(完整版)计量经济学重点(简答题)
(完整word版)计量经济学简答题(经典)
1.什么是计量经济学?它与经济学、统计学和数学的关系怎样?答:1、计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。
2、经济理论、数学和统计学知识是在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不充分,只有结合在一起才行。
2计量经济学三个要素是什么?经济理论、经济数据和统计方法。
3.计量经济学模型的检验包括哪几个方面?其具体含义是什么?答:(1)统计检答:1在解释变量中被忽略的因素的影响(影响不显着的因素、未知的影响因素、无法获得数据的因素);变量观测值的观测误差的影响;模型关系的设定误差的影响;其它随机因素的影响。
11.为什么要计算调整后的可决系数?在应用过程中发现,如果在模型中增加一个解释变量,?往往增大。
这是因为残差平方和往往随着解释变量的增加而减少,至少不会增加。
这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。
但是,现实情况往往是,由增加解释变量个数引起的的增大与拟合好坏无关,需调整。
=0.89表示被解释变量Y的变异性的89%能用估计的回归方程解释。
12.叙述多重共线性的概念、后果和补救措施。
概念:如果两个或多于两个解释变量之间出现了相关性,则称模型存在多重共线性。
后果:1、估计量仍然是无偏的2、参数估计量的方差和标准差增大3、置信区间变宽4、t统计量会变小5、估计量对模型设定的变化及其敏感6、对方程的整体拟合程度几乎没有影响7、回归系数符号有误补救措施:1、什么都不做2、去掉多余的变量3、增大样本容量13.叙述异方差性的概念、后果和补救措施。
概念:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
后果:参数估计非有效,变量的显着性检验失去意义,模型的预测失效补救措施:1、加权最小二乘法(WLS)(对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS估计其参数)。
(完整)计量经济学考试重点整理
计量经济学考试重点整理第一章:P1:什么是计量经济学?由哪三组组成?定义:“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。
计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。
经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。
三者结合起来,就是力量,这种结合便构成了计量经济学。
”P9:理论模型的设计主要包含三部分工作,即选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围。
P12:常用的样本数据:时间序列,截面,虚变量数据P13:样本数据的质量(4点)完整性;准确性;可比性;一致性P15-16:模型的检验(4个检验)1、经济意义检验2、统计检验拟合优度检验总体显著性检验变量显著性检验3、计量经济学检验异方差性检验序列相关性检验共线性检验4、模型预测检验稳定性检验:扩大样本重新估计预测性能检验:对样本外一点进行实际预测P16计量经济学模型成功的三要素:理论、方法和数据。
P18-20:计量经济学模型的应用1、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究.结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。
计量经济学模型的功能是揭示经济现象中变量之间的相互关系,即通过模型得到弹性、乘数等。
2、经济预测计量经济学模型作为一类经济数学模型,是从用于经济预测,特别是短期预测而发展起来的。
计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律为主要技术手段。
对于非稳定发展的经济过程,对于缺乏规范行为理论的经济活动,计量经济学模型预测功能失效。
模型理论方法的发展以适应预测的需要。
3、政策评价政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。
计量经济学简答题
计量经济学简答题第一章绪论(一)基本知识类题型1-1.什么是计量经济学?1-2.简述当代计量经济学发展的动向。
1-3.计量经济学方法与一般经济数学方法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
1-5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么?1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。
1-8.建立计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1-10.试分别举出五个时间序列数据和横截面数据,并说明时间序列数据和横截面数据有和异同?1-11.试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
1-12.模型的检验包括几个方面?其具体含义是什么?1-13.常用的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题?1-16.经济数据在计量经济分析中的作用是什么?1-20.模型参数对模型有什么意义?习题参考答案第一章绪论1-1.答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
1-2.答:计量经济学自20年代末、30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过50年代的发展阶段和60年代的扩张阶段,使其在经济学科占据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中有权威的一部分;②从1969~2003年诺贝尔经济学奖的XX位获奖者中有XX位是与研究和应用计量经济学有关;著名经济学家、诺贝尔经济学奖获得者萨缪尔森甚至说:“第二次世界大战后的经济学是计量经济学的时代”。
计量经济学重点(简答论述题)
计量经济学重点(简答论述题)计量经济学简答题重点一、计量经济学的定义及作用计量经济学,又称经济计量学,是基于经济理论和实际统计资料,利用数学、统计学和计算机技术建立模型,定量分析经济变量之间的随机因果关系的学科。
其作用在于提供科学的方法和工具,帮助经济学家和政策制定者更好地理解和预测经济现象,评估政策效果,推动经济理论的发展。
