数列通项公式方法总结归纳
求数列通项公式方法大全
求数列通项公式的常用方法种类 1、 S n f (a n )解法:利用 a nS 1 Sn 1(n 1) 与 a n S nSn 1f (a n )f (a n 1) 消去 S n (n2) 或与S n( n 2)S n f (S n S n 1 ) (n2) 消去 a n 进行求解。
例 1 已知无量数列 a n 的前 n 项和为 S n ,而且 a n S n 1(n N * ) ,求 a n 的通项公式?nQ S n 1 a n , a n 1S n 1 S n a n a n 1 , a n 11a n ,又 a 11, a n1 .222变式 1. 已知数列 a n 中, a 11,前 n 项和 S n 与 a n 的关系是 S nn(2n 1)a n ,求 a n3变式 2. 已知数列 { a } 的前 n 项和为 S ,且知足 2S2ann 3 (nN *) .nnn求数列 { a n } 的通项公式变式 3. 已知数列 { a n } 的前 n 项和 S n (n 1)b n ,此中 {b n } 是首项为 1,公差为 2 的等差数列 . 求数列 {a n } 的通项公式;变式 4. 数列 a n 的前 n 项和为 S n , a 1 1, a n 12S n (n N * ) .求数列 a n 的通项 a n变式 5. 已知数列 { a } 的前 n 项和为 S ,且知足 2S2an n3 (n N * ) .nn n求数列 { a n } 的通项公式;变式 6. 已知在正整数数列 { a n } 中,前 n 项和 S n 知足 S n1 (a n2)281(1)求证: { a n } 是等差数列( 2)若 b n 2 a n30 ,求{ b n }的前 n 项和的最小值种类 2、an 1ka nb型(此中 k 、 b 为常数, kb0 , k1 )解:设 a n 1m k(a nm) ∴ a n 1 ka n km mb比较系数:kmmm1b ∴k{ a nb }a 1k b∴k 1 是等比数列,公比为 k,首项为1∴ ank b1 (a 1 k b1) k n 1∴ a n(a 1b ) k n 1 bk 1k1例 1 已知数列 a n 中, a 1 1, a n 2a n 1 1(n 2) , 求 a n 的通 公式 . 【分析】 : 利用 ( a nx) 2( a n1x) , a n2a n 1 x , 求得 x 1 ,a n 1 2( a n 1 1) ,a n 1 是首 a 1 1 2,公比 2的等比数列 , 即 a n 1 2 ? 2n 1 , a n1 2n ,a n2n1式 1. 已知数 { a n } 的 推关系 a n 12a n4 ,且 a 1 1 求通 a n3型 3、an 1a nf ( n)型,( f (n) 可求前 n 和),利用 a na 1 (a 2 a 1 ) (a na n 1) 求通 公式的方法称 累加法。
数列求通项公式方法大全
数列求通项公式方法大全1.等差数列求通项公式等差数列是指数列中相邻两项之间的差值相同的数列。
设等差数列的首项为a1,公差为d,则其通项公式为an=a1+(n-1)d。
其中,n为该数列的第n项。
2.等比数列求通项公式等比数列是指数列中相邻两项之间的比值相同的数列。
设等比数列的首项为a1,公比为q,则其通项公式为an=a1*q^(n-1)。
其中,n为该数列的第n项。
3.斐波那契数列求通项公式斐波那契数列是指数列中每一项都是前两项之和的数列。
设斐波那契数列的首项为a1,第二项为a2,则其通项公式为an=a1*f1+n*f2,其中,f1和f2分别为斐波那契数列的第一项和第二项。
4.调和数列求通项公式调和数列是指数列中每一项都是它前一项加上一个固定常数的倒数。
设调和数列的首项为a1,差值为d,则其通项公式为an=1/(a1+(n-1)d)。
5.等差几何数列求通项公式等差几何数列是指数列中相邻两项之间既有等差关系又有等比关系的数列。
设等差几何数列的首项为a1,公差为d,公比为q,则其通项公式为an=a1*q^(n-1)+d*(q^(n-1)-1)/(q-1)。
6.垂直数列求通项公式垂直数列是指数列中每一项之间的垂直差别相等,且相邻两项之间的垂直和恒定的数列。
设垂直数列的首项为a1,公差为d,垂直和为S,则其通项公式为an=(2a1+(n-1)d)*S/(2+S(n-1))。
7.几何平均数列求通项公式几何平均数列是指数列中每一项为前一项与下一项的几何平均数的数列。
设几何平均数列的首项为a1,公比为q,则其通项公式为an=a1*q^((n-1)/2)。
