港澳台联考数学试卷
港澳台华侨生联考试题:数学基础练习30套:第28套:和差公式二倍角公式(含答案)
B. cos
2
7. sin 27 cos 63 cos 27 sin 63 ( A. 1 B. 1 C.
) D.
1 13 , cos( ) ,且 0 , ( 7 14 2 5 A. B. C. D. 4 6 3 12 sin cos 1 9.若 ,则 tan 2 ( ) sin cos 2 3 3 3 3 A. B. C. D. 4 4 5 5 3 10. sin cos 则 sin 2 ( ) 3 2 2 2 2 A. B. C. D. 3 9 9 3
北京博飞华侨港澳台学校
3
网址:
北京博飞--华侨港澳台培训学校
33.若 , , sin 2 = 8 4 2 A.
3 7
,则 cos = ( C. )
)
3 4
B.
34.已知 sin A.
cos
9 25
12 25 3 35.已知 为第二象限角, sin cos ,则 cos 2 ( ) 3 5 5 5 5 A. B. C. D. 3 9 3 9 3 2 36.已知 tan , tan , 则 tan 的值为 6 7 6 5 29 1 1 A. B. C. D. 1 41 29 41 24 3 37.已知 sin 2 ,且 ( ) , ) ,则 sin ( 25 4 3 4 3 4 A. B. C. D. 5 5 5 5
48.已知 tan =2 ,那么 sin 2 的值是( ) (D) (
4 (A) 5
4 3 (B) (C) 5 5 1 2 49.已知 sin cos , 则 cos = 3 4
2024年华侨港澳台联考高考数学试卷与答案
2024年华侨港澳台联考高考数学试卷一、单选题(本大题共12小题,共60.0分.在每小题列出的选项中,选出符合题目的一项)1.设集合{}2{1,2,3,4,5},|A B x x A ==∈,则()A B ⋂=A.{1} B.{1,2}C.{1,4}D.φ2.已知21z ii+=+,则()z z +=A.12B.1C.32D.33.已知向量(2,1),(2,1)a x x x x b =++=--.若//a b ,则()A.22x = B.||2x = C.23x = D.||3x =4.不等式21230x x --<的解集是()A.1(1,0)0,3⎛⎫-⋃ ⎪⎝⎭B.(3,0)(0,1)-⋃C.1(,1),3⎛⎫-∞-⋃+∞ ⎪⎝⎭D.(,3)(1,)-∞-⋃+∞5.以(1,0)为焦点,y 轴为准线的抛物线的方程是()A.212y x =-B.212y x =+C.221y x =- D.221y x =+6.底面积为2π,侧面积为6π的圆锥的体积是()A.8πB.83π C.2πD.43π7.设1x 和2x 是函数32()21f x x ax x =+++的两个极值点.若212x x -=,则2(a =)A.0B.1C.2D.38.已知函数()sin(2)f x x ϕ=+.若1332f f ππ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,则(ϕ=)A.2()2k k Z ππ+∈ B.2()3k k Z ππ+∈C.2()3k k Z ππ-∈ D.2()2k k Z ππ-∈9.函数12(0)xy x =>的反函数是()A.21(1)log y x x=> B.21log (1)y x x=>C.21(01)log y x x=<< D.21log (01)y x x=<<11.若双曲线C :22221(0,0)x y a b a b-=>>的一条㨆直线与直线21y x =+垂直,則C 的名心率为()A.5C.54D.5212.在1,2,3,4,5,6,7,8,9中任取3个不同的数,则这3个数的和能被3整除的概概是()A.928B.13C.514D.25二、填空题(本大题共6小题,共30.0分)13.曲线ln y x x =⋅在点(1,0)处的切线的方程为.14.已知O 为坐标原点,点P 在圆22(1)9x y ++=上,则||OP 的最小值为.15.若tan 3θ=,则tan 2θ=.16.设函数()(0xf x a a =>,且1)a ≠是增函数,若(1)(2)(2)(2f f f f ----,则a =.17.在正三棱柱111ABC A B C -中,121,2AB AA ==,则异面直线1AB 与1BC 所成角的大小为.18.设()f x 是定义域为R 的奇函数,()g x 是定义域为R 的偶函数.若()()2xf xg x +=,则(2)g =.三、解答题(本大题共4小题,共60.0分。
2024年华侨、港澳、台联考高考数学试卷
2024年华侨、港澳、台联考高考数学试卷A.{3}B.{0,1}C.{-2,-1,2}D.{-2,-1,0,1,2,3}A.1-2i B.1+2i C.-1-2i D.-1+2i A.1B.C.2D.-2(2024•香港)已知集合A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B=( )答案:C解析:结合交集的定义,即可求解.解答:解:A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B={-2,-1,2}.故选:C.(2024•香港)计算=( )3+4i 1-2i答案:D解析:直接利用复数代数形式的乘除运算化简得答案.解答:解:===-1+2i .故选:D.3+4i 1-2i (3+4i )(1+2i )(1-2i )(1+2i )-5+10i 5(2024•香港)函数y=sinx+cosx的最大值是( )√3√6答案:C 解析:利用两角和的正弦公式即可化为asinx+bcosx=sin(x+θ),进而利用正弦函数的单调性、最值即可得出.√+a 2b 2解答:解:∵y=sinx+cosx=2(sinx+cosx)=2sin(x+).∵-1≤sin(x+)≤1,√312√32π3π3A.y=±3x B.y=±2x C.y =±x D.y =±x A.“x=1,y=-2”是“a ∥b ”的必要条件B.“x=1,y=-2”是“a ∥b ”的充分条件C.“x=1,y=-2”是“a ⊥b ”的必要条件D.“x=1,y=-2”是“a ⊥b ”的充分条件∴当sin(x+)=1时,函数y取得最大值2.故选:C.π3(2024•香港)已知双曲线C:-=1(a >0,b >0)的离心率为,则双曲线C的渐近线方程为( )x 2a 2y 2b 2√101312答案:A 解析:利用双曲线的离心率,得到a,b关系式,然后求解双曲线的渐近线方程.解答:解:双曲线C:-=1(a >0,b >0)的离心率为,可得=,即=10,可得=3.双曲线C的渐近线方程为:y=±3x.故选:A.x 2a 2y 2b 2√10c a √10+a 2b 2a 2b a (2024•香港)已知平面向量a =(1,1),b =(x+1,y),则( )→→→→→→→→→→答案:D解析:根据已知条件,结合向量平行、垂直的性质,即可求解.解答:解:对于A,若a ∥b ,则1•y=1•(x+1),即y=x+1,充分性不成立,错误,对于B,当x=1,y=-2时,则b =(2,-2),a ∥b 不成立,错误,→→→→→A.f(x)是奇函数,不是增函数B.f(x)是增函数,不是奇函数C.f(x)既是奇函数,也是增函数D.f(x)既不是奇函数,也不是增函数A.1B.C.-D.-1对于C,若a ⊥b ,则x+1+y=0,必要性不成立,故错误,对于D,当x=1,y=-2时,则b =(2,-2),a •b =2-2=0,a ⊥b ,充分性成立,故D正确.故选:D.→→→→→→→(2024•香港)已知函数f (x )=ln (+x ),则( )√+1x 2答案:C解析:结合基本初等函数及复合函数的单调性及函数奇偶性即可判断.解答:解:函数的定义域为R,f(-x)+f(x)=ln(-x)+ln(+x)=ln(1+x 2-x 2)=0,所以f(-x)=-f(x),所以f(x)为奇函数,B,D错误;当x≥0时,t=+x单调递增,根据奇函数的单调性可知,t=+x在R上单调递增,根据复合函数单调性可知,f(x)为增函数,A错误,C正确.故选:C.