二、计量经济学研究步骤计量经济学研究步骤包括理论模型的设计、数据获取、模型参数估计、模型检验和模型应用。
其中,理论模型的设计需要明确理论或假说的陈述,建立数学模型和计量经济模型。
数据获取需要注意完整性、准确性、可比性和一致性。
模型参数估计采用普通最小二乘法。
模型检验包括经济学检验、统计学检验和计量经济学检验。
模型应用包括结构分析、经济预测、政策评价和经济理论的检验与发展。
三、统计数据的类别及注意事项统计数据的类别包括时间序列数据、截面数据、混合数据和虚变量数据。
时间序列数据是按时间先后排列收集的数据,需要注意样本区间的经济行为一致性、可比性和集中性以及随机误差项序列相关问题。
截面数据是一批发生在同一时间截面上的调查数据,需要注意样本与母体的一致性和随机误差项的异方差问题。
混合数据既有时间序列数据又有截面数据。
虚变量数据只能取和1两个值,表示某个对象的质量特征。
四、模型的检验内容及含义模型的检验包括经济学检验、统计学检验和计量经济学检验。
经济学检验主要检验参数的符合和大致取值。
统计学检验包括拟合优度检验、模型的显著性检验和参数的显著性检验。
计量经济学检验包括序列相关性、异方差检验和多重共线性检验。
模型的预测检验可通过扩大样本容量或变换样本重新估价模型,或利用模型对样本期以外的某一期进行预测。
五、回归分析和相关分析的联系与区别回归分析是一种数学方法,用于研究变量之间的依赖关系,以解释变量和解释变量为基础。
相关分析也是研究变量间关系的方法,但不考虑因果关系,只关注变量之间的相关程度。
(完整版)计量经济学名词解释和简答
(完整版)计量经济学名词解释和简答三、名词解释经济计量学:是经济学、统计学和数学合流⽽构成的⼀门交叉学科。
理论经济计量学:是寻找适当的⽅法,去测度由经济计量模型设定的经济关系式。
应⽤经济化量学:以经济理论和事实为出发点,应⽤计量⽅法,解决经济系统运⾏过程中的理论问题或实践问题。
内⽣变量:具有⼀定概率分布的随机变量,由模型⾃⾝决定,其数值是求解模型的结果。
外⽣变量:是⾮随机变量,在模型体系之外决定,即在模型求解之前已经得到了数值。
随机⽅程:根据经济⾏为构造的函数关系式。
⾮随机⽅程:根据经济学理论或政策、法规⽽构造的经济变量恒等式。
时序数据:指某⼀经济变量在各个时期的数值按时间先后顺序排列所形成的数列。
截⾯数据:指在同⼀时点或时期上,不同统计单位的相同统计指标组成的数据。
回归分析:就是研究被解释变量对解释变量的依赖关系,其⽬的就是通过解释变量的已知或设定值,去估计或预测被解释变量的总体均值。
相关分析:测度两个变量之间的线性关联度的分析⽅法。
总体回归函数:E (Y /X i )是X i 的⼀个线性函数,就是总体回归函数,简称总体回归。
它表明在给定X i 下Y 的分布的总体均值与X i 有函数关系,就是说它给出了Y 的均值是怎样随X 值的变化⽽变化的。
随机误差项:为随机或⾮系统性成份,代表所有可能影响Y ,但⼜未能包括到回归模型中来的被忽略变量的代理变量。
有效估计量:在所有线性⽆偏估计量中具有最⼩⽅差的⽆偏估计量叫做有效估计量。
判定系数:TSS ESS Y Y Y Y R i i=--=∑∑222)()?(,是对回归线拟合优度的度量。
R 2测度了在Y 的总变异中由回归模型解释的那个部分所占的⽐例或百分⽐。
异⽅差:在回归模型中,随机误差项1u ,2u ,…,n u 不具有相同的⽅差,即 ()()≠i j Var u Var u ,当j i ≠时,则称随机误差的⽅差为异⽅差。
异⽅差的补救⽅法:已知时,⽤加权最⼩⼆乘法;未知时,⽤普通最⼩⼆乘法。
计量经济学重点(简答题)
计量经济学重点(简答题)一、什么是计量经济学?计量经济学,又称经济计量学,它是以一定的经济理论和实际统计资料为依据,运用数学、统计学和计算机技术,通过建立计量经济学模型,定量分析经济变量之间的随机因果关系.。
二、计量经济学的研究的步骤是什么?1)理论模型的设计A.理论或假说的陈述;B.理论的数学模型的设定;C.理论的计量经济模型的设定。
i.把模型中不重要的变量放进随机误差项中;ii.拟定待估参数的理论期望值。
2)获取数据数据来源:网络、统计年鉴、报纸、杂志数据类别:时间序列数据、截面数据、混合数据、虚变量数据。
数据要求:完整性、准确性、可比性、一致性i.完整性:模型中包含的所有变量都必须得到相同容量的样本观察值。
ii.准确性:统计数据或调查数据本身是准确的。
iii.可比性:数据口径问题。
iv.一致性:指母体与样本的一致性。
3)模型的参数估计:普通最小二乘法。
4)模型的检验:经济学检验;统计学检验;计量经济学检验;模型的预测检验。
5)模型的应用:结构分析;经济预测;政策评价;经济理论的检验与发展。
三、简述统计数据的类别?时间序列数据、截面数据、混合数据、虚变量数据。
1)时间序列数据:按时间先后排列收集的数据。
采纳时间序列数据的注意事项:A.所选择的样本区间的经济行为一致性问题。
B.样本数据在不同样本点之间的可比性问题。
C.样本数据过于集中的问题。
不能反映经济变量间的结构关系,应增大观察区间。
D.模型的随机误差项序列相关问题。
2)截面数据:又称横向数据,是一批发生在同一时间截面上的调查数据。
研究某时点上的变化情况。
采纳截面数据的注意事项:A.样本与母体的一致性问题。
B.随机误差项的异方差问题。
3)混合数据:也称面板数据,既有时间序列数据,又有截面数据。
4)虚变量数据:又称二进制数据,只能取0和1两个值,表示的是某个对象的质量特征。
四、模型的检验包括哪几个方面?具体含义是什么?1)经济学检验:参数的符合和大致取值。
计量经济学简答题经典)
1.什么是计量经济学?它与经济学、统计学和数学的关系怎样?答:1、计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。
2、经济理论、数学和统计学知识是在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不充分,只有结合在一起才行。
2计量经济学三个要素是什么?经济理论、经济数据和统计方法。
3.计量经济学模型的检验包括哪几个方面?其具体含义是什么?答:(1)经济意义检验,即根据拟定的符号、大小、关系,对参数估计结果的可靠性进行判断(2)统计检验,由数理统计理论决定。
包括:拟合优度检验、总体显著性检验。
(3)计量经济学检验,由计量经济学理论决定。
包括:异方差性检验、序列相关性检验、多重共线性检验。
(4)模型预测检验,由模型应用要求决定。
包括:稳定性检验:扩大样本重新估计;预测性能检验:对样本外一点进行实际预测。
4.计量经济学方法与一般经济数学方法有什么区别?答:计量经济学揭示经济活动中各因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各因素之间的理论关系,用确定性的数学方程加以描述。