8.调和平均数列求通项公式调和平均数列是指数列中每一项为前一项与下一项的调和平均数的数列。
设调和平均数列的首项为a1,公差为d,则其通项公式为an=2/(1/a1+(n-1)d)。
9.阿贝尔数列求通项公式阿贝尔数列是指数列中,对于任意正整数k,从第k项开始,其连续k项的和为常数的数列。
(完整版)求数列通项公式常用的七种方法
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列通项公式常用的八种方法
求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。
求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
数列求通项公式方法总结
数列求通项公式方法总结数列是数学中的一种常见概念,它在很多应用领域中发挥着重要作用。
数列的通项公式是指能够通过一个公式来表示数列的每一项的方法。
在数学中,求解数列的通项公式是一种重要的技巧和思维训练。
本文将总结一些常见的数列求通项公式的方法。
方法一:递推法递推法是数列求解的一种常见方法。
它基于数列中每一项与前一项之间的关系,通过逐项递推来找到通项公式。
例如,考虑一个等差数列 2,5,8,11,14......,我们可以observe 最终一项与前一项之间的关系,即 +3。
因此,我们可以推断出该数列的通项公式为 2+3(n-1),其中 n 为项数。
通过递推法,我们可以求解出许多常见的数列。
方法二:代数法代数法是一种通过代数方程来表示数列通项的方法。
对于一些特殊的数列,我们可以通过数学运算和等式推导来找到通项公式。
例如,考虑一个等比数列 2,4,8,16,32......,我们可以发现每一项与前一项之间的关系都是乘以2。
因此,我们可以写出等式an = a(n-1) * 2,其中 a(n-1) 表示前一项。
通过解这个等式,我们可以得到通项公式 an = 2^(n-1)。
方法三:配方法配方法是一种通过把数列分解成两个已知数列的和或差的方法,从而找到通项公式的方法。
这种方法常用于一些复杂的数列。
例如,考虑一个斐波那契数列 1,1,2,3,5,8......,我们可以发现每一项都是前两项之和。
通过设定两个已知数列 a(n) 和b(n),满足 a(1) = a(2) = 1,b(1) = 2,b(2) = 3,并通过递推求解出 a(n) = a(n-1) + a(n-2) 和 b(n) = b(n-1) + b(n-2)。
因此,我们可以得到数列通项公式 F(n) = a(n) + b(n)。
方法四:生成函数法生成函数法是一种利用生成函数来表示数列的方法。
生成函数是一个形式化的工具,用于处理数列和序列的问题。
例如,考虑一个斐波那契数列 1,1,2,3,5,8......,我们可以将该数列转变为一个生成函数来表示。
数列通项公式方法大全很
数列通项公式方法大全很1.等差数列通项公式:等差数列是指数列中每一项与它前一项的差固定的数列。
设等差数列为{an},首项为a1,公差为d,第n项为an,则等差数列通项公式为:an = a1 + (n - 1)d。
2.等比数列通项公式:等比数列是指数列中每一项与它前一项的比值固定的数列。
设等比数列为{an},首项为a1,公比为r,第n项为an,则等比数列通项公式为:an = a1 * r^(n - 1)。
3.斐波那契数列通项公式:斐波那契数列是指数列中每一项等于前两项之和的数列。
设斐波那契数列为{an},首项为a1,第二项为a2,则斐波那契数列的通项公式为:an = a1 * f1 + a2 * f2,其中f1和f2分别为斐波那契数列中的两个常数,通常取f1 = (1 + sqrt(5)) / 2,f2 = (1 - sqrt(5)) / 24.等差中项公式:等差中项是指等差数列中任意两项之和的一半。
设等差数列为{an},第k项为ak,第m项为am,则等差中项公式为:ak+m = ak + am = 2 *a(k + m)/25.等比中项公式:等比中项是指等比数列中任意两项之积的平方根。
设等比数列为{an},第k项为ak,第m项为am,则等比中项公式为:ak * am = sqrt(ak * am) = sqrt(a(k + m)/2)。
6.递推关系求通项公式:有些数列没有明确的公差或公比,但可以通过递推关系来求出通项公式。
例如,Fibonacci数列的递推关系是an = an-1 + an-2,其中a1 = 1,a2 = 1,可以通过递推关系求出Fibonacci数列的通项公式。