√1+x 2√1+x 2√1+x 2√1+x 2(2024•香港)若(a+x)4的展开式中x的系数是-,则a=( )121212答案:C解析:根据二项式定理,建立方程,即可求解.A.2x-3y+2=0B.3x+2y+2=0C.3x+2y-2=0D.2x-3y-2=0A.4B.2C.1D.解答:解:∵(a+x)4的展开式中x的系数是•=-,∴a=-.故选:C.C 41a 31212(2024•香港)圆x 2+(y+2)2=4与圆(x+2)2+(y-1)2=9交于A,B两点,则直线AB的方程为( )答案:D 解析:将两圆的方程相减,即可求解.解答:解:圆x 2+(y+2)2=4,即x 2+y 2+4y=0①,圆(x+2)2+(y-1)2=9,即x 2+4x+y 2-2y=4②,②-①可得,化简整理可得,2x-3y-2=0,故直线AB的方程为2x-3y-2=0.故选:D.(2024•香港)已知x =和x =都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,则ω的最小值是( )π4π212答案:A 解析:根据x=和x=都是函数f(x)的极值点,得出函数的周期T≤2×(-),由此求解即可.π4π2π2π4解答:解:因为x=和x=都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,所以周期为T≤2×(-)=,所以≤,所以ω≥4,即ω的最小值是4.故选:A.π4π2π2π4π22πωπ2A.2B.1C.D.A.2B.(2024•香港)抛物线C:y 2=2px(p>0)的焦点为F,C上的点到F的距离等于到直线x=-1的距离,则p=( )1214答案:A 解析:求得抛物线的焦点和准线方程,由抛物线的定义和点到直线的距离公式,解得p,可得抛物线的方程;解答:解:抛物线C:y 2=2px(p>0)的焦点F(,0),准线方程为x=-,C上的点到F的距离等于到直线x=-1的距离,可得=1,解得p=2,故选:A.p 2p 2p 2(2024•香港)正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,则该正四棱柱的体积是( )12√2√223答案:B解析:根据题意可正四棱柱的体对角线即为其外接球的直径2R=2,再建立方程求出正四棱柱的,最后代入体积公式,即可求解.解答:解:∵正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,∴正四棱柱的底面边长为1,设正四棱柱的高为h,则正四棱柱的体对角线即为其外接球的直径2R=2,∴(2R)2=12+12+h 2,即4=2+h 2,∴h=,∴该正四棱柱的体积为1×1×=.故选:B.12√2√2√2(2024•香港)已知偶函数f(x)的图像关于直线x=1对称,当0≤x≤1时,f(x)=x 2+2x,则当2≤x≤3时,f(x)=( )A.x 2+2xB.x 2-2x C.-x 2+2x D.-x 2-2x答案:B 解析:根据题意,分析可得f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,结合函数的解析式分析可得答案.解答:解:根据题意,f(x)为偶函数,则f(-x)=f(x),又由f(x)的图像关于直线x=1对称,则f(-x)=f(2+x),则有f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,则f(x-2)=(x-2)2+2(x-2)=x 2-2x,则有f(x)=f(x-2)=x 2-2x.故选:B.(2024•香港)用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有 280个.答案:280.解析:根据排列数公式,先排个位,再排其余,即可求解.解答:解:∵1,2,…,9这9个数字中奇数共有5个,∴用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有•=280个.故答案为:280.A 51A 82(2024•香港)记等差数列{a n }的前n项和为S n ,若S 2=16,S 4=24,则a 8=-5.答案:-5.解析:根据等差数列的前n项和公式即可得.解答:解:设等差数列{a n }的首项为a 1,公差为d,由S 2=16,S 4=24,得,即,解得.所以等差数列{a n }的通项公式为a n =11-2n,a 8=11-16=-5.故答案为:-5.⎧⎨⎩2+d =164+d =24a 12×12a 14×32{2+d =162+3d =12a 1a 1{=9d =-2a 1.答案:[-2,].23解析:将不等式两边同时平方,再结合一元二次不等式的解法,即可求解.解答:解:2|x|≤|x-2|,则4x 2≤x 2-4x+4,化简整理可得,(3x-2)(x+2)≤0,解得-2≤x ≤,故所求解集为[-2,].故答案为:[-2,].232323(2024•香港)函数f(x)=e x -2x的最小值为2-2ln2.答案:见试题解答内容解析:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.利用单调性即可得出.解答:解:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.可得:函数f(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.∴x=ln2时,函数f(x)取得极小值即最小值,f(ln2)=2-2ln2.故答案为:2-2ln2.(2024•香港)已知函数f(x)的定义域为R,若f(x-1)f(x+1)=x 2+4x+3,f(1)=3,则f(9)=11.答案:11.解析:利用函数的解析式,依次能求出f(3),f(5),f(7),f(9)的值.解答:解:函数f(x)的定义域为R,f(x-1)f(x+1)=x 2+4x+3,f(1)=3,∴f(1)f(3)=4+8+3=15,∴f(3)=5,f(3)f(5)=16+16+3=35,∴f(5)=7,f(5)(7)=36+24+3=63,∴f(7)=9,f(7)f(9)=64+32+3=99,则f(9)=11.故答案为:11.(2024•香港)已知二面角α-AB-β的大小为90°,正方形ABCD在α内,等边三角形ABF在β内,则异面直线AC与BF所成角的余弦值为 .√244解析:由题意建立空间直角坐标系,设正方形的边长,求出直线BF,AC的方向向量BF ,AC 的坐标,进而求出两个向量的夹角的余弦值,进而求出异面直线所成的角的余弦值.→→解答:解:过F作FO⊥AB,在平面α过O作y轴⊥AB,因为二面角α-AB-β的大小为90°,所以FO⊥平面α,设正方形的边长为2,由题意OF=,可得F(0,0,),B(1,0,0),A(-1,0,0),C(1,2,0),则BF =(-1,0,),AC =(2,2,0),所以BF •AC =-1×2+0×2+×0=-2,|BF |==2,|AC |==2,所以cos<BF ,AC >==所以异面直线AC与BF所成角的余弦值为|cos<BF ,AC故答案为:.√3√3→√3→→→√3→√(-1++()202√3)2→√++222202√2→→BF •AC →→|BF |•|AC |→→4→→4√24(2024•香港)已知△ABC中,A =,AC=ABtanB.(1)求B;(2)求sinA+sinB+sinC.π3答案:(1);(2).π12+√3√62解析:(1)由题设及正弦定理,可得cosB=sinC,再根据诱导公式进行代换,即可求得角B;(2)根据角A,B,C的值,利用两角和的正弦公式即可求解.解答:解:(1)由AC=ABtanB,可得tanB =,由正弦定理,可得=,又B∈(0,π),sinB≠0,所以cosB=sinC,由诱导公式,可得cosB=sin(A+B)=cos[-(A +B )],所以B =-(A +B )+2kπ或B =(A +B )-+2kπ,k∈Z,又A =,所以B =+kπ,k∈Z,又B∈(0,π),故B=;(2)由(1)知,A =,B=,则C =,sin +sin =+sin (-)+sin (+)=+2sin cos2=.b csinB cosB sinB sinC π2π2π2π3π12π12ππ127π122π127π12√3πππ3π4√32π3π4222+√3√62(2024•香港)在一个工作日中,某工人至少使用甲、乙两仪器中的一个,该工人使用甲仪器的概率为0.6,使用乙仪器的概率为0.5,且不同工作日使用仪器的情况相互独立.