2.3 两角和与差的正切函数 学案(含答案)
届数学一轮复习第四章三角函数解三角形第3节两角和与差的正弦余弦和正切公式教学案含解析
第3节两角和与差的正弦、余弦和正切公式考试要求 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3。
能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4。
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β。
tan(α±β)=错误!。
2。
二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α。
tan 2α=错误!。
3.函数f(α)=a sin α+b cos α(a,b为常数),可以化为f(α)=错误!sin(α+φ)错误!或f(α)=错误!·cos(α-φ)错误!.[常用结论与微点提醒]1。
tan α±tan β=tan(α±β)(1∓tan αtan β)。
2。
cos2α=1+cos 2α2,sin2α=错误!。
3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=错误!sin错误!。
诊断自测1。
判断下列结论正误(在括号内打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.()(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.()(3)公式tan(α+β)=错误!可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立。
()(4)存在实数α,使tan 2α=2tan α。
3.2.3两角和与差的正切函数-----导学案
两角和与差的正切函数使用说明: 1、请同学认真阅读课本119-120页,划出重要知识,规范完成预习案内容并记熟基础知识,用红笔做好 疑难标记。
2、在课堂上联系课本知识和学过的知识,小组合作、讨论完成探究案内容;组长负责,拿出讨论结果,准备展示、点评。
3、及时整理展示、点评结果,规范完成训练案内容,改正完善并落实好学案所有内容。
4、把学案中自己的疑难问题和易忘、易出错的知识点以及解题方法规律,及时整理在典型题本上, 多复习记忆。
【学习目标】1.掌握两角和与差的正切公式,并会加以应用; 2.独立思考,合作学习公式的正用、逆用、变形用;3.激情投入,积极主动地发现问题和提出问题,形成严谨的数学思维习惯。
学习重点:两角和与差的正切公式。
教学难点:公式的正用、逆用、变形用公式,角的演变。
【预习案】一、相关知识前面我们学习了两角和与差的正弦、余弦函数,公式分别是在这基础上,你推导出两角和与差的正切函数的公式吗? 二、教材助读=-=+)tan()tan(βαβα两角和与差的正切公式T αβ±: 注意问题:角的取值范围预习自测1、求下列各式的值:(1)tan75° = (2)tan15° = (3)tan105°= 2、已知2tan ,31tan -==βα则=-)tan(βα =+)tan(βα 。
3、︒︒+︒+︒88tan 58tan 192tan 58tan = 3tan15 _________13tan15-︒=+︒4、已知βαtan tan ,是方程0652=-+x x 的两根,求)tan(βα+的值。
【探究案】基础知识探究:应用T αβ±求值已知tan α = 12 ,tan β = 13 ,0<α<π2 , π<β<3π2 , 求α+β的值。
综合应用探究: T αβ±的逆用、变形用 求值:o o o o 50tan 10tan 3)50tan 10(tan ⋅++当堂检测:1、若tan α= 32 ,tan β= 13 ,则tan (α-β)=A .113 B .79 C .119 D .732、若tan α= 2, ,tan (β-α)=3,则tan (β-2α)=A .-1B .-15C .57D .173.已知3)tan(,2)tan(-=--=+βαβα,则==βα2tan ,2tan 。
312两角和与差的正弦、余弦、正切公式(教、学案).docx
3. 1.2两角和与差的正弦、余弦、正切公式一、 教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣, 理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变 换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。
二、 教学目标1. 掌握两角和与差公式的推导过程;2•培养学生利用公式求值、化简的分析、转化、推理能力; 3.发展学生的正、逆向思维能力,构建良好的思维品质。
三、 教学重点难点重点:两角和与差公式的应用和旋转变换公式;难点:两角和与差公式变aSina-kbCosa 为一个角的三角函数的形式。
四、 学情分析 五、 教学方法1. 温故、推新,循序渐进,以学生为主体逐步掌握本节知识要点2. 学案导学:见后面的学案。
3. 新授课教学基本环节:预习检查、总结疑惑一情境导入、展示目标一合作探究、精 讲点拨一反思总结、当堂检测一发导学案、布置预习六、 课前准备 多媒体课件 七、 课时安排:1课时 八、 教学过程(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:cos (a + 0) = COSGCOS 0-sinosin 0 ; cos (a-0) = cosacos/? + sinasin 0 .这是两角和与差的余弦公式,下而大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决 今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式.=sin a cos + cos sin 0 ・sin (a - /?) = sin [a+{-/3)] = sin acos (-^) + cos a sin (-/?) = sin acos p - cos a sin 0让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学牛动手)sin (G + 0) = cos号-(。
《两角和与差的正切》教案
《两角和与差的正切》教案
一、教学目标
1.知识目标:掌握公式及其推导过程,理解公式成立的条件;会用公式求值。
2.能力目标:培养学生的观察、分析、类比、联想能力;间接推理能力(即不能直接套公式,需要变化条件,寻找依据,才能推出结论);自学能力。
3.情感目标:发展学生的正向、逆向思维和发散思维能力,构建良好的数学思维品质。
二、教学重点、难点
重点是公式的结构特点及其推导方法、成立条件,运用公式求值。
难点是公式的逆向和变形运用。
三、教学方法
教师按照课本的知识结构先设计若干问题(即“知识台阶”),课前印发给学生,引导他们阅读课本。
课堂上在教师三导(引导、指导、辅导)下,以学生为主体,对所设问题进行读、议、练、讲,其间教师通过提问、参与讨论,巡视学生练习及板演、观察学生情绪等渠道,及时搜集反馈信息,及时作出评价,再发指令,使教学过程处于动态平衡之中。
四、课时
1课时
五、教学过程。
学案:两角和、差的正弦、余弦、正切公式
两角和、差的正弦、余弦、正切公式〖考纲要求〗① 会用向量的数量积推导出两角差的余弦公式.② 能利用两角差的余弦公式导出两角差的正弦、正切公式.③ 能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.〖复习建议〗在复习中要注意掌握三角变形的方法和技巧:1的替换、角的变换(拼凑、分拆)、降次与升次,了解万能代换〖知识回顾〗两角和差公式:=+)cos(βα . 倍角公式:sin 2α= . =-)cos(βα . cos 2α= .=+)sin(βα . tan 2α= .=-)sin(βα .一、知识点训练:1、sin (x -y )cosy +cos (x -y )siny = .2、0000sin163sin 223sin 253sin313+= .3、利用公式3)4020tan(=+ 求:tan 20º+tan 40º+3tan 20ºtan 40º= . 4、(1)若045,tan 1)tan 1)αβαβ+=++求((的值 。
(2) 若tan 1)tan 1)2,αβαβ++=+((求的值 。
二、典型例题分析:1、求15cos 之值.2、如果1tan 41tan x x -=++tan )4(x +π= 112tan 112tan-π+π= .3、如果2sin()3αβ+=,1sin()5αβ-=-,求tan tan αβ的值.4、在△ABC 中,412cos ,cos ,cos 513A B C ==求5、已知21tan(),tan(),tan()5444ππαββα+=-=+求.6、已知,42ππαβ<<<且412sin(),cos().513αβαβ+=-=求cos2α7、已知α∈(2π-,2π),β∈(2π-,2π),且tan α,tan β是一元二次方程:2670x x ++= 的两个实数根。
《两角和与差的正切公式》教案新人教A版
数学:3.1.2《两角和与差的正切公式》教案(新人教A版必修4)§3.1.2 两角和与差的正切公式(一)、教学目标1、知识目标:掌握公式的结构特点及其推导过程,理解公式成立的条件;运用公式求值;2、能力目标:培养学生的观察、分析、类比、联想能力;间接推理能力(即不能直接套公式,需要变化条件,寻找依据,才能推出结论);自学能力;3、情感目标:发展学生的正向、逆向思维和发散思维能力,构建良好的数学思维品质;(二)教学重点、难点重点:公式的结构特点及其推导方法、成立条件;运用公式求值;难点:公式的逆向及变形运用;(三)学法与教学用具学法:研讨式教学(四)教学设计:教学环节教学内容师生互动设计意图复习引入复习公式、首先回顾一下两角和与差的正、余弦公式:以旧引新,让学生明确学习内容公式推导及理解公式推导这是两角和与差的正、余弦公式,下面大家思考一下两角和与差正切公式是怎样的呢?提示:我们学习过正弦、余弦与正切的关系,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差的正切公式.(学生动手)通过什么途径可以把上面的式子化成只含有、的形式呢?(分式分子、分母同时除以,得到.注:以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?注:引导学生运用学过的公式探究新公式公式的深化对公式的扩展(1)联想:推导还有哪些办法?(2)扩想:、条件?(3)猜想:为下节课做准备公式应用例1、求下列各式的精确值.都有哪些解法?你还能怎样解?解:(1)====(2)===例1是直接正用、逆用公式;例2、已知,,求的值解:===1例2是典型例题,与课后习题结合例3、已知,求,,分析:公式、和本题的已知条件,要计算,,应先计算;解:例3是对本节的综合复习练习1、课本P140练习A组 1、2、32、已知求的值.()※学生独立完成,教师巡视,全班讲评练习考虑分层分类指导带※不要求全体学生都作,仅供学有余力的同学选作小结本节我们学习了两角和与差的正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用已学知识解决问题;反馈课本P141练习B组要求学生在5分钟内独立完成及时反馈,有助于教师教学中及时改进作业课本P141习题3-1A组5;课本P142习题3-1B组4、5课本P142习题3-1B组6、7※分层分类教学带※不要求全体学生都作,仅供学有余力的同学选作教学反思。
两角和与差的正弦、余弦和正切公式学案