以上是常见的数列通项公式方法的介绍。
根据数列中的特点和已知条件,选择适合的方法可以更快地求解出任意一项的值。
求数列通项公式的8种方法
求数列通项公式的8种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项 二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
求数列通项公式的十种方法
求数列通项公式的十种方法求解数列通项公式是数学中的一个重要问题,对于一些特殊的数列,我们可以通过观察规律来找到通项公式,但对于一般的数列来说,我们需要使用一些数学工具和技巧来解决这个问题。
在下面,我将介绍十种常用的方法来求解数列的通项公式。
方法一:递推法递推法是一种常见的求解数列的方法,通过观察数列中相邻项之间的关系,可以找到递推公式。
常见的递推公式有线性递推和非线性递推两种形式。
方法二:列元法列元法是一种将数列元素列出来,然后通过观察数列元素之间的关系,找到通项公式的方法。
常见的列元法包括列出常数项和差项、连加项、平方项和立方项等。
方法三:指数递推法指数递推法是一种将数列元素进行指数递推,然后通过观察递推结果找到通项公式的方法。
常见的指数递推法包括指数增长、指数递减和二阶指数递增等。
方法四:利用级数对于一些复杂的数列,可以使用级数的方法来求解通项公式。
通过构造级数和求导积分等操作,可以得到数列的通项公式。
方法五:利用生成函数生成函数是一种将数列转化为多项式的方法,通过多项式的操作,可以得到数列的通项公式。
常见的生成函数包括普通生成函数和指数型生成函数。
方法六:利用逼近方法逼近方法是通过找到数列与一些函数逼近的关系,然后通过求解该函数的表达式来求解数列的通项公式。
常见的逼近方法包括泰勒级数逼近和拉格朗日插值等。
方法七:利用矩阵运算对于一些特殊的数列,可以使用矩阵运算的方法来求解通项公式。
通过构造矩阵和矩阵的运算,可以得到数列的通项公式。
方法八:利用线性代数利用线性代数的方法,可以将数列看作向量空间中的向量,通过线性变换和线性方程组的解来求解数列的通项公式。
方法九:利用特殊函数对于一些特殊的数列,可以使用特殊函数的方法来求解通项公式。
常见的特殊函数有二次函数、指数函数、对数函数、三角函数和双曲函数等。
方法十:利用离散数学离散数学是一种研究离散结构和离散规律的数学分支,通过利用离散数学的方法,可以求解数列的通项公式。
求数列通项公式方法总结
求数列通项公式的方法总结:1)观察法。
例如1、3、5、7、9……2)公式法。
对于等差数列:a n=a1+(n-1)d;对于等比数列:a n=a1·q n-1。
3)形如a n+1=pa n+q,变形为(a n+1+k)=p(a n+k),其中k=q/(p-1)构造数列{a n+k}是以a1+k为首项,p为公比的等比数列。
4)形如a n+2=pa n+1+qa n,,变形为a n+2+ma n+1=n(a n+1+ma n),自行解出m和n构造数列{a n+1+ma n}是以a2+ma1为首项,n为公比的等比试列。
5)形如a n+1=pa n+q n,变形为a n+1/q n=p/q·a n/q n-1+1,再利用3)的步骤即可求出通项公式。
6)形如a n+1=pa n+q n+t n,变形为a n+1/q n=p/q·a n/q n-1+(t/q)n+1,则先忽略(t/q)n这一项,利用3)的方法配出3)的形式,然后再同时除以(t/q)n,再利用3)的步骤即可求出通项公式。
7)a n+1=ta n/(p+qa n)变形为1/a n+1=p/t·1/a n+q/t, 再利用3)的步骤即可求出通项公式。
8)利用s n-s n-1=a n的关系求出通项公式。
利用以上方法求通项公式时,要用到数列求和的方法,下面予以归纳:1)公式法。
对于等差数列s n=na1+n·(n-1)d或s n=n(a1+a n)/2,对于等比数列s n=a1·q n-I。
2)常用的几个基本求和公式a)1+2+3+……+n=n·(n+1)/2b)12+22+32+……+n2=n·(n+1)·(2n+1)/6c)13+23+33+……+n3=n2·(n+1)2/4d)1+3+5+……+(2n-1)=n23)倒序相加法。
主要用于等差数列或组合数列。
数列求通项公式及求和9种方法
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
求数列通项公式的11种方法
解:原递推式可化为
比较系数可得:x=-6,y=9,上式即为
所以 是一个等比数列,首项 ,公比为 .
