单调性与凹凸性
函数单调与凹凸教学
单调性是函数的局部性质,即在某 个区间内单调递增或递减,并不代 表在整个定义域上都是单调的。
判断函数单调性的方法
导数法
通过求函数的导数,并判断导 数的符号来判定函数的单调性
。
定义法
通过比较函数在定义域内的任意 两点x1和x2的函数值f(x1)和 f(x2),来判断函数的单调性。
图像法
通过观察函数的图像,可以直 观地判断函数的单调性。
判断函数凹凸性的方法
导数法
通过求函数的导数,然后判断导数的正负来判断函数的凹凸性。如果导数在某 区间内大于0,则函数在该区间内为凹函数;如果导数在某区间内小于0,则函 数在该区间内为凸函数。
二阶导数法
如果一个函数的二阶导数在某区间内大于0,则该函数在该区间内为凹函数;如 果二阶导数在某区间内小于0,则该函数在该区间内为凸函数。
单调性决定了函数值的增减趋势,而 凹凸性则决定了函数图像的弯曲程度。
在单调递减的函数中,如果函数是凹 的,则图像呈现向下凸起的形状;如 果函数是凸的,则图像呈现向上凸起 的形状。
在单调递增的函数中,如果函数是凹 的,则函数图像呈现出向上凸起的形 状;如果函数是凸的,则图像呈现向 下凸起的形状。
单调与凹凸在函数图像上的表现
函数凹凸性的应用
01
02
03
最优化问题
利用函数的凹凸性,可以 确定函数的最大值或最小 值,从而解决最优化问题。
经济模型
在经济学中,凹凸性可以 用来描述某些经济现象, 例如供需关系、成本和收 益等。
物理学
在物理学中,凹凸性可以 用来描述物理量之间的关 系,例如弹性、能量等。
03 单调与凹凸的关系
单调与凹凸的相互影响
函数单调与凹凸教学
3.4 函数的单调性与曲线的凹凸性
f ' ( x0 ) 0 x0为函数的极值点 ?
例2 求函数 y x 的驻点 .
3
y
y x3
解
y x 3 的驻点为 x 0 .
O
x
但它不是极值点.
11
此外, 不可导点也可能是极值点,
如 y | x | 在 x 0 处不可导,但却是极小值点.
函数的不可导点也不一定是极值点。 y
19
例5 求函数 f ( x ) x 3 3 x 2 9 x 5 的极值.
解
D f : (,)
2 f ( x ) 3 x 6 x 9 3( x 1)( x 3) ,
令 f ( x ) 0, 得驻点 x1 1, x2 3.
f ( x ) 6 x 6 ,
x1 x2 x1 x2 f( ) f ( x1 ) f ( x2 ) f ( ) 2 2
1 1 f ( x1 ) ( x2 x1 ) f ( x2 ) ( x2 x1 ) 2 2
f ( x1 ) f ( x2 ).
曲线的凹向与函数导数的单调性的关系:
凹
凸
曲线凹 导函数递增?
x1 x2 1 f( ) [ f ( x1 ) f ( x2 ))] 2 2 x1 x2 x1 x2 f( ) f ( x1 ) f ( x2 ) f ( ) 2 2
设 x1 x2 ,由泰勒展开定理
3 2
不可导点 x 3, 驻点x 2,4.
17
23 求 f ( x ) ( x 4 ) x 3 的单调区间和极值 . 例4 不可导点 x 3, 7( x 4)( x 2) f ( x ) 驻 点x 2,4. 3 3 ( x 3) 2
3.4 函数的单调性与曲线的凹凸性
从几何上看,曲线的凹凸性反映的是曲线弧上两点,连接这两点间的弦与 这两点间的弧段的位置关系。
第三章 微分中值定理与导 数的应用
9
定理 2
设 f (x ) 在 a ,b 上连续,在 (a ,b ) 内具有一阶和二阶导数,那么
> 0 ,则 f ( x ) 在 a ,b 上的图形是凹的; < 0 ,则 f ( x ) 在 a ,b 上的图形是凸的。 ∈ a ,b ,且 x 1 < x 2 ,记 x 0 =
= 0 处,曲线 y = x 3 有水平切线,即 x 轴。
一般地,如果 f ′ (x ) 在某区间内的有限个点处为零,在其余各点处保持固定 符号时,函数 f (x ) 在该区间上是单调的。 结论在 f ′ (x )
= 0 有无限个解时未必成立。
第三章 微分中值定理与导 数的应用
7
例6 证
证明:当 x 令 f (x )
=0
< a < 1,b = 2k + 1 k ∈ Z + ,ab > 1 +
(
)
3π 2
,
Van Der Waerden 构造并证明: f (x )
=
n =0
∑
∞
ϕ 10n x
10n
(
) ,其中
x − x , ϕ (x ) = x + 1 − x ,
> 1 时, 2 x > 3 −
1
x
。
1 = 2 x − 3 − ,则 x
f ′ (x ) =
1
x
−
1
x
2
=
1
x2
函数单调性与凹凸性
例1 判断曲线 y x 3 的凹凸性.
y
y x3
解 y 3 x 2 , y 6x ,
当x 0时, y 0,
o
x
曲线 在(,0]为凸的;
当x 0时, y 0,
曲线 在[0,)为凹的;
注意到, 点(0,0)是曲线由凸变凹的分界 . 点
五、曲线的拐点及其求法
令 f ( x) 0 , 得 x 1, x 2
x ( , 1) f (x)
f (x)
故
1 0 2
(1 , 2)
2 ( 2 , ) 0 1
的单调增区间为 ( , 1) , (2 , ); 的单调减区间为
(1 , 2).