5.计量经济学模型研究的经济关系有那两个基本特征?答:一是随机关系,二是因果关系6.计量经济学研究的对象和核心内容是什么?答:计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律。
计量经济学的核心内容包括两个方面:一是方法论,即计量经济学方法或者理论计量经济学。
二是应用,即应用计量经济学。
无论是理论计量经济学还是应用计量经济学,都包括理论、方法和数据三种要素。
7.计量经济学中应用的数据类型怎样?举例解释其中三种数据类型的结构。
答:计量经济模型:WAGE=f(EDU,EXP,GEND,μ)1)时间序列数据是按时间周期收集的数据,如年度或季度的国民生产总值。
(完整word版)《计量经济学》复习重点及答案
各位同学:请大家按照这个复习重点进行认真复习,考试时请大家带上计算器,平时成绩占30%,期末占70%。
考试题型:一、名词解释题(每小题4分,共20分)计量经济学:一门由经济学、统计学和数学结合而成的交叉学科. 经济学提供理论基础,统计学提供资料依据,数学提供研究方法总体回归函数:被解释变量的均值同一个或者多个解释变量之间的关系样本回归函数:是总体回归函数的近似OLS 估计量 :以残差平方和最小的原则对回归模型中的系数进行估计的方法。
普通最小二乘法估计量OLS 估计量可以由观测值计算OLS 估计量是点估计量一旦从样本数据取得OLS 估计值,就可以画出样本回归线BLUE 估计量、BLUE :最优线性无偏估计量, 其估计量是无偏估计量,且在所有的无偏估计量中其方差最小。
拟合优度、衡量了解释变量能解释的离差占被解释变量的百分比。
拟合优度R 2(被解释部分在总平方和(SST)中所占的比例)虚拟变量陷阱、 带有截距项的回归模型,如果有m 个定性变量,只能引入m-1个虚拟变量。
如果引入了m 个,就将陷入虚拟变量陷阱。
既模型中存在完全共线性,使得模型无法估计方差分析模型、解释变量仅包含定性变量或虚拟变量的模型。
协方差分析模型、回归模型中的解释变量有些是定性的有些是定量的。
多重共线性 多重共线性是指解释变量之间存在完全的线性关系或近似的线性关系.分为完全多重共线性和不完全多重共线性ˆˆ)X |E(Y ˆ) )X |E(Y ( ˆˆˆ :SRF 2211i 21i 21的估计量。
是的估计量;是的估计量;是其中相对于ββββββββi i ii Y X X Y +=+=∑∑==222ˆi i y y TSS ESS R自相关: 随机误差项当期值和滞后期相关。
在古典线性回归模型中,我们假定随机扰动项序列的各项之间,如果这一假定不满足,则称之为自相关。
即用符号表示为:自相关常见于时间序列数据。
异方差、 是指模型误差项的方差随着变量的改变而不同随机误差项:模型中没有包含的所有因素的代表例:Y — 消费支出 X —收入、— —参数 u —随机误差项 显著性检验 :显著性检验时利用样本结果,来证实一个零假设的真伪的一种检验程序。
计量经济学简答题及答案
计量经济学简答题及答案1、比较普通最小二乘法、加权最小二乘法和广义最小二乘法的异同;答:普通最小二乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在图上就是是样本点偏离样本回归线的距离总体上最小,即残差平方和最小∑=n i i e12min ;只有在满足了线性回归模型的古典假设时候,采用OLS 才能保证参数估计结果的可靠性; 在不满足基本假设时,如出现异方差,就不能采用OLS;加权最小二乘法是对原模型加权,对较小残差平方和2i e 赋予较大的权重,对较大2i e 赋予较小的权重,消除异方差,然后在采用OLS 估计其参数;在出现序列相关时,可以采用广义最小二乘法,这是最具有普遍意义的最小二乘法; 最小二乘法是加权最小二乘法的特例,普通最小二乘法和加权最小二乘法是广义最小二乘法的特列;6、虚拟变量有哪几种基本的引入方式 它们各适用于什么情况答: 在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况;除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况;7、联立方程计量经济学模型中结构式方程的结构参数为什么不能直接应用OLS 估计 答:主要的原因有三:第一,结构方程解释变量中的内生解释变量是随机解释变量,不能直接用OLS 来估计;第二,在估计联立方程系统中某一个随机方程参数时,需要考虑没有包含在该方程中的变量的数据信息,而单方程的OLS 估计做不到这一点;第三,联立方程计量经济学模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机干扰项之间,如果采用单方程方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失;2、计量经济模型有哪些应用;答:①结构分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度;②经济预测,即是利用建立起来的计量经济模型对被解释变量的未来值做出预测估计或推算;③政策评价,对不同的政策方案可能产生的后果进行评价对比,从中做出选择的过程;④检验和发展经济理论,计量经济模型可用来检验经济理论的正确性,并揭示经济活动所遵循的经济规律;6、简述建立与应用计量经济模型的主要步骤;答:一般分为5个步骤:①根据经济理论建立计量经济模型;②样本数据的收集;③估计参数;④模型的检验;⑤计量经济模型的应用;7、对计量经济模型的检验应从几个方面入手;答:①经济意义检验;②统计准则检验;③计量经济学准则检验;④模型预测检验;1、在计量经济模型中,为什么会存在随机误差项答:①模型中被忽略掉的影响因素造成的误差;②模型关系认定不准确造成的误差;③变量的测量误差;④随机因素;这些因素都被归并在随机误差项中考虑;因此,随机误差项是计量经济模型中不可缺少的一部分;2、古典线性回归模型的基本假定是什么答:①零均值假定;即在给定x t 的条件下,随机误差项的数学期望均值为0,即t E(u )=0;②同方差假定;误差项t u 的方差与t 无关,为一个常数;③无自相关假定;即不同的误差项相互独立;④解释变量与随机误差项不相关假定;⑤正态性假定,即假定误差项t u 服从均值为0,方差为2σ的正态分布;3、总体回归模型与样本回归模型的区别与联系;答:主要区别:①描述的对象不同;总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所观测的样本中变量y 与x 