第九章 方差分析

合集下载

第9章 方差分析

第9章 方差分析

第九章方差分析➢学习目标◆了解方差分析的一般原理◆掌握方差分析的步骤◆掌握事后检验方法➢学习内容◆方差分析的一般原理◆完全随机设计方差分析◆多因素方差分析◆随机区组方差分析◆事后检验➢方差分析的基本原理及步骤方差分析又称变异分析,其主要功能在于分析实验数据中不同来源的变异对总变异贡献的大小,从而确定实验中自变量是否对因变量有重要影响。

◆方差分析的基本原理:综合的F检验(1)综合虚无假设和部分虚无假设主要处理两个以上的平均数之间的差异检验问题。

研究为多组实验设计,需要检验的虚无假设是“任何一对平均数”之间是否有显著性差异。

设定虚无假设为,样本归属的所有总体平均数都相等,一般把这一假设称为“综合的虚无假设”(方差分析)。

组间的虚无假设相应的就称为“部分虚无假设”(事后检验)。

◆方差分析的基本原理:综合的F检验(2)方差的可分解性方差分析依据的基本原理就是方差(或变异)的可加性原则。

确切的说应该是方差的可分别性。

方差分析把实验数据的总变异分解为若干个不同来源的分量。

不同强度噪音下解数学题犯错误频数由于被试分组是随机分派,个体差异及实验误差带有随机性质,因而组内变异与组间变异相互独立,可以分解。

方差分析中组间均方和组内均方分别表示为:平方和的大小与项目数有关(即k 或n )。

方差分析中组间变异与组内变异的比较不能直接比较各自的平方和,必须将项目数的影响去掉求均方。

比较组间均方与组内均方要用F检验。

方差分析关心的是组间均方是否显著大于组内均方。

如果组间均方小于组内均方,无须检验其是否小到显著性水平,因而总是将组间均方放在分子位置,进行单侧检验。

即F> 1 且落入F分布的临界区域说明数据的总变异基本上由不同的实验处理所造成,或者说不同的实验处理之间存在着显著差异。

◆方差分析的过程(1)求平方和为了简便,一般直接从原始数据计算平方和:◆方差分析的过程(2)计算自由度(3)计算均方◆方差分析的过程(4)计算F值(5)查F值表进行F检验并作出决策(6)陈列方差分析表◆方差分析的基本假定进行方差分析时,数据必须满足几个假定条件,否则得出的结论可能产生错误。

第九章 方差分析

第九章  方差分析

第九章方差分析前面介绍了两个样本均数比较的t检验,那么多个样本均数的比较应该采用什么方法?方差分析(analysis of variance, ANOV A)是20世纪20年代发展起来的一种统计方法,由英国著名统计学家R.A.Fisher提出,又称F检验,是通过对数据变异的分析来推断两个或多个样本均数所代表总体均数是否有差别的一种统计学方法。

本章首先介绍方差分析的基本思想和应用条件,然后结合研究设计类型分别介绍各类方差分析方法。

第一节方差分析的基本思想和应用条件一、方差分析的基本思想方差分析的基本思想是把全部观察值间的变异按设计类型的不同,分解成两个或多个组成部分,然后将各部分的变异与随机误差进行比较,以判断各部分的变异是否具有统计学意义。

例9.1 为研究大豆对缺铁性贫血的恢复作用,某研究者进行了如下实验:选取已做成贫血模型的大鼠36只,随机等分为3组,每组12只,分别用三种不同的饲料喂养:不含大豆的普通饲料、含10%大豆饲料和含15%大豆饲料。

喂养一周后,测定大鼠红细胞数(×1012/L),试分析喂养三种不同饲料的大鼠贫血恢复情况是否不同?表9.1 喂养三种不同饲料的大鼠红细胞数(×1012/L)普通饲料10%大豆饲料15%大豆饲料合计X 4.78 4.65 6.80 4.65 6.92 5.913.984.447.284.04 6.167.51 3.445.997.51 3.776.677.743.65 5.298.194.91 4.707.154.795.058.185.316.01 5.534.055.677.795.16 4.688.03in12 12 12 36 (n)i X ∑ 52.53 66.23 87.62 206.38(X ∑)i X4.385.52 7.30 5.73 (X ) 2i X ∑ 234.2783373.2851647.73121255.2946(2X ∑)表9.1按完全随机设计获得的36个数据(X )中包含以下三种变异: 1. 总变异 36只大鼠喂养一周后测定红细胞数X 各不相同,即X 与总均数X 不同,这种变异称为总变异(total variation)。

第九章 方差分析ppt课件

第九章 方差分析ppt课件
SSW/dW f MW S 14.71/5 1 9410 .4111
(3)计算F值。
精选PPT课件
18
(4) 确定显著性水平和F临界值 取α=0.05,查F分布表得 F0.05(3,14) 3.34。由于计
算的F=3.52> F0.05(3,14) 3.34,P<0.05,所以拒绝原假
设,接受备择假设,认为各组平均数中至少有一对不
精选PPT课件
25
计算自由度: dBfk 14 13;
dW fk n k4 5 4 1;6
df T df B df W =16+3=19
求均方:
MS B
SS B df B
370122.3 3

MSW
SSW dfW
35622.25 16
(3)计算F值:
FMBS12.325.50 MW S 22.25
1、提出假设 2、计算平方和与自由度 3、计算F值 4、确定显著性水平并查F临界值表 5、列方差分析总表
精选PPT课件
3
一、方差分析的逻辑思想
1、方差分析是一种综合的检验方法
方差分析是对引起方差变化的各种因 素进行统计分析,检验引起各样本差异 的主要原因(或因素),并与理论值比 较,以判断其显著性。
首先将总体变异分解成样本组间变异 和由抽样误差等其它原因产生的组内变 异,然后分析变异各组成部分的关系。
如果样本组间变异比抽样误差等其它 原因产生的变异显著地大,则认为样本 组间有本质性的差异,否则,认为样本 组间无本质差异。
精选PPT课件
6
在方差分析中,观测值之间的差异情 况用离差平方和表示,符号为SS。方差分析首先 是把总体平方和分解为组间平方和和组内平方和, 即:

第九章 方差分析

第九章  方差分析

第九章方差分析方差分析是从方差的角度,研究各有关因素对试验结果影响大小的有效方法.从数理统计的角度来看,方差分析是通过比较总体方差的各种估计量之间的差异,来分析等方差的正态总体是否具有相同的均值.称之为方差分析的原因,是在显著性检验中所用统计量的分子、分母都是总体方差的估计量.试验中,将要考察的指标称为试验指标或响应值,试验指标值的全体构成我们所关注的总体;影响试验指标的条件称为因素,因素所处的状态称为该因素的水平.如果试验仅考虑一个因素,则称为单因素试验,否则称为多因素试验.可能有多个因素影响试验指标,但总是取少数重要因素进行研究.在方差分析中,通常取1-3个因素进行研究.因素的水平可以是数量化的,也可以是定性的.例如要研究几个不同的小麦品种间产量的差异时,考虑的因素是品种,而每个水平便是一个小麦品种,是定性的水平;而在研究氮肥施用量对小麦产量的影响时,水平(氮肥施用量)则是数量化的.方差分析只研究各个水平对试验指标的影响是否显著,并不给出各水平的影响程度.因此,方差分析是定量地估计各因素对试验指标的影响的工具.9.1 单因素方差分析先看一个实例.例1 在饲养条件尽可能相同的条件下,检验某种激素对羊羔增重的效应.选用3个剂量进行试验,加上对照(不用激素)在内,每次试验要用4只羊羔,若进行4次重复试验,则共需要16只羊羔.一种常用的试验方法,是将16只羊羔随机分配到16个试验单元.这种方法被称为完全随机设计,在试验单元间的试验条件很一致的情况下,这种设计最为有效.经过200天的饲养后,各羊羔的增重数量(单位:kg)见表9.1.表9.1 各羊羔的增重数量(kg/每头/每200d)- 204 -- 205 -本例中,试验指标是羊羔的增重数量,只有1个因素——激素,为单因素试验.激素的4个剂量(含对照)构成因素的4个水平.单因素方差分析用于分析单因素试验中,各个水平对试验指标的影响是否显著.为叙述单因素方差分析问题,再看一个实例.例 2 一批由同种原料织成的同一种布,用不同染整工艺处理,然后进行缩水率试验,考察染整工艺对缩水率的影响,在其它条件尽可能相同时,测得缩水率(%)如表9.2所示.的染整工艺处理后,缩水率的全体构成的集合,假定2~(,)X N μσ.所考察的因素是染整工艺A ,5种不同的染整工艺A 1,A 2,…A 5为因素的5个水平,假定水平i A 下的样本来自相互独立且等方差的正态总体2~(,)(1,2,5)i i X N i μσ= ,它们都是总体X 的特款.就该批布中的任意4块分别考察5个水平上的缩水率,看作是4次重复试验.令i i αμμ=-,则αi 反映了水平A i 对缩水率的影响.由于x ij 是来自2~(,)i i X N μσ的样本,于是i j i i j i i j x μεμαε=+=++ (i =1,2,…,5;j =1,2,…,4).这里,εij 表示观测过程中各种随机影响引起的随机误差;εij 相互独立,服从均值为0,方差为σ2(未知)的正态分布.考察五个水平对缩水率的影响是否差异显著,即要检验假设012345:0H ααααα===== (9.1)一般地,设总体2~(,)X N μσ,因素A 有k 个水平A 1,A 2,…,A k .今对第i 个总体进行n i 次重复观测(i =1,2,…,k ),得到表9.3中的观测数据.- 206 - 表9.3 单因素方差分析数据表假定水平i A 下的样本来自相互独立、方差相同的正态总体2~(,)i i X N μσ(1,2,)i k = .令i i αμμ=-,则αi 反映了水平A i 对试验指标的影响.于是有i j i i j i i j x μεμαε=+=++(1,2,,;1,2,,)j i k j n == (9.2)其中,εij 表示试验观测过程中各种随机影响引起的误差;εij 相互独立,服从均值为0,方差为σ2(未知)的正态分布.称(9.2)为单因素方差分析的数学模型.令n = n 1 + n 2 + … + n k , (9.3)表示观测数据总数,不难证明111,0.kki i ii i n n μμα====∑∑单因素方差分析是要考察各个水平对试验指标影响的差异是否显著.因此,要检验的统计假设为012:0k H ααα==== (9.4)即检验观测数据x ij 是否来自k 个相同的总体.记11,in i ij i i j ix x x x n ⋅⋅⋅===∑, (9.5) 1111,in kkij i i j i x x x x x n⋅⋅⋅⋅⋅======∑∑∑, (9.6) 则i x ⋅为总体A i 的样本均值,x 为总样本的均值.(9.5)式与(9.6)式中的圆点表示已经求过和的指标,下同.令211()in k t ij i j S x x ===-∑∑, (9.7)211()in ke ij i i j S x x ⋅===-∑∑, (9.8)- 207 -21()kA i i i S n x x ⋅==-∑. (9.9)称S t 为总离差平方和,它反映了观测数据总的变异程度;显然,i x ⋅是i μ的无偏估计,又ij ij i x εμ=- ,于是ij ij i e x x ⋅=-是误差εij 的无偏估计.因此,称S e 为误差平方和或组内平方和,它反映了随机误差εij 对试验指标影响的总和;S A 是水平i A 的平均i x ⋅与总平均x 的离差平方和,其中系数i n 是对水平i A 上观测次数的体现.因此,A S 反映了因素A 的各水平i A 的均值间的差异程度,称A S 为因素平方和或组间平方和.由于2112112211111122111111()[()()]()2()()()()()2()()(ii ii iiiin kt ij i j n kij i i i j n n n kk k ij i ij i i i i j i j i j n n n kk kij i i i ij i i j i j i j i S x x x x x x x x x x x x x x x x x x x x x x x ==⋅⋅==⋅⋅⋅⋅======⋅⋅⋅⋅=======-=-+-=-+--+-=-+-+--=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑221111)()iin n kkj i i i j i j x x x ⋅⋅====-+-∑∑∑∑于是有平方和分解公式:S t =S A +S e . (9.10) 其意义在于将因素平方和S A 与误差平方和S e 从总平方和S t 中分解出来.在各ij ε相互独立地服从N (0,σ2)分布的前提下,当假设(9.3)成立时,模型(9.2)变为i j i j x με=+(1,2,,;1,2,,)i i k j n == (9.11)即所有观测数据来自同一正态总体N (μ, σ2) ,于是由第六章(6.10)式知22/~(1)t S n σχ-.令21(),1,2,,in i ij i j S x x i k ⋅==-=∑- 208 -则/(1)i i S n -是来自总体i X 的样本方差,于是2/i S σ服从自由度为1i n -的χ2分布.而S e /σ2 =(S 1 + S 2 + …+S k ) /σ2,由12,,,k X X X 的独立性假定,知S 1,S 2,…,S k 相互独立.由χ2分布的可加性,知22/~()e S n k σχ- (9.12)至于A S 的分布性质,我们不假证明地给出如下定理: 定理1 (1) A S 与e S 相互独立;(2) 当假设(9.4)成立时,22/~(1)A S k σχ-.若用t f ,A f ,e f 分别表示t S ,A S ,e S 的自由度,由上述讨论得到t A e f f f =+ (9.13)称(9.13)为自由度分解公式.为了检验假设(9.4),取)/()1/(k n S k S F e A --=(9.14)当假设(9.4)成立时,由(9.12)及定理1,有~(1,)F F k n k -- (9.15)给定显著性水平α(0<α<1),查F 分布表得到自由度为(k -1, n -k )的F 分布临界值F α(k -1, n -k ),从样本算出F 统计量的值F 0,据F 0的大小作如下推断:若F 0 >F α(k -1, n -k )则拒绝假设(9.4),认为某些水平(并非全部)对试验指标的影响有显著差异;若F 0 ≤F α(k -1, n -k )则接受假设(9.4),认为各水平对试验指标的影响无显著差异.通常将单因素方差分析过程归结为如表9.4所示的单因素方差分析表. 为简化计算,还可以对所有观测数据同时加、减或同时乘、除一个非零常数.不难证明,对所有观测数据x ij 同时加、减一个任意常数不影响各平方和的值,同时乘、除以一个非零常数不影响F 统计量的值.即对原始数据x ij 做变换,0ijij x ax b a '=+≠后再进行方差分析,其结果不变.1 23 4计算得到:S A = =208,S e = 646,S t = S A + S e = 854.S A的自由度为k―1=3,S e的自由度为n―k =12.据此,列方差分析表如表9.5.由(9.13)式算出的F值为1.2879,查表得临界值F0.05(3,12)=3.49,从样本算出的F值1.2879远比5%显著水平要求的F值3.49小,因此认为各个处理间没有显著差异.值得注意的是,这并不证明4个处理间没有差异,可能存在真实的差异,但是在所选取的概率水平上,试验没有足够的灵敏度,未能检测出差异.单因素方差分析可在表(9.3)上计算.现对例2进行表格化计算.为便于计算,将表9.2中的各观测数据同减去5,在表9.6中表格化计算(9.14)和(9.15)式右端各项.注意到k i- 209 -- 210 -55.54,34.37,A e S S ==89.91.t A e S S S =+= 据此得到如表9.7所示的方差分析表.0.01F =6.07>4.89,故拒绝假设(9.1),认为染整工艺对缩水率的影响极显著.在方差分析中,仍用* *表示极显著(a≤0.01时显著),用*表示0.01<a≤0.05时显著.在单因素方差分析中,各水平上观测次数n 1,n 2,…,n k 可以不相等.但在实际问题中,多取n 1 = n 2 =…n k ,因为选择同样大小的样本有如下优点:(1)与方差相等的假设的偏离不会过大,方差相等的检验比较容易;(2)F 检验时出现的第二类错误变小;(3)均值的其它比较(参阅§9.3)较为简单.9.2 双因素方差分析在双因素方差分析中,假定试验指标受两个变异因素A 、B 的影响,并假定行因素A 有m 个水平A 1,A 2,…,A m ,列因素B 有r 个水平B 1,B 2,…,B r .在每对组合水平(A i , B j )上做一次试验,得到m ×r 个试验结果x ij (i =1,2,…,m ; j =1,2,…,r ).所有ij x 独立,实验数据见表9.8.假定总体2~(,)X N μσ,2~(,)ij ij x N μσ,则11m rij i jmr μμ==∑∑ (9.16) 再假定组合水平(A i , B j )下的效应可以用A i 下的效应i α和B j 下的效应j β之和来表示,即ij i j μμαβ=++其中- 211 -110,0mriii j αβ====∑∑(正负效应相互抵消). 表9.8 双因素方差分析观测数据表1111,,r m A Biij j ij j i r m μμμμ====∑∑则A i μ和B j μ分别表示水平i A和j B 上的总体均值,且有 ,A i i αμμ=-.B j j βμμ=-类似于单因素方差分析,可将双因素方差分析的线性模型表示为(1,2,,;1,2,,)ij i j ij x i m j r μαβε=+++== . (9.17)这里,εij 表示其它随机因素引起的随机误差,εij 相互独立,服从均值为0,方差为σ2(未知)的正态分布.