例4
当x 0时, 试证e 1 x成立.
例2 确定函数 f ( x ) 3 x 2 的单调区间. 解: x (,).
f ( x ) 2 3 x
3
y
,
( x 0)
o
y 3 x2
当x 0时, 导数不存在.
x
当 x 0时,f ( x ) 0, 在(,0)上单调减少; 当0 x 时, f ( x ) 0, 在(0,)上单调增加;
1.定义
连续曲线上凹凸的分界点称为曲线的拐点.
2.拐点的求法
定理 2 如果 f ( x )在( x0 , x0 ) 内存在二阶导
x0 , f ( x0 ) 是拐点的必要条件是 f " ( x0 ) 0 . 数,则点
方法:
设函数f ( x )在x0的邻域内二阶可导 ,
且f ( x0 ) 0,
(1) x0两近旁f ( x )变号,点( x0 , f ( x0 ))即为拐点 ; (2) x0两近旁f ( x )不变号,点( x0 , f ( x0 ))不是拐点.
函数的单调性和曲线的凹凸性
故在(0, +)上 f (x)单增.
例4. 证明不等式 ex – (1+x) > 1– cosx, (x > 0)
证明思路: 用两次单调性
证: 设 F(x) = ex – (1+x) – (1– cosx)
= ex –x +cosx –2
则 F(0)=0. 要证F(x) > 0 (x > 0)
故曲线在(0, +)上是凹的.
即有 f (tx +(1– t) y) < t f (x) + (1– t) f (y) 即
定义2. 设f (x)C(U(x0)), 若曲线 y = f (x)在点 (x0, f (x0))的左右两侧凹凸性相反, 则称点(x0, f (x0))为该曲线的拐点.
= t f (x1)+(1– t) f (x2)
= t x1+(1– t) x2 x = x2+(x1– x2)t
弦上对应点的纵坐标B: y2+(y1– y2)t = t y1+(1– t)y2
STEP1
STEP2
STEP3
STEP4
故得如下定义.
定义1. 设 f (x)在[a, b]上有定义,x1, x2[a, b](x1x2) 和t(0, 1), 若有
凹凸性标志着图形弯曲的方向.
如图(a), (b)
y=f (x)
o
y
x
x1
x2
A
B
(x1, y1)
(x2, y2)
x
x
o
y
x1
x2
A
B
y=f (x)
(x2, y2)
(x1, y1)
函数单调性与曲线的凹凸性
一、函数单调性的判别法 二、曲线凹凸性及其判别法
三、小结
1.单调性的判别法
y
y f (x) B
A
yA y f (x) B
oa
bx
f ( x) 0
oa
bx
f ( x) 0
定理 设函数 y f ( x)在[a, b]上连续,在(a, b)内可
导(. 1)如果在(a, b)内f ( x) 0,那末函数 y f ( x)
应用:利用函数的单调性可以确定某些方 程实根的个数和证明不等式.
二、曲线凹凸性及其判别法
1.曲线凹凸的定义 2.曲线凹凸的判定 3.曲线的拐点及其求法 4.利用凹凸性证明不等式 5.小结
1.曲线凹凸的定义
y
C B
问题:如何研究曲线的弯曲方向? A
o
x
y
y f (x)
y
y f (x)
o x1
x2 x
例4 求曲线 y 3 x 的拐点.
解
当x
0时,
y
1
x
2 3
,
y
4
5
x3
,
3
9
x 0是不可导点, y, y均不存在.
但在(,0)内, y 0, 曲线在(,0]上是凹的; 在(0,)内, y 0, 曲线在[0,)上是凸的.
点(0,0)是曲线 y 3 x的拐点.
求拐点的步骤:
• 求二阶导数等于零和不存在的点 • 判断二阶导数在这些点的左右两侧是否
导数等于零的点和不可导点,可能是单调区间 的分界点.
方法:用方程 f ( x) 0的根及 f ( x)不存在的点 来划分函数 f ( x)的定义区间,然后判断区间内导 数的符号.