即:
故 .
4.形如 (其中a,b,c是常数,且 )
基本思路是转化为等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。
例10已知数列 满足 ,求数列 的通项公式。
评注:本题是关于 和 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到 与 的更为明显的关系式,从而求出 .
练习.已知 ,求数列{an}的通项公式.
答案: -1.
评注:本题解题的关键是把原来的递推关系式 转化为
若令 ,则问题进一步转化为 形式,进而应用累乘法求出数列的通项公式.
三、待定系数法适用于
解: ……①
令 ,解得 ,将它们代回①得,
……②, ……③,
③÷②,得 ,则 ,
∴数列 成等比数列,首项为1,公比q=2
所以 ,则 ,
十二、四种基本数列
1.形如 型等差数列的广义形式,见累加法。
2.形如 型等比数列的广义形式,见累乘法。
3.形如 型
(1)若 (d为常数),则数列{ }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;
解:递推关系是对应得递归函数为 ,由 得,不动点为-1
∴ ,……
类型二:形如
分析:递归函数为
(1)若有两个相异的不动点p,q时,将递归关系式两边分别减去不动点p,q,再将两式相除得 ,其中 ,∴
(2)若有两个相同的不动点p,则将递归关系式两边减去不动点p,然后用1除,得 ,其中 。
例22.设数列 满足 ,求数列 的通项公式.
数列求通项公式的五种重要方法
求通项公式的5种重要方法一、Sn 法,根据等差数列、等比数列的定义求通项an=Sn-S n-1*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=例1例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
2、累乘法 适用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na a a f f f n a a a +===,,, n a例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
例5 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。
三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+;解题基本步骤:1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式例7 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
求数列通项的方法总结
求数列通项的方法总结求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,分享了求数列通项的方法,一起来看看吧!一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。
累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f (n)可求前n项和).例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。
解:由an+1=an+2n+1得an+1-an=2n+1则an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2+(n-1)+1=(n-1)(n+1)+1=n2所以数列an的通项公式为an=n2。
例2:在数列{an}中,已知an+1= ,求该数列的通项公式.备注:取倒数之后变成逐差法。
解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).例3.已知数列{an}中a1=,an=an-1(n?叟2)求数列{an}的通项公式。
解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。
注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。
数列求通项公式方法总结
数列求通项公式方法总结数列是数学中的重要概念,它在数学领域的各个分支都有广泛的应用。
对于一个数列而言,求解其通项公式是一个非常重要的问题。
通项公式能够帮助我们快速计算数列中任意一项的值,有效地简化计算过程。
本文将总结几种常见的数列求通项公式的方法。
一、等差数列的通项公式等差数列是最常见的数列之一,其特点是数列中每一项与前一项之间的差值都是相等的。
求解等差数列的通项公式可以利用等差数列的性质——任意一项与首项的差值等于项数与公差的乘积。
具体方法如下:1. 已知首项与公差,求通项公式:对于等差数列{an},首项为a1,公差为d。
我们可以根据等差数列的性质推导出通项公式如下:an = a1 + (n - 1) * d。
2. 已知前两项,求通项公式:对于等差数列{an},已知a1和a2。
我们可以利用a1和a2的值推导出通项公式如下:an = a1 + (n - 1) * (a2 - a1)。