(1)求在一个工作日中该工人既使用甲仪器也使用乙仪器的概率;(2)记X为在100个工作日中,该工人仅使用甲仪器的天数,求E(X).答案:(1)0.1;(2)50.解析:(1)利用概率的性质求解;(2)利用二项分布的期望公式求解.解答:解:(1)设事件A表示“在一个工作日中该工人既使用甲仪器也使用乙仪器”,则P(A)=0.6+0.5-1=0.1;(2)因为在一个工作日中该工人仅使用甲仪器的概率为0.6-0.1=0.5,A.{3}B.{0,1}C.{-2,-1,2}D.{-2,-1,0,1,2,3}A.1-2i B.1+2i C.-1-2i D.-1+2i A.1B.C.2D.-2则X~B(100,0.5),所以E(X)=100×0.5=50.(2024•香港)已知集合A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B=( )答案:C解析:结合交集的定义,即可求解.解答:解:A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B={-2,-1,2}.故选:C.(2024•香港)计算=( )3+4i 1-2i答案:D解析:直接利用复数代数形式的乘除运算化简得答案.解答:解:===-1+2i .故选:D.3+4i 1-2i (3+4i )(1+2i )(1-2i )(1+2i )-5+10i 5(2024•香港)函数y=sinx+cosx的最大值是( )√3√6答案:C 解析:利用两角和的正弦公式即可化为asinx+bcosx=sin(x+θ),进而利用正弦函数的单调性、最值即可得出.√+a 2b 2A.y=±3x B.y=±2x C.y =±x D.y =±x A.“x=1,y=-2”是“a ∥b ”的必要条件B.“x=1,y=-2”是“a ∥b ”的充分条件C.“x=1,y=-2”是“a ⊥b ”的必要条件D.“x=1,y=-2”是“a ⊥b ”的充分条件解答:解:∵y=sinx+cosx=2(sinx+cosx)=2sin(x+).∵-1≤sin(x+)≤1,∴当sin(x+)=1时,函数y取得最大值2.故选:C.√312√32π3π3π3(2024•香港)已知双曲线C:-=1(a >0,b >0)的离心率为,则双曲线C的渐近线方程为( )x 2a 2y 2b 2√101312答案:A 解析:利用双曲线的离心率,得到a,b关系式,然后求解双曲线的渐近线方程.解答:解:双曲线C:-=1(a >0,b >0)的离心率为,可得=,即=10,可得=3.双曲线C的渐近线方程为:y=±3x.故选:A.x 2a 2y 2b 2√10c a √10+a 2b 2a 2b a (2024•香港)已知平面向量a =(1,1),b =(x+1,y),则( )→→→→→→→→→→答案:D解析:根据已知条件,结合向量平行、垂直的性质,即可求解.A.f(x)是奇函数,不是增函数B.f(x)是增函数,不是奇函数C.f(x)既是奇函数,也是增函数D.f(x)既不是奇函数,也不是增函数A.1B.D.-1解答:解:对于A,若a ∥b ,则1•y=1•(x+1),即y=x+1,充分性不成立,错误,对于B,当x=1,y=-2时,则b =(2,-2),a ∥b 不成立,错误,对于C,若a ⊥b ,则x+1+y=0,必要性不成立,故错误,对于D,当x=1,y=-2时,则b =(2,-2),a •b =2-2=0,a ⊥b ,充分性成立,故D正确.故选:D.→→→→→→→→→→→→(2024•香港)已知函数f (x )=ln (+x ),则( )√+1x 2答案:C解析:结合基本初等函数及复合函数的单调性及函数奇偶性即可判断.解答:解:函数的定义域为R,f(-x)+f(x)=ln(-x)+ln(+x)=ln(1+x 2-x 2)=0,所以f(-x)=-f(x),所以f(x)为奇函数,B,D错误;当x≥0时,t=+x单调递增,根据奇函数的单调性可知,t=+x在R上单调递增,根据复合函数单调性可知,f(x)为增函数,A错误,C正确.故选:C.√1+x 2√1+x 2√1+x 2√1+x 2(2024•香港)若(a+x)4的展开式中x的系数是-,则a=( )1212C.-A.2x-3y+2=0B.3x+2y+2=0C.3x+2y-2=0D.2x-3y-2=0A.4B.2C.1D.12答案:C解析:根据二项式定理,建立方程,即可求解.解答:解:∵(a+x)4的展开式中x的系数是•=-,∴a=-.故选:C.C 41a 31212(2024•香港)圆x 2+(y+2)2=4与圆(x+2)2+(y-1)2=9交于A,B两点,则直线AB的方程为( )答案:D 解析:将两圆的方程相减,即可求解.解答:解:圆x 2+(y+2)2=4,即x 2+y 2+4y=0①,圆(x+2)2+(y-1)2=9,即x 2+4x+y 2-2y=4②,②-①可得,化简整理可得,2x-3y-2=0,故直线AB的方程为2x-3y-2=0.故选:D.(2024•香港)已知x =和x =都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,则ω的最小值是( )π4π212答案:A 解析:根据x=和x=都是函数f(x)的极值点,得出函数的周期T≤2×(-),由此求解即可.π4π2π2π4A.2B.1C.D.A.2B.解答:解:因为x=和x=都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,所以周期为T≤2×(-)=,所以≤,所以ω≥4,即ω的最小值是4.故选:A.π4π2π2π4π22πωπ2(2024•香港)抛物线C:y 2=2px(p>0)的焦点为F,C上的点到F的距离等于到直线x=-1的距离,则p=( )1214答案:A 解析:求得抛物线的焦点和准线方程,由抛物线的定义和点到直线的距离公式,解得p,可得抛物线的方程;解答:解:抛物线C:y 2=2px(p>0)的焦点F(,0),准线方程为x=-,C上的点到F的距离等于到直线x=-1的距离,可得=1,解得p=2,故选:A.p 2p 2p 2(2024•香港)正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,则该正四棱柱的体积是( )12√2√223答案:B解析:根据题意可正四棱柱的体对角线即为其外接球的直径2R=2,再建立方程求出正四棱柱的,最后代入体积公式,即可求解.解答:解:∵正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,∴正四棱柱的底面边长为1,设正四棱柱的高为h,则正四棱柱的体对角线即为其外接球的直径2R=2,∴(2R)2=12+12+h 2,即4=2+h 2,∴h=,12√2A.x 2+2xB.x 2-2x C.-x 2+2x D.-x 2-2x∴该正四棱柱的体积为1×1×=.故选:B.√2√2(2024•香港)已知偶函数f(x)的图像关于直线x=1对称,当0≤x≤1时,f(x)=x 2+2x,则当2≤x≤3时,f(x)=( )答案:B解析:根据题意,分析可得f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,结合函数的解析式分析可得答案.解答:解:根据题意,f(x)为偶函数,则f(-x)=f(x),又由f(x)的图像关于直线x=1对称,则f(-x)=f(2+x),则有f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,则f(x-2)=(x-2)2+2(x-2)=x 2-2x,则有f(x)=f(x-2)=x 2-2x.故选:B.(2024•香港)用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有 280个.答案:280.解析:根据排列数公式,先排个位,再排其余,即可求解.解答:解:∵1,2,…,9这9个数字中奇数共有5个,∴用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有•=280个.