第四节 函数的单调性与曲线的凹凸性
第四节 函数的单调性与曲线的凹凸性一、函数单调性的判定法定理1 设函数()y f x =在[],a b 上连续,在(),a b 内可导.(1)如果在(),a b 内()0f x '≥,且等号仅在有限多个点处成立,那么函数()y f x =在[],a b 上单调增加;(2)如果在(),a b 内()0f x '≤,且等号仅在有限多个点处成立,那么函数()y f x =在[],a b 单调减少.例1 判定函数sin y x x =-在[],ππ-上的单调性. 解 因为函数sin y x x =-在[],ππ-上连续,当x ∈(),ππ-时, 1cos 0y x '=-≥,且等号仅在0x =处成立,所以函数sin y x x =-在[],ππ-上单调增加. 例2 讨论函数1x y e x =--的单调性.解 函数1x y e x =--的定义域为(),-∞+∞, 1.x y e '=- 因为在(),0-∞内0y '<,在()0,+∞内0y '>,所以1x y e x =--在(],0-∞上单调减少,在[)0,+∞上单调增加.例3 讨论函数y解 的定义域为(),-∞+∞.当0x ≠时,y '=而函数在0x =处不可导.在(),0-∞内,0y '<,在()0,+∞内0y '>,因此函数y =在(],0-∞上单调减少,在[)0,+∞上单调增加.该函数的图象如下图所示.例4 确定函数()3229123f x x x x =-+-的单调区间.解 该函数的定义域为(),-∞+∞.()()()261812611.f x x x x x '=-+=--方程()0f x '=的全部根为121, 2.x x ==这两个根把区间(),-∞+∞分为三个部分区间:(][][),1,1,2,2,.-∞+∞在区间(),1-∞内()0f x '>,函数()f x 在(],1-∞单调增加.在区间()1,2内,()0f x '<,函数()f x 在区间[]1,2单调减少.在区间()2,+∞内()0f x '>,函数()f x 在区间[)2,+∞单调增加.例5 证明:当1x >时,13.x-证 令()13f x x ⎛⎫=- ⎪⎝⎭,则 ()()22111.f x x x '== ()f x 在[)1,+∞上连续,在()1,+∞内()0f x '>,因此在[)1,+∞上函数()f x 单调增加,于是当1x >时,()()10f x f >=,即130,x ⎛⎫-> ⎪⎝⎭ 13.x- 二、曲线的凹凸性与拐点定义 设函数()f x 在区间I 上连续,如果对I 上任意两点12,x x ,恒有()()1212,22f x f x x x f ++⎛⎫< ⎪⎝⎭那么称()f x 在I 上的图形是凹的;如果恒有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭, 那么称()f x 在I 上是凸的.定理2 设()f x 在[],a b 上连续,在(),a b 内具有一阶和二阶导数,那么(1)若在(),a b 内()0f x ''>,则()f x 在[],a b 上的图形是凹的;(2)若在(),a b 内()0f x ''<,则()f x 在[],a b 上的图形是凸的. 例6 判定曲线ln y x =的凹凸性.解 因为211,y y x x'''==-,所以函数ln y x =在定义域()0,+∞内,0y ''<,故曲线ln y x =是凸的.例7 判定曲线3y x =的凹凸性.解 因为23,6.y x y x '''==当0x <时,0y ''<,所以曲线在(],0-∞是凸的;当0x >时,0y ''>,曲线在[)0,+∞是凹的.例8 求曲线32231214y x x x =+-+的拐点.解 216612,126122y x x y x x ⎛⎫'''=+-=+=+ ⎪⎝⎭. 解方程0y ''=,得1.2x =-当12x <-时,0y ''<;当12x >-时,0y ''>.因此点11,2022⎛⎫- ⎪⎝⎭是曲线的拐点.例9 求曲线43341y x x =-+的拐点及凸凹区间. 解 函数43341y x x =-+的定义域为(),-∞+∞.321212,y x x '=-22362436.3y x x x x ⎛⎫''=-=- ⎪⎝⎭ 解方程0y ''=,得1220,.3x x == 在(),0-∞内,0y ''>,曲线在区间(),0-∞凹的.在20,3⎛⎫ ⎪⎝⎭内,0y ''<,曲线在区间20,3⎡⎤⎢⎥⎣⎦是凸的.在2,3⎛⎫+∞ ⎪⎝⎭内,0y ''>,曲线在区间2,3⎡⎫+∞⎪⎢⎣⎭是凹的. 当0x =时,1y =.当23x =时,11.27y = 点()0,1和211,327⎛⎫ ⎪⎝⎭是这曲线的两个拐点. 习题3-41.判定函数()arctan f x x x =-的单调性.解 ()22211011x f x x x '=-=-≤++且仅在0x =时成立.因此函数()arctan f x x x =-在(),-∞+∞内单调减少.2.判定函数()cos f x x x =+的单调性.解 ()1sin 0f x x '=-≥,且当()20,1,2,2x n n ππ=+=±± 时,()0f x '=.因此函数()cos f x x x =+在(),-∞+∞内单调增加.3.