组合变形习题与参考答案

合集下载

材料力学组合变形习题

材料力学组合变形习题

材料力学组合变形习题L1AL101ADB (3)偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案:(A ) e=d; (B ) e>d;(C ) e越小,d越大; (D ) e越大,d越小。

正确答案是______。

答案(C )1BL102ADB (3)三种受压杆件如图。

设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,现有下列四种答案:(A )max1σ=max 2σ=max3σ; (B )max1σ>max 2σ=max3σ;(C )max 2σ>max1σ=max3σ; (D )max 2σ<max1σ=max3σ。

正确答案是______。

答案(C )1BL103ADD (1)在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案:(A )A点; (B )B点; (C )C点; (D )D点。

正确答案是______。

答案(C )1AL104ADC (2)一空心立柱,横截面外边界为正方形, 内边界为等边三角形(二图形形心重 合)。

当立柱受沿图示a-a线的压力时,此立柱变形形态有四种答案:(A )斜弯曲与中心压缩组合; (B )平面弯曲与中心压缩组合;(C )斜弯曲; (D )平面弯曲。

正确答案是______。

答案(B )1BL105ADC (2)铸铁构件受力如图所示,其危险点的位置有四种答案:(A )①点; (B )②点; (C )③点; (D )④点。

正确答案是______。

答案(D )1BL106ADC (2)图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开口处的最大应力的增大倍数有四种答案:(A )2倍; (B )4倍; (C )8倍; (D )16倍。

正确答案是______。

答案(C )1BL107ADB (3)三种受压杆件如图,设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,它们之间的关系有四种答案:(A )max1σ<max 2σ<max3σ; (B )max1σ<max 2σ=max3σ;(C )max1σ<max3σ<max 2σ; (D )max1σ=max3σ<max 2σ。

组合变形例题

组合变形例题


F A C b
h
0.5L
L0
d
D L
材料力学
本章结束
A
5 kN
C
B
D
2 kN 5 kN
300 500
2 kN
500
(a)
1.5 kN A m
7 kN
C
1.5 kN m
B
D
5 kN
12 kN
(b)
T
1.5 kN m
如图c、d、e、f 所示
x (c )
1.5 kN A m
7 kN
C
1.5 kN m
B
D
M C (1.5) 2 (2.1) 2 2.58 kNm
M
2.58 kNm 2.48 kNm
因此,得:
x (e)
d 72 mm
(f) x
直径为20mm的圆截面水平直角折杆,受垂直力P=0.2kN,已知[σ]=170MPa 试用第三强度理论确定a的许可值。
解:内力图: 危险截面:A
Tmax Pa 0.2a M max 2Pa 0.4a
所以起重机架的最大起重量取决于杆AC的强度,为
Fmax 26.7 kN
图示横梁AC~立柱CD结构,均由Q235钢制成,C、D两处均为球 铰。在跨度中点受竖向载荷F作用。已知: (1) 横梁AC的L=4000mm,b=60mm,h=120mm,材料许用应力 [ ]=160MPa。 (2) 立柱CD直径d=20mm, L0=500mm;材料参数为 E=200GPa, 许 用应力 [ ] 160MPa , p 100, s 60 , cr (3041.12 ) MPa,稳 定安全系数 nst 4 。 试确定此横梁~立柱结构的许用载荷。

材料力学习题组合变形#(精选.)

材料力学习题组合变形#(精选.)

组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。

A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。

A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。

A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。

A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。

则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。

A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。

A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C .轴向压缩,斜弯曲和扭转组合D .轴向压缩和斜弯曲组合-41-题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴y 垂直,那么该梁所发生的变形是( )。

A .平面弯曲B .扭转和斜弯曲C .斜弯曲D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。

A .截面形心B .竖边中点A 点C .横边中点B 点D .横截面的角点D 点题8图 题9图9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。

组合变形习题及参考答案

组合变形习题及参考答案

组合变形一、判断题1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。

( )2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。

( )3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。

( )4.正方形杆受力如图1所示,A点的正应力为拉应力。

( )图 15. 上图中,梁的最大拉应力发生在B点。

( )6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。

( )图 27.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。

( )8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。

( )图 39. 矩形截面的截面核心形状是矩形。

( )10.截面核心与截面的形状与尺寸及外力的大小有关。

( )11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。

( )12.计算组合变形的基本原理是叠加原理。

()二、选择题1.截面核心的形状与()有关。

A、外力的大小B、构件的受力情况C、构件的截面形状D、截面的形心2.圆截面梁受力如图4所示,此梁发生弯曲是()图 4A、斜弯曲B、纯弯曲C、弯扭组合D、平面弯曲三、计算题1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。