两角和与差的正弦、余弦和正切公式导学目标: 1.会用向量数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.4.熟悉公式的正用、逆用、变形应用.自主梳理1.(1)两角和与差的余弦cos(α+β)=____________________________________, cos(α-β)=____________________________________. (2)两角和与差的正弦sin(α+β)=_____________________________________, sin(α-β)=_____________________________________. (3)两角和与差的正切tan(α+β)=_____________________________________, tan(α-β)=_____________________________________.(α,β,α+β,α-β均不等于k π+π2,k ∈Z )其变形为:tan α+tan β=tan(α+β)(1-tan αtan β), tan α-tan β=tan(α-β)(1+tan αtan β). 2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ),其中⎩⎪⎨⎪⎧cos φ=aa 2+b 2,sin φ=ba 2+b 2,tan φ=b a ,角φ称为辅助角.自我检测 1.cos 43°cos 77°+sin 43°cos 167°的值为________.2.已知tan(α+β)=3,tan(α-β)=5,则tan 2α=________.3.cos π12+3sin π12=________.4.(1+tan 17°)(1+tan 18°)(1+tan 27°)(1+tan 28°)的值是________.5.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是________.探究点一 给角求值问题(三角函数式的化简、求值)例1 求值: (1)[2sin 50°+sin 10°(1+3tan 10°)]2sin 280°; (2)sin(θ+75°)+cos(θ+45°)-3·cos(θ+15°).变式迁移1 求值:(1)2cos 10°-sin 20°sin 70°;(2)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ).探究点二 给值求值问题(已知某角的三角函数值,求另一角的三角函数值)例2 已知0<β<π4<α<3π4,cos ⎝⎛⎭⎫π4-α=35,sin ⎝⎛⎭⎫3π4+β=513,求sin(α+β)的值.变式迁移2 (2010·广州高三二模)已知tan ⎝⎛⎭⎫π4+α=2,tan β=12. (1)求tan α的值;(2)求sin (α+β)-2sin αcos β2sin αsin β+cos (α+β)的值.探究点三 给值求角问题(已知某角的三角函数值,求另一角的值)例3 已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值.变式迁移3 若sin A =55,sin B =1010,且A 、B 均为钝角,求A +B 的值.转化与化归思想例 (14分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255. (1)求cos(α-β)的值;(2)若-π2<β<0<α<π2,且sin β=-513,求sin α的值.【答题模板】解 (1)∵|a -b |=255,∴a 2-2a·b +b 2=45.[2分]又∵a =(cos α,sin α),b =(cos β,sin β),∴a 2=b 2=1, a·b =cos αcos β+sin αsin β=cos(α-β),[4分]故cos(α-β)=a 2+b 2-452=2-452=35.[7分](2)∵-π2<β<0<α<π2,∴0<α-β<π.∵cos(α-β)=35,∴sin(α-β)=45.[9分]又∵sin β=-513,-π2<β<0,∴cos β=1213.[11分]故sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=45×1213+35×⎝⎛⎭⎫-513=3365.[14分] 【突破思维障碍】本题是三角函数问题与向量的综合题,唯一一个等式条件|a -b |=255,必须从这个等式出发,利用向量知识化简再结合两角差的余弦公式可求第(1)问,在第(2)问中需要把未知角向已知角转化再利用角的范围来求,即将α变为(α-β)+β.本节主要应用转化与化归思想,即异角化同角.未知角向已知角转化,非特殊角向特殊角转化.【易错点剖析】|a -b |平方逆用及两角差的余弦公式是易错点,把未知角转化成已知角并利用角的范围确定三角函数符号也是易错点.1.转化思想是实施三角变换的主导思想,变换包括:函数名称变换,角的变换,“1”的变换,和积变换.2.变换则必须熟悉公式.分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件.3.恒等变形前需已知式中角的差异,函数名称的差异,运算结构的差异,寻求联系,实现转化.4.基本技巧:切割化弦,异名化同,异角化同或尽量减少名称、角数.(满分:90分)一、填空题(每小题6分,共48分)1.已知a ∈(-π2,0),sin α=-45,则tan(α+π4)=______________.2.(2011·盐城模拟)已知cos(π6-α)=33,则sin 2(α-π6)-cos(5π6+α)的值是________.3.(2010·东北育才中学一模)已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)=________.4.函数y =2sin(π4-x )+6cos(π4-x )的最大值为________.5.求值:sin 7°+cos 15°sin 8°cos 7°-sin 15°sin 8°=________.6.在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 的大小为________.7.函数f (x )=a sin(x +π4)+3sin(x -π4)是偶函数,则a =________.8.已知tan α、tan β是方程x 2+33x +4=0的两根,且α、β∈⎝⎛⎭⎫-π2,π2,则tan(α+β)=__________,α+β的值为________.二、解答题(共42分)9.(14分)(1)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π且sin(α+β)=3365,cos β=-513.求sin α; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.10.(14分)(2010·四川)(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β;②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知△ABC 的面积S =12,AB →·AC →=3,且cos B =35,求cos C .11.(14分)(2010·济南高三三模)设函数f (x )=a·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈⎣⎡⎦⎤-π3,π3,求x ; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.。
34722_《两角和与差的正弦、余弦、正切公式》学案1
3.1.1两角和与差的正弦,余弦和正切公式(导学案)1、知识目标:两角和与差的正弦,余弦和正切公式2、能力目标:会用两角和与差的正弦,余弦和正切公式解决一些简单的一、复习准备:1.三角函数的定义:设α是任意角,它的终边与单位圆交于点P(x,y),那么: y =, x =,tan α= 2.诱导公式:奇变偶不变,符号看象限。
如:c o s (2)k πα+=,cos(90) o α-=,cos() α-=,sin() α-=3.向量的数量积:a b =;(模长形式) a b =(坐标形式)二、问题设置:我们在初中的时候,就已经知道tan 451=,3tan 303=,由此,我们能否得出tan15tan 4530=-()=?大家可以猜想,是不是等于3tan 45tan 3013-=-呢? 三、知识探究:1、差角的余弦公式推导:如图所示,任意角α的终边OP 与单位圆相交于点P ,根据三角函数的定义可知,点P 的坐标是(用α表示),同样的,任意角β的终边OQ 与单位圆相交于点Q ,根据三角函数的定义,点Q 的坐标是(用β表示),故向量OP =, OQ =(填坐标),,OP OQ 的夹角为,|| ,OP =|| OQ =,由向量的数量积可知:OP OQ ==①(模长形式)OP OQ =②(坐标形式) 由①②可得cos POQ ∠=③ 又∵2k POQ αβπ-=+∠(思考:为什么有这个等式)∴cos()cos(2) k POQ αβπ-=+∠=④ 由③④可得:cos()cos cos sin sin αβαβαβ-=+(()C αβ-)此公式给出了任意角α,β的正弦,余弦值与其差角αβ-的余弦值之间的关系。
称之为差角的余弦公式。
简记为()C αβ-显然,有了公式()C αβ-以后,我们只要知道的值,就可以求得cos()αβ-的值。
若令θαβ=-,则有:即一个任意角的余弦可以表示为两个角的差的余弦,然后利用差角公式,可求此任意角的余弦值。
高中数学第五章三角函数两角和与差的正弦余弦正切公式学案新人教A版必修第一册
第2课时 两角和与差的正弦、余弦、正切公式课程标准(1)能由两角差的余弦公式推导出两角和的余弦公式、两角和与差的正弦公式及正切公式,了解它们的内在联系.(2)掌握两角和与差的正弦、余弦、正切公式,并能灵活运用这些公式进行简单的化简、求值.新知初探·课前预习——突出基础性教材要点要点一 两角和的余弦公式名称简记符号公式使用条件两角和的余弦公式C(α+β)cos (α+β)=cosαcosβ-sinαsinβα,β∈R要点二 两角和与差的正弦公式❶名称简记符号公式使用条件两角和的正弦S(α+β)sin (α+β)=____________________α,β∈R 两角差的正弦S(α-β)sin (α-β)=____________________α,β∈R 要点三 两角和与差的正切公式助学批注批注❶ 理顺公式间的联系:批注❷ 公式T (α±β)的符号规律:基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)对任意的α,β角,都有sin (α+β)=sin α+sin β.( )(2)存在α,β角,使得sin (α+β)=sin α+sin β.( )(3)存在α,β角,使得cos (α+β)=cos α-cos β.( )(4)对任意的α,β角,都有tan (α±β)=tan α±tan β1∓tan αtan β.( )2.已知sin α=√55,且α∈(0,π2),则sin (α+π4)=( )A.-√1010B.√1010C.-3√1010D.3√10103.已知tanα=2,则tan (α-π4)=( )A.-3 B.3C.-13 D.134.cos105°=________.题型探究·课堂解透——强化创新性题型 1 给角求值例1 求下列各式的值:(1)sin47°−sin17°cos30°cos17°;(2)sin17°cos13°+sin73°cos77°;(3)tan12°+tan33°+tan12°tan33°.方法归纳给角求值问题的解题策略巩固训练1 (1)cos75°sin135°+sin45°cos15°=________.(2)1−tan 27°tan 33°tan27°+tan33°=________.题型 2 给值求值例2 (1)已知cos α=45,0<α<π2,则sin (α+π4)=( )A .√210B .7√210C .-√210D .-7√210(2)已知sin (3π4+α)=513,cos (π4-β)=35,且0<α<π4<β<3π4,求cos (α+β).方法归纳给值求值的解题策略巩固训练2 (1)已知sin α=35,α∈(π2,π),则tan (π4-α)=( )A .-7B .-17C .17D .7(2)已知α∈(0,π2),sin (α-π6)=13,则sin α的值为________________.题型 3 给值求角例3 已知sinα=√55,sinβ=√1010,且α,β∈(0,π2),求角α+β的大小.方法归纳给值求角的方法一般先求出该角的某个三角函数值,再确定该角的取值范围,最后得出该角的大小.至于求该角的哪一个三角函数值,这要取决于该角的取值范围,然后结合三角函数值在不同象限的符号来确定,一般地,若θ∈(0,π),则通常求cosθ,若θ∈(-π2,π2),则通常求sinθ,否则容易导致增解.