故答案为:280.A 51A 82(2024•香港)记等差数列{a n }的前n项和为S n ,若S 2=16,S 4=24,则a 8=-5.答案:-5.解析:根据等差数列的前n项和公式即可得.解答:解:设等差数列{a n }的首项为a 1,公差为d,由S 2=16,S 4=24,得,即,解得.所以等差数列{a n }的通项公式为a n =11-2n,a 8=11-16=-5.故答案为:-5.⎧⎨⎩2+d =164+d =24a 12×12a 14×32{2+d =162+3d =12a 1a 1{=9d =-2a 1.答案:[-2,].23解析:将不等式两边同时平方,再结合一元二次不等式的解法,即可求解.解答:解:2|x|≤|x-2|,则4x 2≤x 2-4x+4,化简整理可得,(3x-2)(x+2)≤0,解得-2≤x ≤,故所求解集为[-2,].故答案为:[-2,].232323(2024•香港)函数f(x)=e x -2x的最小值为2-2ln2.答案:见试题解答内容解析:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.利用单调性即可得出.解答:解:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.可得:函数f(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.∴x=ln2时,函数f(x)取得极小值即最小值,f(ln2)=2-2ln2.故答案为:2-2ln2.(2024•香港)已知函数f(x)的定义域为R,若f(x-1)f(x+1)=x 2+4x+3,f(1)=3,则f(9)=11.答案:11.解析:利用函数的解析式,依次能求出f(3),f(5),f(7),f(9)的值.解答:解:函数f(x)的定义域为R,f(x-1)f(x+1)=x 2+4x+3,f(1)=3,∴f(1)f(3)=4+8+3=15,∴f(3)=5,f(3)f(5)=16+16+3=35,∴f(5)=7,f(5)(7)=36+24+3=63,∴f(7)=9,f(7)f(9)=64+32+3=99,则f(9)=11.故答案为:11.(2024•香港)已知二面角α-AB-β的大小为90°,正方形ABCD在α内,等边三角形ABF在β内,则异面直线AC与BF所成角的余弦值为 .√244解析:由题意建立空间直角坐标系,设正方形的边长,求出直线BF,AC的方向向量BF ,AC 的坐标,进而求出两个向量的夹角的余弦值,进而求出异面直线所成的角的余弦值.→→解答:解:过F作FO⊥AB,在平面α过O作y轴⊥AB,因为二面角α-AB-β的大小为90°,所以FO⊥平面α,设正方形的边长为2,由题意OF=,可得F(0,0,),B(1,0,0),A(-1,0,0),C(1,2,0),则BF =(-1,0,),AC =(2,2,0),所以BF •AC =-1×2+0×2+×0=-2,|BF |==2,|AC |==2,所以cos<BF ,AC >==所以异面直线AC与BF所成角的余弦值为|cos<BF ,AC√3√3→√3→→→√3→√(-1++()202√3)2→√++222202√2→→BF •AC →→|BF |•|AC |→→4→→44(2024•香港)已知△ABC中,A =,AC=ABtanB.(1)求B;(2)求sinA+sinB+sinC.π3答案:(1);(2).π12+√3√62解析:(1)由题设及正弦定理,可得cosB=sinC,再根据诱导公式进行代换,即可求得角B;(2)根据角A,B,C的值,利用两角和的正弦公式即可求解.解答:解:(1)由AC=ABtanB,可得tanB =,由正弦定理,可得=,又B∈(0,π),sinB≠0,所以cosB=sinC,由诱导公式,可得cosB=sin(A+B)=cos[-(A +B )],所以B =-(A +B )+2kπ或B =(A +B )-+2kπ,k∈Z,又A =,所以B =+kπ,k∈Z,又B∈(0,π),故B=;(2)由(1)知,A =,B=,则C =,sin +sin =+sin (-)+sin (+)=+2sin cos2=.b csinB cosB sinB sinC π2π2π2π3π12π12ππ127π122π127π12√3πππ3π4√32π3π4222+√3√62(2024•香港)记数列{a n }的前n项和为S n ,已知a 1=4,=(-1).(1)证明:数列{}是等比数列;(2)求{a n }的通项公式.a n +14(n +1)2n -1S n -1S n 2n -1答案:(1)证明见解答;(2)a n =4n•3n-1,n∈N *.解析:(1)根据数列的和与项的转化关系,等比数列的定义,即可证明;(2)根据数列的和与项的转化关系,分类讨论,即可求解.解答:解:(1)证明:∵=(-1),∴-=(-1),∴(2n-1)S n+1-(2n-1)S n =4(n+1)S n -4(n+1),∴(2n-1)S n+1=(6n+3)S n -4(n+1),∴(2n-1)(S n+1-1)=(6n+3)S n -(6n+3),∴(2n-1)(S n+1-1)=3(2n+1)(S n -1),∴=3(),又=a 1-1=3,∴数列{}是以首项为3,公比为3的等比数列;(2)由(1)可得=,∴-1=(2n -1)×①,当n≥2时,-1=(2n -3)×②,①-②可得=(2n -1)×-(2n -3)×=4n•3n-1(n≥2),又a 1=4,也满足上式,∴a n =4n•3n-1,n∈N *.a n +14(n +1)2n -1S n S n +1S n 4(n +1)2n -1S n -1S n +12n +1-1S n 2n -1-1S 12×1-1-1S n 2n -1-1S n 2n -13n S n 3n S n -13n -1a n 3n 3n -1(2024•香港)已知椭圆C :+=1(a >b >0)的左焦点为F,点A(-a,0),B(0,b),过F的直线x-y+1=0交C于B,P两点.(1)求P的坐标;(2)若点R(-2,y 0)在直线AB上,证明:FR是∠PFA的角平分线.x 2a 2y 2b 2答案:(1)P(-,-).(2)证明详情见解答.4313解析:(1)直线方程中x-y+1=0,分别令y,x为0,解得b,c,由a 2=b 2+c 2,解得a,即可得出椭圆的方程,联立直线x-y+1=0与椭圆的方程,即可得出答案.(2)由(1)知A(-,0),B(0,1),写出直线AB的方程,进而可得Q点坐标,推出tan2∠RFA=tan∠RFA,即可得出答案.√2解答:解:(1)因为直线x-y+1=0过焦点F和点B,所以令y=0,得x=-1,即-c=-1,则c=1,令x=0,得y=1,即b=1,又a 2=b 2+c 2=2,所以椭圆的方程为+y 2=1,联立,解得x=0或x=-,所以x P =-,y P =x P +1=(-)+1=-,所以P(-,-).(2)证明:由(1)知A(-,0),B(0,1),令x=-2,得y=1-,所以R(-2,1-),tan∠RFA==-1,tan2∠RFA==因为直线x-y+1=0的斜率为1,所以tan∠RFA=1,所以tan2∠RFA=tan∠RFA,所以FR是∠PFA的角平分线.x 22{x -y +1=0+=1x 22y 2434343134313√2√2√2|1-|√2-1-(-2)√22tan ∠RFA 1-ta ∠n 2√2。
港澳台华侨生联考试题:数学基础练习30套:第5套:集合(含答案)
9.设集合 A 1,2,则满足 A B 1,2,3的集合 B 的个数是( A.1 B.3 10.下列关系中正确的个数为( C.4 ) D.8
①0∈{0},②Φ {0},③ 0,1} {(0,1)} ,④{(a,b)}={(b,a)} A.1 B.2 C.3 D.4 ) D、{1,2,3} 网址:
26.已知集合 A {1, 2} , B x Z 0 x 2 ,则 A B =(
)
A. {0}
B. {2}
C. {0,1, 2}
D. )
27.设集合 A {4,5, 6,8}, B {3,5, 7,8} ,则 A B 中元素的个数为( A.8 B. 7 C.6 D. 5
A. B. 3 C. 3,3
) .