确定下列函数的单调区间:(1)3226187y x x x =---;解 函数的定义域为(),-∞+∞,在(),-∞+∞内可导,且 ()()261218631.y x x x x '=--=-+令0y '=,得驻点121, 3.x x =-=当时1x <- 时,0y '>,函数在(],1-∞-单调增加; 当13x -<<时,0y '<,函数在[]1,3-单调减少; 当3x >时,0y '>,函数在()3,+∞单调增加.(2)()820y x x x=+>;解 函数的定义域为()0,+∞,在()0,+∞内可导,且()()22222228282.x x x y x x x -+-'=-== 令0y '=,得驻点12x =-(舍去),22x = 当02x <<时,0y '<,函数在(]0,2单调减少;当2x >时,0y '>,函数在[)2,+∞单调增加.。
3.3 单调性与凹凸性
例5、 判断曲线 f (x)
1 9
x2
解: f (x) 在定义域 Df (
2 11 f (x) 9 x 3 3 x2
3 x 的凹凸性及拐点。 , ) 内连续,
2 21 f (x) 9 9 3 x5
2 9
(1
1 )
3 x5
0
x
1
(x 0) (x 0)
以 x 1、x 0 划分定义域得:
例4、 确定函数 f (x) 2x3 9x2 12x 3 的单调区间。 解: f (x) 在定义域 Df ( , ) 内连续,
f (x) 6x2 18x 12 6(x 1)(x 2) 0 x1 1 x2 2 以 x1 1、x2 2划分定义域得:
Df ( ,1) 1 ( 1 ,2 ) 2 (2, ) f (x)
单调区间
定义: 若函数在某区间内单调增,称该区间为函数的单调增区间。
减
减
单调增区间、单调减区间统称为单调区间。
问题: 如何确定函数的单调区间
首要任务是确定函数单调性的分界点。
单调性分界点只可能产生于: 驻点 与不可导点处
方法: 用驻点及不可导点划分函数定义域, 在各个开区间内确定
导数的正负,从而确定单调区间。
(1) 当 f (x0 ) 0 时, x0 为 f (x) 的极小值点; (2) 当 f (x0 ) 0 时, x0 为 f (x) 的极大值点。
例3、 求函数 f (x) 3x x3 的极值。
解: 函数 f (x) 在其定义域 ( , ) 内连续,
f (x) 3 3x2 3(1 x)(1 x) 0 x1 f (x) 6x f ( 1) 6 0 f (1) 6 0
函数的单调性与凹凸性
单调性与导数的关系
单调性是导数的一个应用,如果函数在某区间内单调递增或递减,则该函数的导 数在此区间内非负或非正。
导数的符号决定了函数的单调性,如果导数大于0,则函数单调递增;如果导数小于 0,则函数单调递减。
02 函数的凹凸性
凹函数与凸函数
凹函数
对于函数$f(x)$,如果在区间$I$上, 对于任意$x_1 < x_2$,都有$f(x_1) + f(x_2) > 2f[(x_1 + x_2)/2]$,则称 $f(x)$在区间$I$上为凹函数。
求解方法
通过导数判断函数的单调性,并结合端点值进行比较。
应用
在物理学、化学等领域中,常需要求解函数在开区间 上的最值问题,以解释某些现象或预测结果。
无界区间上的最值问题
定义
在无界区间上,函数可能没有最大值或最小 值。
求解方法
通过导数判断函数的增减性,并考虑无穷远处的情 况。
应用
在数学分析、实变函数等领域中,常需要研 究函数在无界区间上的最值问题,以深入理 解函数的性质和行为。
减函数
对于函数$f(x)$,如果对于任意$x_1 < x_2$,都有$f(x_1) > f(x_2)$,则称 $f(x)$为减函数。
ቤተ መጻሕፍቲ ባይዱ
单调性的判断方法
定义法
通过比较任意两点之间的函数值来确定函数的单调性。
导数法
利用导数来判断函数的单调性,如果导数大于0,则函数单调递增;如果导数小于0,则函数单调递减。
在分析力学系统的运动规律时,利用函数的 单调性和凹凸性,可以判断系统的稳定性和 运动状态。
电路分析
在电子和电路工程中,利用函数的单调性和 凹凸性,可以分析电路的工作状态和性能, 优化电路设计。
第四节函数的单调性与凹凸性
F ( x ) 是凸函数
F ( x ) min F (0), F ( ) 0 (自证) 2 2 sin x x 即
第四节、函数单调性与凹凸性
五、作业
第四节、函数单调性与凹凸性
在区间I 上有二阶导数
在 I 内图形是凹的 ;
则 在 I 内图形是凸的 . 利用一阶泰勒公式可得
x1 x2 x x x x 1 2 1 2 f ( x1 ) f ( ) ) ( x1 ) f ( 2 2 2 f (1 ) x1 x2 2 ( x1 ) 2! 2 x1 x2 x1 x2 x1 x2 ) ) f ( ) ( x2 f ( x2 ) f ( 2 2 2 f ( 2 ) x1 x2 2 ( x2 ) 两式相加,得 2! 2
第四节 函数的单调性与凹凸性
一、函数单调性的判定 法 二、曲线的凹凸与拐点 三、小结、思考与练习 四、作业
一、 函数单调性的判定法
定理 1. 设函数 在开区间 I 内可导, 若 在 I 内单调递增 (递减). 任取
( f ( x ) 0) ,则
证: 无妨设
由拉格朗日中值定理得
0
故
这说明 在 I 内单调递增.