双因素方差分析的检验假设为01120212:0(9.18):0(9.19)m r H H αααβββ====⎧⎨====⎩仍用n = m ×r 表示观测数据总数,记11,(1,2,,)ri ij i i j x x x x i m r ⋅⋅⋅====∑ (9.20)11,(1,2,,)mj ij j j i x x x x i r m⋅⋅⋅====∑ (9.21) 111,m rij i j x x x x n⋅⋅⋅⋅====∑∑ (9.22)- 212 - 21()mA i i S r x x ⋅==-∑ (9.23)21()rB j j S m x x ⋅==-∑ (9.24)211()mre ij i j i j S x x x x ⋅⋅===--+∑∑ (9.25)211()mrt ij i j S x x ===-∑∑ (9.26)则i x ⋅为水平A i 上的样本平均,j x ⋅为水平B j 上的样本平均,x 为总体平均.S A 是因素A 的水平A i 上的样本平均i x ⋅与总体平均x 的离差平方和,若因素A 对响应值影响显著,则至少有一个离差平方(i x ⋅-x )2 较大,从而S A 较大;而当因素A 的影响不显著时S A 较小.因此,S A 反映了因素A 对试验结果的影响.同样,S B 反映因素B 对试验结果的影响.将模型(9.17)写成μμμμμμμμε+--=-+-+-=Bj A i ij B j A i ij ij x x )]()([于是,ij ij i j e x x x x ⋅⋅=--+是εij 的估计值.因此,S e 为误差平方和,它反映了其它随机因素对试验结果的影响.通过简单的推导可以证明下列平方和分解公式:S t = S A + S B + S e , (9.27)定理 2 (1) A S ,B S ,e S 相互独立,且()22/~(1)(1)e S m r σχ--,()22/~1t S mr σχ-;(2) 当假设01H 成立时,22/~(1)A S m σχ-; (3) 当假设01H 成立时,22/~(1)A S m σχ-; 证明略.若用t f ,A f ,B f ,e f 分别表示t S ,A S ,B S ,e S 的自由度,则由定理2得到- 213 -t A B e f f f f =++ (9.28)称(9.28)为自由度分解公式.由定理2,有()/(1)~1,(1)(1)/(1)(1)A A e S m F F m m r S m r -=----- (9.29)显然,F A 越大说明因素A 对试验结果的影响越大.对给定的显著性水平α,查F 分布表得自由度为(m ―1, (m ―1)(r ―1))的F 分布临界值F α,若从样本由(9.29)式算出F A >F α,则拒绝假设H 01,认为因素A 对试验结果有显著影响;否则认为因素A 的影响不显著.类似地,可使用统计量()/(1)~1,(1)(1)/(1)(1)B B e S r F F r m r S m r -=----- (9.30)对因素B 进行显著性检验.若从样本由(9.30)式算出F A >F α,则拒绝假设H 02,认为因素B 对试验结果有显著影响;否则认为因素B 的影响不显著.上述讨论可归结为如表9.9所示的方差分析表.表9.9 双因素方差分析表例3 将土质基本相同的一块耕地分成均等的五个地块,每块又分成均等的四个小区.有四个品种的小麦,在每一地块内随机分种在四个区上,每小区的播种量相同,测得收获量如下表(单位:kg ),试以显著性水平α1=0.05, α2=0.01考察品种和地块对收获量的影响是否显著.解 为计算简单起见,每一收获量均减去32,列表计算.- 214 -注意到m =4,r =5,n =20,经计算得到S A = 134.65, S B = 14.10, S t = 175.03, S e = 26.28,查表得临界值F 0.05(4, 12)=3.26,F 0.01(3, 12)=5.95.由于F B <F 0.05(4, 12),故认为地块不同对收获量无显著影响.由于F A >F 0.01(3, 12),故认为品种不同对收获量影响极显著.9.3 多重比较当假设(9.4)被拒绝后,只能表明在显著水平α下,至少有两个子体的均值间差异显著,并不表示k 个均值之间两两的差异都显著.通常要进一步检验该因素在各水平上的均值两两之间的差异是否显著,以确定哪些水平对响应值有重要影响.我们称这种差异性检验为多重比较.多重比较的方法很多,而且每种方法都有各自的优、缺点.这里,我们介绍适用范围较广的两种方法.一种是Scheffe 方法(S 法),另一种是Tukey 方法(T 法).在进行所有两个均值的同时比较时,如果每次比较的冒险率(犯第一类错误的概率)为α,则S 法和T 法全体冒险率均为α.如果用t 检验进行所有两个均值的同时比较,当均值个数大于2时,尽管每拒绝1个假设所犯的错误都是α,但同时拒绝2个假设所犯的错误是221(1).ααααα+-=-->如果对7个均值进行两两比较,要比较2721C =次.给定拒绝每个假设(i j μμ=,- 215 -1≤i <j ≤7)的冒险率0.10α=,要拒绝所有21个假设,即判明7个均值互不相等所犯的错误将是211(1)0.89α--≈!显然,在使用t 检验进行所有两个均值的同时比较时,全体的冒险率随均值个数的增加而增加.因此,t 检验只能适用于随机抽出的两个均值的比较,并不适用于所有的两个均值的同时比较. 9.3.1 S 法仍用e f 表示误差平方和S e 的自由度,/e e e MS S f =表示均方误差,假定观测数据满足方差分析的基本要求.在单因素方差分析中,Scheffe (1953)给出用于检验假设H 0:μi = μj (1≤i <j ≤k )的统计量i j D S α= (9.31)其中),1()1(e f k F k S --=αα.当||i j i j x x D ->时,则拒绝假设H 0 :μi =μj ,认为水平A i 与水平A j 在显著水平α下差异显著;否则认为A i 与A j 差异不显著.对于双因素方差分析,我们可以分别对每个因素作单因素方差分析,进而进行多重比较.也可以按下述步骤进行近似的S 检验:1 若检验假设A j A i H μμ=:0,则使用统计量ij D S = (9.32) 其中),1()1(e a f m F m S --=α.当||i j ij x x D ⋅⋅->时,则拒绝A j A i H μμ=:0,否则接受H 0.2 若检验假设B j B i H μμ=:0,则使用统计量ij D S α= (9.33) 其中),1()1(e f r F r S --=αα.- 216 - 当||i j ij x x D ⋅⋅->时,则拒绝B j B i H μμ=:0,否则接受H 0.比如在例2中,k = 5, n 1 = n 2 = … = n 5 = 4, f e = 15, MS e = 2.29.取α=0.05,查表得F 0.05(4,15)=3.06.于是由(9.32)及(9.33)得24.1206.34205.0=⨯=S ,)51(74.3)4141(29.224.12≤<≤=+⨯⨯=j i D ij .12||0.025 3.74x x -=<,故μ1与μ2差异不显著. 15|| 3.925 3.74x x -=>,故μ1与μ5差异不显著.14|| 3.35 3.74x x -=<,但与临界值3.74较接近,虽在显著水平0.05下认为μ1与μ4差异不显著,却能看出二者间存在真实的差异.类似地,可对其中任二均值进行比较. 9.3.2 T 法在用T 法进行k 个水平上的均值μ1,μ2,…,μk 之间的两两比较时,要求各水平上的重复数相同,即n 1 = n 2 = … = n k ,并且还要求2cov(,),,1,2,,;i j x x b i j k i j σ==≠ .即i x 与j x 的协方差不依赖于i 和j .T 法所使用的统计量是(,e T q k f α= (9.34) 其中(,)e q k f α是自由度为(,)e k f 的t 化极差分布的上侧α分位点.(,)e q k f α可以从“多重比较的q 表”中查到.S 法无论水平重复数是否相同都适用,T 法只适用于水平重复数相同的情况;在进行所有均值间的两两比较时,T 法比S 法灵敏度高,能检出较小的差异.因此,在水平重复数相同时应当用T 法.9.4 双因素等重复试验的方差分析在双因素试验中,除考察因素A 和B 对试验结果的影响外,还应考虑A 、B- 217 -的各水平的搭配情况对试验结果的影响,称此为A 与B 的交互作用,并把它设想为某一因素,记为A B ⨯.为考虑交互作用A B ⨯,对因素A 、B 的各水平的每一搭配(A i ,B j )都进行l (l ≥2)次重复观测,得到表9.10中的观测数据.表9.10 双因素等重复试验数据记n mrl =,1111m r lijk i j k x x n ====∑∑∑11,,1,2,,;1,2,,.lij ijk ij ij k x x x x i m j r l ⋅⋅⋅=====∑111,,1,2,,.r li ijk i i j k x x x x i m rl⋅⋅⋅⋅⋅⋅=====∑∑ 111,,1,2,,.mlj ijk j j i k x x x x j r ml⋅⋅⋅⋅⋅⋅=====∑∑双因素等重复试验的方差分析计算量较大.其基本原理也是将总的偏差平方和作如下分解:- 218 - 211122111122111()()()()()m r lt ijk i j k mrlmijk ij i i j k i rm rj ij i j j i j e A B A BS x x x x rl x x ml x x k x x x x S S S S ===⋅⋅⋅====⋅⋅⋅⋅⋅⋅⋅===⨯=-=-+-+-+--+=+++∑∑∑∑∑∑∑∑∑∑ (9.35)其中各偏差平方和的表达式如下:2111()m r le ijk ij i j k S x x ⋅====-∑∑∑21()mA i i S rl x x ⋅⋅==-∑21()rB j j S ml x x ⋅⋅==-∑211()m rA B ij i j i j S k x x x x ⨯⋅⋅⋅⋅⋅===--+∑∑e S 为误差平方和,反映了随机误差对试验指标的影响;A S 和B S 分别为因素A 和B 的偏差平方和,分别反映了因素A 和B 对试验结果的影响程度,A B S ⨯为A 与B 的交互作用A B ⨯的偏差平方和.当假设“H A :因素A 对试验结果无显著影响”成立时()/(1)~1,(1)/[(1)]A A e S m F F m mr l S mr l -=---当假设“H B :因素B 对试验结果无显著影响”成立时()/(1)~1,(1)/[(1)]B B e S r F F r mr l S mr l -=---当假设“H AB :交互因素AB 对试验结果无显著影响”成立时()/[(1)(1)]~(1)(1),(1)/[(1)]A B B e S m r F F m r mr l S mr l ⨯--=----检验过程可归纳在如表9.11所示的方差分析表中.立性和等方差性.从理论上讲对上述假定都要通过样本进行统计检验.有关独立性问题,通常是通过试验设计来解决.至于正态性和等方差性,可以根据第八章进行拟合优度检验和Bartlett 检验,还可以对原始数据进行适当的变换,使之满足正态性和等方差性.习 题 九1. 某灯泡厂用四种不同配料方案制成的灯丝,生产了四批灯泡.在每批灯泡中随机地其中(1,2,3,4)i t i =表示第i 批灯泡的寿命.试问(1) 四种灯丝生产的灯泡的使用寿命有无显著差异(0.05α=)? (2) 用S 法比较任意两批灯泡平均寿命之间的差异性(0.05α=).2. 设有三种型号的设备制造同一产品,对每种型号的设备各观测其5天的日产量,数x i 表示第i种型号的设备的日产量.问不同型号的设备生产能力之间是否其中(1,2,3)i有显著差异?3. 为了解3种不同饲料对猪生长影响的差异,用3个品种的猪进行全面搭配试验,3个月后测得9头猪的体重增加量(单位:kg)如下表:试分析饲料之间及猪的品种之间对猪的体重增加有无显著差异.4. 一种火箭使用了四种燃料、三种推进器作射程试验,对于燃料与推进器的每一种搭试检验燃料和推进器对火箭射程是否有显著影响,以及两个因素的交互作用对火箭射程是否有显著影响.- 220 -。