D. 3,2,0,1,2 )
39.设全集 U R ,集合 A {x | 1 x 4} ,集合 B { x | 2 x 5} ,则 A (CU B ) ( A. x |1 x 2 B. {x | x 2} C. { x | x 5} D. x |1 x 2 ) D、 1, 2,3,5,9
)
35.已知集合 A {1,3,5, 6} ,集合 B {2,3, 4,5} ,那么 A B ( A. {3,5} B. {1, 2,3, 4,5, 6} C. {7}
D. {1, 4, 7} ) D. {2,3, 4,5} )
36.设集合 A {1,3}, 集合 B {1, 2, 4,5} ,则集合 A B ( A.{1,3,1,2,4,5} B. {1} C. {1, 2,3, 4,5}
5.已知全集 U={0,1,2}且 CU A ={2},则集合 A 的真子集共有( A.3 个 B. 4 个 C.5 个 6.下列四个集合中,是空集的为 (A) {x | x 3 3} (B) {( x, y ) | y x , x, y R} (C) { x | x 0} (D) { x | x x 1 0} 7.已知集合 A A.8
港澳台华侨生联考试题:数学基础练习30套:第7套:集合综合题(含答案)
北京博飞--华侨港澳台培训学校集合综合题1.设全集U R =,已知函数()11f x x -A ,函数()()1,10xg x x ⎛⎫=-≤≤ ⎪⎝⎭的值域为集合B .(1)求()U A B ð;(2)若{}|21C x a x a =≤≤-且B C ⊆,求实数a 的取值范围.2.已知关于x 的不等式-a x <0的解集为P ,0x 3x -2≥+的解集为Q 。
(Ⅰ)若3=a ,求集合P ;(Ⅱ)若P P Q = ,求正数a 的取值范围。
3.已知1{|39}3x A x =<<,2{log 0}B x x =>.(1)求B ⋂A 和A B ;(2)定义{A B x x A -=∈且}x B ∉,求A B -和B A -.北京博飞--华侨港澳台培训学校4.已知集合}{01032≤--=x x A ,{}121B x m x m =+≤≤-.(1)当3m =时,求集合A B ,B A ;(2)若B A ⊆,求实数m 的取值范围.5.函数22log (33)y x x =--的定义域为集合A ,[1,6)B =-,{|}C x x a =<.(1)求集合A 及A B .(2)若C A ⊆,求a 的取值范围.6.已知全集R U =,集合}2|{>=x x M ,}2log 1|{2<<=x x N ,}1|{-≤=a x x P .(1)求N ∩)(M C U ;(2)若P N ⊆,求实数a 的取值范围.7.已知集合{}{}(2)(1)0,(1)()0,.A x x x B x ax x a A B a =++≤=-+>⊆,且求的范围8.已知集合2{|60}A x x x =+-≥,2{|650}B x x x =-+<,{|12}C x m x m =-≤≤(1)求A B ,()R C A B ;(2)若B C C = ,求实数m 的取值范围.9.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+.(1)若P Q P = ,求实数a 的取值范围;(2)若φ=Q P ,求实数a 的取值范围;(3)若{}30|<≤=x x Q P ,求实数a 的值.10.已知集合222{|280},{|(23)30,}=--≤=--+-≤∈A x x x B x x m x m m m R (1)若[2,4]= A B ,求实数m 的值;(2)设全集为R ,若⊆R A C B ,求实数m 的取值范围。
2023年华侨、港澳、台联考高考数学试卷(解析版)
2023年华侨、港澳、台联考高考数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)集合A={﹣2,﹣1,0,1,2},B={2k|k∈A},则A∩B=( )A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2}【答案】D【解答】解:因为集合A={﹣2,﹣1,0,1,2},B={2k|k∈A},所以B={﹣4,﹣2,0,2,4},则A∩B={﹣2,0,2}.故选:D.2.(5分)已知(2+i)=5+5i,则|z|=( )A.B.C.5D.5【答案】B【解答】解:由(2+i)=5+5i,得====3+i,则z=3﹣i,|z|==.故选:B.3.(5分)设向量,,若,则x=( )A.5B.2C.1D.0【答案】A【解答】解:∵向量,,,∴=0,可得2(x﹣2)+(x+1)×(﹣1)=0,∴x=5.故选:A.4.(5分)不等式的解集为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,)【答案】C【解答】解:,则,解得0<x<1,故原不等式的解集为(0,1).故选:C.5.(5分)抛物线y2=2px过点,求焦点( )A.(,0)B.(,0)C.D.【答案】C【解答】解:抛物线y2=2px过点,则3=2p,解得p=,故该抛物线的焦点为().故选:C.6.(5分)长方体的对角线长为1,表面积为1,有一面为正方形,则其体积为( )A.B.C.D.【答案】B【解答】解:不妨设长方体底面为正方形,边长为a,高为b,则底面的对角线为,∵长方体的对角线长为1,表面积为1,∴,解得,∴长方体体积为.故选:B.7.(5分)已知函数f(x)=x3+ax2+x+b在x=1处取得极小值1,则b=( )A.﹣1B.0C.1D.2【解答】解:f(x)=x3+ax2+x+b,则f'(x)=3x2+2ax+1,∵函数f(x)=x3+ax2+x+b在x=1处取得极小值1,∴,解得,故f(x)=x3﹣2x2+x+1,f'(x)=3x2﹣4x+1,令f'(x)=0,解得x=或x=1,f(x)在(﹣∞,),在(1,+∞)上单调递增,在(,1)上单调递减,故f(x)在x=1处取得极小值,故b=1,符合题意.故选:C.8.(5分)已知函数,则( )A.上单调递增B.上单调递增C.上单调递减D.上单调递增【答案】A【解答】解:,令,k∈Z,解得,k∈Z,当k=0时,,故f(x)在(﹣,)上单调递增.故选:A.9.(5分)若,且x>0,则x=( )A.2B.3C.4D.5【答案】B【解答】解:∵,∴x2+2x+1=16,且x>0,解得x=3.10.(5分)S n为等差数列的前n项和,S9=81,a2=3,则a10=( )A.2B.11C.15D.19【答案】D【解答】解:设等差数列的公差为d,则:,解得,∴a10=a1+9d=1+18=19.故选:D.11.(5分)O为原点,P在圆C(x﹣2)2+(y﹣1)2=1上,OP与圆C相切,则|OP|=( )A.2B.C.D.【答案】A【解答】解:O为原点,P在圆C(x﹣2)2+(y﹣1)2=1上,OP与圆C相切,则|OP|===2.故选:A.12.(5分)在2、3、5、6中任选2个不同数字,其乘积能被3整除的概率为( )A.B.C.D.【答案】D【解答】解:在2、3、5、6中任选2个不同数字,基本事件总数n==6,其乘积能被3整除a的基本事件有5个,分别为:(2,3),(2,6),(3,5),(3,6),(5,6),则其乘积能被3整除的概率为.故选:D.二、填空题:本题共6小题,每小题5分,共30分。
港澳联考试卷真题数学最新
港澳联考试卷真题数学最新一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。
A. 0B. 4C. 6D. 82. 已知三角形ABC的内角A、B、C的度数分别为60°、45°和75°,求边AB的长度,假设边AC=2。
A. \( \sqrt{2} \)B. \( \sqrt{3} \)C. \( 2\sqrt{3} \)D. \( 3\sqrt{2} \)3. 圆的方程为\( (x-2)^2 + (y+3)^2 = 16 \),求圆心到直线\( x - y + 5 = 0 \)的距离。
A. 3B. 4C. 5D. 64. 已知\( \sin(\alpha + \beta) = \frac{3}{5} \),\( \cos(\alpha + \beta) = -\frac{4}{5} \),且\( \alpha \)在第二象限,求\( \sin(\alpha) \)的值。