( x 1)
2( x 3 3 x 2 3 x 1) 2 3 ( x 1)
2( x 1)( x 2 3 )( x 2 3 ) 2 3 ( x 1)
第四节、函数单调性与凹凸性
令 y 0 得 x1 1 , x2 2 3 ,
x 3 2 3
内容小结
1. 可导函数单调性判别 f ( x ) 0 , x I f ( x ) 0 , x I
函数的单调性与曲线凹凸性
一次函数图像是一条直线,没有凹凸性。
二次函数的单调性与凹凸性
二次函数
单调性
凹凸性
$y = ax^2 + bx + c$
当$a > 0$时,函数在区间$(infty, -frac{b}{2a})$上单调递 减,在区间$(-frac{b}{2a}, infty)$上单调递增;当$a < 0$时,函数在区间$(-infty, frac{b}{2a})$上单调递增,在 区间$(-frac{b}{2a}, infty)$上 单调递减。
凹凸性
正弦函数图像是下凹的。
余弦函数
$y = cos x$
单调性
在每个周期内,函数在$[0, pi]$上单调递减,在$[pi, 2pi]$上单调递增。
凹凸性
余弦函数图像是上凸的。
THANKS FOR WATCHING
感谢您的观看
产量之间的关系。
在物理学中,单调性与凹凸 性可用于描述物体的运动轨 迹、速度与加速度之间的关
系等。
在工程领域,单调性与凹凸性 可用于优化设计,例如在桥梁、 建筑和机械设计中考虑结构的
稳定性与安全性。
04 实例分析
一次函数的单调性与凹凸性
一次函数
$y = ax + b$
单调性
当$a > 0$时,函数在$mathbb{R}$上单调递增; 当$a < 0$时,函数在$mathbb{R}$上单调递减。
通过求函数的导数,分析导数的符号变化,判断函数的单 调性。如果导数大于0,函数单调递增;如果导数小于0, 函数单调递减。
定义法
通过比较函数在不同点上的函数值来判断函数的单调性。 如果对于任意两点,函数值满足递增或递减关系,则函数 在该区间内单调。
函数的单调性与凹凸性
函数的单调性与凹凸性在数学中,函数的单调性和凹凸性是研究函数图像性质的重要方面。
本文将介绍函数的单调性和凹凸性的定义以及它们在解决实际问题中的应用。
一、函数的单调性函数的单调性是指函数在定义域上的取值随自变量的增大或减小而增大或减小的规律。
具体地,一个函数在区间上是单调递增的,即当x1 < x2时,f(x1) ≤ f(x2),则称函数在该区间上是递增的。
类似地,如果一个函数在区间上是单调递减的,即当x1 < x2时,f(x1) ≥ f(x2),则称函数在该区间上是递减的。
函数单调性的研究可以帮助我们确定函数的增减区间以及解决一些优化问题。
例如,在生产成本最小化的问题中,我们可以通过研究成本函数的单调性来确定最佳生产量。
二、函数的凹凸性函数的凹凸性是指函数图像在定义域上的弯曲程度。
具体地,如果一个函数在区间上任意两点间的连线位于函数图像的下方,则称函数在该区间上是凹的;如果函数图像上任意两点间的连线位于函数图像的上方,则称函数在该区间上是凸的。
凹凸性常常与函数的极值点相关。
对于一个凸函数,在定义域上任意两点连线的斜率都大于函数图像上相应的切线斜率,而对于一个凹函数,则相反。
因此,研究函数的凹凸性能够帮助我们找到函数的极值点。
三、在实际问题中,函数的单调性与凹凸性常常同时存在,并能够相互影响。
例如,对于一个单调递增的函数,在单调区间上的任意两点都能够形成一个凸函数的子区间。
同样地,对于一个单调递减的函数,在单调区间上的任意两点都能够形成一个凹函数的子区间。
函数的单调性和凹凸性的研究除了能够帮助我们解决实际问题外,还能够提供对函数图像性质的深入理解。
通过观察函数图像的单调性和凹凸性,我们能够得到更直观的信息,比如函数的整体趋势、局部极值点等。
总结:函数的单调性和凹凸性是研究函数图像性质的重要方面。
函数的单调性描述了函数值随自变量增减变化的规律,而函数的凹凸性则描述了函数图像的弯曲程度。
函数的单调性和凹凸性不仅能够解决实际问题,还能够提供对函数图像性质的深入理解。
函数的单调性与凸凹性
函数的单调性与凸凹性函数在数学中扮演着重要的角色,而其中的单调性与凸凹性则是研究函数性质的重要方面。
本文将为你详细介绍函数的单调性与凸凹性,并探讨它们在数学和实际问题中的应用。
一、函数的单调性在数学中,函数的单调性指的是函数随着自变量的增大或减小而产生的变化趋势。
具体而言,单调性可以分为“单调递增”和“单调递减”两种情况。
1. 单调递增当函数的自变量增大时,函数的取值也相应增大,这种情况下函数被称为单调递增函数。
在数学语言中,假设有函数f(x),当对于任意的x1和x2 (x1 < x2),都有f(x1) ≤ f(x2),则函数f(x)是单调递增函数。
例如,考虑函数f(x) = x^2,我们可以看到当x1 < x2时,f(x1) =x1^2 < x2^2 = f(x2),所以f(x) = x^2是一个单调递增函数。
2. 单调递减与单调递增相反,单调递减函数在自变量增大时,函数的取值反而减小。
同样地,对于任意的x1和x2 (x1 < x2),函数f(x)是单调递减函数,当且仅当f(x1) ≥ f(x2)。
例如,考虑函数f(x) = 2/x,当x1 < x2时,f(x1) = 2/x1 > 2/x2 =f(x2),因此f(x) = 2/x是一个单调递减函数。
函数的单调性在数学和实际问题中都有重要的应用。
它们可以帮助我们研究函数的性质,求解方程、优化问题等。
二、函数的凸凹性函数的凸凹性也是函数性质的重要方面,它揭示了函数曲线的弯曲程度。
具体而言,凸函数与凹函数是最常见的两种情况。
1. 凸函数在数学中,如果对于函数f(x)上的任意两个点(x1, f(x1))和(x2, f(x2)),连接这两点的线段在曲线上方,那么函数f(x)被称为凸函数。
以函数f(x) = x^2为例,对于任意的x1和x2,当x1 ≠ x2时,(x1,f(x1))和(x2, f(x2))之间的线段都在曲线y = x^2的上方,因此f(x) = x^2是一个凸函数。
第四节函数的单调性与曲线的凹凸性
y
拐点的判别法:
( x0 , f ( x0 ))
o
x
若 f ( x) 在 x0 两侧异号, 则点 ( x0 , f ( x0 ))是拐点.