图 52.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。

3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为,试校核挡土墙的强度。

图 6 图 74.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。

第9章组合变形作业参考解答

第9章组合变形作业参考解答
由第三强度理论强度条件
s r3 = s 2 + 4t 2 = 160.86MPa<[s ] ,杆安全
9-23 圆轴受力如图所示。直径d=100mm,容许应力[ σ]=170MPa。 (1)绘出A、B、C、D 四点处单元体上的应力; (2)用第三强度理论对危险点进行强度校核。
解:(1)A、B、C、D 四点处所在截面内力(不考虑剪力):
电阻片,当梁在 F、M 共同作用时,测得两点的应变值分别为 e A 、e B 。设截面为正方形,边
长为 a,材料的 E、n 为已知,试求 F 和 M 的大小。
解:梁发生双向弯曲,
A、B 两点处于单向应力状态,
eA
=
sA E
,eB
=
sB E
而s A
=-M Wz
- Fl Wy
= - M + Fl a3 6
= 14.01MPa + 56.05MPa = 70.06MPa
4
32
(2)校核危险点:
M = M z 2 + M y 2 = 102 + 5.52 = 11.413kN × m
s = FN + M = 110kN + 11.413kN × m = 14.01MPa + 116.31MPa = 130.32MPa
sB
=M Wz
- Fl Wy
=
M - Fl a3 6

ìïïe A í ïïîe B
= =
- 6(M + Fl) Ea3
6(M - Fl) Ea3
,从而
ì ïïM í
ï ïî
F
= Ea3 (e B - e A 12
= - Ea3 (e B + e 12l

第八章-组合变形及连接部分的计算-习题选解.docx

第八章-组合变形及连接部分的计算-习题选解.docx

[8-1] 14号工字钢悬臂梁受力情况如图所示。

已知F2 l.OkN,试求危险截面上的最大正应力。

解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因[8-2]矩形截面木標条的跨度1 4m ,荷载及截面尺寸如图所示,木材为杉木, 弯曲许用正应力[]12MPa , E 9GPa ,许可挠度[w] 1/200 o试校核標条的强度和刚度。

1 0.8m , Fl 2.5kN ,钢材的拉压性能相同, 故只计算最大拉应力:maxMz MyWz Wy Wz Wy式中,Wz , Wy由14号工字钢, 查型钢表得到Wz 102cm^ , Wymax79.1 io'Pa MPa79 J2 102 10 6m3 16.1 10 6 n?■ . , ■ l ・6kN/m ________A 戈HHluq习题8解:(1)受力分析COS1.6 cos26° 34 1.431(/ kN mq z q sin 1.6 sin26°340.716( kN/m)(2)内力分析My .max4qz 1 81 2-q yl 2 8(3)应力分析Mz.max-4 0.716 8-1 1.432 84 2 1.432(kN m) 4? 2.864(kN m) 最大的拉应力出现在跨中截面的右上角点, 最大压应力出现在左下角点。

M y ・ maxz.maxmax式中,160 11026322667 mm?maxWz110 16O 26469333mm^1.432 1()6 N mm2.86425 心隔(4)强度分析 因为max(5)变形分析322667 mm?469333mm310.54MPa , [ ] 12MPa ,即max[所以杉木的强度足够。

最大挠度出现在跨中,查表得:■1-60-1-1^ 17746667 (mn?)12(6)刚度分析 12屮一37546667 mm^12Wcy5qyl4 5 1.431N/mm 4000^ mm^ 384EIz 384 9 1()3 N/mn? 37546667mm^14.12mmwcz5qzl^ 5 0.716N/mm 400()4 mn? 384EIy384 9103 N/mm217746667mm° 14.94.mm (Wc/ \i4.12 214.94220,56(mm)式中,ly12因为WmaxWc 20・56(mm) , [ w]400020(mm),即 Wmax [w],200 200 所以,从理论上讲,变形过大,不符合刚度要求。

结构力学 第八章

结构力学 第八章

wmax 0.0202 0.76 1 = = < l 4 150 150
解、将均布载荷分解为沿轴线方向和垂直于轴线方向的两个分力,可得: qx = q sin α ; 距离 B 端为 x 的截面上的轴力和弯矩分别为
q y = q cos α
M=
该截面的最大压应力为
q y lx 2

qy x2 2
=
q ( lx − x 2 ) cos α 2
σ
所以该点最大切应力为: τ max =
8-16、铁道路标圆信号板,装在外径 D=60mm 的空心圆柱上,所受的最大风载 p=2kN/m2,[σ]=60MPa。试 按第三强度理论选定空心柱的厚度。
解、结构的危险截面为空心柱的固定端,截面的弯矩和扭矩分别为
M = 2×
π × 0.52
4
× 0.8 = 0.314(kN .m);
当中性轴为①时,中性轴的截矩为: 偏心力作用点的位置为:
a y = −0.3; az → ∞ ;
z

