本⽀持,同时创建多个符号矩阵代码运⾏结果如下。
可以看到s5是⼀个2x3的符号变量矩阵,但矩阵内元素不会被创建成符号变量。
Matlab教学第四章 MATLAB符号运算(Symbolic)

>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') >> syms x; diff(y)+2*x*y - x*exp(-x^2)
f2=2*(u+2)
ans=14 ans=2*((a+2)+2) f3=2*x+2*y ans=6
符号矩阵
使用 sym 函数直接生成 >> A=sym('[1+x, sin(x); 5, exp(x)]') 将数值矩阵转化成符号矩阵 >> B=[2/3, sqrt(2); 5.2, log(3)]; >> C=sym(B) 符号矩阵中元素的引用和修改 >> A=sym('[1+x, sin(x); 5, exp(x)]'); >> A(1,2) % 引用 >> A(2,2)=sym('cos(x)') % 重新赋值
符号对象的基本运算
基本函数
三角函数与反三角函数、指数函数、对数函数等
sin、cos、tan、cot、sec、csc、… asin、acos、atan、acot、asec、 acsc、…
exp、log、log2、log10、sqrt abs、conj、real、imag
rank、det、inv、eig、lu、qr、svd
How 中记录的为简化过程中使用的方法。
f
2*cos(x)^2sin(x)^2
(x+1)*x*(x-1)
R
HOW
3*cos(x)^2-1 simplify
x^3-x combine(tri g)
四MATLAB符号运算

实验四 MATLAB符号运算一.实验目的掌握符号变量和符号表达式的创建,掌握matlab的symbol工具箱的一些基本应用。
二.实验内容(1)符号变量、表达式、方程及函数的表示。
(2)符号为积分运算。
(3)符号表达式的操作和转换。
(4)符号微分方程求解。
三.实验步骤1.符号运算的引入在数值运算中如果求lim(sin(pi*x)/x(x-0),则可以不断让x趋近0,一球的表达式趋近什么数,但是终究不能令x=0,在数值运算中0不能做除数。
Matlab的符号运算能解决这类问题。
输入如下命令:>> f=sym('sin(pi*x)/x')f =sin(pi*x)/x>> limit(f,'x',0)ans =pi2.符号常量、符号变量、符号表达式的创建1)使用sym()创建输入以下命令,观察workspace中a,b,f是什么类型的数据,占用多少字节的内存空间。
>> a=sym('1')a =1>> b=sym('x')b =x>> f=sym('2*x^2+3*y-1')f =2*x^2+3*y-1>> clear>> f1=sym('1+2'),f2=sym(1+2),f3=sym('2*x+3'),f4=sym(2*x+3)f1 =1+2f2 =3f3 =2*x+3??? Undefined function or variable 'x'.>> x=2,f4=sym(2*x+3)x =2f4 =7Sym()的参数可以是字符串或数值类型,无论你是哪种类型都会生成符号类型数据。
2)使用syms创建>> clear>> syms x y z>> x,y,zx =xy =yz =z>> f1=x^2+2*x+1f1 =x^2+2*x+1>> f2=exp(y)+exp(z)^2f2 =exp(y)+exp(z)^2>> f3=f1+f2f3 =x^2+2*x+1+exp(y)+exp(z)^2用符号类型的变量经过运算(加减乘除)得到。
matlab的符号运算

提问: sym(‘sqrt(3)’) 和 sym(sqrt(3))区别是什么?
第四章 MATLAB的符号运算
五、符号运算 2 sym函数 例如: sym(1/3,'f') sym(1/3,'e') sym(1/3,'r') sym(1/3,'d')
第四章 MATLAB的符号运算
五、符号运算 2 sym函数 例如:
第四章 MATLAB的符号运算
三、符号表达式的定义 MATLAB自变量确定原则: (1) x被视为默认的自变量。 (2)字母位置最接近x的小写字母; (。。。u,v,w,x,y,z。。。)
第四章 MATLAB的符号运算
三、符号表达式的定义 默认自变量实例
(1) sin(a*x+b*y) (2)a*x^2+b*x+c (3)1/(4+cos(t)) (4)4*x/y (5)2*a+b (6)2*i+4*j
符号表达式:包含数字、函数和变量的字符串, 不要求字符串中的变量有预先确定的值。 调用命令: sym 调用格式: f=sym(‘符号表达式’) 定义符号表达式,并将它赋值给变量f。
第四章 MATLAB的符号运算
三、符号表达式的定义
建立符号表达式有以下2种方法: (1)用sym函数建立符号表达式。 >> f=sym('a*x^2+b*x+c'); (2) 使用已经定义的符号变量组成符号表达式。 >> syms x y a b c >> f=a*x^2+b*x+c (?)利用单引号来生成符号表达式。 >> f='a*x^2+b*x+c'
第四讲 matlab 的符号运算