求凹凸区间及拐点的方法:
(1) 求函数 f (x) 的定义域 D; (2) 求 f ( x); (3) 求 方 程 f ( x) 0 的 实 根,
证: x1, x2 [a, b], 且 x1 x2, 应用拉氏定理,得
f ( x2 ) f ( x1) f ( )( x2 x1 ) ( ( x1, x2 ))
(1) 若 在(a, b)内, f ( x) 0, 则 f ( ) 0, 又 x2 x1 0,
( A) f (1) f (0) f (1) f (0) (B) f (1) f (1) f (0) f (0) (C) f (1) f (0) f (1) f (0) (D) f (1) f (0) f (1) f (0) 提示: 利用 f ( x)单调增加 , 及
且点( x0 , f ( x0 ))是拐点,则
f ( x0 ) 0.
例14. 已知(2,4)是曲线y x3 ax2 bx c 的拐点,
且曲线在点x 3 处有极值,求常数a, b, c.
解:
(2,4) 是拐点
4
8 4a 2b c
(1)
y 12 2a 0 (2)
( x 0)
x (, 0) 0 (0 , )
f ( x) 不存在
f (x)
该函数在(,0]上单调减少; 在[0,) 上单调增加.
说明:导数不存在的点划分函数的定义区间为两 个具有单调性的区间.
函数单调性与曲线凹凸性
二阶可导,
则 定理3.
(由定理3保证)
且点( x0 , f ( x0 )) 是曲线的拐点. 则 证明: f ( x ) 二阶可导,
f ( x ) 存在且连续 ,
定理3. 且点( x0 , f ( x0 )) 是曲线的拐点. 则 证明: f ( x ) 二阶可导,
f ( x ) 存在且连续,
f ( x )在x0 取得极值,
由费马引理
f ( x ) 0.
拐点的求法:
设函数f ( x )在x0的邻域内二阶可导, 且f ( x0 ) 0,
(1) x0两侧f ( x )变号, 点( x0 , f ( x0 ))即为拐点;
( 2) x0两侧f ( x )不变号, 点( x0 , f ( x0 ))不是拐点.
若 f ( x ) 0, 则函数f ( x )在[a , b]上单调递增, 若 f ( x ) 0 , 则函数f ( x )在[a , b]上单调递减, 推论 如果f ( x )连续, 且除有限个(或可数个)点外,
f ( x ) 0或( f ( x ) 0), 则函数f ( x )单调递增(递减),
第四节 函数的单调性与曲线的凸凹性
一、函数单调性的判定法 二、曲线的凹凸与拐点
一、 函数单调性的判定法
定理 1. 设函数f ( x )在[a , b]上连续, 在(a , b)内可导
若 f ( x ) 0, 则函数f ( x )在[a , b]上单调递增, 若 f ( x ) 0 , 则函数f ( x )在[a , b]上单调递减, 证: 不妨设 f ( x ) 0 , x I ,任取 x1 , x2 I ( x1 x2 ) 由拉格朗日中值定理得
3 x 2 , y 6 x , 令 f ( x ) 0 , 得 x 0 y
函数单调性和曲线凹凸性
当 x<1 时: f (x)>0,
所以f (x)单调增加;
当1<x<3时: f (x)<0, 所以f (x)单调减少;
1 特别地取 t 则得 2
x1 x2 f ( x1 ) f ( x2 ) y=f (x)凹 f 2 2
例6. 利用上式证明 x>0, y>0 且 xy 时,有
1 n x y n ( x y ), 其中n>1. 2 2
证:令 f ( t )= tn. ( t > 0 )
n
f ''( t )=n(n1) t n2 > 0. 故t > 0时 f (t)的曲线为凹的.
取 x > 0, y > 0 得
( t > 0)
1 n x y n ( x y ) 2 2
n
§3-5 函数的极值与最大值最小值
一、函数的极值及其求法 y 0
y= f ( x )
(2)若x(a,b)有f (x) <0.则y=f (x)在[a,b]上单调减少; 证: x1, x2 [a,b] 且x1< x2. 由于 [x1, x2 ] [a, b],
在(x1, x2 )内可导.
故f ( x ) C ( [x1, x2 ] ), 且
根据Lagrange中值定理,得出
Байду номын сангаас
这里点(0, 0)称曲线 y=x3 的拐点.
3.3 单调性与凹凸性
函数单调性判定的一般步骤:
1. 求出函数的定义域(如已知某区间,此步省略); 2. 求出驻点和导数不存在的点; 3. 用驻点和导数不存的点将定义区间分为若干部分区间; 4. 在不同的区间上判断一阶导数的正负,从而给出函数
的单调性.