第九章 方差分析

第九章 方差分析

3。计算各部分变异的均方 在方差分析中 ,方差也称为均方,是各部分的离均差平 方和除以其相应的自由度,用MS表示。基 本公式为:MS=SS/ν。 4。计算统计量F值 F值是指两个均方之比。 一般是用较大的均方除以较小的均方。故 F值一般不会小于1。
5。确定P值,推断结论 根据分子ν1,分母 ν2,查F界值表(方差分析用),得到F 值的临界值(critical value),即:如 果F≥F界值,则P≤0.05,在α=0.05水准 上拒绝H0,接受H1。可以认为各样本所代表 的总体均数不全相等。如果想要了解哪两 个样本均数之间有差异,可以继续进行各 样本均数的两两比较。

结论:拒绝H0。四个行业的服务质量有显著差异
用Excel分析
选一批单元格输入原始数据; 选中数据区域,“工具”→“数据分析”;
1.输入数据表;选“工具”→“数据分析 ”→“……‖
1.输入数据表;选“工具”→“数据分 析”→“单因素方差分析”
―单因素方差分析”对话框中:输入区 域,行,输出区域
Ar
X r1 ... X rnr
列和Ti X ij
j 1
ni
T 1
T2
...
Tr
总和 Ti
i 1
r
列平均X i Ti ni
(水平组内平均值)
X1
X2
...
Xr
r
(总平均值)
1 r X ni X i n i 1
其中诸
ni 可以不一样, ni n
i 1
单因素方差分析表
3.处理
处理——指按单因素的各个“水平”条 件或多因素的各个“水平”的组合条件进行 的重复实验。 例如,要研究性别因素对智力发展的影 响,可以从同龄学生中各抽取男女学生50名 参加智力测验。性别因素所分成的两个水平 (男和女)即两种处理。

心理统计学课件第九章 方差分析

心理统计学课件第九章 方差分析

ij
Xj
X
2 k n j 1 i 1
Xt

2
SST SSW SSB
总平方和,表示实验中产生的总变异,即 把所有被试的数值作为一个整体考虑,是 用所有被试的因变量的值计算得到的 组间平方和,表示由于不同的实验处理而 造成的变异,可以用两个平均数之间的离 差表示。 组内平方和,表示有实验误差或个体差异 造成的变异。
n2Fra bibliotekX n
2