iz2 0.019333 ey = − = − = 0.0644(m), ay −0.3
当中性轴为②时,中性轴的截矩为: 偏心力作用点的位置为:
iz2 ez = − = 0 az

a y = 0.4; az = −0.4 ;
解、将外载荷分解为沿 y 和 z 方向的力,可得
q y = q cos 300 = 2 × cos 300 = 1.732kN / m qz = q sin 300 = 2 × sin 300 = 1kN / m
梁的最大弯矩发生在梁的中间截面,值分别为
M zmax =
max My
1.732 × 42 = 3.464 ( kN .m ) 8 8 q z l 2 1× 4 2 = = = 2 ( kN .m ) 8 8 =

8组合变形-lt

8组合变形-lt

x A 解:
①外力分析:
150 P1
B 200
C 100 D y z P2z
Mx A
弯 扭 组 合 变 形
Mx C 100 D
P2y
x
150
B 200
y
p.6




例8-4 图示空心圆杆,内径d=24mm,外径D=30mm,P1=600N,[]=100MPa,试用第三强度 理论校核此杆的强度。 80º P2 z
x
YC 9.1kN , YD 2.1kN
T(kNm)
1.5
1.5kNm B
D x
x
p.4
A
C




例8-3 钢制圆轴上装有胶带轮A和B,二轮的直径都是D=1 m,重量是P=5 kN,A轮上胶带的张 力是水平方向,B轮上胶带的张力是垂直方向,大小如图示;圆轴的许用应力[σ]=80MPa;试按 第三强度理论求轴所需的直径。 5kN B A C D (3)求可能危险截面C和B上的合成弯矩: 2kN 5kN 2kN 2 2 2 2
P1
②内力分析:危险面内力为:
x A 150 B 200 C 100 D y
MZ
M max 71.3Nm M n 120Nm
③应力分析:
My (Nm)
Mz (Nm) Mn (Nm)
Mn
(Nm)
(N m)
71.25
X
x x
2 2 M max M n * 3 W
My (Nm)
40
X
120
Mmax 71.3
求传动轴的外力偶矩及传动力
p.9



材料力学组合变形答案

材料力学组合变形答案

材料力学组合变形答案【篇一:材料力学组合变形及连接部分计算答案】,试求危险截面上的最大正应力。

解:危险截面在固定端m,,==返回8-2 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为梁的尺寸为m,,如图所示。

已知该梁材料的弹性模量mm,mm;许用应力;;许可挠度。

试校核梁的强度和刚度。

解:=,强度安全,==返回刚度安全。

8-3(8-5) 图示一悬臂滑车架,杆ab为18号工字钢,其长度为m。

试求当荷载作用在ab的中点d处时,杆内的最大正应力。

设工字钢的自重可略去不计。

解:18号工字钢,,ab杆系弯压组合变形。

,,====返回8-4(8-6) 砖砌烟囱高重kn,受m,底截面m-m的外径的风力作用。

试求:m,内径m,自(1)烟囱底截面上的最大压应力;(2)若烟囱的基础埋深许用压应力m,基础及填土自重按,圆形基础的直径d应为多大?计算,土壤的注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。

解:烟囱底截面上的最大压应力:=土壤上的最大压应力=:即即解得:返回m8-5(8-8) 试求图示杆内的最大正应力。

力f与杆的轴线平行。

解:固定端为危险截面,其中:轴力,弯矩,,z为形心主轴。

=a点拉应力最大==b点压应力最大==因此返回8-6(8-9) 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。

试求:(1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密度为);(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?解:以单位宽度的水坝计算:水压:混凝土对墙底的压力为:墙坝的弯曲截面系数:墙坝的截面面积:墙底处的最大拉应力为:【篇二:材料力学b试题8组合变形】心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e和中性轴到形心的距离d之间的关系有四种答案: (a)e?d;(b) e?d;(c) e越小,d越大; (d) e越大,d越大。

第8章组合变形及连接部分的计算(答案)

第8章组合变形及连接部分的计算(答案)