A. \( \frac{3}{5} \)B. \( -\frac{3}{5} \)C. \( \frac{4}{5} \)D. \( -\frac{4}{5} \)5. 一个等差数列的首项为3,公差为2,求第10项的值。
A. 23B. 27C. 29D. 316. 已知函数\( y = \log_2(x) \),求其导数。
A. \( \frac{1}{x} \)B. \( \frac{1}{2x} \)C. \( \frac{2}{x} \)D. \( \frac{x}{2} \)7. 一个直角三角形的斜边长为5,一条直角边长为3,求另一条直角边的长度。
A. 2B. 4C. \( 2\sqrt{2} \)D. \( 4\sqrt{2} \)8. 已知\( a \)和\( b \)是方程\( x^2 - 5x + 6 = 0 \)的两个根,求\( a^2 + b^2 \)的值。
港澳台华侨生联考试题:数学基础练习30套:第18套:不等式(难)(含答案)
解不等式1.关于x 的不等式mx 2+8mx +28<0的解集为{x|-7<x<-1},则实数m 的值是()A .1B .2C .3D .42.若不等式2(a 2)x 2(a 2)x 40-+--<对一切x R ∈恒成立,则实数a 取值范围()A .2a ≤B .22a -<≤C .22a -<<D .2a ≤-3.若不等式的解集是R ,则m 的范围是()A .B .C .D .4.若不等式21x ax a -+≤有解,则a 的取值范围为()A .a <2B .a=2C .a >2D .a ∈R 5.若不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则b a -的值是()A .-10B .-14C .10D .146.若关于x 的不等式有实数解,则实数m 的取值范围是()A.(,4)(2,)-∞-+∞ B.(][),42,-∞-+∞ C.)2,4(- D.(][),24,-∞-+∞ 7.设a<-1,则关于x 的不等式01)((<--ax a x a 的解集是A.}1{ax a x x ><或B .{x|x>a}C.}1{ax a x x <>或 D.}1{ax x <8.若不等式022>++mmx x 恒成立,则实数m 的取值范围是A .m >2B .m <2C .m <0或m >2D .0<m <29.如果0)2(22<+-+k kx kx 恒成立,则实数k 的取值范围是A.01≤≤-k B.01<≤-k C.01≤<-k D.01<<-k 10.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B = ()A.(3,0)-B.()3,1-- C.(]3,1-- D.()3,3-11.不等式2104xx -<-的解集是()A .)1,2(-B .),2(+∞C .)1,2(-),2(+∞⋃D .)2,(--∞),1(+∞⋃12.不等式22>++x 的解集为A.),1()0.1(+∞- B.)1,0()1.( --∞ C.)1,0()0.1( - D.),1()1.(+∞--∞13.已知a R ∈,不等式31x x a -≥+的解集为P ,且2P -∉,则a 的取值范围是()A.3a >- B.32a -<< C.2a >或3a <- D.2a ≥或3a <-14.关于x 的不等式0axb ->的解集是(,1)-∞,则关于x 的不等式02ax bx +>-的解为()A.(,1)(2,)-∞-⋃+∞B.(1,2)- C.(1,2)D.(,1)(2,)-∞⋃+∞15.不等式12x -≥的解集为()A.[1,)-+∞ B.[1,0)- C.(,1]-∞- D.(,1](0,)-∞-+∞ 16.不等式2112x x -++>的解集为()A .2(,0)(,)3-∞+∞ B .2(,)3+∞C .2(,1)(,)3-∞-+∞ D .(,0)-∞17.不等式的解集为()A .[-4,2]B .[)2,+∞C .(],4-∞-D .(][),42,-∞-+∞ 18.不等式3529x ≤-<的解集是()A .()(),27,-∞-+∞ B .[]1,4C .[][]2,14,7- D .(][)2,14,7- 19.已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,(Ⅰ)若21=a ,求B A ⋂;(Ⅱ)若A B =∅ ,求实数a 的取值范围.20.已知关于x 的不等式1+-x a x <0的解集为P ,0x 3x -2≥+的解集为Q 。
港澳台华侨生联考试题:数学基础练习30套:第25套:三角函数练习(含答案)
4sin cos sin cos
1 ,求下列式子的值. 2
(2) sin sin 2
2
50.已知 cos
4 , 为第三象限角. 5
(1)求 sin , tan 的值; (2)求 sin(
), tan 2 的值. 4
北京博飞华侨港澳台学校
21.A 22.A 23.D 31.0 32. 2
25.A 26.D. 34.
28.A 29.B
33.
3 1 2 2
38.4
3 22 3 5
35.
36. 1
37.
3+2 2 6
39.
40.
3
43.
41.(Ⅰ) 44.(Ⅰ)
4 1 ;(Ⅱ) . 42.(1)-3(2)1 3 4
7 5 。 27
B.
A.
2 2 5
2 2 5
C.
3 2 10 3 4 5 5
D.
3 2 10
9.已知角 的终边射线与单位圆交于点 P ( , ) ,那么 tan 2 的值是 A.
4 3
B.
3 4
C.
24 7
D.
24 7
10.已知 sin A. 2
5 , 且 ( , ) ,则 tan 2 ( 5 2
. .
39.若 tan 3 ,则 sin 2 40.已知 cos
1 13 , cos( ) ,且 0 ,则 7 14 2 x x 41.已知 sin 2 cos 0. 2 2 cos 2 x (Ⅰ)求 tan x 的值;(Ⅱ)求 的值 2 cos( x) sin x 4
港澳台华侨生联考试题:数学基础练习30套:第1套:一元二次不等式1(含答案)
B. x | x 2或x 1 )
C. x |1 x 2
D. x |1 x 2
14.不等式 ( x )( x ) 0 的解集是(
1 3 或x } 2 2 1 3 C. {x | x } 2 2
A. { x | x 15.不等式 的解集为(
2
)
1 4
C. 4
D.
1 2
19.不等式 x 2 x 3 0 的解集是( A. (3,1) B. ( 1,3)
) D. ( ,3) (1, ) 网址:
C. ( ,1) (3, )
2
北京博飞华侨港澳台学校
23.不等式 3 x 2 x 1 0 的解集是( A. ,1
) C. , 1, ( )
1 3
B. 1,
1 3
D. ,
1 3
24.不等式(x—1)(2—x)≥0 的解集是 A. x x 1, 或x 2
3.A 11.A 19.B
4. B 12.D 20.B
5.C 13.C 21.A
参考答案 6. B 7.C 14.C 15.A 22.B 23.A
8.B 16.A 24.C
北京博飞华侨港澳台学校
3
网址:
北京博飞--华侨港澳台培训学校
北京博飞华侨港澳台学校
4
1 3 2 2
B. { x | x
1 3 或x } 2 2 1 3 D. { x | x } 2 2
)
A.
B.
C. 16.不等式 x ( x 2) 0 的解集为( A. {x | x 0或x 2} C. {x | 0 x 2}
港澳台华侨生联考试题:数学基础练习30套:第13套:函数综合练习(含答案)
函数综合练习 2
1.函数 f x 1 x x 1 ,若函数 g x x 2 ax 是偶函数,则 f a 2.函数 y .
log 1 (3 x 4) 1 的定义域是
2
. .
3. 已知偶函数 f ( x ) 在 0, 上单调递减,且 f ( 2) 0 .若 f ( x 1) 0 ,则 x 的取值范围是 4.函数 f ( x ) 1 e 的值域为
f x1 f x2 x x f 1 2 ; 2 2
④
f x2 f x1 x2 x1
0.
.(把所有正确结论的序号都填上)
其中正确结论的序号是
7.若函数 f ( x ) x | x a | 1( x R ) 具有奇偶性,则 a
a b ab = | a | | b | | ab |
.