二、等比数列的通项公式等比数列是指数列中每一项与前一项之间的比值都是相等的数列。
求解等比数列的通项公式可以利用等比数列的性质——任意一项与首项的比值等于项数与公比的幂次方。
具体方法如下:1. 已知首项与公比,求通项公式:对于等比数列{an},首项为a1,公比为r。
我们可以根据等比数列的性质推导出通项公式如下:an = a1 * r^(n - 1)。
2. 已知前两项,求通项公式:对于等比数列{an},已知a1和a2。
我们可以利用a1和a2的值推导出通项公式如下:an = a1 * (a2 / a1)^(n - 1)。
三、其他常见数列的通项公式除了等差数列和等比数列,还有一些其他常见的数列,它们的通项公式可以利用数列的性质进行推导。
1. 斐波那契数列:斐波那契数列是指数列中的每一项都是前两项之和。
其通项公式可以通过迭代的方法得到:当n大于等于3时,an = a(n-1) + a(n-2),其中,a1 = 1,a2 = 1。
数列通项公式的十种求法
数列通项公式的十种求法方法一:直接法对于一些简单的数列,可以通过观察数列的规律,直接写出通项公式。
例如,对于等差数列an=3n+1,可以观察到每一项都是前一项加上3,因此可以直接写出通项公式。
方法二:递推法递推法是通过数列前一项和通项之间的关系式来推导通项公式。
例如,对于斐波那契数列an=an-1+an-2,可以通过给出前两项的值,然后通过关系式不断求解后续项的值,得到通项公式。
方法三:代数法对于一些特殊的数列,可以通过代数方式求解通项公式。
例如,对于等比数列an=2^n,可以通过代数方法得到通项公式。
方法四:数学归纳法数学归纳法是通过证明法来得到通项公式。
首先证明数列的前几项符合一些表达式,然后假设n=k时表达式成立,再证明n=k+1时也成立,从而得到通项公式。
方法五:求和法有些数列的通项公式可以通过求和公式得到。
例如,对于等差数列an=3n+1,可以通过求和公式求得前n项和Sn=3n(n+1)/2,然后推导出通项公式。
方法六:线性递推法对于一些特殊的数列,可以通过线性递推法求解通项公式。
线性递推法是通过设定通项公式的形式,然后求解出相应的系数。
例如,对于一阶等差数列an=ax+b,可以通过线性递推法求解出通项公式。
方法七:矩阵法矩阵法是通过将数列表示成矩阵的形式,然后通过矩阵运算求解出通项公式。
例如,对于数列an=2n+1,可以将其表示为一个2×2的矩阵,然后通过矩阵运算得到通项公式。
方法八:生成函数法生成函数法是通过定义一个函数来表示数列,然后通过函数运算求解出通项公式。
例如,对于斐波那契数列an=an-1+an-2,可以定义一个生成函数F(x)=a0+a1x+a2x^2+...,然后通过函数运算得到通项公式。
方法九:离散动力系统法离散动力系统法是通过建立数列的动力系统方程,然后求解出通项公式。
例如,对于一阶等差数列an=ax+b,可以将其表示为一个离散动力系统方程xn+1=axn+b,然后通过求解方程得到通项公式。
数列通项公式常见求法
数列通项公式常见求法数列通项公式是指数列的一般项的表达式。
在数学问题中,求得数列通项公式可以帮助我们更方便地计算数列中的任意一项数值,解决各种与数列相关的问题。
本文将介绍数列通项公式的常见求法,包括递推法、通项公式和生成函数。
一、递推法递推法是一种通过已知数列的前几项来推导出数列通项公式的方法。
递推法的基本思路是找出数列每一项与前几项之间的关系式。
常见的递推法有差分法、倒推法、倍增法和特殊递推法。
1.差分法差分法是一种通过数列中相邻两项之间的差值来推导出通项公式的方法。
对于一个数列 {an},用 a(n+1) - an 的差来表示,通过不断地进行差分运算,直到差分为常数时,就可以得到数列的通项公式。
以斐波那契数列为例,我们知道斐波那契数列的通项公式是 fn = fn-1 + fn-2,其中 f0 = 0,f1 = 1、通过差分法可以推导出这个通项公式。
2.倒推法倒推法是一种逆序求解数列问题的方法,即从数列的最后一项逐步向前推导出每一项的值。
通过找出数列每一项与后几项之间的关系,从最后一项开始计算,并倒序得到数列的每一项的值。
以等差数列为例,设数列通项公式为 an = a + (n-1)d,其中 a 为首项,d 为公差。
已知 a1 和 an 的值,可以通过倒推法求得数列的通项公式。
3.倍增法倍增法是一种通过将数列每一项扩大或缩小倍数,使得这些倍数值之间构成等差或等比数列的方法。
通过找出数列每一项与前几项之间的倍关系,可以得到数列的通项公式。
以 2 的幂次方数列为例,我们知道这个数列的通项公式是 an = 2^n,其中 n >= 0。
通过倍增法可以推导出这个通项公式。
4.特殊递推法特殊递推法是对一些特殊的数列使用递推法求解通项公式的方法。
这类数列往往具有一些特殊的性质或规律,通过观察和分析这些特点,可以推导出数列的通项公式。
以全为奇数或全为偶数的等差数列为例,可以通过特殊递推法得到数列的通项公式。
数列求通项公式的9种方法
例14
已知 满足+2 = 3+1 − 2 ,2 = 2, 1 = 1,求 的通项公式
九、奇偶分项求通项公式
核心思想:
n为奇数时,设n=2k-1
n为偶数时,设n=2k
例15 数列 满足 = ቊ
2,为奇数时
,求 的通项公式。
2 ,为偶数时
变式训练15
n2
a n ,求 {an } 的通项公式.
n
变式训练 6 已知数列 {an } 满足 a1 1 , an1 2n an ,求 {an } 的通项公式.