第8章组合变形及连接部分的计算(答案)8.1梁的截⾯为2100100mm ?的正⽅形,若kN P30=。

试作轴⼒解:求得约束反⼒24Ax F KN =,9Ay F KN =,9B F KN =为压弯组合变形,弯矩图、轴⼒图如右图所⽰可知危险截⾯为C 截⾯最⼤拉应⼒maxmax 67.5ZM MPa W σ== 最⼤压应⼒max max69.9N Z M FMPa W Aσ=+=8.2若轴向受压正⽅形截⾯短柱的中间开⼀切槽,其⾯积为原来⾯积的⼀半,问最⼤压应⼒增⼤⼏倍?解:如图,挖槽后为压弯组合变形挖槽前最⼤压应⼒挖槽后最⼤压应⼒22222286/)2/(4/2/a P a a Pa a P W M A N c =+=+=σ8//82212==a P a P c c σσ211a P A N c ==σ8.3外悬式起重机,由矩形梁AB (2=bh尺⼨。

解:吊车位于梁中部的时候最危险,受⼒如图解得BC F P =,2Ax F P =,2Ay P F =梁为压弯组合变形,危险截⾯为梁中N F =压),4PL M =(上压下拉)[]max4NZ F PL W A σσ=+≤,代⼊()226Z b b W =,A bh =,由2h b = 解得125b mm =, 250h mm =8.4图⽰为⼀⽪带轮轴(1T 、2T 与3T 相互垂直)。

已知1T 和2T 均为kN 5.1,1、2轮的直径均为mm 300,3轮的直径为mm 450,轴的直径为mm 60。

若M P a 80][=σ,试按第三强度理论校核该轴。

解:由已知条件解得32T KN = 内⼒图如右:最⼤弯矩所在截⾯可能为:1C M KN m ==?1.2D M KN m =?故危险截⾯为D 截⾯32T KN =由第三强度理论[]360r MPa σσ==故安全38.5铁道路标圆信号板装在外径mm D 60=的空⼼圆柱上,若信号板上所受的最⼤风载2/2m kN p =,MPa 60][=σ,试按第三强度理论选择空⼼柱的厚度。

材料力学:ch10 组合变形

材料力学:ch10 组合变形

第十章 组合变形10-2 图a 所示板件,b =20mm ,δ=5mm ,载荷F = 12 kN ,许用应力[σ] = 100 MPa ,试求板边切口的允许深度x 。

题10-2图解:在切口处切取左半段为研究对象(图b ),该处横截面上的轴力与弯矩分别为F F =N(a) )(a b F M −=显然,222xb x b a −=−=(b) 将式(b)代入式(a),得2FxM =切口段处于弯拉组合受力状态,该处横截面上的最大拉应力为22N max 432(2a)6 22a Fx a F Fx a F W M A F δδδδσ+=+=+=根据强度要求,在极限情况下,][4322σδδ=+a Fx a F 将式(b)与相关数据代入上式,得01039.61277.042=×+−−x x 由此得切口的允许深度为mm 20.5=x10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为=1.0×10aε-3与=0.4×10b ε-3,材料的弹性模量E =210GPa 。

试绘横截面上的正应力分布图,并求拉力F 及其偏心距e 的数值。

题10-3图解:1.求和a σb σ截面的上、下边缘处均处于单向受力状态,故有MPa84Pa 104.010210 MPa 210Pa 100.1102103939=×××===×××==−−b b a a E εσE εσ偏心拉伸问题,正应力沿截面高度线性变化,据此即可绘出横截面上的正应力分布图,如图10-3所示。

图10-32.求和F e 将F 平移至杆轴线,得Fe M F F ==,N 于是有 a za E εW Fe A F σ=+=E εW Fe AF σzb =−=代入相关数据后,上述方程分别成为26250240=+Fe F 10500240=−Fe F 经联立求解,于是得mm 786.1m 10786.1kN 38.18N 183753=×=≈=−e F ,10-6 图示直径为d 的圆截面铸铁杆,承受偏心距为e 的载荷F 作用。

6.组合变形

6.组合变形
εc = −
h1
ρ
εs =
h1
450 − h1
ρ
σ c = − Ec
ρ
σ s = Es
450 − h1
ρ
设混凝土和钢筋的应力之和分别为F 设混凝土和钢筋的应力之和分别为 c和Fs,即
−h1 300× h12 z Fc = ∫0 σc ×300× dz = −Ec h1 2ρ πd2 450 − h1 F = A σ = 4× × Es s s s 4 ρ
θ = 35.240
求危险点的正应力 作两条直线与中性轴n-n平行 平行, 3) 求危险点的正应力 作两条直线与中性轴 平行,分别 与截面C的a、b两点相切,即均为该截面上的危险点,a 、 截面 的 、 两点相切,即均为该截面上的危险点, 两点相切 b点处正应力绝对值相等,由图可知,a点的坐标为 点处正应力绝对值相等, 点处正应力绝对值相等 由图可知, 点的坐标为 y n y = 200mm , z = −10mm
解:十字形截面对形心主轴的惯性矩为
1 1 Iy = Iz = ×0.2×0.63 +2× ×0.2×0.23 =38.7×10−4m4 12 12
y 1
作最边缘的零应力切线1-1, 作最边缘的零应力切线 , 其在y、 轴上的截距为 其在 、z轴上的截距为
Байду номын сангаас
a1z = +0.3m
i
2 y
a1y = ∞
1 2
F e F 25
εb
解:这是一个压弯组合变形问题,根据截面 这是一个压弯组合变形问题, 为矩形,其中性轴在对称轴上, 为矩形,其中性轴在对称轴上,因此截面 的应力图由应变可知为: 的应力图由应变可知为:

材料力学习题解答(组合变形)

材料力学习题解答(组合变形)

N Mz
D C
D z 150 100
C z
My
Q
解:(1) 将力 P 和 H 向截面形心简化
M = 25 × 103 × 0.025 = 625 N .m
(2) 截面 ABCD 上的内力
N = − P = −25 kN M y = M = 625 N .m M z = H × 0.6 = 3 kN .m
N
如图作截面取上半部分,由静力平衡方程可得
N = P = 15kN
所以立柱发生拉弯变形。 (2) 强度计算 先考虑弯曲应力
上海理工大学 力学教研室
M = 0.4 P = 6kNm来自4σ t max =
d≥
M 32 M = ≤ [σ t ] πd3 W
3
π [σ t ]
32 M
=
3
32 × 6 × 103 = 120.4 mm π × 35 × 106
yc =
A1 y1c + A2 y2 c A
1.4 − 0.05 − 0.016 ⎞ ⎛ 1.204 × 0.7 + 1.105 × ⎜ 0.05 + ⎟ 2 ⎝ ⎠ = 0.51 m = 0.099
截面对形心轴的惯性矩
1 2 × 0.86 × 1.43 + ( 0.7 − 0.51) × 1.204 = 0.24 m 4 12 1 3 II I zc = × ( 0.86 − 2 × 0.016 ) × (1.4 − 0.05 − 0.016 ) 12
ZA YA P2
YC = P1a / 2 ZC = P2 a / 2
YA = P1a / 2 Z A = P2 a / 2
MzI
(2) 截开 I-I 截面,取左面部分 P1 QzI TI QyI MyI

建筑力学—组合变形及答案讲解

建筑力学—组合变形及答案讲解

建筑⼒学—组合变形及答案讲解第六章直梁弯曲弯曲变形是杆件⽐较常见的基本变形形式。

通常把以发⽣弯曲变形为主的杆件称为梁。

本章主要讨论直梁的平⾯弯曲问题,内容包括:弯曲概念和静定梁的⼒学简图;弯曲内⼒及内⼒图;弯曲应⼒和强度计算;弯曲变形和刚度计算。

其中,梁的内⼒分析和画弯矩图是本章的重点。

第⼀节平⾯弯曲的概念和⼒学简图⼀、弯曲概念和受⼒特点当杆件受到垂直于杆轴的外⼒作⽤或在纵向平⾯内受到⼒偶作⽤(图6-1)时,杆轴由直线弯成曲线,这种在外⼒作⽤下其轴线变成了⼀条曲线。

这种形式的变形称为弯曲变形。

⼯程上通常把以弯曲变形为主的杆件称为梁。

图 6-1 弯曲变形是⼯程中最常见的⼀种基本变形。

例如房屋建筑中的楼⾯梁和阳台挑梁,受到楼⾯荷载和梁⾃重的作⽤,将发⽣弯曲变形,如图6-2所⽰。

⼀些杆件在荷载作⽤下不仅发⽣弯曲变形,还发⽣扭转等变形,当讨论其弯曲变形时,仍然把这些杆件看做梁。

图6-2⼯程实际中常见到的直梁,其横截⾯⼤多有⼀根纵向对称轴,如图6-3所⽰。

梁的⽆数个横截⾯的纵向对称轴构成了梁的纵向对称平⾯,如图6-4所⽰。

图 6-3 图6-4若梁上的所有外⼒(包括⼒偶)作⽤在梁的纵向对称平⾯内,梁的轴线将在其纵向对称平⾯内弯成⼀条平⾯曲线,梁的这种弯曲称为平⾯弯曲,它是最常见、最基本的弯曲变形。

本章主要讨论直梁的平⾯弯曲变形。

从以上⼯程实例中可以得出,直梁平⾯弯曲的受⼒与变形特点是:外⼒作⽤于梁的纵向对称平⾯内,梁的轴线在此纵向对称⾯内弯成⼀条平⾯曲线。

⼆、梁的受⼒简图为了便于分析和计算直梁平⾯弯曲时的强度和刚度,需建⽴梁的⼒学简图。

梁的⼒学简图(⼒学模型)包括梁的简化、荷载的简化和⽀座的简化。

1、梁的简化由前述平⾯弯曲的概念可知,载荷作⽤在梁的纵向对称平⾯内,梁的轴线弯成⼀条平⾯曲线。

因此,⽆论梁的外形尺⼨如何复杂,⽤梁的轴线来代替梁可以使问题得到简化。

例如,图6-1a和图6-2a所⽰的⽕车轮轴和桥式起重机⼤梁,可分别⽤梁的轴线AB代替梁进⾏简化(图6-1b和图6-2b)。

第9章组合变形作业参考解答.