的相互关系;②建立模型的不同;总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的;③模型性质不同;总体回归模型不是随机模型,样本回归模型是随机模型,它随着样本的改变而改变;主要联系:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型;4、试述回归分析与相关分析的联系和区别;答:两者的联系:①相关分析是回归分析的前提和基础;②回归分析是相关分析的深入和继续;③相关分析与回归分析的有关指标之间存在计算上的内在联系;两者的区别:①回归分析强调因果关系,相关分析不关心因果关系,所研究的两个变量是对等的;②对两个变量x 与y 而言,相关分析中:xy yx r r =;但在回归分析中,01ˆˆˆt t y b b x =++和01ˆˆˆt tx a a y =++却是两个完全不同的回归方程;③回归分析对资料的要求是:被解释变量y 是随机变量,解释变量x 是非随机变量;相关分析对资料的要求是两个变量都随机变量;5、在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质答:①线性,是指参数估计量0ˆb 和1ˆb 分别为观测值t y 和随机误差项t u 的线性函数或线性组合;②无偏性,指参数估计量0ˆb 和1ˆb 的均值期望值分别等于总体参数0b 和1b ;③有效性最小方差性或最优性,指在所有的线性无偏估计量中,最小二乘估计量0ˆb 和1ˆb 的方差最小;6、简述BLUE 的含义;答:在古典假定条件下,OLS 估计量0ˆb 和1ˆb 是参数0b 和1b 的最佳线性无偏估计量,即BLUE,这一结论就是着名的高斯-马尔可夫定理;7、对于多元线性回归模型,为什么在进行了总体显着性F 检验之后,还要对每个回归系数进行是否为0的t 检验答:多元线性回归模型的总体显着性F 检验是检验模型中全部解释变量对被解释变量的共同影响是否显着;通过了此F 检验,就可以说模型中的全部解释变量对被解释变量的共同影响是显着的,但却不能就此判定模型中的每一个解释变量对被解释变量的影响都是显着的;因此还需要就每个解释变量对被解释变量的影响是否显着进行检验,即进行t 检验;2.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度解答:因为人们发现随着模型中解释变量的增多,多重决定系数2R 的值往往会变大,从而增加了模型的解释功能;这样就使得人们认为要使模型拟合得好,就必须增加解释变量;但是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问题,比如,降低预测精确度、引起多重共线性等等;为此用修正的决定系数来估计模型对样本观测值的拟合优度;3.修正的决定系数2R 及其作用; 解答:222/11()/1t t e n k R y y n --=---∑∑,其作用有:1用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计算的影响;2对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较;4.常见的非线性回归模型有几种情况解答:常见的非线性回归模型主要有:(1)对数模型01ln ln t t t y b b x u =++(2)半对数模型01ln t t t y b b x u =++或01ln t t t y b b x u =++(3)倒数模型0101111y b b u b b u x y x=++=++或 (4)多项式模型2012...k k y b b x b x b x u =+++++2.产生异方差性的原因及异方差性对模型的OLS 估计有何影响;1模型中遗漏了某些解释变量;2模型函数形式的设定误差;3样本数据的测量误差;4随机因素的影响;产生的影响:如果线性回归模型的随机误差项存在异方差性,会对模型参数估计、模型检验及模型应用带来重大影响,主要有:1不影响模型参数最小二乘估计值的无偏性;2参数的最小二乘估计量不是一个有效的估计量;3对模型参数估计值的显着性检验失效;4模型估计式的代表性降低,预测精度精度降低;3.检验异方差性的方法有哪些1图示检验法;2戈德菲尔德—匡特检验;3怀特检验;4戈里瑟检验和帕克检验残差回归检验法;5ARCH 检验自回归条件异方差检验4.异方差性的解决方法有哪些1模型变换法;2加权最小二乘法;3模型的对数变换等5.什么是加权最小二乘法它的基本思想是什么最小二乘法的基本原理是使残差平方和∑2t e 为最小,在异方差情况下,总体回归直线对于不同的t t e x ,的波动幅度相差很大;随机误差项方差2t σ越小,样本点t y 对总体回归直线的偏离程度越低,残差t e 的可信度越高或者说样本点的代表性越强;而2t σ较大的样本点可能会偏离总体回归直线很远,t e 的可信度较低或者说样本点的代表性较弱;因此,在考虑异方差模型的拟合总误差时,对于不同的2t e 应该区别对待;具体做法:对较小的2t e 给于充分的重视,即给于较大的权数;对较大的2t e 给于充分的重视,即给于较小的权数;更好的使∑2t e 反映)var(i u 对残差平方和的影响程度,从而改善参数估计的统计性质;6.样本分段法即戈德菲尔特——匡特检验检验异方差性的基本原理及其使用条件;将样本分为容量相等的两部分,然后分别对样本1和样本2进行回归,并计算两个子样本的残差平方和,如果随机误差项是同方差的,则这两个子样本的残差平方和应该大致相等;如果是异方差的,则两者差别较大,以此来判断是否存在异方差;使用条件:1样本容量要尽可能大,一般而言应该在参数个数两倍以上;2t u服从正态分布,且除了异方差条件外,其它假定均满足;1.简述DW检验的局限性;答:从判断准则中看到,DW检验存在两个主要的局限性:首先,存在一个不能确定的DW检验只能检验一阶自相DW值区域,这是这种检验方法的一大缺陷;其次:....