组内平方

SSW X 2
2 X
n

总平方和
SST X
2
X
n
2
6、列方差分析表
变异来源 平方和 自由度 方差 F 值 概率
组间变异
组内变异
SSB
SSw
dfB
dfw
MSB
MSw
F
MS B MSW
P
总变异
SST
dfT
SSB
2 X
第九章 方差分析
第一节 方差分析的基本原理及步骤 第二节 完全随机设计的方差分析
方差分析
方差分析又称为变异分析(analysis of variance,ANOVA),是由斯内德克 (George Waddel Snedecor)提出的一种 方法。 探讨一个因变量和一个或多个自变量之间 关系的一种检验方法。 主要功能:分析实验数据中不同来源的变 异对总变异的贡献大小,从而确定实验中 的自变量是否对因变量有重要影响。

第二节 完全随机设计的方差分析
各实验处理组样本容量相同 各实验处理组样本容量不同 利用样本统计量进行方差分析

一、各实验处理组样本容量相同

第九章----方差分析

第九章----方差分析

若组间变异明显大于组内变异, 则不能认为组 间变异仅反映随机误差的大小, 处理因素也在起 作用。根据计算出的检验统计量F值, 查界值表 得到相应的P值, 按所取检验水准α作出统计推断 结论。
检验统计量F值服从F分布。
F<Fα,(ν组间, ν组内),则P > α, 不拒绝H0, 还不能认 为各样本所来自的总体均数不同;
1、各样本是相互独立的随机样本, 且来自 正态分布的总体;
2、相互比较的各样本的总体方差相等, 即 具有方差齐性。 独立性、随机性、正态性、方差齐性
五、方差分析的用途
1、用于进行两个或多个样本均数的比较; 2、分析两因素或多因素间的交互作用; 3、用于回归方程的线性假设检验。
六、方差分析的优点
1、不受比较组数的限制,可比较多组均数; 2、可同时分析多个因素的作用; 3、可分析因素间的交互作用.
一、多个样本均数间的比较能否用 t 检 验或 u 检验?为什么?
原因:
五个样本均数进行比较, 每次两个均数作一次 t 检验, 共需作10(C52=10)次 t 检验。若每次比 较的检验水准α=0.05, 则每次比较不犯Ⅰ型错误 的概率为(1-α)=0.95。当这些检验独立进行 时, 则10次比较均不犯Ⅰ型错误的概率为0.9510= 0.5987, 此时犯Ⅰ型错误的概率, 即总的检验水准 α变为1-0.5987=0.4013比0.05大的多。犯Ⅰ型错 误的概率增大, 可能将原本无差别的两个总体推 断为有差别, 误判为有统计意义。因此多重比较 不宜用的 t 检验或 u检验作两两比较。
已知各组均数、标准差和样本含量时F值 的简便计算方法。
当原始数据未知, 只知各组均数、标准差和 样本含量时, 可进行如下计算, 分两种情况: 1、各组样本含量ni相等; 2、各组样本含量ni不等。

现代心理与教育统计学第九章:方差分析

现代心理与教育统计学第九章:方差分析

(五)查F分布临界值做出判断 当dfB=2, dfW=9,设定p=0.01, 查表F0.01(2,9)=8.02,检验值是F=48.44>8.02,p<0.01。
F0.01(2,9)=8.02
(六)陈列方差分析表
变异来变源异来平源方和平方自和由度自由度均方 均方 F F p 组间 组间258.67258.672 2 129.34129.3448.4448.44*0*.01 组内 组内 24 24 9 9 2.67 2.67
组内变异区组变异msr误差变异mse由此总变异的构成由原来的两个部分演变为三个部分总变异组间或处理变异区组变异误差变异组间设计下自变量各水平下被试随机区分而在单因素组内把每个水平下被试进行了等级划分形成了组内效应区组效应
第九章 方差分析
第一节 方差分析基本原理及步骤 第二节 完全随机设计的方差分析
目 录
第三节 随机区组设计的方差分析
第四节 事后检验
第一节 方差分析基本原理及步骤
➢ 补充: 自变量(前因变量);自变量水平 因变量(后果变量) 组间(被试间)实验设计(自:男,女。因:红色反应时) 组内(被试内)实验设计(自:红,绿。因:男红绿反应时) 混合实验设计(自:男,女;红,绿。因:男女红绿反应时) 实验组、对照组
SB S n X2 nX k2(2470 444 0 6 4 0)4 (5 3 2 2 4 0 8)2
79 6240 20 5 .68 7 12
SW S X 2 n X 2 8 1 76 9 22 4
(二)自由度的分解 总自由度为总容量减去1。本例有12个数据,所以:
思考: 1.如果想要分析A总体和B总体平均数的差异,可以用什么方法

方差分析 (共72张PPT)

 方差分析 (共72张PPT)

2.总体变异的构成
总体变异 组间变异: 组内变异:组内变异理论上要求齐性,实际计算取其 均值
3.方差的基本公式
一般总体方差称方差,样本方差称均方 能使变量发生变异的原因很多,这些原因我们都将其称为变异
因素或变异来源。
方差分析就是发现各类变异因素相对重要性的一种方法
方差分析的思路就是:把整个试验(设有 k 个总体)的样本资料作 为一个整体来考虑。
原理是变异的可加性。
即每一个数据与数据的总体平均数差的平方和,可以分解为每一组数 据各自的离差平方和与由各组数据的平均数组成的一组数据的
离差平方和两部分。前者表达的是组内差异,即每组数据中 各个数据之间的差异,也就是个体差异,表达的是抽样误差或 随机误差程度;后者表达的是组间差异,即各组平均数之间的差 异,表达的是实验操纵的差异程度,实验操纵即指自变量的操 纵,这两部分差异之间相互独立。
3、这种两两比较会随着样本组数的增加而加大犯Ⅰ型错的差异显著性检验,若两两比较推 断正确的概率为95%,则所有比较都正确的概率为6=0.74,则降低
了推断的可靠性。
• 几个常用术语:
1、试验指标(experimental index) 为衡量试验结果的好坏或处理效应的高低 ,在试验中具体测
(1).计算平方和:
组间平方和
SB SX n2X n2 71 .5 6 65 8 .1 7 8 20 8 .47
¨ 组内平方和
SW SX 2X n2 7 6 7 41 4 .5 6 4 45 7 .5 7 8
¨ 总平方和
SS T X 2X n2
764414252 876.396
23
(2).计算自由度
因此,方差分析可以帮助我们抓住试验的主要矛盾和技术关键,发 现主要的变异来源,从而抓住主要的、实质性的东西。

方差分析

方差分析

• 例题:探讨噪音对解决数学问题的影响作用。
噪音是自变量,划分为三个强度水平:强、中、 弱。因变量是解决数学问题时产生的错误频数。 随机抽取12名被试,再把他们分到强、中、无 三个实验组。每组被试接受数学测验时戴上耳 机。强噪音组、中噪音组的被试通过耳机分别 接受100、50分贝的噪音; 无噪音组的被试 则没有任何噪音。数学测验完后,计算每位被 试的错误频数。
查F值表进行F检验并作出决断
• 注意:
• 1.确定显著性水平 • 2.明确用单侧检验还是双侧检验
方差齐性检验
• 哈特莱最大F比率法:找出要比较的几个组内 方差中的最大值与最小值代入下式:
F max
S 2 S
2
max min
• 然后查F max临界值表,当算出的 F max小于表中相 应的临界值,就可认为要比较的样本方差两两 之间均无显著差异。
SSB MSB df B
SSW MSW df w
自由度的计算
• 组间自由度
• 组内自由度 • 总自由度
df B =k-1 df w =N-k
dfT
=N-1
• dfT = df B + df w
两个均方值之比为F统计量:
SSB / (k 1) MSB F SSW / (N k ) MSWE0.05来自SE X MS
n
E
• 4 用标准误乘以q的临界值就是对应于某 一个r值的两个平均数相比较时的临界值。
• 临界值,又称阀值,英文称 critical value,是指一个效应能 够产生的最低值或最高值。临界 值在数据分析中常常用来判定差 异情况 。
4、把5个平均数两两之间的差异与相应的 比较。但用这些差数与 q .SE 比较时一定要注意对应 于哪个r值。 例如: X E - X C =4.5,这时r=4-2+1=3,当r=3时 q0.05.SE X =3.49×1.738=6.06,因此应该将4.5与6.06 相比较。