例4
讨论函数
y
x x2 1
的单调性.
解: 该函数的定义域为 (,)
例1 证明函数 f (x) x sin x 在 [0, 2 ]单调递增. 证明: 由于 f (x) 1 cos x
所以 f (x) 1 cos x 0 x (0, 2 ) 又因为 f (x) x sin x 在 [0, 2 ] 连续,
所以 f (x) x sin x 在 [0, 2 ]单调递增.
单调性与函数的一阶导数的正负有关
b
x
定理1 设函数 y f (x)在[a,b]上连续,在 (a,b)内可导 (1)如果在(a,b)内f (x) 0,那么函数 y f (x)
在[a, b] 上单调递增;
(2) 如果在 (a,b)内 f (x) 0,那么函数 y f (x)
在[a, b]上单调递减.
第四步 列表讨论. 用(3)中求得的所有点将定义域 划分成若干子区间,确定在这些子区间内 f (x) 和 f (x) 的符号,并由此确定函数的增减区间,凹凸区间和拐点. 第五步 绘制图形. 借助于关键点的函数值,结合 (4)的结果,从左向右逐区间段的描绘出函数图像.
例8
描绘函数
y 1 36x (x 3)2
(2) f ( x) 0,则 f ( x) 在 [a,b] 上的图形是凸的 .
例5 判别曲线 y ln x 的凹凸性.
解: 因为
y
1 x
,
3.4 函数的单调性与曲线的凹凸性
(−∞, 1) (1,2)
(2, +∞)
′ ()
+
−
+
()
单增
单减
单增
单调增区间为
(−∞, 1], [2, +∞).
单调减区间为
[1,2].
第四节 函数的单调性与曲线的凹凸性
第三章 微分中值定理与导数的应用
例4 确定函数 () =
注意:
区间内个别点导数为零,不影响区间的单调性.
例如:
= 3, ′ቚ
=0
= 0, 但在(−∞, +∞)上单调增加.
一般地, 有如下定理:
定理2
设函数 = ()在[, ]上连续, 在(, )内可导.
(1) 如果在(, )内 ′ ()≥0, 且等号仅在有限多个点处成立,
例8
求曲线 = 3 4 − 4 3 + 1 #43;∞).
2
= 36( − ).
=
−
3
2
″
令 = 0, 得 1 = 0, 2 = .
3
′
12 3
″ ()
()
12 2 ,
″
(−∞, 0)
0
(0, 2ൗ3)
2ൗ
3
+
0
−
0
+
拐点(0,1)
凸的
拐点(2ൗ3 , 11ൗ27)
3. 利用单调性证明不等式
π
sin 2
例5 证明: 当0 < ≤ 时,
≥ .
2
π
证
π
sin 2
函数的单调性与曲线的凹凸性
高等数学(上)
第三章 微分中值定理与导数的应用
第四节 函数的单调性与曲线的凹凸性
证
x1,x2I,
记
x
0
x1x2 2
,利用一阶泰勒公式将
f ( x ) 在点 x 0 展开 f(x ) f(x 0 ) f(x 0 )(x x 0 ) f2 (!)(x x 0 )2
分别取 x x1, x2 可得
由拉格朗日中值定理得
f ( x 2 ) f ( x 1 ) f ( ) x 2 ( x 1 ) 0
(x1,x2)I
故 f(x 1)f(x2).这说明 f (x) 在 I 内单调递增.
类似地可以证明 f (x) 0 的情形.
高等数学(上)
第三章 微分中值定理与导数的应用
第四节 函数的单调性与曲线的凹凸性
y1
6 3 25
5,
y2
0
令 y 0 得 x1
1 5
,
且x2
0
为二阶不可导的点.
3) 列表判别
x (,1/5) 1 / 5 (1/5, 0) 0
y
0
(0, )
y
凸
6 35 25
凹
0
凹
故该曲线在 (,1/5) 上是凸的, 在(1/5,)上是凹的 ,
点
(
1 5
,
6 25
3
5)
为拐点,
而
(
0
,
0
高等数学(上)
第三章 微分中值定理与导数的应用
第四节 函数的单调性与曲线的凹凸性
说明:
1)如上例,函数在定义区间上不是单调的,但 在各个部分区间上单调.
2)若函数在其定义域的某个区间内是单调的, 则该区间称为函数的单调区间.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
2
例2 求曲线 y 3 x 的拐点.
解
当x
0时,
y
1
x
2 3
,
y
2
5
x3
,
3
9
x 0时,y,y均不存在.
x (,0) 0 (0,)
f +
不存在
-
f
点(0,0)是曲线 y 3 x的拐点.
求拐点的步骤 (1) 求f (x) 0及f (x)不存在的点 (2) 用这些点将D(f)划分成几个区间,讨论f (x)的符号.