巩固训练3 若α,β均为锐角,且tanα=2,tanβ=3,则α+β等于( )A.π4B.3π4C.5π4D.7π4第2课时 两角和与差的正弦、余弦、正切公式新知初探·课前预习[教材要点]要点二sinαcosβ+cosαsinβ sinαcosβ-cosαsinβ[基础自测]1.答案:(1)× (2)√ (3)√ (4)×2.解析:因为α∈(0,π2),sinα=√55,所以cosα=√1−sin2α=√1−(√55)2=2√5 5,因此sin (α+π4)=sinαcosπ4+cosαsinπ4=√55×√22+2√55×√22=3√1010.答案:D3.解析:∵tanα=2,∴tan (α-π4)=tanα−tanπ41+tanαtanπ4=2−11+2=13.答案:D4.解析:cos105°=cos(60°+45°)=cos60°cos45°-sin60°sin45°=1 2×√22−√32×√22=√2−√64.答案:√2−√64题型探究·课堂解透例1 解析:(1)∵sin47°=sin (30°+17°)=sin30°cos17°+cos30°sin17°,∴原式=sin30°cos17°cos17°=sin30°=12.(2)sin17°cos13°+sin73°cos77°=sin17°cos13°+cos17°sin13°=sin (17°+13°)=1 2 .(3)∵tan12°+tan33°1−tan12°tan33°=tan (12°+33°)=tan45°=1.∴tan12°+tan33°=1-tan12°tan33°∴tan12°+tan33°+tan12°tan33°=1.巩固训练1 解析:(1)由诱导公式可得:cos75°sin135°+sin45°cos15°=sin15°cos45°+sin45°cos15°=sin (15°+45°)=sin60°=√3 2.(2)1−tan27°tan33°tan27°+tan33°=1tan27°+tan33°1−tan27°tan33°=1tan(27°+33°)=1tan60°=√33.答案:(1)√32 (2)√33例2 解析:(1)由cosα=45,0<α<π2,得sinα=35,所以sin (α+π4)=√22sinα+√22cosα=√22×35+√22×45=7√210.(2)∵0<α<π4<β<3π4,∴3π4<3π4+α<π,-π2<π4-β<0.又∵sin (3π4+α)=513,cos (π4-β)=35,∴cos (3π4+α)=-1213,sin (π4-β)=-45.∴cos (α+β)=sin [π2+(α+β)]=sin [(3π4+α)-(π4-β)]=sin (3π4+α)cos (π4-β)-cos (3π4+α)sin (π4-β)=513×35-(-1213)×(-45)=-3365.答案:(1)B (2)见解析巩固训练2 解析:(1)由于sinα=35,α∈(π2,π),所以cosα=-√1−sin2α=-45,tanα=sinαcosα=-34,tan (π4-α)=1−tanα1+tanα=1+341−34=7.(2)由题意可知,因为α∈(0,π2),所以α-π6∈(-π6,π3),所以cos (α-π6)=√1−sin2(α−π6)=2√23,则sinα=sin(α-π6+π6)=sin(α-π6)cosπ6+cos(α-π6)sinπ6=1 3×√32+2√23×12=√3+2√26.答案:(1)D (2)√3+2√26例3 解析:∵sinα=√55,sinβ=√1010,且α,β∈(0,π2),∴cosα=√1−sin2α=2√55,cosβ=√1−sin2β=3√1010,∴cos(α+β)=cosαcosβ-sinαsinβ=2√55×3√1010−√55×√1010=5√5050=5√210=√22,又由已知可得α+β∈(0,π),∴α+β=π4.巩固训练3 解析:tan (α+β)=tanα+tanβ1−tanαtanβ=2+31−2×3=-1.因为α∈(0,π2),β∈(0,π2),则α+β∈(0,π),故α+β=3π4.答案:B。
两角和与差的三角函数 学案
两角和与差的余弦、正弦、正切1.若0<α<β<π4,sin α+cos α=a ,sin β+cos β=b ,则 ( )A.ab <1B.a >bC.a <bD.ab >22.已知α、β为锐角,cos α=17 ,cos(α+β)=-1114 ,求β的值.3.已知π2 <β<α<3π4,cos(α-β)=1213 ,sin(α+β)=-35 ,求sin2α的值.4.若A +B =π4,求(1+tan A )(1+tan B )的值. 5.化简 3 -tan1801+ 3 tan186.化简(tan10°- 3 )cos100sin5007.求证:sin x -cos x sin x +cos x =tan(x -π4)8.已知tan A 与tan(-A +π4 )是x 2+px +q =0的解,若3tan A =2tan(π4-A ),求p 和q的值.两角和与差的余弦、正弦、正切答案1.C2.已知α、β为锐角,cos α=17 ,cos(α+β)=-1114,求β的值.分析:注意观察α、α+β及β间的关系,先求角β的一个三角函数值,再根据β为锐角求出β.解:∵α为锐角,且cos α=17 ,∴sin α=1-cos 2α =437.又∵α、β均为锐角,∴0<α+β<π,且cos(α+β)=-1114 ,∴sin(α+β)=1-cos 2(α+β) =5314. 则cos β=cos [(α+β)-α]=cos (α+β)cos α+sin(α+β)sin α =(-1114 )×17 +5314×437=12 ∴β=π3 . 评述:(1)在和(差)角公式的运用中,要注意和、差的相对关系,如(α+β)-α=β.(2)求角的基本步骤:①求角的范围;②求角的一个三角函数值;③写出满足条件的角.3.已知π2 <β<α<3π4,cos(α-β)=1213 ,sin(α+β)=-35,求sin2α的值.分析:注意观察α-β、α+β和2α间的关系,再选择适当的公式进行计算. 解:由题设知α-β为锐角,所以sin (α-β)=513 ,又∵α+β是第三象限角,∴cos(α+β)=-45 ,由2α=(α+β)+(α-β)得sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)=-5665评述:在三角变换中,角的变换是常用技巧,本题是将角2α变换成(α+β)+(α-β),使已知式中的角与待求式中的角联系起来.4.若A +B =π4,求(1+tan A )(1+tan B )的值.分析:注意待求式与正切和角公式间的联系,将正切和角公式变形解题. 解:(1+tan A )(1+tan B )=1+tan A +tan B +tan A tanB. 又tan(A +B )=tan A +tan B 1-tan A tan B 且A +B =π4∴tan(A +B )=1 ∴tan A +tan B =1-tan A tan B即tan A +tan B +tan A tan B =1∴(1+tan A )(1+tan B )=2. 评述:在解题过程中要注意分析条件和结论中的关系式与有关公式间的联系,并将公式进行变形加以运用. 5.化简3 -tan1801+ 3 tan18分析:注意把所要化简的式子与正切的差角公式进行比较.解: 3 -tan1801+ 3 tan180 =tan600-tan1801+tan600tan180 =tan(60°-18°)=tan42° 评述:在三角函数的化简与求值时,通常将常数写成角的一个三角函数,再根据有关公式进行变形.6.化简(tan10°- 3 )cos100sin500分析:切、弦混合式在不能直接运用公式的情况下,考虑将切化弦. 解:原式=(tan10°-tan60°) cos100sin500 =(sin100cos100 -sin600cos600 )cos100sin500=sin(-500)cos100 cos600 ·cos100sin500 =-1cos600 =-2. 评述:(1)切化弦是三角函数化简的常用方法之一. (2)把函数值化成tan60°在本题的化简中是必经之路. 7.求证:sin x -cos x sin x +cos x =tan(x -π4)证明:左边= 2 sin(x -π4 )2 cos(x -π4)=tan(x -π4)=右边或:右边=tan(x -π4 )=sin(x -π4)cos(x -π4)=sin x cosπ4 -cos x sin π4 cos x cos π4 +sin x sin π4=sin x -cos xsin x +cos x=左边8.已知tan A 与tan(-A +π4 )是x 2+px +q =0的解,若3tan A =2tan(π4 -A ),求p 和q的值.分析:因为p 和q 是两个未知数,所以须根据题设条件列出关于p 、q 的方程组,解出p 、q .解:设t =tan A ,则tan(π4 -A )=1-tan A 1+tan A =1-t1+t由3tan A =2tan(π4 -A ) 得3t =2(1-t )1+t解之得t =13或t =-2.当t =13 时,tan(π4 -A )=1-t 1+t =12,P =-[tan A +tan(π4 -A )]=-56 ,q =tan A tan(π4 -A )= 13 ×12=16.当t =-2时,tan(π4 -A )= 1-t 1+t=-3,P =-[tan A +tan(π4 -A )]=5,q =tan A tan(π4-A )=6∴满足条件的p 、q 的值为: ⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧=-=656165q p q p 或 评述:(1)“列方程求解未知数”是基本的数学思想方法. (2)如果tan α、tan β是某一元二次方程的根,则由韦达定理可与公式T (α+β)联系起来;若cos α、sin α是某一元二次方程的根,则由韦达定理与公式sin 2α+cos 2α=1联系起来.。
两角和与差的正弦、余弦和正切公式(含解析)
两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。
高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案
1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β))cos(α+β)=cos αcos β-sin αsin β (C (α+β))sin(α-β)=sin αcos β-cos αsin β (S (α-β))sin(α+β)=sin αcos β+cos αsin β (S (α+β))tan(α-β)=tan α-tan β1+tan αtan β(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β(T (α+β)) 2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°= . 答案 2解析 原式=cos 40°cos 25°1-cos 50°=cos (90°-50°)cos 25°·2sin 25°=sin 50°22sin 50°= 2. 2.若sin α+cos αsin α-cos α=12,则tan 2α= . 答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3, 则tan 2α=2tan α1-tan 2α=34. 3.(2015·重庆改编)若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 4.(教材改编)sin 347°cos 148°+sin 77°cos 58°= .答案 22 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22. 5.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 . 