一、符号运算的基本操作
1. 什么是符号运算 • 与数值运算的区别
※ 数值运算中必须先对变量赋值, 然后才能参与运算。 ※ 符号运算无须事先对独立变量 赋值,运算结果以标准的符号形式 表达。
• 特点:
运算对象可以是没赋值的符号变量 可以获得任意精度的解
• Symbolic Math Toolbox——符号运
>> syms x t >> f1=(x-1)*(x-2)*(x-3); >> g1=collect(f1) %按x合并同类项 g1 = -6+x^3-6*x^2+11*x >> g1=expand(f1) g1 = -6+x^3-6*x^2+11*x
%多项式展开
• • • •
• • • • • • • • • •
3. horner函数 horner函数将符号表达式化简成嵌套的形式。 4. factor函数 factor函数将符号多项式进行因式分解,将多项式 分解成低阶多项式相乘,如果不能分解则返回原 来的符号多项式。
>> syms x t >> f1=x^3-6*x^2+11*x-6; >> g1=horner(f1) %转换为嵌套形式 g1 = -6+(11+(-6+x)*x)*x >> g12=factor(f1) g12 = (x-1)*(x-2)*(x-3) 5. pretty函数 pretty函数将符号表达式给出排版形式的输出结果。
• 1. 多项式符号表达式的通分 • [N,D] = numden(s)%提取多项式符号表达式s的分子 • • • •
• • • •
matlab符号运算实验原理

matlab符号运算实验原理
MATLAB中的符号运算是一种使用符号变量和表达式的运算方式,与数值
运算不同。
其原理主要基于以下方面:
1. 符号表达式的创建:MATLAB中的符号运算使用符号常量、符号变量和
符号表达式。
这些都可以通过`sym`函数创建。
例如,`A=sym('1')`会创建
一个符号常量,`B=sym('x')`会创建一个符号变量,而`f=sym('2x^2+3y-
1')`则会创建一个符号表达式。
2. 符号运算的执行:符号运算主要包括基本的四则运算(加、减、乘、除)、复合运算、求导和积分等。
对于初等函数,这些运算可以直接使用基本的数学公式进行。
例如,求导和积分可以使用基本的初等函数导数公式和积分公式,以及四则运算法则和复合函数链式求导法则。
3. 结果的表示:符号运算的结果可以是数值或者符号。
对于数值结果,MATLAB会自动进行数值化表示。
对于符号结果,MATLAB会以符号形式
表示。
4. 特殊情况的处理:对于一些特殊情况,如求高次多项式的零点或者对一些特殊函数进行积分等,可能需要特殊的处理方法或者预存的求根或求积套路。
总的来说,MATLAB的符号运算实验原理主要基于符号表达式的创建、使
用基本的数学公式进行运算以及对特殊情况的处理。
这些原理使得
MATLAB能够方便地进行数学上的符号运算,为数学研究和工程计算提供了强大的工具。
matlab符号运算 多项式