证 f(x)在(0,a]单调减少
x
证 : 令F(x) f (x), x
F(x)
f
(x)
x x2
f
(x)
令G(x) xf (x) f (x), G(x) xf (x) <0
G(x)在(0,a] , 又G(0) 0, x 0,G(x) G(0) 0
F(x) 0
F(x) f(x) 在(0,a]单调减少. x
四、 函数单调性与凹凸性
(一)、f (x)的符号与函数的单调性
二、f (x)的符号与函数的凹凸性
(一)、f (x)的符号与函数的单调性
性质 : f (x)在[a,b]连续,在(a,b)可导,则
f (x)在[a,b]单增(单减) f (x) 0(f (x) 0),x (a,b)
证:""用反证法
题型二:用单调性证明不等式
例4 证明:当x 0时,sin x x x3
3!
证
设f (x) sin x x x3 , 6
则 f (x) cos x 1 x2 . 2
f (x) sin x x 0,(x 0)
f (x)在(0,) f(0) 0, x 0,f(x) f(0) 0 f (x)在(0,) f (0) 0,
设 x0 (a,b) f (x0 ) 0
即 lim f (x) f (x0 ) 0 xx0 x x0
x (x0 , x0 ),
x x0 ,f (x) f (x0 ) 与f(x)在[a,b]单增矛盾
""用Lagrange 中值定理 x1, x2 [a,b], x1 x2
f (x)在[x1, x2 ]连续,在(x1, x2 )可导
(x1
,
x2
)使f
()
f
(x2 ) x2
f (x1 x1
)
0
由x1, x2的任意性知,f (x)在[a,b]单调
f (x2 ) f (x1)
题型一:讨论f(x)的单调性
注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.
于所在弦的上方
(2) f (q1x1 q2x2 ) q1f (x1) q2f (x2 ),
那末称 f (x)在(a,b)内为上凸的(或下凹),
称f (x)为上凸函数(或凹函数);
性质4.2 如果 f (x) 在 (a,b)内二阶可导 , 则f (x)在 (a,b)内下凸(上凸) f (x) 0(f (x) 0)
y 3 x2
x (,0) 0 (0,)
f (x) -
+ 不存在
f(x)
f(x)在(-,0)单减,在(0,)单增
注意:区间内个别点导数为零,不影响区间的单调性. 例如, y x3, y x0 0, 但在(,)上单调增加.
例3 设f(x)在[0,a]二次可导,f(0) 0,f (x) 0
方法: 用方程 f ( x) 0的根及 f ( x)不存在的点 来划分函数 f ( x)的定义区间,然后判断区间内导 数的符号.
例1
讨论函数f
(x)
x
3
x
2
3的单调性.
2
例1
讨论函数f
(x)
x
3
2
x 3的单调性 .
2
解
1
当x 0
f (x)
1
1
x3
x3
1
1
0
驻点x
1.
x3
当x 0时,f (x)不存在
5
2
解 : f (x) 2x3 5x3
f (x)
20
x
1 3
10
x
4 3
9
9
当x 0时,f (x)不存在
当x 0
f (x)
10
x
2 3
10
x
1 3
33
10
4
x3
(2x
1)
0
x 1
9
2
x (, 1) 1 ( 1 ,0) 0 (0,)
2 22
f (x) -
0
+
不存在
+
f(x)
f (x)在(, 1)上凸,在( 1 ,0),(0,)下凸, 拐点( 1 ,33 2)
x (,0) 0 (0,1) 1 (1,)
f (x) + - 不存在 0 +
f(x)
在(0,1)内,
函数单调减少;
在(,0),(1,)内, 函数单调增加.
例2 确定函数 f ( x) 3 x2 的单调区间.
解 D : (,).
f (x) 2 0, 33 x
(x 0)
当x 0时,导数不存在.
当x 0时,sin x x x3 3!
例5 证当x 0时, x - x2 ln(1 x) x 2
例6 证 方程x2x 1在(0,1)内有且仅有一个根.
二、f (x)的符号与函数的凹凸性
y
问题:如何研究曲线的弯曲方向?
C B
定义
A
o
x
y
y f (x)
设f (x)在(a,b)内有定义, x1, x2 (a,b)
及 q1,q2,q1 q2 1,恒有
(1) f (q1x1 q2x2 ) q1f (x1) q2f (x2 ),
o x1
则称 f (x)在(a,b)内为下凸的(或上凹), x2 x 称f (x)为下凸函数(或凸函数);
图形上任意弧段位
于所在弦的下方
y
y f (x)
o x1
x2 x
图形上任意弧段位
y
y f (x) B
y f (x)
y
B
A
oa
bx
f ( x) 递增 y 0
A oa
f ( x) 递减
bx y 0
定义4.3 设f(x)在(a,b)连续, x0 (a,b),
上凸,下凸的分界点(x0 , y0 )称为拐点. 为平面 上的点
题型一:判断f(x)的凹凸性,并求拐点
例1 设f(x) (2x - 5)3 x2 ,讨论f (x)的凹凸性,并求拐点.
例2 求f(x) lnx的凸凹区间及拐点 性质4.3 若f(x)在x0二阶可导,且(x0,f (x0 ))为f (x)的拐点, 则 f (x0 ) 0
例3 问a,b为何值时,(1,3)为y ax3 bx2的拐点.
方法1: 设函数f (x)在x0的去心邻域内二阶可导, 在x0点未必二阶可导
(1) x0两近旁f ( x)变号,点( x0, f ( x0 ))即为拐点; (2) x0两近旁f ( x)不变号,点( x0, f ( x0 ))不是拐点.