第二章静定结构的受力分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d ( M F N F Q )ds
如果结构由多个杆件组成,则整个结构变形引起某点的位移为:
( M F N F Q )ds
若结构的支座还有位移,则总的位移为:
( M F N F Q )d s F RKc k
FRK cK
若△为正值,表示位移的实际方向与所设单位荷载方向一致。 虚设K处的反力与位移方向一致。
例1:求 Cx ?
B C
解:构造虚设力状态
B C P=1
c3
A
l
A
YC 1
XA 1
c2
l
YA 1
c1
Cx (1 C1 1 C2 1 C3 ) (C1 C2 C3 )
§5-3 荷载作用下的位移计算
研究对象:静定结构、线性弹性材料。
1 Q FQ 0
i
B
A
Q
i
B A
Q FQ
位移状态
Q
1
力状态
FQ
A
当截面B同时产生三种相对位移时,在i-i方向所产
生的位移,即是三者的叠加,有:
M Q N M FQ F N
d
ds
i
ds
ds d
ds
d
d
结 构 力 学
structural Mechanics
第 5 章
虚功原理与结构 位移计算 (12学时)
第 5章
§5-1 §5-2 §5-3 §5-4 §5-5 §5-6
虚功原理与结构位移计算
应用虚力原理求刚体体系的位移 结构位移计算的一般公式 荷载作用下的位移计算 荷载作用下的位移计算举例 图乘法 温度作用时的位移计算
( M F N F Q )d s F RKc k
适用范围与特点: 1) 适于小变形,可用叠加原理。 2) 形式上是虚功方程,实质是几何方程。 关于公式普遍性的讨论: (1)变形类型:轴向变形、剪切变形、弯曲变形。 (2)变形原因:荷载与非荷载。 (3)结构类型:各种杆件结构。 (4)材料种类:各种变形固体材料。
支座移动时静定结构的位移计算
已知A处的位移,求: (1)C点的竖向位移ΔC;(2)杆CD的转角β。
c
2l 3
D
cA
C A B
真实 位移
l
l
3
11 c +(-
1 D A B C
பைடு நூலகம்4 3
虚设 力系
1 cA) 0 3 1 c cA 3
1 3
A B
1 C D
2 1 +(
§5-7 用求解器进行位移计算(略) §5-8 变形体的虚功原理 §5-9 互等定理 §5-10 小结 §5-11 思考与讨论
§5-1 应用虚力原理求刚体体系的位移
结构位移计算概述 1.计算位移的目的: (1)验算结构的刚度; 在工程上:
吊车梁允许的挠度< 1/600 跨度; 高层建筑的最大位移< 1/1000 高度。 最大层间位移< 1/800 层高。 (2)分析超静定结构,动力计算和稳定计算。 (3)施工要求 为什么要计算 位移?
2、位移产生的主要原因 (1)荷载作用 (2)温度变化和材料胀缩 (3)支座沉降和制造误差 3、位移与变形 由于上述三种因素均可使结构产 生位移,但其内部不一定有变形。
刚体体系位移,无应变
变形体体系位移,有应变
A
P
线位移
A
A
Ax
Ay
位移
角位移
A A点线位移 Ax A点水平位移 Ay A点竖向位移 A截面转角
d
i
R
d
d
若B点附近的微段ds有局部变形
d ds
ds d ds R
d ds
二、结构位移计算的一般公式
若B点附近的微段ds趋近于零,则变形体位移问题 转化为刚体位移问题
i
i
d (M F N FQ )ds
一根杆件各个微段变形引起的位移总和:
11m
6 8m 48m
8 / 11 8 / 11 8 / 11 8 / 11
A
由此引起的A点竖向位移.
1
8 A ( ) 8 4 11 23.27mm()
§5-2 结构位移计算的一般公式 (变形体系的位移计算)
一、局部变形时静定结构的位移计算 i B A 例1、悬臂梁在截面B处由于
例 2:已知 l=12 m , h=8 m , Bx 0.04 m
By 0.06 m , 求 A ?
解:构造虚设力状态
1 1 A Ri ci ( By Bx ) 0.0075 rad l 2h
( )
制造误差引起的位移计算 每个上弦杆加长8mm,求
本章计算方法
单位荷载法
(Dummy-Unit Load Method)
刚体体系位移的求解
虚力原理—虚设力系求位移
图 (a) 中的静定梁,支座 A 向上移动已知距离 c1 ,拟 求B点的竖向位移△。 虚设力系如图(b)
FR1 b a
虚功方程为
1 c1FR1 0
求得
b c1 a
c
c
t1
t2 t1
以上都是绝对位移
AV
BV
以上都是相对位移
本章位移计算的假定
(1) 线弹性 (Linear Elastic),
(2) 小变形 (Small Deformation), (3)理想连接(Ideal Constraint)。
叠加原理适用(principle of superposition)
虚设 力系
1 cA) 0 2l
1 cA 2l
1 2 l
2 l
3 2 l
设支座K有给定位移cK,静定结构的位移计算步骤为:
(1)沿拟求位移△方向虚设相应的单位荷载,求出相应的 FRK (2)令虚设力系在实际位移上作虚功,写出虚功方程
1 FRK cK 0
(3)由虚功方程解出拟求位移
m
a
B
a
i
A
m
a
1
某种原因产生相对转角,试 求A点在i-i方向的位移Δm
位移状态
a
力状态
M
B
虚功方程:
A
1 m M 0
m M
a
a
M 1 sin a
例2、悬臂梁在截面B处由于某种原因产生 相对剪位移,试求A点在i-i方向的位移ΔQ。
FQ 1 sin