第九章方差分析-PPT精选文档60页

第九章方差分析-PPT精选文档60页

§1 单因子方差分析
§1.1 基本概念
为了考察某个因素 A 对试验指标(即随机变量 X)
的影响,在试验时,保持其他因素不变,而仅让因素 A
改变,这种试验称为单因子(单因素)试验. 设试验结
果如下表:
水平
观测值
A1
x11
x12
...
x1n1
A2
x21
x22

x2n2





Ar
xr1
xr2

xrnr
• 为了今后方便起见,把参数的形式改变一下,并



1 n
r i1
nii
r
nni i1
i i , i 1,2,...,r,
称μ为一般平均,αi为因子A的第i 个水平的效应.
• 在这样的改变下,单因子方差分析模型中的数 据结构式可以写成:
X i j i i,j i 1 ,2 ,.r ;.j .1 ,2 ,,.n i..,
SA
2
~
2(r 1)
且SA与SE相互独立.
由于SA反映的是因子不同水均平值之间的差
异程度,故当假设H0 :1 2 ...r 0为真时,
SA的值不应太大 ,从而
F SA /(r 1) SE /(nr)
也不应太大,当F值过大时,可以认为假设 H0不真.
§1.4 检验过程
由此,可 当H0知 :12...n0为真 , 时
(X i jX i.2 ) (X i. X ) 2 2 (X i jX i.(X )i. X )
i 1j 1
i 1j 1
i 1j 1
r ni

教育与心理统计学第九章:方差分析

教育与心理统计学第九章:方差分析
如果组间平方和越大,组内平方和就会越小,各组平均数之间的显著性 差异的可能性就越大。
自由度的相关公式:
组间自由度dfB=k-1 组内自由度dfw=k(n-1) 总自由度 dfT=nk-1=dfB+dfw
在方差分析中,总是在进行单侧检验。 即F=MSB/MSW F>1,不同的实验处理之间有显著性差异 F<1,不同的实验处理之间差异不大,即实验处理基
第九章 方差分析
第一节 方差分析的基本原理及步骤 第二节 完全随机设计的方差分析 第三节 随机区组设计的方差分析 第四节 事后检验
第一节 方差分析的基本原理及步骤
方差分析(analysis of variance,ANOVA):探讨一个因 变量和一个或多个自变量之间的关系。主要目的在于 分析实验数据中不同来源的变异对总变异的贡献大小, 从而确定试验中的自变量是否对因变量的影响。
例题:9—6
当区组效应显著,说明实验设计采用随机区组设计是成 功的;当区组效应不显著,说明划分区组不成功的。
第四节 事后检验
在方差分析中,F检验的结果中表明差异不显著,说 明实验中的自变量对因变量没有显著影响。如果差异 显著,表明几个实验处理组的两两比较中至少有一对 平均数的差异达到了显著性水平。
两因素被试内设计,其中三名被试
组内设计(被试内设计、随机区组设计、重复测量设 计)——每个被试都要接受所有自变量水平的实验处 理。
(实验设计安排格式)
被试内设计的优点:①被试内设计需要的被试较少, 实验设计方便、有效。②被试内设计比组间设计更敏 感。③心理学的某些领域需要使用被试内设计,即被 试内设计适用于研究练习的阶段性。 ④被试内设 计消除了被试的个体差异对实验的影响。
方差分析主要处理两个以上平均数之间的差异检验问 题。

第九章方差分析

第九章方差分析

二、F测验
F =
s s
2 t 2 e
F测验分析的目的是判断各个处理平均数 之间是否存在显著差异,即可测验:
Ho: 1 2 k HA: 1、 2、 k 不相等
三、多重比较
如果F测验的结果为各处理间的差异 不显著,则分析结束,否则将进行多重
比较。多重比较分析的目的是进一步判
df e1 ( r 1)( a 1) df ab ( a 1)( b 1)
(一)单因素资料的方差分析 此资料为两向分组资料(交叉分组资料),其行为 处理,列为区组,为 k 行 r 列的两向表,即可看作是 试验因素具有 k 个水平和区组因素具有 r 个水平的两 因素试验。
注意:这样的模式要求行与列间不存在交互作用,
即处理效应不因区组不同而显著不同,否则,F 测验将
丧失有效性,需采用二因素随机区组试验。一般的随机
Se2的EMS是σe2;
St2的EMS是 e2 n 2 ∴ F =
s s
2 t 2 e

n
2 e
2

2 e
F测验有效性的保证条件之一是分子均方 s12 的EMS仅比分母均方 s
2 的EMS多一个分量(线性 2
组成部分)。
(三)固定模型和随机模型 固定模型是指试验的各处理都抽自其特定的处 理总体,这些总体遵循N(μi, σe2),因而处理效应 τi =(μi - μ)是固定的。我们分析的目的就在于 研究τi ,如果重复做试验,处理不变,而所要测验 的假设则是:H0:τi =0或 H0:μi=μ对HA: 1, 2, k 不等。故我们的推断也仅限于供试处理范围之内。
或 SS T SS m SS b SS ab

第九章单因素方差分析

第九章单因素方差分析

因素水平(level of factor): 试验因素所处 的某种特定状态或数量等级称为因素水平, 简称水平。如研究3个品种奶牛产奶量的高低, 这3个品种就是奶牛品种这个试验因素的3个 水平。 试验处理(treatment): 事先设计好的实施 在实验单位上的具体项目就叫试验处理。如 进行饲料的比较试验时,实施在试验单位上 的具体项目就是具体饲喂哪一种饲料。
a n
… … … … … … … …
i yi1 yi2 … yij … yin yi. yi.
… … … … … … … …
a
处理间平均 数的差异是 由处理效应 引起的:
ya1 a ya2 … i 1 yaj … yan ya. ya.
( y
i.
y.. )
2
Yi.=∑yij y ..
处理内的变 异是由随机 误差引起:
dfT = na-1
dfA = a -1
dfe = dfT - dfA = na-1-(a-1) =na-a
总和 平均
yi
… Ta T=∑yij … ya y
例:生产某种纺织品,要求棉花纤维长度平均为30mm以上, 现有一棉花品种,以n=400进行抽查,测得其纤维平均长度为
30.2mm,标准差为2.5mm,
问该棉花品种的纤维长度是否符合纺织品的生产要求? 例:某鱼塘水中的含氧量,多年平均为4.5(mg/L),该鱼塘设10 个点采集水样,测定含氧量为: 4.33,4.62,3.89,4.14,4.78,4.64,4.52,4.55,4.48,4.26(mg/L)
况下的统计假设检验,或者说是平均数差异显著
性检验的一种引伸。
方差分析的 基本功能
对多组样本平均数差异 的显著性进行检验