答案 17250解析 ∵α为锐角,cos(α+π6)=45, ∴α+π6∈⎝⎛⎭⎫π6,2π3,∴sin(α+π6)=35, ∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425, ∴cos(2α+π3)=2cos 2(α+π6)-1=725, ∴sin(2α+π12)=sin(2α+π3-π4) =22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= . (2)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是 .答案 (1)-75(2) 3 解析 (1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45. ∴原式=-75. (2)∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2 α=-231-(-3)2= 3. 思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α= . (2)已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 . 答案 (1)35(2)-1 解析 (1)∵tan(α+π4)=tan α+11-tan α=17, ∴tan α=-34=sin αcos α, ∴cos α=-43sin α. 又∵sin 2α+cos 2α=1,∴sin 2α=925. 又∵α∈(π2,π),∴sin α=35. (2)cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x ) =3cos(x -π6)=-1. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为 . (2)求值:cos 15°+sin 15°cos 15°-sin 15°= . 答案 (1)22(2) 3 解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22. (2)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为 .(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为 . 答案 (1)π4(2)3 解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,所以A =π4.(2)f (x )=1-cos ⎣⎡⎦⎤2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎫2x -π3+1, 可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 . 答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525. (2)∵cos(α-π6)+sin α=453, ∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45. 思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2= . 答案 539解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4, ∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2, ∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.5.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 .(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = . 易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误. (2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角.解析 (1)∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1 =2×49×5729-1=-239729. (2)在△ABC 中,∵cos B =-34, ∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧]1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练(时间:40分钟)1.cos 85°+sin 25°cos 30°cos 25°= . 答案 12解析 原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ= . 答案 34解析 由sin 2θ=378和sin 2θ+cos 2θ=1得 (sin θ+cos θ)2=378+1=(3+74)2, 又θ∈[π4,π2],∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34. 3.若tan θ=3,则sin 2θ1+cos 2θ= . 答案3 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.已知cos α=-55,tan β=13,π<α<32π,0<β<π2,则α-β的值为 . 答案 54π 解析 因为π<α<32π,cos α=-55,所以sin α=-255,tan α=2,又tan β=13,所以tan(α-β)=2-131+23=1,由π<α<32π,-π2<-β<0得π2<α-β<32π,所以α-β=54π. 5.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= . 答案 322解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎫β-π4, 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 6.sin 250°1+sin 10°= .答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)= . 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2), 所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210. 9.已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值.解 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. B 组 专项能力提升(时间:20分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)= . 答案 -255解析 由tan(α+π4)=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0, 所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α =-255. 12.已知α∈⎝⎛⎭⎫0,π2,且sin 2α-sin αcos α-2cos 2α=0,则tan ⎝⎛⎭⎫π3-α= . 答案 8-5311解析 ∵sin 2α-sin αcos α-2cos 2α=0,cos α≠0,∴tan 2α-tan α-2=0.∴tan α=2或tan α=-1,∵α∈⎝⎛⎭⎫0,π2,∴tan α=2, tan ⎝⎛⎭⎫π3-α=tan π3-tan α1+tan π3tan α =3-21+23=(3-2)(23-1)(23-1)(23+1)=8-5312-1=8-5311. 13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3= . 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝⎛⎭⎫π2-x +sin x +a 2sin ⎝⎛⎭⎫x +π4的最大值为2+3,则常数a = . 答案 ±3解析 f (x )=1+2cos 2x -12cos x+sin x +a 2sin ⎝⎛⎭⎫x +π4=cos x +sin x +a 2sin ⎝⎛⎭⎫x +π4 =2sin ⎝⎛⎭⎫x +π4+a 2sin ⎝⎛⎭⎫x +π4 =(2+a 2)sin ⎝⎛⎭⎫x +π4. 依题意有2+a 2=2+3, ∴a =±3.15.已知函数f (x )=1-2sin ⎝⎛⎭⎫x +π8 ·⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π2,π12,求函数f ⎝⎛⎭⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝⎛⎭⎫x +π8[sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8] =1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭⎫x +π8 =cos ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x +π4=2sin ⎝⎛⎭⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π. (2)由(1)可知f ⎝⎛⎭⎫x +π8=2cos ⎝⎛⎭⎫2x +π4. 由于x ∈⎣⎡⎦⎤-π2,π12, 所以2x +π4∈⎣⎡⎦⎤-3π4,5π12, 所以cos ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 则f ⎝⎛⎭⎫x +π8∈[-1,2], 所以f ⎝⎛⎭⎫x +π8的值域为[-1,2].。
两角和与差的正弦、余弦和正切公式Word版含答案
两角和与差的正弦、余弦和正切公式【课前回顾】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin_αsin_β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【课前快练】1.sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12D.12解析:选D 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.设角θ的终边过点(2,3),则tan ⎝⎛⎭⎫θ-π4=( ) A.15 B .-15C .5D .-5解析:选A 由于角θ的终边过点(2,3),因此tan θ=32,故tan ⎝⎛⎭⎫θ-π4=tan θ-11+tan θ=32-11+32=15,选A. 3.(2017·山东高考)已知cos x =34,则cos 2x =( )A .-14B.14 C .-18D.18解析:选D ∵cos x =34,∴cos 2x =2cos 2x -1=18.4.化简:2sin (π-α)+sin 2αcos 2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α5.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75考点一 三角函数公式的直接应用三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【典型例题】1.已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α的值为( ) A.210B .-210 C.7210D .-7210解析:选A ∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45, ∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A 因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.3.