关;但在实际计量经济学问题中,一阶自相关是出现最多的一类序列相关,而且经验表明,如果不存在一阶自相关,一般也不存在高阶序列相关;所以在实际应用中,对于序列相关问题—般只进行..DW检验;二、简答题1、模型中引入虚拟变量的作用是什么答案:1可以描述和测量定性因素的影响;2能够正确反映经济变量之间的关系,提高模型的精度;3便于处理异常数据;2、虚拟变量引入的原则是什么答案:1如果一个定性因素有m方面的特征,则在模型中引入m-1个虚拟变量;2如果模型中有m个定性因素,而每个定性因素只有两方面的属性或特征,则在模型中引入m个虚拟变量;如果定性因素有两个及以上个属性,则参照“一个因素多个属性”的设置虚拟变量;3虚拟变量取值应从分析问题的目的出发予以界定;4虚拟变量在单一方程中可以作为解释变量也可以作为被解释变量;3、虚拟变量引入的方式及每种方式的作用是什么答案:1加法方式:其作用是改变了模型的截距水平;2乘法方式:其作用在于两个模型间的比较、因素间的交互影响分析和提高模型的描述精度;3一般方式:即影响模型的截距有影响模型的斜率;4、判断计量经济模型优劣的基本原则是什么答案:1模型应力求简单;2模型具有可识别性;3模型具有较高的拟合优度;4模型应与理论相一致;5模型具有较好的超样本功能;5、模型设定误差的类型有那些答案:1模型中添加了无关的解释变量;2模型中遗漏了重要的解释变量;3模型使用了不恰当的形式;6、工具变量选择必须满足的条件是什么答案:选择工具变量必须满足以下两个条件:1工具变量与模型中的随机解释变量高度相关;2工具变量与模型的随机误差项不相关;7、滞后变量模型包括哪几种类型写出各自的模型形式;答案:滞后变量模型包括两种类型:自回归模型和分布滞后模型;自回归模型是模型的解释变量中包含滞后被解释变量,基本形式为:;分布滞后模型是指模型中不仅包含解释变量的当期值,还包括解释变量的滞后值基本形式为: ;8、设定误差产生的主要原因是什么答案:原因有四:1模型的制定者不熟悉相应的理论知识;2对经济问题本身认识不够或不熟悉前人的相关工作;3模型制定者缺乏相关变量的数据;4解释变量无法测量或数据本身存在测量误差;9、在建立计量经济学模型时,什么时候,为什么要引入虚拟变量答案:在现实生活中,影响经济问题的因素除具有数量特征的变量外,还有一类变量,这类变量所反映的并不是数量而是现象的某些属性或特征,即它们反映的是现象的质的特征;这些因素还很可能是重要的影响因素,这时就需要在模型中引入这类变量;引入的方式就是以虚拟变量的形式引入;1、 直接用最小二乘法估计有限分布滞后模型的有:(1) 损失自由度2分(2) 产生多重共线性2分(3) 滞后长度难确定的问题1分2、 因变量受其自身或其他经济变量前期水平的影响,称为滞后现象;其原因包括:1经济变量自身的原因;2分2决策者心理上的原因1分;3技术上的原因1分;4制度的原因1分;3、 koyck 模型的特点包括:1模型中的λ称为分布滞后衰退率,λ越小,衰退速度越快2分;2模型的长期影响乘数为b 0·11λ-1分;3模型仅包括两个解释变量,避免了多重共线性1分;4模型仅有三个参数,解释了无限分布滞后模型因包含无限个参数无法估计的问题1分二、 1.联立方程模型中方程有:行为方程式1分;技术方程式1分;制度方程式1分;平衡方程或均衡条件1分;定义方程或恒等式1分;三、 2.联立方程的变量主要包括内生变量2分、外生变量2分和前定变量1分;四、 3.模型的识别有恰好识别2分、过渡识别2分和不可识别1分三种;五、 4.识别的条件条件包括阶条件和秩条件;阶条件是指,如果一个方程能被识别,那么这个方程不包含的变量总数应大于或等于模型系统中方程个数减13分;秩条件是指,在一个具有K 个方程的模型系统中,任何一个方程被识别的充分必要条件是:所有不包含在这个方程中变量的参数的秩为K -12分;六、 1.简述回归分析和相关分析的关系;七、 答案:回归分析是一个变量被解释变量对于一个或多个其他变量解释变量的依存关系,目的在于根据解释变量的数值估计预测被解释变量的总体均值;相关分析研究变量相关程度,用相关系数表示;相关分析不关注变量的因果关系,变量都是随机变量;回归分析关注变量因果关系;被解释变量是随机变量,解释变量是非随机变量;八、 2.简要说明DW 检验应用的限制条件和局限性;九、 答案DW 检验适用于一阶自回归:不适用解释变量与随机项相关的模型;DW 检验存在两个不能确定的区域十、 3.回归模型中随机误差项产生的原因是什么十一、 答案:模型中省略的变量;随机行为;模型形式不完善;变量合并误差;测量误差十二、 4.简述C-D 生产函数的份额估计法及其缺点;十三、 答案:C-D 生产函数是柯布-道格拉斯生产函数,即,Y A L K αβ=,α是产出的劳动弹性β是产出的资本弹性,缺点是劳动与资本存在不变的等于1 的替代弹性; 十四、 5.假设分布滞后模型为:i 3121110t ...r X X Y u X r r t t t +++++=---λλα将该模型变换成自回归模型形式;为计算模型参数的工具变量估计值,应该用哪些工具变量十五、 答案:0,,r λα1、二元回归模型011i 22i i i Y X X u βββ=+++中,三个参数含义答案:0β表示当X2、X3不变时,Y 的平均变化1β表示当X2不变时,X1变化一个单位Y 的平均变化2β表示当X1不变时,X2变化一个单位Y 的平均变化 2、调整后的判定系数与原来判定系数关系式 答案:2211(1)1n n k R R ---=---- 3、F 检验含义答案:从总体上检验被解释变量与解释变量线性关系的显着性,原假设//(1)RSS k ESS n k --:12...0k βββ====,如果成立,被解释变量与解释变量不存在显着的线性关系;1H :至少有一个i β不等于0,对于显着性水平α,查F 分布表中的(,1)k k n F α--,统计量F=//(1)RSS k ESS n k --,比较二者大小;如果统计量F 大于(,1)k k n F α--,否定原假设,总体回归方程存在显着的线性关系;否则,总体回归方程不存在显着的线性关系;、简述加权最小二乘法的思想;答案:对于存在异方差的模型,用某一权数对样本观测值或残差加权,再使用普通最小二乘法估计模型参数2、多重共线性的后果有哪些对多重共线性的处理方法有哪些答案:多重共线性的后果是:各个解释变量对被解释变量的影响很难精确鉴别;系数估计量的方差很大,显着性检验无效;参数估计量对于增减少量观测值或删除一个不显着的解释变量可能比较敏感;3、常见的非线性回归模型有几种情况答案:双对数模型,半对数模型,倒数变换模型,多项式模型,双曲函数模型,幂函数模型; ⒈什么是随机误差项影响随机误差项的主要因素有哪些它和残差之间的区别是什么 影响Y 的较小因素的集合;被忽略的因素、测量误差、随机误差等;通过残差对误差项的方差进行估计;⒉决定系数2R 说明了什么它与相关系数的区别和联系是什么⒊最小二乘估计具有什么性质P37线性、无偏性和有效性或最小方差性⒋在回归模型的基本假定中,()0t E ε=的意义是什么该假设的含义是:如果两变量之间确实是线性趋势占主导地位,随机误差只是次要因素时,那么虽然随机扰动会使个别观测值偏离线性函数,但给定解释变量时多次重复观测被解释变量,概率均值会消除随机扰动的影响,符合线性函数趋势;。
计量经济学简答题(经典)
1.什么是计量经济学?它与经济学、统计学和数学的关系怎样?答:1、计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。
2、经济理论、数学和统计学知识是在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不充分,只有结合在一起才行。
2计量经济学三个要素是什么?经济理论、经济数据和统计方法。