变式训练 7 已知数列 {an } 满足 a1 1 , an n(an1 an ) ,求 {an } 的通项公式.
四、加法构造
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d
an=am+(n-m)d
2、等比数列通项公式: an= a1·
qn-1
am= a1·qn-m
一、利用 an 与 Sn 关系求 an
S1,
n=1,
an=
Sn-Sn-1, n≥2.
例1
n+3.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
17
3
变式训练 10 已知数列 {an } 满足 a1
, an an1 5( n 2) ,求 {an } 的通项公式.
2
2
五、倒数构造
型如 an1
m an
(m pq 0) 的数列直接取倒数
pan q
例 8 已知数列 {an } 满足 a1 1 , an1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列通项公式方法总结归纳不过一般分小题、有梯度设问,往往是第1小题就是求数列的通项公式,难度适中,一般考生可突破,争取分数,而且是做第2小题的基础,因此,求数列通项公式的解题方法、技巧,每一位考生都必须熟练掌握。
求数列通项公式的题型很多,不同的题型有不同的解决方法。
下面结合教学实践,谈谈求数列通项公式的解题思路。
一、已知数列的前几项已知数列的前几项,求通项公式。
通过观察找规律,分析出数列的项与项数之间的关系,从而求出通项公式。
这种方法称为观察法,也即是归纳推理。
例1、求数列的通项公式(1)0,22——1/3,32——1/4,42+1/5……(2)9,99,999,……分析:(1)0=12——1/2,每一项的分子是项数的平方减去1,分母是项数加上1,n2——1/n+1=n——1,其实,该数列各项可化简为0,1,2,3,……,易知an=n——1。
(2)各项可拆成10-1,102-1,103-1,……,an=10n——1。
此题型主要通过让学生观察、试验、归纳推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生的思维能力。
二、已知数列的前n项和Sn已知数列的前n项和Sn,求通项公式an,主要通过an与Sn的关系转化,即an -{ S1(n=1)Sn -Sn——1(n≥2)例2、已知数列{an }的前n项和Sn=2n+3,求an分析:Sn=a1+a2 +……+an——1+anSn——1=a1+a2 +……+an——1上两式相减得Sn -Sn——1=an解:当n=1时,a1=S1=5当n≥2时,an =Sn -Sn——1=2n+3-(2n——1+3)=2n——1∵n=1不适合上式∴an ={5(n=1)2n——1(n≥2)三、已知an与Sn关系已知数列的第n项an与前n项和Sn间的关系:Sn=f(an),求an。
一般的思路是先将Sn与an的关系转化为an与an——1的关系,再根据与的关系特征分为如下几种类型。
不同的类型,要用不同的方法解决。
(1)an=an——1+k。
数列属等差数列,直接代公式可求通项公式。
例3、已知数列{an},满足a1=3,an=an——1+8,求an。
分析:由已知条件可知数列是以3为首项,8为公差的等差数列,直接代公式可求得an=8n-5。
(2)an=kan——1(k为常数)。
数列属等比数列,直接代公式可求通项公式。
例4、数列{an}的前n项和Sn,a1=1,an+1=2Sn+1(n∈N+)求数列{an}的通项公式。
分析:根据an与Sn的关系,将an+1=2Sn+1转化为an与an+1的关系。