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则cos ⎝⎛⎭⎫5π6-2α的值为______. 解析:因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255. sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.答案:-4+3310考点二 三角函数公式的逆用与变形用1.注意三角函数公式逆用和变形用的2个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.2.熟记三角函数公式的2类变式 (1)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β). (2)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 考法(一) 三角函数公式的逆用 1.sin 10°1-3tan 10°=________. 解析:sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.答案:142.在△ABC 中,若tan A tan B = tan A +tan B +1, 则cos C =________.解析:由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.答案:223.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-45考法(二) 三角函数公式的变形用 4.化简sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-15.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换1.迁移要准(1)看到角的范围及余弦值想到正弦值;看到β,α+β,α想到凑角β=(α+β)-α,代入公式求值.(2)看到两个角的正切值想到两角和与差的正切公式;看到α+β,β,α-β想到凑角.2.思路要明(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.3.思想要有转化思想是实施三角变换的主导思想,恒等变形前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.【典型例题】1.(2018·南充模拟)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,则sin β=________.解析:因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,所以α+β∈(0,π), 所以sin α=1-cos 2α=437, sin(α+β)=1-cos 2(α+β)=5314, 则sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝⎛⎭⎫-1114×437=32. 答案:322.已知tan(α+β)=25,tan β=13,则tan(α-β)的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)·tan β=25-131+25×13=117,tan(α-β)=tan α-tan β1+tan αtan β=117-131+117×13=-726.答案:-726【针对训练】1.(2017·全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. 解析:∵α∈⎝⎛⎭⎫0,π2,tan α=2,∴sin α=255,cos α=55, ∴cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4 =22×⎝⎛⎭⎫255+55=31010. 答案:310102.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,从而-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. 【课后演练】1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12 C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin ⎝⎛⎭⎫θ+π3=3sin(π-θ),则tan θ等于( ) A .-33B.32C.233D .2 3解析:选B 由已知得sin θ+3cos θ=3sin θ, 即2sin θ=3cos θ,所以tan θ=32. 3.(2018·石家庄质检)若sin(π-α)=13,且π2≤α≤π,则sin 2α的值为( )A .-429B .-229C.229D.429解析:选A 因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.4.(2018·衡水调研)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118 B.118 C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.5.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:选Bsin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.6.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65B .1C.35D.15解析:选A 因为cos ⎝⎛⎭⎫x -π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫x +π3-π2=sin ⎝⎛⎭⎫x +π3,所以f (x )=65sin ⎝⎛⎭⎫x +π3,于是f (x )的最大值为65.7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2018·贵州适应性考试)已知α是第三象限角,且cos(α+π)=45,则tan 2α=________.解析:由cos(α+π)=-cos α=45,得cos α=-45,又α是第三象限角,所以sin α=-35,tan α=34,故tan 2α=2tan α1-tan 2α=247. 答案:2479.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3 =cos x +12cos x +32sin x=32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33 =-1. 答案:-110.(2018·石家庄质检)已知α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-23,则cos α=________. 解析:因为α∈⎝⎛⎭⎫0,π2,所以α+π3∈⎝⎛⎭⎫π3,5π6, 所以sin ⎝⎛⎭⎫α+π3=53,所以cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3-π3=cos ⎝⎛⎭⎫α+π3cos π3+sin ⎝⎛⎭⎫α+π3sin π3=-23×12+53×32=15-26. 答案:15-2611.(2018·陕西高三教学质量检测)已知角α的终边过点P (4,-3),则cos ⎝⎛⎭⎫α+π4的值为( )A .-7210 B.7210 C .-210D.210解析:选B 由于角α的终边过点P (4,-3),则cos α=442+(-3)2=45,sin α=-342+(-3)2=-35,故cos ⎝⎛⎭⎫α+π4=cos αcos π4-sin αsin π4=45×22-⎝⎛⎭⎫-35×22=7210. 12.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π3的值为( ) A.1225 B.2425 C .-2425D .-1225解析:选B 因为α为锐角,且cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6= 1-cos 2⎝⎛⎭⎫α+π6=35, 所以sin ⎝⎛⎭⎫2α+π3=sin2⎝⎛⎭⎫α+π6 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2×35×45=2425. 13.(2018·广东肇庆模拟)已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎫2α+π4=( ) A .-195 B .-519 C .-3117D .-1731解析:选D 由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725.∴tan 2α=-247, ∴tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝⎛⎭⎫-247×1=-1731. 14.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),所以α+β=π3. 答案:π315.(2018·安徽两校阶段性测试)若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________.解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α),所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件;由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151616.(2018·广东六校联考)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12 =sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2, 所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ) =22×⎝⎛⎭⎫2425-725=17250. 17.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35,得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310. 18.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3,∴cos ⎝⎛⎭⎫2α+π3=-32, ∴ sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3 =-12×12-⎝⎛⎭⎫-32×32=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
【精品推荐】高中数学北师大版必修四课后训练3.2.3 两角和与差的正切函数 Word版含答案
ቤተ መጻሕፍቲ ባይዱ
3
10.设一元二次方程 mx2+(2m-1)x+(m+1)=0 的两根为 tan α,tan β,求 tan(α+β)的 取值范围.
参考答案
1 答案:A 2 答案:B 3 答案:B 4 答案:B 5 答案:D 6 答案:
3
2 3
7 答案: 3 8 答案:
9 答案:18 m 10 答案:(-∞,-1)∪ 1, 4
1.若 tan α=3,则 tan 4.若 A=15° ,B=30° ,则(1+tan A)(1+tan B)的值为( ). A.1 B.2 C.-1 D.-2 5.设 A,B,C 是△ABC 的三个内角,且 tan A,tan B 是方程 3x2-5x+1=0 的两个实 数根,则△ABC 是( ). A.等边三角形 B.等腰直角三角形 C.锐角三角形 D.钝角三角形 6.在△ABC 中,tan A+tan B+ 3 = 3 tan Atan B,则 C=__________.