17.若函数 y
2x 3 的值域是___________________. x2
18 .已知函数 f ( x ) 对于任意的 x R ,都满足 f ( x ) f ( x ) ,且对任意的 a, b ,0 ,当 a b 时,都有
30.-1 37.2 44. e
31. a 1 . 38. 4 45.4 39.1 46. 2
32. xe
33. ( ,1)
1 3
34. f x
x2 x 5
40. 3,3 , 2, . 47.3 48. (1, -2)
41. , 2
2,
x2 , x 1 24.已知函数 f x ,则 f 6 f 2 x 6, x 1 x
2023年华侨、港澳、台联考高考数学试卷含答案解析
绝密★启用前2023年华侨、港澳、台联考高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题:本题共12小题,每小题5分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.集合A={−2,−1,0,1,2},B={2k|k∈A},则A∩B=( )A. {0}B. {0,2}C. {−2,0}D. {−2,0,2}2.已知(2+i)z−=5+5i,则|z|=( )A. √ 5B. √ 10C. 5√ 2D. 5√ 53.设向量a⃗=(2,x+1),b⃗ =(x−2,−1),若a⊥b⃗,则x=( )A. 5B. 2C. 1D. 04.不等式1x >1x−1的解集为( )A. (0,+∞)B. (1,+∞)C. (0,1)D. (0,12) 5.抛物线y2=2px过点(1,√ 3),求焦点( )A. (√ 312,0) B. (√ 36,0) C. (34,0) D. (32,0)6.长方体的对角线长为1,表面积为1,有一面为正方形,则其体积为( )A. √ 2108B. √ 227C. √ 29D. √ 267.已知函数f(x)=x3+ax2+x+b在x=1处取得极小值1,则b=( )A. −1B. 0C. 1D. 28.已知函数f(x)=sin(2πx−π5),则( )A. (−320,720)上单调递增 B. (−15,310)上单调递增C. (310,45)上单调递减 D. (320,1320)上单调递增 9.若log 2(x 2+2x +1)=4,且x >0,则x =( ) A. 2B. 3C. 4D. 510.S n 为等差数列的前n 项和,S 9=81,a 2=3,则a 10=( ) A. 2B. 11C. 15D. 1911.O 为原点,P 在圆C(x −2)2+(y −1)2=1上,OP 与圆C 相切,则|OP|=( ) A. 2B. 2√ 3C. √ 13D. √ 1412.在2、3、5、6中任选2个不同数字,其乘积能被3整除的概率为( ) A. 16B. 17C. 13D. 56第II 卷(非选择题)二、填空题:本题共6小题,每小题5分,共30分。
台港澳联考试题:数学必考试题:三角函数一(含答案)
cos | sin | - 的值是 ( ) sin | cos |
C. 0 D.-2 )
42.若动直线 x a 与函数 f ( x ) sin x 和 g ( x ) cos x 的图像分别交于 M,N 两点,则 MN 的最大值为( A.1 B. 2 C. 3 D.2
43.函数 f x 2cos x ( 0 )对任意 x 都有 f A. 2 或 0 B. 2 或 2
x f x ,则 4 4
f 等于( 4
)
44.将函数 f ( x ) sin( x ) 的图象向左平移 A. 4 B.6 C. 8 D.12
个单位,若所得图象与原图象重合,则 的值不可能等于( ) 2
D.关于 x 对称 )
25.已知函数 f x = sin
3 x 3 cos x , x R ,则 f x ( 4 4
,0 对称 12 5 对称 12
B.周期为 ,且图象关于点
A.最大值为 2,且图象关于点
,0 对称 12 ,0 对称 12
C.最大值为 2,且图象关于 x
D.周期为 2 ,且图象关于点 )
26. f ( x ) cos x sin x 在下列哪个区间上是单调递减的( A.
5 , 4 4
B.
3 4
C.
3 4
17.若 sin cos tan , (0 A. (0,
) 6
B. (
, ) 6 4
) ,则 ( ) 2 C. ( , ) 4 3
2024年华侨、港澳、台联考高考数学试卷(含答案)
2024年华侨、港澳、台联考高考数学试卷一、单选题:本题共12小题,每小题5分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={−2,−1,0,1,2},B ={−2,−1,2,3},则A ∩B =( )A. {3}B. {0,l}C. {−2,−1,2}D. {−2,−1,0,1,2,3}2.计算3+4i 1−2i =( )A. 1−2iB. 1+2iC. −1−2iD. −1+2i3.函数y =sinx + 3cosx 的最大值是( )A. 1B. 6C. 2D. −24.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的离心率为10,则双曲线C 的渐近线方程为( )A. y =±3xB. y =±2xC. y =±13xD. y =±12x 5.已知平面向量a =(1,1),b =(x +1,y),则( )A. “x =1,y =−2”是“a //b ”的必要条件B. “x =1,y =−2”是“a //b ”的充分条件C. “x =1,y =−2”是“a ⊥b ”的必要条件D. “x =1,y =−2”是“a ⊥b ”的充分条件6.已知函数f(x)=ln( x 2+1+x),则( )A. f(x)是奇函数,不是增函数B. f(x)是增函数,不是奇函数C. f(x)既是奇函数,也是增函数D. f(x)既不是奇函数,也不是增函数7.若(a +x )4的展开式中x 的系数是−12,则a =( )A. 1B. 12 C. −12 D. −18.圆x 2+(y +2)2=4与圆(x +2)2+(y−1)2=9交于A ,B 两点,则直线AB 的方程为( )A. 2x−3y +2=0B. 3x +2y +2=0C. 3x +2y−2=0D. 2x−3y−2=09.已知x =π4和x =π2都是函数f(x)=sin (ωx +φ)(ω>0)的极值点,则ω的最小值是( )A. 4B. 2C. 1D. 1210.抛物线C :y 2=2px(p >0)的焦点为F ,C 上的点到F 的距离等于到直线x =−1的距离,则p =( )A. 2B. 1C. 12D. 1411.正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为12,则该正四棱柱的体积是( )A. 22B. 2C. 22D. 2312.已知偶函数f(x)的图像关于直线x=1对称,当0≤x≤1时,f(x)=x2+2x,则当2≤x≤3时,f(x)=( )A. x2+2xB. x2−2xC. −x2+2xD. −x2−2x二、填空题:本题共6小题,每小题5分,共30分。
港澳台华侨生联考试题:数学基础练习30套:第24套:三角函数性质图像(含答案)
6.将函数 y sin( 2 x ) 的图象沿 x 轴向左平移 A.
, 0) ,则 可以是( ) 12 (A) ( B) (C) (D) 6 6 12 12 8.已知 0 ,函数 f x sin x 在 ( , ) 上单调递减,则 的取值范围是( ) 2 4 1 1 3 1 5 A. (0, 2] B. (0, ] C. [ , ] D. [ , ] 2 2 4 2 4
北京博飞华侨港澳台学校
2
)
网址:
北京博飞--华侨港澳台培训学校 4 22.若函数 y 3cos(2 x ) 的图像关于点 ( ) , 0) 中心对称,则 | | 的最小值为( 3 A. B. C. D. 6 4 3 2 23.设函数 f x sin 2 x cos 2 x 则( ) 4 4 A. y f x 在 0, 内单调递增,其图象关于直线 x 对称 4 2 B. y f x 在 0, 内单调递增,其图象关于直线 x 对称 2 2 C. y f x 在 0, 内单调递减,其图象关于直线 x 对称 4 2 D. y f x 在 0, 内单调递减,其图象关于直线 x 对称 2 2 24.将函数 y sin(2 x ) 的图象向右平移 个单位,再纵坐标不变,横坐标变为原来的 2 倍,所得新图象的函 6 6
,0 ) 2
,0 ) 3
,0 ) 6
D. ( )
,0 ) 12
33.要得到一个奇函数,只需将 f ( x ) sin x 3 cos x 的图象( A.向右平移
个单位 B.向右平移 个单位 C.向左平移 个单位 D.向左平移 个单位 6 3 6 3 x 34.将 y 2 cos( ) 图像按向量 a ( ,2) 平移,则平移后所得函数的周期及图象的一个对称中心分别为 3 6 4
港澳台学生联招试卷:数学:数列练习汇总(含答案)
an (an an 1 ) (an 1 an 2 ) ... (a 2 a1 ) a1 2n 1 2n 2 ... 2 1 2n 1( n N * ).
4.