第9章组合变形作业参考解答.

7-14 图示圆截面杆,受荷载 F1,F2 和 T 作用,试按第三强度理论校核杆的强度。

已知: F1=0.7kN,F2=150kN,T=1.2kN·m,[σ]=170MPa,d=50mm,l=900mm。

解:由内力分析,该杆发生拉弯扭组合变形,固定端为危险截面其内力为 FN = F2 , M Z = F1l , M x = T 该截面上顶点为危险点,上顶点应力状态如图,大小为τ σ s= FN M z F Fl + = 2 2 + 1 3 = 76.39MPa + 51.34MPa=127.73MPa pdA Wz p d 4 32 Mx T = = 48.89MPa WP p d 3 / 16 t= 由第三强度理论强度条件 s r 3 = s2 + 4t 2 = 160.86MPa<[s ] ,杆安全 9-23 圆轴受力如图所示。

直径d=100mm,容许应力[σ]=170MPa。

(1绘出A、B、C、D 四点处单元体上的应力; (2用第三强度理论对危险点进行强度校核。

解:(1)A、B、C、D 四点处所在截面内力(不考虑剪力: FN = 110kN M x = F y1 × d = 90kN ´ 0.05m = 4.5kN × m 2 M z = ( Fy1 - Fy2 × l = 10kN ´ 1m = 10kN × m M y = Fx × d = 110kN ´ 0.05m = 5.5kN × m 2 A 、B、C、D 四点应力分别为: sA = FN M z 110kN 10kN × m + = + = 14.01MPa +101.91MPa = 115.92MPa A Wz p × 0.12 p × 0.13 4 32 M x 4.5kN × m = = 22.93MPa = t B = t C = t D Wp p × 0.13 16 tA = 6sB = FN M y 110kN 5.5kN × m = = 14.01MPa - 56.05MPa = -42.04MPa A Wy p ×0.12 p × 0.13 4 32 sC = FN M z 110kN 10kN × m = = 14.01MPa - 101.91MPa = -87.9MPa A Wz p × 0 .1 2 p × 0.13 4 32 FN M y 110kN 5.5kN × m + = + = 14.01MPa + 56.05MPa = 70.06MPa A Wy p × 0 .1 2 p × 0.13 4 32 2 2 sD = (2)校核危险点: M = M z + M y = 10 2 + 5.5 2 = 11.413kN × m s = FN M 110kN 11.413kN × m + = + = 14.01MPa + 116.31MPa = 130.32MPa A W p × 0.12 p × 0.13 4 32 M x 4.5kN × m = = 22.93MPa Wp p × 0.13 16 t =tA = s r 3 = s 2 + 4t 2 = 130.32 2 + 4 ´ 22.93 2 = 138.2MPa < [s ] = 170MPa 该轴是安全的。

组合变形(习题解答

组合变形(习题解答

10-3 试求图示[16a 简支梁由于自重作用所产生的最大正应力及同一截面上AB 两点的正应力。

q解:(1)查表可矩[16a 的理论重量为17.24kg/m ,故该梁重均布载荷的集度为172.4N/m 。

截面关于z 轴对称,而不关于y 轴称,查表可得:364640108cm 10810,73.3cm 0.73310m ,63mm =0.063m , 1.8cm =0.018mz y W I b z --==⨯==⨯==⑴外力分析:cos 172.4cos 20162.003/sin 172.4sin 2058.964/y z q q N m q q N mϕϕ======⑵内力分析:跨中为危险面。

32,max 32,max 11162.003 4.2357.217881158.964 4.2130.01688z y y z M q l N mM q l N m==⨯⨯=⋅==⨯⨯=⋅⑶应力分析:A 、B 点应力分析如图所示。

A 点具有最大正应力。

,max,max max 66,max,max max 066357.217130.016(0.0630.018)11.29MPa 108100.73310357.217130.0160.018 6.50MPa108100.73310y z A A z y y z B zyM M z W I M M z W I σσσσ---+--==--⋅=--⨯-=-⨯⨯==++⋅=+⨯=⨯⨯max 11.29MPa A σσ==-10-4 试求图示简支梁的最大正应力,及跨中的总挠度。