3.计量经济学模型的检验包括哪几个方面?其具体含义是什么?答:(1)统计检答:1在解释变量中被忽略的因素的影响(影响不显着的因素、未知的影响因素、无法获得数据的因素);变量观测值的观测误差的影响;模型关系的设定误差的影响;其它随机因素的影响。
11.为什么要计算调整后的可决系数?在应用过程中发现,如果在模型中增加一个解释变量,?往往增大。
这是因为残差平方和往往随着解释变量的增加而减少,至少不会增加。
这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。
但是,现实情况往往是,由增加解释变量个数引起的的增大与拟合好坏无关,需调整。
=0.89表示被解释变量Y的变异性的89%能用估计的回归方程解释。
12.叙述多重共线性的概念、后果和补救措施。
概念:如果两个或多于两个解释变量之间出现了相关性,则称模型存在多重共线性。
后果:1、估计量仍然是无偏的2、参数估计量的方差和标准差增大3、置信区间变宽4、t统计量会变小5、估计量对模型设定的变化及其敏感6、对方程的整体拟合程度几乎没有影响7、回归系数符号有误补救措施:1、什么都不做2、去掉多余的变量3、增大样本容量13.叙述异方差性的概念、后果和补救措施。
概念:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
后果:参数估计非有效,变量的显着性检验失去意义,模型的预测失效补救措施:1、加权最小二乘法(WLS)(对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS估计其参数)。
计量经济学题库(超完整版)及答案
计量经济学题库(超完整版)及答案四、简答题(每⼩题5分)1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。
2.计量经济模型有哪些应⽤?3.简述建⽴与应⽤计量经济模型的主要步骤。
4.对计量经济模型的检验应从⼏个⽅⾯⼊⼿?5.计量经济学应⽤的数据是怎样进⾏分类的? 6.在计量经济模型中,为什么会存在随机误差项?7.古典线性回归模型的基本假定是什么? 8.总体回归模型与样本回归模型的区别与联系。
9.试述回归分析与相关分析的联系和区别。
10.在满⾜古典假定条件下,⼀元线性回归模型的普通最⼩⼆乘估计量有哪些统计性质? 11.简述BLUE 的含义。
12.对于多元线性回归模型,为什么在进⾏了总体显著性F 检验之后,还要对每个回归系数进⾏是否为0的t 检验?13.给定⼆元回归模型:01122t t t t y b b x b x u =+++,请叙述模型的古典假定。
14.在多元线性回归分析中,为什么⽤修正的决定系数衡量估计模型对样本观测值的拟合优度?15.修正的决定系数2R 及其作⽤。
16.常见的⾮线性回归模型有⼏种情况?17.观察下列⽅程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。
①t t t u x b b y ++=310 ②t t t u x b b y ++=log 10③ t t t u x b b y ++=log log 10 ④t t t u x b b y +=)/(1018. 观察下列⽅程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。
①t t t u x b b y ++=log 10 ②t t t u x b b b y ++=)(210③ t t t u x b b y +=)/(10 ④t b t t u x b y +-+=)1(11019.什么是异⽅差性?试举例说明经济现象中的异⽅差性。
20.产⽣异⽅差性的原因及异⽅差性对模型的OLS 估计有何影响。
计量经济学简答题整理.(精选)
计量经济学简答题整理.(精选)简答题一、计量经济学的步骤答:选择变量和数学关系式——模型设定确定变量间的数量关系——估计参数检验所得结论的可靠性——模型检验作经济分析和经济预测——模型应用二、模型检验答:所谓模型检验,就是要对模型和所估计的参数加以评判,判定在理论上是否有意义,在统计上是否有足够的可靠性。
对计量经济模型的检验主要应从以下四方面进行:1、经济意义的检验。
2、统计推断检验。
3、计量经济学检验。
4、模型预测检验。
三、模型应用答:(1)经济结构分析,是指用已经估计出参数的模型,对所研究的经济关系进行定量的考查,以说明经济变量之间的数量比例关系。
(2)经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值。
(3)政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案作出评价。
(4)检验与发展经济理论,是利用计量经济模型去验证既有经济理论或者提出新的理论。
四、普通OLS方法的思想和它的计算方法答:计量经济学研究的直接目的是确定总体回归函数Yi=B1+B2Xi+ui,然而能够得到的知识来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。
为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。
例如,用生产该样本概率最大的原则去确定样本回归函数,成为极大似然发展;用估计的剩余平方和的最小的原则确定样本回归函数。
称为最小二乘法则。
为了使样本回归函数尽可能接近总体回归函数,要使样本回归函数估计的与实际的的误差尽量小,即要使剩余项越小越好。
可是作为误差有正有负,其简单代数和∑最小的准则,这就是最小乘准则,即min ∑=min ∑-min ∑五、简单线性回归模型基本假定Y X u ββ=++①假定解释变量x 是确定性变量,是非随机的,这是因为在重复抽样中是取一组固定的值.或者虽然是随机的,但与随机扰动项也是不相关;②假定模型中的变量没有测量误差。
(完整版)计量经济学重点(简答题)
计量经济学要点(简答题)一、什么是计量经济学?计量经济学,又称经济计量学,它是以必定的经济理论和实质统计资料为依照,运用数学、统计学和计算机技术,经过成立计量经济学模型,定量剖析经济变量之间的随机因果关系 .。
二、计量经济学的研究的步骤是什么?1)理论模型的设计A.理论或假说的陈说;B.理论的数学模型的设定;C.理论的计量经济模型的设定。
i.把模型中不重要的变量放进随机偏差项中;ii.制定待估参数的理论希望值。
2)获得数据数据根源:网络、统计年鉴、报纸、杂志数据类型:时间序列数据、截面数据、混淆数据、虚变量数据。
数据要求:完好性、正确性、可比性、一致性i.完好性:模型中包含的所有变量都一定获得相同容量的样本察看值。
ii.正确性:统计数据或检查数据自己是正确的。
iii.可比性:数据口径问题。
iv.一致性:指母体与样本的一致性。
3)模型的参数预计:一般最小二乘法。