课后训练
13 ). 的值为( 4 1 1 A.-2 B.2 C. D. 2 2 2 1 2.已知 tan(α+β)= , tan ,则 tan 的值等于( ). 5 4 4 4 13 3 13 3 A. B. C. D. 18 22 22 18 2 3 ,则 tan Atan B 的值为( 3.在△ABC 中,∠C=120° ,tan A+tan B= ). 3 1 1 1 5 A. B. C. D. 4 3 2 3
tan 20 tan50 1 7. =__________. tan20 tan50 1 8.已知 tan =2 ,求 的值. 2sin cos cos 2 4
专题03 两角和与差的三角函数(知识串讲+热考题型+专题训练)(解析版)
专题3两角和与差的三角函数(一)两角和与差的余弦C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;【点拨】①简记为:“同名相乘,符号反”.②公式本身的变用,如cos(α-β)-cosαcosβ=sinαsinβ.③公式中的α,β不仅可以是任意具体的角.角的变用,也称为角的变换,如cosα=cos[(α+β)-β],cos2β=cos[(α+β)-(α-β)].(二)两角和与差的正弦S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;S(α-β):sin(α-β)=sinαcosβ-cosαsinβ;【点拨】①简记为:“异名相乘,符号同”.②公式中的α,β不仅可以是任意具体的角,还可以是任意形式的“整体”.(三)两角和与差的正切T(α+β):tan(α+β)=tanα+tanβ1-tanαtanβ;.T(α-β):tan(α-β)=tanα-tanβ1+tanαtanβ【点拨】1公式T α±β只有在α≠2π+k π,β≠2π+k π,α±β≠2π+k π(k ∈Z )时才成立,否则就不成立.②当tan α或tan β或tan(α±β)的值不存在时,不能使用T α±β处理有关问题,但可改用诱导公式或其他方法.③变形公式:tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β),如tan α+tan β+tan αtan βtan(α+β)=tan(α+β),tan(α+β)-tan α-tan β=tan αtan βtan(α+β),1-tan αtan β=tan tan tan()αβαβ++.1+tan αtan β=tan tan tan()αβαβ--.(四)辅助角公式函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=sin(α+φ)或f(α)=-φ),其中φ可由a ,b 的值唯一确定.4sin(2cos sin πααα±=±.题型一公式的正用【典例1】【多选题】(2022春·江苏徐州·高一统考阶段练习)如图,在平面直角坐标系xOy 中,角α、β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A 、B 两点,若点A 、B 的坐标分别为34,55⎛⎫ ⎪⎝⎭和43,55⎛⎫- ⎪⎝⎭,则以下结论正确的是()A .3cos 5α=B .3cos 5β=C .()cos 0αβ+=D .()cos 0αβ-=【答案】AD(0,π)β∈,则tan()αβ+的值为______.【典例3】(2023·江苏·高一专题练习)已知tan ,4αα=-是第四象限角.(1)求cos sin αα-的值;(2)求ππcos ,tan 44αα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的值.正用公式问题,一般属于“给角求值”、“给值求值”问题,应该通过应用公式,转化成“特殊角”的三角函数值计算问题.给角求值问题的策略:一般先要用诱导公式把角化整化小,化“切”为“弦”,统一函数名称,然后观察角的关系以及式子的结构特点,选择合适的公式进行求值.题型二公式的变用、逆用【典例4】(2022春·江苏泰州·高一江苏省姜堰第二中学校联考阶段练习)已知sin100cos100M =︒-︒,44cos 78cos 46cos12)N =︒︒+︒︒,1tan101tan10P -︒=+︒,那么M ,N ,P 之间的大小顺序是()A .M N P <<B .N M P<<C .P M N<<D .P N M<<A cos15︒︒B .2cos 15sin15cos75︒︒︒-C .2tan 301tan 30︒︒-D .1tan151tan15︒︒+-【答案】AD【分析】运用辅助角公式、诱导公式、和差角公式的逆用、特殊角的三角函数值、三角恒等变换中“1”的代换化简即可.(1)1-tan75°1+tan75°;(2)(1+tan1°)(1+tan2°)…(1+tan44°);(3)tan25°+tan35°+3tan25°tan35°.【答案】(1)3-;(2)222;(3【解析】尝试使用两角和与差的正切公式及其变形式对原式进行变形求值.详解:(1)原式=tan45°-tan75°1+tan45°tan75°tan(45°-75°)=33-.(2)因为(1+tan1°)(1+tan44°)=1+tan1°+tan44°+tan1°×tan44°=2,同理(1+tan2°)(1+tan43°)=2,…,所以原式=222.(3)∵tan60°=tan(25°+35°)=tan25°+tan35°1-tan25°tan35°=,∴tan25°+tan35°=3(1-tan25°tan35°)∴tan25°+tan35°.【规律方法】1.“1”的代换:在T α±β中如果分子中出现“1”常利用1=tan45°来代换,以达到化简求值的目的.2.若α+β=4π+k π,k ∈Z ,则有(1+tan α)(1+tan β)=2.3.若化简的式子里出现了“tan α±tan β”及“tan αtan β”两个整体,常考虑tan(α±β)的变形公式.题型三给值求值【典例7】(2023·江苏·高一专题练习)已知34sin sin ,cos cos 55+=+=αβαβ,则cos()αβ-=()A .12-B .13-C .12D .34取得最大值,则πcos 24θ⎛⎫+= ⎪⎝⎭()A .B .12-C D【典例9】(2021春·江苏南京·高一校考阶段练习)已知cos 27βα⎛⎫-=- ⎪⎝⎭,1sin 22αβ⎛⎫-= ⎪⎝⎭,2απ<<π,02βπ<<,求:(1)cos2αβ+的值;tanαβ+的值.(2)()给值求值问题的解题策略.(1)从角的关系中找解题思路:已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,根据需要灵活地进行拆角或凑角的变换.(2)常见角的变换.①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).题型四给值求角【典例10】(2022春·江苏南通·高一金沙中学校考期末)已知()0παβ∈,,,1tan()2αβ-=,1tan 7β=-,则2αβ-=()A .5π4B .π4C .π4-D .3π4-1,0,,cos 222π2a a βαββ⎛⎫⎛⎫⎛⎫∈-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求αβ+的值.解题的一般步骤是:(1)先确定角α的范围,且使这个范围尽量小(极易由于角的范围过大致误);(2)根据(1)所得范围来确定求tan α、sin α、cos α中哪一个的值,尽量使所选函数在(1)得到的范围内是单调函数;(3)求α的一个三角函数值;(4)写出α的大小.题型五三角函数式化简问题【典例12】(2022春·江苏镇江·高一统考期末)计算:70cos10︒︒=︒()A .1B .2C .3D .4【答案】C【分析】根据两角差的正弦公式化简求解即可.【详解】【典例13】(2022春·江苏泰州·高一校考阶段练习)已知,且()(),22k k k k ππαβπα+≠+∈≠∈Z Z ,则()tan tan αβα+=___________.1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.(3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用.2.注意三角函数公式逆用、变形用及“变角、变名、变号”的“三变”问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,33,23入特殊角,把“值变角”构造适合公式的形式.题型六三角恒等式证明问题【典例14】(2023春·上海浦东新·高一校考阶段练习)求证:(1)22sin cos 1sin cos 1cot 1tan αααααα+=-++;(2)在非直角三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=【典例15】(2023·高一课时练习)求证:(1)当18045()k k αβ+=⋅︒+︒∈Z 时,(1tan )(1tan )2αβ++=;(2)当180()k k αβγ++=⋅︒∈Z 时,tan tan tan tan tan tan αβγαβγ++=⋅⋅.【答案】(1)证明见解析(2)证明见解析【分析】(1)根据正切两角和公式求解即可.(2)根据正切两角和公式求解即可.【详解】(1)因为18045()k k αβ+=⋅︒+︒∈Z 所以(1tan )(1tan )αβ++1tan tan tan tan αβαβ=+++()()1tan 1tan tan tan tan αβαβαβ=++-+()()1tan 451801tan tan tan tan k αβαβ=++⋅-+ ()1tan 451tan tan tan tan αβαβ=+-+ 11tan tan tan tan αβαβ=+-+2=.即证:(1tan )(1tan )2αβ++=.