已知弹性模量100Pa E G =。

解:(1) 外力分析:由于集中力在横截面内与轴线垂直,故梁将发生斜弯曲。

cos 10cos159.66kN sin 10sin15 2.59kNy z P P P P ϕϕ======⑵内力分析:集中力作用在跨中,故跨中横截面为危险面。

,max ,max119.6637.245kN m 44112.593 1.943kN m 44z y y z M P l M P l ==⨯⨯=⋅==⨯⨯=⋅⑶应力分析:跨中横截面D 2、D 1点分别具有最大的拉压应力,应力分析如图所示。

工程力学课后习题答案第十二章组合变形

工程力学课后习题答案第十二章组合变形

第十二章 组合变形习 题12.1 矩形截面杆受力如图所示。

已知kN 8.01=F ,kN 65.12=F ,mm 90=b ,mm 180=h ,材料的许用应力[]MPa 10=σ,试校核此梁的强度。

Oxyz1F 2F 1m 1mbh题12.1图解:危险点在固定端max yz z yM M W W σ=+max 6.69[]10MPa MPa σσ=<=12.2 受集度为q 的均布载荷作用的矩形截面简支梁,其载荷作用面与梁的纵向对称面间的夹角为030=α,如图所示。

已知该梁材料的弹性模量GPa 10=E ;梁的尺寸为m 4=l ,mm 160=h ,mm 120=b ;许用应力[]M Pa 12=σ;许可挠度[]150lw =。

试校核梁的强度和刚度。

题12.2图22zmax 11cos3088y M q l q l ==⋅解:22ymax 11sin 3088z M q l q l ==⋅22ymaxzmax 2211cos30sin 308866z yq l q l M M bh bh W W σ⋅⋅=+=+26cos30sin 30()8ql bh h b=+32616210422 ()8120160100.1600.120-⨯⨯⨯=+⨯⨯⨯ []6 11.971012.0,Pa MPa σ=⨯==强度安全 44z 35512sin 30384384z y q l q l W EI Ehb ⨯==4435512cos30384384y y z q l q l W EI Ehb ⨯==22maxcos30sin 30)()W ==+ =[]40.0202150m w m =<=刚度安全。

12.3 简支于屋架上的檩条承受均布载荷kN/m 14=q ,30=ϕ,如图所示。

檩条跨长m 4=l ,采用工字钢制造,其许用应力[]M Pa 160=σ,试选择工字钢型号。

14 kN/mq =题12.3图解:cos ,sin y z q q q q ϕϕ==22max max,88y z z y q l q l M M ==max max max[]y z z yM M W W σσ=+≤对工字钢,zyW W 大约在6~10之间,现设为8,由上式得 max 6max max16010/8y z z z M M Pa W W σ=+≤⨯330.85110z W m -≥⨯查40C 号钢,有,331190,99.6z y W cm W cm ==验算max maxmax 6616111901099.610y z M M MPa σ--=+=⨯⨯ 最大应力略大于许用应力,但不超过许用应力的5%,工程上允许,故可选40C 号钢12.4 图示构架的立柱AB 用25号工字钢制成,已知kN 20=F ,[]M Pa 160=σ,试校核立柱的强度。

09组合变形习题

09组合变形习题

第九章组合变形部分填空题01. ( 5 ) 偏心压缩实际不就是 ________________ 和 _____________ 的组合变形问题02. ( 5 ) 铸铁构件受力如图所示,其危险点的位置有四中种答案:(A )①点;(B)②点;(C )③点;(D ) ④点。

正确答案是 __________________ ■03.(5)图示矩形截面拉杆中间开一深度为 h/2的缺口,与不开口的拉杆相比,开中处的最大应力的增大倍数有四种答案:正确答案是 ___________________ 。

04.三种受压杆件如图,设杆1、2、和杆3中的最大压应力(绝对值)分别用二max1、二max2和匚max3表示,它们之间的关系有四种答案:(A )匚 maxi v ;「max2 v ;「max3 ;(B )匚 max1< 匚 max2 =匚 max3 ;(C ) maxi v max3 v max2 ;( D )"■ maxi =max 3 v max2 ;正确答案是 __________________ 。