一、介绍matlab符号运算matlab符号运算是指利用matlab软件进行代数表达式的计算和求解。
在matlab中,符号运算可以实现对多项式的加减乘除、导数和积分等操作,非常适用于代数表达式的计算和求解。
在工程、数学和物理等领域,matlab符号运算被广泛应用,能够高效地解决各种代数运算问题。
二、matlab符号运算的基本操作1. 创建符号变量在matlab中,可以使用syms函数来创建符号变量,例如:```matlabsyms x y```这样就创建了两个符号变量x和y,可以用于代数表达式的计算和求解。
2. 代数表达式的运算利用符号变量创建代数表达式,并进行加减乘除等运算,例如:```matlabf = x^2 + 2*x + 1;g = x + 1;h = f * g;```这样就实现了对代数表达式的乘法运算,h为结果表达式。
3. 多项式求导利用diff函数可以对代数表达式进行求导,例如:```matlabf = x^2 + 2*x + 1;df = diff(f,x);```这样就求出了代数表达式f对x的一阶导数df。
4. 多项式积分利用int函数可以对代数表达式进行积分,例如:```matlabf = x^2 + 2*x + 1;F = int(f,x);```这样就求出了代数表达式f对x的不定积分F。
5. 多项式因式分解利用factor函数可以对代数表达式进行因式分解,例如:```matlabf = x^2 + 2*x + 1;factored_f = factor(f);```这样就对代数表达式f进行了因式分解,得到了其因式分解形式。
三、matlab符号运算在工程应用中的实例在工程领域,matlab符号运算被广泛应用于各种代数表达式的计算和求解。
以下以电路分析为例,介绍了matlab符号运算在工程应用中的实例。
1. 电路分析中的符号运算在电路分析中,通常需要对电路中的电压、电流、电阻等元件进行建模和分析。
MATLAB的运算符号及函数

3.常用的函数及常量
常用的函数及常量如表7-2所示。
函数名 abc(x)
pi sin(x) asin(x) cos(x)
函数功能 绝对值函数 |x|
圆周率 正弦函数 sin(x) 反正弦函数 arcsin(x) 余弦函数 cos(x)
acos(x)
反余弦函数 arccos(x)
tan(x) cot(x)
经济数学
MATLAB的运算符号及函数
1.基本运算
MATLAB能识别常用的加(+)、减(-)、乘(*)、除(/)及 幂次运算符号(^)等绝大部分数学运算符号。因此,要在 MATLAB中进行基本数学运算,只需在命令窗口中的提示符(>>) 之后直接输入运算式并按Enter键即可。
例如:>>(2 * 3+3 * 4)/10
中(均用小括号),从最里层向最外层逐渐脱开。
2.常用快捷键 常用快捷键如表7-1所示。
快捷键 ↑(Ctrl+P) ↓(Ctrl+N) ←(Ctrl+B) →(Ctrl+F) Esc(Ctrl+U) Del(Ctrl+D)
表7-1
功能 调用上一行 调用下一行 光标左移一个字符 光标右移一个字符 清除当前输入行 删除光标处右侧字符
正切函数 tan(x) 余切函数 cot(x)
函数名 sum(x) sqrt(x)
inf exp(x) log(x)
log10(x)
log2(x) sign(x)
表7-2
函数功能 向量元素求和
平方根 无穷大 指数 ex 自然对数 lnx 以 10 为底的常用对数
lgx 以 2 为底的对数符号 Nhomakorabea数概率学与数理统计
第四章 MATLAB符号计算

Ezpolar函数实现极坐标中二维曲 线图象的绘制,它的调用格式:
ezpolar(f,[a,b])
说明: 绘图表达式为rho=f(theta)极坐标曲线,
theta的取值范围为,缺省时为[0,2*pi]
例:p83
4.5.2三维绘图函数
ezplot3是实现三维绘图的函数,它的 调用格式:
ezplot3(x,y,z,[tmin,tmax]) ezplot3(x,y,z,[tmin,tmax ],'animate')
3.符号表达式的提取分子和分母运算
在matlab中可利用numden函数来提取符号表达式 中的分子或分母。其一般调用格式为:
[n,d]=numden(s)
说明:
参数s是符号表达式是一个 有理分式或可以展开为有理
例: s=sym('2/5+3/7')
n= 29
分式,numden函数把有理分 式的分子返回给n,分母返回
dsolve在求常微分方程组时 的调用格式为:
dsolve('eq1,eq2,...','cond1,cond2...','v')
说明: 该函数求解常微分方程组eq1,…,eqn在初值条件或边界 条件为cond1,…,condn下的符号特解,若不给出初值 条件,则求方程组的通解,v为指定的返回值中的变量 表示。
例4-9解超越方程组
sin(x+y)-y*exp(x)=0 x^2-y=2
syms x y
[x,y]=solve('sin(x+y)-y*exp(x)=0','x^2-y=2')
x =-.66870120500236202933135901833637