4)模型的查验:经济学查验;统计学查验;计量经济学查验;模型的展望查验。
5)模型的应用:构造剖析;经济展望;政策评论;经济理论的查验与发展。
三、简述统计数据的类型?时间序列数据、截面数据、混淆数据、虚变量数据。
1)时间序列数据:准时间先后摆列采集的数据。
采用时间序列数据的注意事项:A.所选择的样本区间的经济行为一致性问题。
B.样本数据在不一样样本点之间的可比性问题。
C.样本数据过于集中的问题。
不可以反应经济变量间的构造关系,应增大察看区间。
D.模型的随机偏差项序列有关问题。
2)截面数据:又称横向数据,是一批发生在同一时间截面上的检查数据。
研究某时点上的变化状况。
采用截面数据的注意事项:A.样本与母体的一致性问题。
B.随机偏差项的异方差问题。
3)混淆数据:也称面板数据,既有时间序列数据,又有截面数据。
4)虚变量数据:又称二进制数据,只好取0 和 1 两个值,表示的是某个对象的质量特点。
四、模型的查验包含哪几个方面?详细含义是什么?1)经济学查验:参数的切合和大概取值。
计量经济学简答题与答案
计量经济学简答题及答案1、比较普通最小二乘法、加权最小二乘法和广义最小二乘法的异同。
答:普通最小二乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在图上就是是样本点偏离样本回归线的距离总体上最小,即残差平方和最小n2min。
只有在满足了线性回归模型的古典假设时候,采用OLS才能保证eii1参数估计结果的可靠性。
在不满足根本假设时,如出现异方差,就不能采用OLS。
加权最小二乘法是对原模型加权,对较小残差平方和 2 e赋予较大的权重,对较大i2e赋予较小的权i重,消除异方差,然后在采用OLS估计其参数。
在出现序列相关时,可以采用广义最小二乘法,这是最具有普遍意义的最小二乘法。
最小二乘法是加权最小二乘法的特例,普通最小二乘法和加权最小二乘法是广义最小二乘法的特列。
6、虚拟变量有哪几种根本的引入方式?它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
7、联立方程计量经济学模型中构造式方程的构造参数为什么不能直接应用OLS估计?答:主要的原因有三:第一,构造方程解释变量中的内生解释变量是随机解释变量,不能直接用OLS来估计;第二,在估计联立方程系统中某一个随机方程参数时,需要考虑没有包含在该方程中的变量的数据信息,而单方程的OLS 估计做不到这一点;第三,联立方程计量经济学模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机干扰项之间,如果采用单方程方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失。
2、计量经济模型有哪些应用。
答:①构造分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学重点(简答题)一、什么是计量经济学?计量经济学,又称经济计量学,它是以一定的经济理论和实际统计资料为依据,运用数学、统计学和计算机技术,通过建立计量经济学模型,定量分析经济变量之间的随机因果关系.。
二、计量经济学的研究的步骤是什么?1)理论模型的设计A.理论或假说的陈述;B.理论的数学模型的设定;C.理论的计量经济模型的设定。
i.把模型中不重要的变量放进随机误差项中;ii.拟定待估参数的理论期望值。
2)获取数据数据来源:网络、统计年鉴、报纸、杂志数据类别:时间序列数据、截面数据、混合数据、虚变量数据。
数据要求:完整性、准确性、可比性、一致性i.完整性:模型中包含的所有变量都必须得到相同容量的样本观察值。
ii.准确性:统计数据或调查数据本身是准确的。
iii.可比性:数据口径问题。
iv.一致性:指母体与样本的一致性。
3)模型的参数估计:普通最小二乘法。
4)模型的检验:经济学检验;统计学检验;计量经济学检验;模型的预测检验。
5)模型的应用:结构分析;经济预测;政策评价;经济理论的检验与发展。
三、简述统计数据的类别?时间序列数据、截面数据、混合数据、虚变量数据。
1)时间序列数据:按时间先后排列收集的数据。
采纳时间序列数据的注意事项:A.所选择的样本区间的经济行为一致性问题。
B.样本数据在不同样本点之间的可比性问题。
C.样本数据过于集中的问题。
不能反映经济变量间的结构关系,应增大观察区间。
D.模型的随机误差项序列相关问题。
2)截面数据:又称横向数据,是一批发生在同一时间截面上的调查数据。
研究某时点上的变化情况。
采纳截面数据的注意事项:A.样本与母体的一致性问题。
B.随机误差项的异方差问题。
3)混合数据:也称面板数据,既有时间序列数据,又有截面数据。
4)虚变量数据:又称二进制数据,只能取0和1两个值,表示的是某个对象的质量特征。
四、模型的检验包括哪几个方面?具体含义是什么?1)经济学检验:参数的符合和大致取值。
2)统计学检验:拟合优度检验;模型的显著性检验;参数的显著性检验。
3)计量经济学检验:序列相关性;异方差检验;多重共线性检验。
4)模型的预测检验:a,扩大样本容量或变换样本重新估价模型;b,利用模型对样本期以外的某一期进行预测。
五、回归分析和相关分析的联系和区别是什么?回归分析是处理变量与变量之间关系的一种数学方法,是研究一个变量关于另一个(些)变量的依赖关系的计算理论和方法。
其目的在于通过后者的已知或设定值,去估计或预测前者的(总体)均值。
前一个变量被称为被解释变量,后一个(些)变量称为解释变量。
回归分析与相关分析的联系:都是对变量间非确定相关关系的研究,均能通过一定的方法对变量之间的线性依赖程度进行测定。
回归分析与相关分析的区别:1相关分析研究的是两个随机变量之间的相关形式及相关程度,是通过相关系数来测定的,不考虑变量之间是否存在因果关系;而回归分析是以因果分析为基础的,变量之间的地位是不对称的,有解释变量与被解释变量之分,被解释变量是随机变量,而解释变量在一般情况下假定是确定性变量。
2相关分析所采用的相关系数,是一种纯粹的数学计算,相关分析关注的是变量之间的相互关联的程度,而回归分析在应用之间就对变量之间是否存在依赖关系进行了因果分析,在此基础上进行的回归分析,达到了深入分析变量间依存关系、掌握其运动规律的目的。
六、经典假设条件的内容是什么?(应用最小二乘法应满足的古典假定?)1)解释变量x1,x2,…,xk是确定性变量,不是随机变量;而且解释变量之间互不相关。
2)随机误差项具有0均值和同方差。
3)随机误差项在不同样本点之间是独立的,不存在序列相关。
4)随机误差项与解释变量之间不相关。
5)随机误差项服从0均值,同方差的正态分布。
七、总体回归函数和样本回归函数之间有哪些区别与联系?总体回归函数是将总体被解释变量的条件期望表示为解释变量的某种函数。