(2)因为180()k k αβγ++=⋅︒∈Z 所以tan tan tan αβγ++()()tan 1tan tan tan αβαβγ=+-+()()tan 1801tan tan tan k γαβγ=⋅--+ ()tan 1tan tan tan γαβγ=--+tan tan tan αβγ=⋅⋅.即证:tan tan tan tan tan tan αβγαβγ++=⋅⋅.【总结提升】三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目.(2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.一、单选题1.(2023秋·江苏连云港·高一江苏省海头高级中学校考期末)5cos 12π=()A B C D2.(2023·江苏·高一专题练习)化简tan tan 44A A ⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭()A .2tan AB .2tan A-C .2tan 2AD .2tan 2A-,,1,2b =,且a b ⊥,则()tan 45θ-︒的值是()A .1B .3-C.3D .134.(2023·江苏·高一专题练习)若1tan θ-=+,则cot 4θ⎛⎫+ ⎪⎝⎭的值为().A .12B C D .1【答案】C5.(2023·江苏·高一专题练习)在ABC 中,若cos 5A =,cos 13B =-,则cos()A B +等于()A .1665-B .3365C .5665D .6365-6.(2023·江苏·高一专题练习)若cos 5θ=-且(,π)2θ∈,则πsin 3θ⎛⎫+ ⎪⎝⎭的值为()A B.410+-C D 7.(2022春·江苏苏州·高一统考期中)已知02α<<,02β<<,且()sin 5αβ-=-,12sin 13β=,则sin α=()A .6365B .5665C .3365D .1665-合,将角α的终边绕O 点顺时针旋转π3后,经过点()3,4-,则sin α=()A B C D .9.(2022春·江苏泰州·高一校考阶段练习)对任意的锐角αβ、,下列不等关系恒成立的是()A .()sin cos cos αβαβ+<+B .()cos sin sin αβαβ+<+C .()sin cos cos αβαβ-<+D .()cos sin sin αβαβ-<+【答案】ACA .1sin15222-=-B .sin20cos10cos160sin102-C .sin1212ππ=D .sin105=11.(2023·江苏·高一专题练习)化简:πtan 3π13αα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭______.12.(2023秋·陕西西安·高一西安市第六中学校考期末)已知α,β满足04α<<,44β<<,3cos 45πα⎛⎫+= ⎪⎝⎭,π12sin 413β⎛⎫+= ⎪⎝⎭,则()sin αβ-=______.13.(2023春·湖北黄冈·高一校考阶段练习)求sin 36sin15sin 39cos36cos15sin 39︒︒︒-︒︒+︒的值.()cos ,sin b ααβ=- ,且a b ⊥ .(1)求()cos αβ+的值;(2)若0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭且tan 3α=-,求2αβ+的值.︒︒+︒︒+︒︒=,tan10tan20tan20tan60tan60tan101tan20tan30tan30tan40tan40tan201︒︒+︒︒+︒︒=,tan33tan44tan44tan13tan33tan131︒︒+︒︒+︒︒=.(1)尝试再写出一个相同规律的式子;(2)写出能反映以上式子一般规律的恒等式,并对你写出的恒等式进行证明.。
三角函数、解三角形 第3课时 两角和与差的正弦、余弦和正切公式 导学案
第3课 两角和与差的正弦、余弦和正切公式【学习目标】掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式. 【预习单】1.若cos α=-45.α是第三象限的角,则sin ⎝⎛⎭⎫α+π4=________.2.sin 347°cos 148°+sin 77°cos 58°=________.3.tan 20°+tan 40°+3tan 20°·tan 40°=________. 4.已知tan =37,tan π6β⎛⎫+ ⎪⎝⎭=25,那么tan(α+β)= .【活动单】例1(1)已知sin α=23,cos β=-34,且α,β都是第二象限角,求cos(α-β)的值.(2)计算:000000sin7cos15sin8cos7-sin15sin8+⋅⋅= .(3) 若α,β均为钝角,且sin α=5,cos β=-10,则α+β= .例2.已知α∈⎝⎛⎭⎫π6,π2,且sin ⎝⎛⎭⎫α-π6=13,则sin α=______,cos ⎝⎛⎭⎫α+π3=______.例3.化简:tan(18°-x)tan(12°+x)+-x)+tan(12°+x)]=.练习:在非直角三角形ABC 中, 若角A ,B ,C 成等差数列,且tan Atan C=2+tan A 的值.【巩固单】1.在平面直角坐标系xOy 中,角α的顶点为O ,始边与x 轴正半轴重合,终边过点(-,-),则sin =( )A. B.- C. D.2.若0<α<,-<β<0,cos ,cos ,则cos 等于( )A. B.- C. D.-3.函数f (x )=cos x-sin -sin 在[0,π]的值域为( )A.[-1,1]B.[-2,1]C.[-2,2]D.4.若α+β=,则tan α·tan β-tan α-tan β的值为( )A. B.1 C.-1 D.-5.若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( )A .-223B .±223 C .-1 D .±1 6.4sin 80°-=( ) A.B.-C.D.2-37.对于集合{a 1,a 2,…,a n }和常数a 0,定义:ω=sin 2(a 1-a 0)+sin 2(a 2-a 0)+…+sin 2(a n -a 0)n为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为( )A.12B.13C.14 D .与a 0有关的一个值8.(多选)下列选项中,值为的是( )A.cos 72°·cos 36°B.sin sinC.D.cos 215°9.若tan α=3,tan(α-β)=2,则tan β=________.10.计算:sin 75°·cos 30°-sin 15°·sin 150°= .11. 求值:tan 20°+tan 40°+3tan 20°tan 40°=.12.已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.13.已知tan α=3tan ,则= .14.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________.15. 若cos(α+β)=45,sin(α-β)=35,且3π2<α+β<2π,π2<α-β<π,求cos 2β 的值.16.已知α,β,γ均为锐角,且tan α=4,tan β=711,tan γ=12,求α+β+γ的值.【反思单】第3课 两角和与差的正弦、余弦和正切公式【学习目标】掌握两角和与两角差的正弦、余弦、正切公式. 【知识梳理】1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin__αcos____β±cos__αsin____β; cos(α∓β)=cos__αcos____β±sin__αsin____β;tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α±β,α,β均不为k π+π2,k ∈Z . [三角函数公式的变形](1)公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). (2)辅助角公式:a sin x+b cos x=sin(x+φ)(a 2+b 2≠0),其中sin φ=,cos φ=.2.三角函数公式关系【预习单】1.若cos α=-45.α是第三象限的角,则sin ⎝⎛⎭⎫α+π4=________.解析:因为α是第三象限角,所以sin α=-1-cos 2α=-35,所以sin ⎝⎛⎭⎫α+π4=-35×22+⎝⎛⎭⎫-45×22=-7210.答案:-72102.sin 347°cos 148°+sin 77°cos 58°=________.解析:sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°)=sin 135°=22.答案:223.tan 20°+tan 40°+3tan 20°·tan 40°=________. 解析:因为tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°, 所以tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,所以原式=3-3tan 20°tan40°+3tan 20°tan 40°= 3.答案: 3 4.已知tan π-6α⎛⎫ ⎪⎝⎭=37,tan π6β⎛⎫+ ⎪⎝⎭=25,那么tan(α+β)= . 1[易错纠偏](1)不会逆用公式,找不到思路; (2)不会合理配角出错; (3)忽视角的范围用错公式. 【活动单】考点一:利用两角和(差)公式进行化简、求值 例1(1)已知sin α=23,cos β=-34,且α,β都是第二象限角,求cos(α-β)的值.(2)计算:000000sin7cos15sin8cos7-sin15sin8+⋅⋅= . 