第九章方差分析及回归分析

第九章方差分析及回归分析
的点估计及均值差的置信水平为0.95的置信 区间。
解:2 SE /(n r) 0.000016
1 x1 0.242, 2 x2 0.256, 3 x3 0.262 x 0.253
1 x1 x 0.011, 2 x2 x 0.003
2019/11/8
1
例1 设有三台机器,用于生产规格相同的铝 合金薄板。取样,测量薄板的厚度精确至千 分之一厘米。得结果如下表所示。
铝合金板的厚度
机器1
机器2
机器3
0.236
0.257
0.258
0.238
0.253
0.264
0.248
0.255
0.259
0.245
0.254
0.267
0.243
0.261
SE ( X i1 X1)2
( X is X s )2
i 1
i 1
nj
(Xij X j )2 / 2 ~ 2 (nj 1)
i1
由 2分布的可加性知
s
SE / 2 ~ 2 ( (nj 1)) j 1
SE / 2 ~ 2(n s)
因F0.05(2,12) 3.89 32.92,
故在水平0.05下拒绝H0 , 认为各台机器生产的 薄板厚度有显著差异。
2019/11/8
23
(五)未知参数的估计
不管H0是否为真,ˆ 2

SE nr

2的无偏估计。
拒绝还是接受H0,需要作出两总体N (i , 2)和N (k , 2),
( Xij Xi.)( Xi. X )
i1 j1
i1

L2-第九章 方差分析

L2-第九章 方差分析

总 N 1 24 1 23
SS处理 ni X i X X i ni C
2 2 i
550.012 537.30 2 618.19 2 726.282 246398.0820 6 6 6 6 3742.5521
在实际运用中,往往将上述过程总结为如下的方差分析
表。
二、方差分析的应用条件 进行方差分析时,数据应满足以下两个应用条件: 1. 各样本是相互独立的随机样本,均服从正态分布。 当样本含量较小时,资料是否来自正态分布的总体难 于进行直观判断和检验,常常根据过去的经验;当样 本含量较大时,无论资料是否来自正态分布总体,数
变异、区组的变异和随机误差三个部分。
数理统计可以证明它们有如下的数量关系。
SS总 SS处理 SS区组 SS误差
总 处理 区组 误差
具体计算公式见下表:
二、随机区组设计资料方差分析的基本步骤 随机区组设计资料的方差分析步骤概括如下: ①. 建立假设 对于处理组 H0:4个总体均数全相等 H1:4个总体均数不等或不全相等 对于区组 H0:6个总体均数全相等 H1:6个总体均数不等或不全相等
bk个格子中,每个格子仅有一个数据Xij(i=1,2,3,,k; j=1,2,3,,b), 而无重复,因此其方差分析属无重复数据 的双向(因素)方差分析(two-way ANOVA)。
一、离均差平方和与自由度的分解 从该例数据表可以看出,随机区组设计资料的总变异 可以分解为:除处理的变异、随机误差外,还可分离 出区组变异。 区组变异 为6个不同窝别家兔血糖浓度值的样本均数
X j 各不相同,即 X j 与总均数 X 的不同。它既包含6个
区组的差异,也包含随机误差,其大小可用区组均方

第九章 方差分析506312261

第九章 方差分析506312261

第九章 方差分析第一节 方差分析的基本原理及步骤一、方差分析的基本原理假设从一个实验中抽取了9名被试的学习成绩,如表9-1所示。

随后又抽取了9名被试的学习成绩,如表9-2所示。

你能从这些数据发现什么问题吗?首先,从数据可知,不仅组与组之间存在不同,而且同一组内部也存在着不同。

前者称组间变异,后者称组内变异。

其次,从组间变异看,表9-1组间变异大于表9-2。

表9-1 第1次抽取结果表9-2 第2次抽取结果 方法 学生实验成绩 Xt X方法 学生实验成绩 Xt XA 6 5 7 6A 1 7 4 4B 11 9 10 10 7B 6 2 8 6 5C5465C3655再次,从看组内变异看,表9-1比 9-2差异小。

综上所述,表10-1组间变异较大而组内变异较小,表10-2组间变异较小而组内变异较大,组间变异大小与组内变异大小并非正比关系。

这表明,若组间变异与组内变异的比率越大,各组平均数的差异越大。

因此,通过组间变异和组内变异比率大小来推论几个相应平均数差异显著性的思想就是方差分析的逻辑依据或基本原理。

所以说,方差分析是将实验中的总变异分解为组间变异和组内变异,并通过组间变异和组内变异比率的比较来确定影响实验结果因素的数学方法,其实质是以方差来表示变异的程度。

总变异组间变异实验条件随机误差组内变异个体差异随机误差实验误差图10-1 总变异的分解图二、方差分析的基本过程(一)综合虚无假设与部分虚无假设方差分析主要处理多于两个的平均数之间的差异检验问题,需要检验的虚无假设就是“任何一对平均数”之间是否有显著性差异。

综合虚无假设:样本所归属的所有总体的平均数都相等 备择假设:至少有两个总体的平均数不相等(二)方差的可分解性总变异 = 组间变异 + 组内变异变异(V ariance ,用V 表示)即方差(S 2),又称均方差或均方(M ean S quare ,MS ),其公式为()df SS n X X MS V S =--=∑1),(22或或其中,分子为离均差平方和,简称平方和,记为SS ;分母为自由度,记为df ,所以总变异及各变异源记为w b t MS MS MS +=总变异的数学意义是每一原始分数(X )与总平均数(t X )的离差,记为()tX X -组间变异的数学意义是每一组的平均数(i X )与总平均数的离差,记为()t iX X-组内变异的数学意义是每一组内部的原始分数与其组平均数(i X )的离差,记为()iX X -(二)总变异的分解及各部分的计算 1.平方和的分解与计算 1)平方和的定义式根据变异的可加性,任何一个原始分数都有()()()i t itX X X XX X -+-=-对容量为n 的某一小组而言,则有()()()[]∑∑-+-=-i t it X X X XX X为了使平方和不为0,须做代数的处理,即有()()()[]22∑∑-+-=-i t itX X X XX X对k 组页言,则有()()()[]∑∑∑∑-+-=-22ititX X X X X X()()()()∑∑∑∑∑∑-+--+-=222iititiX X X X X X X X ∵ ()()0=--∑∑i t iX X X X∴ ()∑∑-2tX X ()()∑∑∑∑-+-=22itiX X X X即 总平方和 = 组间平方和 + 组内平方和 或 w b t SS SS SS += 2)平方和的计算式()()nX XX X 222∑∑∑-=-总平方和:()()∑∑∑∑∑∑∑-=-=nX X X X SS t t 222组间平方和:()()()∑∑∑∑∑∑∑-=-=n X n X X X SS tib222组内平方和:()∑∑-=2i wX X SS ()∑∑-=2i w X X SS b tSS SS-=例9-1:要探讨噪音对解决数学问题的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x j
71.8 64.5 70.9 215.3 5 259.53 23.92 9
xj
23.93 21.5 26.33 (Σ X) (Σ x ) (x ) (N)
2
xi
ni Si
注:表中i表示方法组别,k表示其组数,j表示药物组别。
分析步骤:
1.建立假设、确定检验水准 (1)处理组间: H0:3种方法抑菌环直径的总体均数相等
完全随机设计的方差分析表 v 39 3 36 15.030 1.157 12.99 MS F
P <0.01
3.确定概率P值、做出推断结论: 根据组间、组内的自由度,查P195 F界值表, F0.01(3,36) =4.38,得P<0.01,按=0.05的检验水准,拒绝H0,接受 H1 ,差异有统计学意义,可认为4组小鼠瘤重的总体均数不 等或不全相等 。
析因设计、拉丁方设计、嵌套设计、裂区设计、交叉设计 资料的多因素方差分析;
重复测量资料的方差分析等。

2.应用条件
⑴各样本是相互独立的随机样本。 ⑵各样本均服从正态分布; ⑶相互比较的各样本的总体方差相等,即具有方差齐性。
五、多个样本方差的齐性检验

可用Bartlett 检验或Levene检验,前者要
第九章 方差分析
第一节 方差分析概述
实验设计的三个基本要素:处理因素、实验对象、实验效应。
一、因素与水平
在试验中,要考察的指标称为试验指标。