样本回归函数是将被解释变量Y的样本观测值的拟和值表示为解释变量的某种函数。
二者区别:描述的对象不同;模型建立的依据不同。
二者联系:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
八、什么是随机误差项?随机误差项包括哪些因素?设定随机误差项的原因有哪些?随机误差项是模型设定中省略下来而又集体地影响着被解释变量Y的全部变量的替代物。
随机误差项包括以下因素:在解释变量中被忽略的因素的影响。
变量观测值的观察误差的影响。
模型关系的设定误差的影响。
其它随机因素的影响。
设定随机误差项的原因:理论的含糊性;数据的欠缺;节省的原则。
九、最小二乘估计量有哪些特性?高斯-马尔科夫定理的内容是什么?判断一个估计量是否为优良估计量需要考察的统计性质:线性,考察估计量是否是另一个随机变量的线性函数;无偏性,考察估计量的期望是否等于其真值;有效性,考察估计量在所有的无偏估计量中是否有最小方差。
上述三个统计特性称为估计量的小样本性质。
具有这类性质的估计量是最佳的线性无偏估计量。
在模型假定条件成立的情况下,根据普通最小二乘估计法得到的估计量具有BLUE的性质,这就是高斯-马尔科夫定理定理。
上述三个性质针对的是小样本,针对大样本还有三个渐近性质:渐近无偏性:表示当样本容量趋于无穷大时,估计量的均值趋于总体均值。
一致性:表示当样本容量趋于无穷时,估计量依概率收敛于总体的真值。
渐近有效性:样本容量趋于无穷时,估计量在所有的一致估计中,具有最小的渐近方差。
十、为什么用可决系数R2评价拟合优度,而不是用残差平方和作为评价标准?可决系数和相关系数有什么区别与联系?样本可决系数R2反映了回归平方和占总离差平方和的比重,表示由解释变量引起被解释变量的变化占被解释变量总的变化的比重,因而可用来判定回归直线拟合程度的优劣,该值大表示回归直线对样本店的拟合程度好。
残差平方和反映随机误差项包含因素对被解释变量变化影响的绝对程度,它与样本容量有关,样本容量大时,残差平方和一般也大,样本容量小时,残差平方和也小,因此样本容量不同时得到的残差平方和不能用于比较。
此外,检验统计量一般应是相对量而不能是绝对量,因而不宜使用残差平方和判断模型的拟合优度。
可决系数和相关系数的联系和区别:A.相关系数是建立在相关分析基础上的,研究的是随机变量之间的关系;可决系数则是建立在回归分析基础上,研究的是非随机变量X对随机变量Y的解释程度。
B.在取值上,可决系数是样本相关系数的平方。
C.样本相关系数是由随机的X和Y抽样计算得到,因而相关关系是否显著,还需进行检验。
十一、说明显著性检验的过程。
提出原假设和备择假设。
选择并计算在原假设成立情况下的统计量。
给定显著水平a,查临界值表进行判断。
十二、影响预测精度的主要因素是什么?样本容量;模拟的拟合优度。
十三什么是正规方程组?并说明多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?正规方程组是根据最小二乘原理得到的关于参数估计值的线性代数方程组。
从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,样本容量必须不少于模型中解释变量的数目(包括常数项),即n ≥ k + 1。
十三、在多元线性回归分析中,为什么用调整的可决系数衡量估计模型对样本观测值的拟合优度?未调整可决系数R2的一个总要特征是:随着样本解释变量个数的增加,R2的值越来越高,(即R2是解释变量个数的增函数)。
也就是说,在样本容量不变的情况,在模型中增加新的解释变量不会改变总离差平方和(TSS),但可能增加回归平方和(ESS),减少残差平方和(RSS),从而可能改变模型的解释功能。
因此在多元线性回归模型之间比较拟合优度时,R2不是一个合适的指标,需加以调整。
而修正的可决系数:其值不会随着解释变量个数k的增加而增加,因此在用于估计多元回归模型方面要优于未调整的可决系数。
十四、在多元线性回归分析中,可决系数R2与总体线性关系显著性检验统计量F之间有何关系?t检验与F检验有何不同?是否可以替代?在一元线性回归分析中二者是否有等价作用?在多元线性回归分析中,可决系数R2与总体线性关系显著性检验统计量F 关系如下:可决系数是用于检验回归方程的拟合优度的,F检验是用于检验回归方程总体显著性的。
两检验是从不同原理出发的两类检验,前者是从已经得到的模型出发,检验它对样本观测值的拟合程度,后者是从样本观测值出发检验模型总体线性关系的显著性。
但两者是关联的,这一点也可以从上面两者的关系式看出,回归方程对样本拟和程度高,模型总体线性关系的显著性就强。
在多元线性回归模型分析中,t检验常被用于检验回归方程各个参数的显著性,是单一检验;而F检验则被用作检验整个回归关系的显著性,是对回归参数的联合检验。
在多元线性回归中,若F检验拒绝原假设,意味着解释变量与被解释变量之间的线性关系是显著的,但具体是哪个解释变量与被解释变量之间关系显著则需要通过t检验来进一步验证,但若F检验接受原假设,则意味着所有的t检验均不显著。
两者是不可互相替代的。
在一元线性回归模型中,由于解释变量只有一个,因此F检验的联合假设等同于t检验的单一假设,两检验作用是等价的。
十五、什么是异方差?异方差产生的原因是什么?如何检验和处理?1)线性回归模型为Yt = b0 + b1X1t + b2X2t + ……+ bkXkt +ut经典回归中所谓同方差是指不同随机误差项Ut(t =1,2,…,n) 的方差相同,即Var(Ut) = 戴尔塔方(怎么打?)如果随机误差项的方差不是常数,则称随机项Ut具有异方差性。
Var(Ut) = 戴尔塔方≠常数2)异方差性产生的原因:A.模型中遗漏了某些逐渐增大的因素的影响。
B.模型函数形式的误定误差。
C.随机因素的影响。
3)检验异方差性的方法:图解法、帕克检验、格莱泽检验、斯皮尔曼的等级相关检验、哥德费尔德-匡特检验。
4)修正异方差性的主要方法:加权最小二乘法,通过赋予不同观测点以不同的权数,从而提高估计精度,即重视小误差的作用,轻视大误差的作用。
十六、模型存在异方差时,会对回归参数的估计与的检验产生什么影响?1)最小二乘估计不再是有效估计。
2)无法确定估计系数的标准误差。
3)T检验的可靠性降低。
4)增大模型的预测误差。
当模型存在异方差时,根据普通最小二乘法估计出的参数估计量仍具有线性特性和无偏性,但不再具有有效性;用于参数显著性的检验统计量,要涉及到参数估计量的标准差,因而参数检验也失去意义。
十七、序列相关违背了哪些基本假定?其来源有哪些?检验方法有哪些,都适用于何种形式的序列相关检验?模型的序列相关违背的基本假定是Cov(ui,uj) = 0 (i ≠j)。
序列相关的来源有:A.经济变量固有的惯性;B.模型设定的偏误;C.模型中遗漏了重要的带有自相关的解释变量;D.数据的“编造”。