2-(3) 若α,β均为钝角,且sin cos β=,则α+β= .7π4考点二:目标角与已知角之间的变换例2.已知α∈⎝⎛⎭⎫π6,π2,且sin ⎝⎛⎭⎫α-π6=13,则sin α=______,cos ⎝⎛⎭⎫α+π3=______.【解析】因为α∈⎝⎛⎭⎫π6,π2,所以0<α-π6<π3, 所以cos ⎝⎛⎭⎫α-π6=1-19=223,所以sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=13×32+223×12=3+226, cos ⎝⎛⎭⎫α+π3=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π2=-sin ⎝⎛⎭⎫α-π6=-13. 考点三:公式的逆用及变形 例3.化简:tan(18°-x)tan(12°+x)+3[tan(18°-x)+tan(12°+x)]=.1练习:在非直角三角形ABC 中, 若角A ,B ,C 成等差数列,且tan Atan C=2+3,求tan A 的值.tan A=1或tan A=2+3.【巩固单】1.在平面直角坐标系xOy 中,角α的顶点为O ,始边与x 轴正半轴重合,终边过点(-,-),则sin =( )A. B.- C. D.解析:∵在平面直角坐标系xOy 中,角α的顶点为O ,始边与x 轴正半轴重合,终边过点(-,-),∴sinα==-,cos α==-,则sin =-sin =-sin αcos -cos αsin .故选D .2.若0<α<,-<β<0,cos ,cos ,则cos 等于( )A. B.- C. D.-解析cos=cos=cos cos+sin sin.∵0<α<,则+α<,∴sin.又-<β<0,则,∴sin.故cos.故选C.3.函数f(x)=cos x-sin-sin在[0,π]的值域为()A.[-1,1]B.[-2,1]C.[-2,2]D.解:f(x)=cos x-sin x-cos x-sin x+cos x=cos x-sin x=2cos∵0≤x≤π,x+,则当x+=π时,函数取得最小值2cos π=-2,当x+时,函数取得最大值2cos=2=1,即函数的值域为[-2,1].故选B.4.若α+β=,则tan α·tan β-tan α-tan β的值为()A. B.1C.-1D.-解析:∵α+β=,∴tan(α+β)==tanπ-=-,可得tan α+tan β=-(1-tan αtan β),∴tan α·tan β-tan α-tan β=tan αtan β-(tan α+tan β)=tan αtan β+tan αtan β=.故选A .5.若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( )A .-223B .±223 C .-1 D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 6.4sin 80°-=( ) A.B.-C.D.2-3解:4sin 80°-====-故选B .7.对于集合{a 1,a 2,…,a n }和常数a 0,定义:ω=sin 2(a 1-a 0)+sin 2(a 2-a 0)+…+sin 2(a n -a 0)n为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为( )A.12B.13C.14D .与a 0有关的一个值解析:选A.集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”ω=sin 2⎝⎛⎭⎫π2-a 0+sin 2⎝⎛⎭⎫5π6-a 0+sin 2⎝⎛⎭⎫7π6-a 03=cos 2a 0+sin 2⎝⎛⎭⎫π6+a 0+sin 2⎝⎛⎭⎫π6-a 03=cos 2a 0+⎝⎛⎭⎫12cos a 0+32sin a 02+⎝⎛⎭⎫12cos a 0-32sin a 023=cos 2a 0+12cos 2a 0+32sin 2a 03=32(sin 2a 0+cos 2a 0)3=12. 8.(多选)下列选项中,值为的是( )A.cos 72°·cos 36°B.sin sinC. D.cos 215°解析: (1)对于A,cos 36°·cos 72°=,故A 正确;对于B,sin sin =sin cos 2sin cos sin ,故B 正确;对于C,原式==4,故C 错误; 对于D,cos 2 15°=-(2cos 2 15°-1)=-cos 30°=-,故D 错误.故选AB . 9.若tan α=3,tan(α-β)=2,则tan β=________.解析:tan β=tan[α-(α-β)] =tan α-tan (α-β)1+tan αtan (α-β)=3-21+3×2=17.答案:1710.计算:sin 75°·cos 30°-sin 15°·sin 150°= . 22 11. 求值:tan 20°+tan 40°+3tan 20°tan 40°= .312.已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:513.已知tan α=3tan ,则= .解:tan α=3tan ,则14.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________.[解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45,得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.15. 若cos(α+β)=45,sin(α-β)=35,且3π2<α+β<2π,π2<α-β<π,求cos 2β 的值.-1. 16.已知α,β,γ均为锐角,且tan α=4,tan β=711,tan γ=12,求α+β+γ的值. 所以α+β+γ=3π4.【反思单】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 两角和与差的正切函数学案(含答案)
2.3两角和与差的正切函数学习目标
1.能利用两角和与差的正弦.余弦公式推导出两角和与差的正切公式.
2.能利用两角和与差的正切公式进行化简.求值.证明.
3.熟悉两角和与差的正切公式的常见变形,并能灵活应用知识点一两角和与差的正切名称简记符号公式使用条件两角和的正切Ttan,,均不等于kkZ两角差的正切Ttan,,均不等于kkZ知识点二两角和与差的正切公式的变形1T的变形
tantantan1tantantantantantantantantantan
1.2T的变形tantantan1tantantantantantantantantantan
1.1对于任意角,,总有tan.提示公式成立需,,k,kZ.2使公式tan有意义,只需,kkZ即可提示还应使k,kZ.3若,,k,kZ,则tantantantantantan恒成立4k,且k,kZ时,tan.题型一正切公式的正用例11已知,均为锐角,tan,tan,则.答案解析因为tan,tan,所以tan
1.因为,均为锐角,所以0,,所以.2已知tan2,tan,则tan的值为答案3解析tantan
3.反思感悟1
注意用已知角来表示未知角2利用公式T求角的步骤计算待求角的正切值缩小待求角的范围,特别注意隐含的信息根据角的范围及三角函数值确定角跟踪训练1xx江苏若tan,则tan.答案
解析方法一tan.6tan61tantan1,tan.方法二tantan.题型二正切公式的逆用与变形使用例21.考点两角和与差的正切公式题点利用两角和与差的正切公式化简答案解析原式tan4515tan
60.2化简tan23tan37tan23tan
37.考点两角和与差的正切公式题点利用两角和与差的正切公式化简解方法一
tan23tan37tan23tan37tan23371tan23tan37tan23tan37tan601tan 23tan37tan23tan
37.方法二tan2337,,tan23tan37tan23tan37,
tan23tan37tan23tan
37.反思感悟两角和与差的正切公式有两种变形形式tantantan1tantan或1tantan.当为特殊角时,常考虑使用变形形式,遇到1与正切的乘积的和或差时常用变形形式.合理选用公式解题能起到快速.简捷的效果跟踪训练2若A,B是ABC的内角,并且1tanA1tanB2,则AB等于
A.
B.
C.
D.考点两角和与差的正切公式题点利用两角和与差的正切公式求角答案A解析由1tanA1tanB2,得1tanAtanBtanAtanB
2.所以tanAtanB1tanAtan
B.由tanAB1,因为0AB,所以A
B.1若tan3,tan,则tan等于
A.BC3D3答案A解析tan.2已知cos,且,则tan等于AB7
C.D7答案D解析由cos,且,得sin,所以tan,所以tan
7.故选
D.3计算.考点两角和与差的正切公式题点利用两角和与差的正切公式化简答案1解析tan4
51.4已知A,B都是锐角,且tanA,sinB,则AB.答案解析B 为锐角,sinB,cosB,tanB,tanAB
1.又0AB,A
B.5已知tan,tan是方程x23x40的两根,且,,求的值考点两角和与差的正切公式题点综合应用两角和与差的正切公式求角解因为tan,tan是方程x23x40的两根,所以所以tan0,tan0,所以,.所以0,tan.所以.1公式T的结构特征和符号规律1公式T的右侧为分式形式,其中分子为tan与tan的和或差,分母为1与tantan的差或和2符号变化规律可简记为“分子同,分母
反”2应用公式T时要注意的问题1公式的适用范围由正切函数的定义可知,,,或的终边不能落在y轴上,即不为kkZ2公式的逆用一方面要熟记公式的结构,另一方面要注意常值代换如tan1,tan,tan等特别要注意tan,tan.3公式的变形应用只要用到tantan,tantan时,有灵活应用公式T的意识,就不难想到解题思路特别提醒tantan,tantan,容易与根与系数的关系联系,应注意此类题型.。