已知二次函数 y f ( x ) 的图像经过坐标原点,其导函数为 f ( x ) 6 x 2 ,数列 {an } 的前 n 项和为 S n ,点
- -
4n, n=1,2,3, …, 因而 an=4n-2n, n=1,2,3, …, (Ⅱ)将 an=4n-2n 代入①得 Sn= = 2 ×(2n+1-1)(2n-1) 3
3
4 1 2 1 ×(4n-2n)- ×2n+1 + = ×(2n+1-1)(2n+1-2) 3 3 3 3
北京博飞华侨港澳台学校
2n1 n 1
lg(1 a1) 2n 1 lg 3 lg 32
解:(Ⅰ)设这二次函数 f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于 f`(x)=6x-2,得 a=3 , b=-2, 所以 f(x)=3x2-2x.
又因为点 ( n, S n )( n N ) 均在函数 y f ( x ) 的图像上,所以 S n =3n2-2n. 当 n≥2 时,an=Sn-Sn-1=(3n2-2n)- ( 3 n 1) 2(n 1) =6n-5. 当 n=1 时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ( n N ) (Ⅱ)由(Ⅰ)得知 bn
2. 已知数列 an 满足 a1 1, a2 3, an 2 3an 1 2an ( n N * ). (I)证明:数列 an 1 an 是等比数列; (I)证明: an 2 3an 1 2an , (II)求数列 an 的通项公式;
港澳台华侨生联考试题:数学基础练习30套:第30套:数学练习(含答案)
3.已知集合 A ( x, y ) x 2 y 2 1 , B ( x, y ) y x ,则 A B 的子集个数为(
)
A.2 B. 4 C.6 D. 8 4.已知集合 A={m|m>1},集合 B={0,1,2,3,4},且满足 B C=B,A C={2,3},则符合条件的集合 C 的个数有 ( A.3 个 5.定义 A B A. 6 ) B.4 个 C.6 个 D.8 个 )
2
C. 1, 2
D. 4, 2 )
10.已知函数 f ( x ) ax ax 4(0 a 2), 若 x1 x 2 , x1 x 2 1 a 则( A. f ( x1 ) f ( x 2 ) C. f ( x1 ) f ( x 2 ) B. f ( x1 ) f ( x 2 ) D. f ( x1 ) 与 f ( x 2 ) 的大小不能确定
北京博飞--华侨港澳台培训学校
12.函数 y (A) 1,3 13.函数 f ( x )
sin x cos x tan x 的值域为 sin x cos x tan x
(B) 1,3 (C) 1,3 的定义域为( B. ( 2,1) ) C. ( , 1) (2, ) D. (1, 2) ( D) 1,3
11.定义在 R 上的函数 f ( x ) 满足 f ( x y ) f ( x ) f ( y ) 2 xy ( x,y R ), f (1) 2 ,则 f ( 3) 等于( A.2 B.3 C.6 D.9
1
)
北京博飞华侨港澳台学校
网址:
C. [0, 2]
D. [ 2, 2] ) (D) ( 1, 0) (0,1]
港澳台华侨生联考试题:数学基础练习30套:第8套:集合(难)(含答案)
(D) a≤0
18.已知集合 A x 1 x 0 , B x 2 1 ,则 A I B A. B. x 0 x 1
1 2
C. x x 0
1 2
D. x x 1 )
19.已知集合 A [ 1,1] , B {x | ( x 3)(2 x 1) 0} ,则 A B ( A. [ 3, ]
10.已知集合 M x log 2 ( x 1) 2 , N x a x 6 A. 4 B. 5 C. 6 D. 7
,且 M N 2, b ,则 a b
11.已知集合 M 范围是( A. ( ,1) )
x, y y 2 , N x, y y a ,若 M N ,则实数 a 的取值
2
D. ( , 1) (3, ) 网址:
北京博飞华侨港澳台学校
北京博飞--华侨港澳台培训学校
25.若集合 A x Z | 2 2 x 2 8 , B x R | x 2 2 x 0 ,则 A 所含的元素 (C R B) 个数为( A.0 ) B.1 C.2 D. 3
( D)
1 ) 2 x 2 }, B ={ x | lg x 0 },则 A ∪ B =( 2 A.{ x | x 1 } B.{ x | 1 x 1 } C. D.{ x | 1 x 1 或 x 1 } 1 3.设全集 U=R,集合 A x || x | 2, B {x | 0} ,则 (CU A) B ( x 1
北京博飞--华侨港澳台培训学校
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年港澳台联考数学试卷
1、已知全集{}{}{}1,2,3,4,5,6,1,2,6,2,4,5,U A B ===则()U C A B =()
A 、{}4,5
B 、{}1,2,3,4,5,6
C 、{}2,4,5
D 、{}3,4,5
2、要得到cos ,y x =则要将sin y x =()
A 、向左平移π个单位
B 、向右平移π个单位
C 、向左平移2π个单位
D 、向右平移2
π个单位
3、设1,2z =-+则2z z +=() A 、1-B 、0C 、1D 、2
4、若函数()21f x ax =+图像上点()()1,1f 处的切线平行于直线21,y x =+则a =()
A 、1-
B 、0
C 、14
D 、1 5、已知α为第二象限的角,且3tan ,4
α=-则sin cos αα+=() A 、75-B 、34-C 、15-D 、15
6、已知0,a b +>则()
A 、12()2a b <
B 、12()2
a b >C 、22a b <D 、22a b > 7、甲、乙、丙、丁、戊站成一排,甲不在两端的概率()
A 、45
B 、35
C 、25
D 、15
8、函数2()ln(32)f x x x =-+的递增区间是()
A 、(),1-∞
B 、3(1,)2
C 、3(,)2
+∞D 、()2,+∞ 9、已知椭圆22221x y a b +=过点3(4,)5-和4(3,),5
-则椭圆离心率e =()
A B 、15D 、25
10、过抛物线22y x =的焦点且与x 轴垂直的直线与抛物线交于,M N 两点,O 为坐标原点,
则OM ON ⋅=()
A 、34
B 、14
C 、14-
D 、34
- 11、若四面体棱长都相等,则相邻两侧面所成的二面角的余弦值为() A 、
14B 、13C 、12D 、23 12、已知等比数列{}n a 的前n 项和为48,=1,=3,n S S S 则9101112a a a a +++=()
A 、8
B 、6
C 、4
D 、2
13、坐标原点关于直线60x y --=的对称点的坐标为____________
14、已知三棱锥O ABC -的体积为1111,,,A B C 分别为,,OA OB OC 的中点,则三棱锥111
O A B C -的体
积为__________
15、多项式()()34
11x x +++中2x 的系数为____________(用数字填写答案)
16、过点()2,3,1-且与平面350x y z -+-=和230x y z +-=都垂直的平面方程为
___________
17、关于x 的多项式321x x ax +++被2x +除的余式和被2x -除的余式相等,则a =
___________.
18、长方体1111ABCD A B C D -中14,8,AB AD AA ===且,,E F G 为111,,AB A B DD 的中点,H 为
11A D 上 一点,则11,A H =求异面直线FH 与EG 所成角的余弦值____________.
19、在ABC ∆中,角,,A B C 对应边,,,a b c 外接圆半径为1,已知()()222sin sin sin A C a b B -=-
(1)证明222:;a b c ab +-=(2)求角C 和边c 的值。
20、已知数列{}n a 的前n
项和为()111,0,2n n n n n S a a a S S ++=>⋅+=
(1)求;n S (2)求12231
111:.n n S S S S S S +++++++. 21、双曲线22
121,,124
x y F F -=为其左右焦点,C 是以2F 为圆心且过原点的圆 (1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足1
2,FM MP =求M 的轨迹方程。
22、已知()12,,00,x x R f ∈≠且()()()()12121222f x f x f x x f x x +=+⋅-
(1)求()0f 的值;(2)求证():f x 为偶函数;(3)若()0,f π=求证():f x 为周期函数。