(A) 2 倍; (B)4 倍; (C)8 倍; (D) 16 倍;05. 一空间折杆受力如图所示,则 AB 杆的变形有四种答案:(A)偏心拉伸;(B )纵横弯曲;(C )弯扭组合;(D )拉弯扭组合;正确答案是 ____________________06.图示正方形截面杆承受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案:(A) 截面形心;(B )竖边中点A 点;(C )横边中点B 点;(D )横截面的角点D 点;正确答案是_____________________07.折杆危险截面上危险点的应力状态,现有四种答案:正确答案是_____________________08用第三强度理论校核图示杆的强度时,有四种答案:2 2 1/2(A)P/A [(M /W z ) 4(T/W t )] 十];(B)P/A M /她 T/W t 订刁;(C)[(P/A M /W z)2 (T/W t )2]1/2汀刁;() () ()(D) [(P/A M /W z)24(T/W t)2]1/2十];正确答案是____________________09.按第三强度理论计算等截面直杆弯扭组合变形的强度问题时,应采用的强度公式有四种答案:(A) F =[(M2 T2)1/2/W t 汗打;(B) 63 二[(M 2 0.75T2) /W t 乞[匚];2 2 1/2(C) f 珂(M 4 ) /W t 叮刁;£)巧3 =[(M2 +3T2) /W t 兰闪];正确答案是____________________10.悬臂梁AB,A端固定,B端自由,在B端作用横向集中力P,横截面形状和P力作用线如图所示请回答将产生什么变形(a ) ____________________________ ; ( b ) ____________________________(c ) _____________________________ ; ( d ) ____________________________11.结构如图2 3 折杆AB与直杆BC的横截面面积为A二420cm ,W y二W z二420cm ,[二]=100MPa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合变形
一、判断题
1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。

( )
2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。

( )
3.梁发生斜弯曲变形时,挠曲线不在外力作用面。

( )
4.正方形杆受力如图1所示,A点的正应力为拉应力。

( )
图 1
5. 上图中,梁的最大拉应力发生在B点。

( )
6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。

( )
图 2
7.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。

( )
8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。

( )
图 3
9. 矩形截面的截面核心形状是矩形。

( )
10.截面核心与截面的形状与尺寸及外力的大小有关。

( )
11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。

( )
12.计算组合变形的基本原理是叠加原理。

()
二、选择题
1.截面核心的形状与()有关。

A、外力的大小
B、构件的受力情况
C、构件的截面形状
D、截面的形心
2.圆截面梁受力如图4所示,此梁发生弯曲是()
图 4
A、斜弯曲
B、纯弯曲
C、弯扭组合
D、平面弯曲
三、计算题
1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁的最大拉应力,并在图中指明它的位置。

图 5
2.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。

3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为,试校核挡土墙的强度。

图 6 图 7
4.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。

5.如图8所示,短柱横截面为2a×2a的正方形,若在短柱中间开一槽,槽深为a,问最大应力将比不开槽时增大几倍?
图8
6.图9所示矩形截面柱,柱顶有屋架的压力F1=120KN,牛腿上承受吊车梁的压力F2, F2与柱轴有一偏心矩e=200mm,已知柱截面b=20mm,h=300mm,欲使柱不产生拉应力,问F2的许可值是多少?
7.图10所示受拉木杆,偏心力F=160KN,e=5cm,[σ]=10Mpa矩形截面宽度b=16cm,试确定木杆的截面高度h。

图 9 图10
8.图11所示一混凝土重力坝,坝高H=30m底高19m,受水压力和自重作用.已知坝前水深H=30m,坝底材料容重,许用应力[σ]ˉ=10Mpa,坝体底面不允许出现拉应力,试校核该截面正应力强度.
9.图12所示混凝土挡水坝,横断面为矩形,坝高H =32m,坝底宽度
B =20m,坝前水深H1 =30m,混凝土容重。

在水压力()和坝体自重作用下,试求坝底面不现在拉应力时的最大压应力及其作用位置。

图 11 图 12
10.图13所示混凝土重力坝承受重力G作用,混,上游水深H=30m,要求坝底不出现拉压力,试确定其坝底宽度B。

11.在图14所示两柱的A点分别作用压力F,问哪一根柱子B点有较大的应力?大多
少?
图 13 图14
13.已知牛腿柱受力如图15。

求A—B截面的最大拉应力和最大压应力及其作用位置。

14.重力坝如图16所示。

坝高H=7m,作用于一米坝段上的荷载如图所示,问基础面A—B上是否会出现拉应力。

图 15 图16
15.水塔连同基础共重G=4000困难,受水平风压力作用。

风压力的合力P=60KN,作用在离地面15m的地方,基础入土3m深,设土的容许压应力,圆形基础直径为,试校核土壤的承载能力。

16.图18所示柱的截面为的正方形,柱脚的截面为的矩形。

该柱承受的压力,试求柱脚的最大压应力。

图 17 图18 17.链环如图19所示,已知直径,拉力,试求链环的最大正应力。

(10分)
图19。

相关文档
最新文档