因素:影响试验指标的条件称为因素。
水平:因素所处于的状态称为水平。 单因素试验和多因素试验:试验中只有一个因素称为单因 素试验,如果多于一个因素称为多因素试验。
方差分析与t检验的关系
当两个样本均数作比较时,从同一资料算得的 F
值与t值有如下关系: F = t2

可见当两组均数比较时,方差分析与t检验的结果 是等价的。
第三节 随机区组设计资料的方差分析
随机区组设计(randomized block design):亦
称配伍组设计,是配对设计的扩展。具体做法是: 先按影响试验结果的非处理因素(如性别、体重、 年龄、职业、病情、病程等)将受试对象配成区 组(block),再分别将各区组内的受试对象随机分 配到各处理或对照组。
n-1
N
SS组间 ni ( xi x ) 2
组间变异
ni
i 1
k-1
SS组间/组间
MS组间/MS组内

k
( xij )
j 1
2
组内(误差) 变异
i 1
ni N SS总-SS组间

( xij ) 2
i 1 j 1
k
ni
n-k
SS组内/组内
表 9-1
观测值 序号 1组 1 2 3 4 5 6 7 8 9 10
二、对多样本均数重复进行t检验的风险性

将会导致犯I类错误的机率增大 例:若4个样本均数做两两比较,两两组合数为 C42 6 , 若用t检验需作6次比较,若每次比较的检验水准为0.05, 则:

每次比较不犯Ⅰ类错误的概率为(1-0.05)=0.95, 6次均不犯Ⅰ类错误的概率为0.956 =0.7351, 表2变异来源 自由度
方差分析表
SS MS F P
总变异 处理间
14 2
0.5328 0.2280 0.1140 11.88 <0.05
区组间
误差
4
8
0.2284
0.0764
0.0571
0.0096
5.95
<0.05
查界值表,得
F0.05(2,8)=4.46,
今F =11.88>F0.05(2,8),故P <0.05。
先将 15只染有肉瘤小白鼠按体重大小配成 5
个区组,每个区组内 3 只小白鼠随机接受三
种抗癌药物 , 以肉瘤的重量为指标,试验结
果见表。问三种不同的药物的抑瘤效果有无 差别?
表1 不同药物作用后小白鼠肉瘤重量(g)
区组 1 2 3 4 5
n
A药 0.82 0.73 0.43 0.41 0.68 3.07 0.614 2.0207
k-1
SS组间/组间
MS组间/MS组内

k
( xij )
j 1
2
组内(误差) 变异
i 1
ni N SS总-SS组间

( xij ) 2
i 1 j 1
k
ni
n-k
SS组内/组内
四、方差分析的类型和应用条件
1. 类型

完全随机设计资料的单因素方差分析(one-way ANOVA); 随机区组设计资料的两因素方差分析(two-way ANOVA);
先计算离差:
Z ij X ij X i
k
然后计算F值:
F
( N k ) ni ( zi z ) 2 (k 1) ( zij zi )
i 1 j 1 i 1 k ni 2
N ni
1 k 1
2 N k
第二节 完全随机设计资料的方差分析
一、完全随机设计资料的方差分析
2
合计
3.6 4.5 4.2 4.4 3.7 5.6 7.0 4.1 5.0 4.5 46.6 226.32 10 4.66 1.01
xij
ni
xi
si
注:观测值xij的下标i代表组,下标j代表各组观测值的序号;其它符号意义同前
表9-2 变异来源 总 组间 组内 SS 86.740 45.091 41.649
B药 0.65 0.54 0.34 0.21 0.43 2.17 0.434 1.0587
C药 0.51 0.23 0.28 0.31 0.24 1.57 0.314 0.5451
X ij
i 1
g
1.98 1.50 1.05 0.93 1.35 6.81 0.454 3.6245
X ij
j 1
( Xij )
Xi
2 X ij j 1 n
(X )
( 2 Xij )
分析步骤:
1.建立假设、确定检验水准 (1)处理组间: H0:3种抗癌药物作用后小白鼠肉瘤重量的总体均数相等 H1: 3种抗癌药物作用后小白鼠肉瘤重量的总体均数不等或 不全相等 (2)区组间: H0:5个区组的小白鼠肉瘤重量的总体均数相等 H1:5个区组的小白鼠肉瘤重量的总体均数不等或不全相等 =0.05
求资料服从正态分布,否则偏差较大;故近
年来采用更多的是Levene检验,该法不依赖
于总体分布的具体形式。
Bartlett方差齐性检验
H0:各总体方差齐同,H1:各总体方差不齐。

2
1 1 1 1 3( k 1) ni 1 N k
( ni 1) ln( s c / s i )
Σ xi
2 Σ xi
三菱莪术液抑癌实验的小鼠瘤重(g)
处理因素(k个水平) 2组 3.0 2.3 2.4 1.1 4.0 3.7 2.7 1.9 2.6 1.3 25 70.3 10 2.5 0.93 3组 0.4 1.7 2.3 4.5 3.6 1.3 3.2 3.0 2.1 2.5 24.6 73.14 10 2.46 1.18 4组 3.3 1.2 0.0 2.7 3.0 3.2 0.6 1.4 1.2 2.1 18.7 47.03 10 1.87 1.16 114.9 416.79 40 2.87 —— (Σ x) (Σ x ) (N) (x ) ——
完全随机设计:将全体观察对象按随机化方法分配 到各个处理组中,每个观察对象接受每种处理的 机会均等。
例9.2:假设检验的步骤:
1.建立假设、确定检验水准: H0:1=2=3 =4,即4组小鼠瘤重的总体均数相等 H1:1、2、3 、4不等或不全相等,即4组小鼠瘤重的
总体均数不等或不全相等
40个数据各不相同— —总变异
同组内数据各不相 同——组内变异
xi
注:观测值 xij的下标 i代表组,下标 j代表各组观测值的序号;其它符号意义同前
各组样本均数也各不相 同——组间变异
三、方差分析基本思想(以完全随机设计为例)

把总的离均差平方和(即总变异)分解为至少两个部分,其 自由度也分解为相应几个部分,其中至少有一部分表示 (处理)因素的效应,有一部分表示抽样误差的影响,然后 比较两者的均方,计算F值。 若F值远大于1,可认为各组均数间差别有统计学意义,处 理有效应,若F值接近甚至小于1,表示差别无统计学意义, 处理组间效应相同(差异仅仅由抽样原因所致)。
随机区组设计目的:
设计中将已知对结果有干扰的非处理因素(如性
别、体重、年龄、职业、病情、病程等)的作用加以
控制,使得实验对象的变异从误差中消去,缩小实验
误差。
分析方法:两因素方差分析
SS总= SS处理+SS区组+SS误差
例2
某研究者采用随机区组设计进行实验,
比较三种抗癌药物对小白鼠肉瘤抑瘤效果,
=0.05 2.选定检验方法和计算检验统计量: F= MS组间/MS组内
完全随机设计方差分析表
变异来源 SS
SS总 xij x
k ni 2
MS
F
P
总变异
k ni
i 1 j 1
2 xij i 1 j 1
k
( xij ) 2
i 1 j 1
k
ni
结论:按 0.05 水准,拒绝H0 ,认为三种不同药物 作用后小白鼠肉瘤重量的总体均数不全相等, 即不同药物的抑瘤效果有差别。
【例 9-3】 在药物敏感实验中比较 3 种弥散法(纸片法、挖洞法、钢圈法)的效果,各 法均用 3 种药物,以包含金黄色葡萄球菌液的平板上的抑菌环直径为指标,数据如表 7-2 所 示,试作方差分析。 表 7-2 3 种弥散法的药物敏感实验结果
相关文档
最新文档