解:由an+1=2Sn+1得an=2Sn-1+1(n≥2)两式相减,得an+1-an=2an∴an+1=3an (n≥2)∵a2=2Sn+1=3∴a2=3a1∴{an}是以1为首项,3为公比的等比数列∴an=3n-1(3)an+1=an+f(n),用叠加法思路:令n=1,2,3,……,n-1得a2=a1+f(1)a3=a2+f(2)a4=a3+f(3)……+)an=an——1+f(n-1)an=a1+f(1)+f(2)+…+f(n-1)例5、若数列{an}满足a1=2,an+1=an+2n则{an}的通项公式=()解:∵an+1=an+2n∴a2 =a1+2×1a3=a2+2×2a4=a3+2×3……+)an=an——1+2(n-1)an=a1+2(1+2+3+…+n-1)=2+2×(1+n-1)(n-1)=n2-n+2(4)an+1=f(n)an,用累积法思路:令n=1,2,3,……,n-1得a2 =f(1)a1 a3=f(2)a2 a4=f(3)a3……×)an=f(n-1)an-1an=a1·f(1)·f(2)·f(3)……f(n-1)例6、若数列{an}满足a1=1,an+1=2n+an,则an=()解:∵an+1=2nan ∴a2 =21a1a3=22a2 a4=23a3……×)an=2n——1·an——1an=2·22·23·……·2n-1a1=2n(n-1)/2(5)an=pan——1+q,an=pan——1+f(n)an+1=an+p·qn(pq≠0),an=p(an——1)q,an+1=ran/pan+q=(pr≠0,q≠r)(p、q、r为常数)这些类型均可用构造法或迭代法。
①an=pan——1+q (p、q为常数)构造法:将原数列的各项均加上一个常数,构成一个等比数列,然后,求出该等比数列的通项公式,再还原为所求数列的通项公式。
将关系式两边都加上x得an+x=Pan——1+q+x=P(an——1 + q+x/p)令x=q+x/p,得x=q/p-1∴an+q/p-1=P(an——1+q/p-1)∴{an+q/p-1}是以a1+q/p-1为首项,P为公比的等比数列。
∴an+q/p-1=(a1+q/p-1)Pn-1∴an=(a1+q/p-1)Pn-1-q/p-1迭代法:an=p(an——1+q)=p(pan-2+q)+q=p2((pan-3+q)+pq+q……例7、数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+)求an解析:由Sn=2an-n 得Sn-1=2an-1-(n-1)(n≥2,n∈N+)两式相减得an=2an-1+1两边加1得an+1=2(an-1+1)(n≥2,n∈N+)构造成以2为公比的等比数列{an+1}②an=Pan-1+f(n)例8、数列{an}中,a1为常数,且an=-2an-1+3n-1(≥2,n∈N)证明:an=(-2)n-1a1+3n+(-1)n·3·2n-1/5分析:这道题是证明题,最简单的方法当然是数学归纳法,现用构造法和迭代法来证明。
方法一:构造公比为-2的等比数列{an+λ·3n}用比较系数法可求得λ=-1/5方法二:构造等差型数列{an/(-2)n}。
由已知两边同以(-2)n,得an/(-2)n=an-1/(-2)n=1/3·(-3/2)n,用叠加法处理。
方法三:迭代法。
an=-2an-1+3n-1=-2(-2an-2+3n-2)+3n-1=(-2)2an-2+(-2)·3n-2+3n-1=(-2)2(-2an-3+3n-3)+(-2)·3n-2+3n-1=(-2)3an-3+(-2)·3n-3+(-2)·3n-2+3n-1=(-2)n-1a1+(-2)n-1·3+(-2)n-3·+32+……+(-2)·3n-2+3n-1 =(-2)n-1a1+3n+(-1)n-2·3·2n-1/5③an+1=λan+p·qn(pq≠0)(ⅰ)当λ=qn+1时,等式两边同除以,就可构造出一个等差数列{an/qn}。
例9、在数列{an}中,a1=4,an+1+2n+1,求an。
分析:在an+1=2an+2n+1两边同除以2n+1,得an+1/2n+1=an/2n+1∴{an/2n}是以a1/2=2为首项,1为公差的等差数列。
(ⅱ)当λ≠q时,等式两边同除以qn+1,令bn=an/qn,得bn+1=λ/qbn+p,再构造成等比数列求bn,从而求出an。
例10、已知a1=1,an=3an-1+2n-1,求an分析:从an=3an-1+2n-1两边都除以2n,得an/2n=3/2 an-1/2n-1+1/2令an/2n=bn则bn=3/2bn-1+1/2④an=p(an——1)q(p、q为常数)例11、已知an=1/a an——12,首项a1,求an。
方法一:将已知两边取对数得lgan=2lgan——1-lga令bn=lgan得bn=2bn-1-lga,再构造成等比数列求bn,从而求出an。
方法二:迭代法an=1/a a2n——1=1/a (1/a a2n——2)2=1/a3 a4n——2=1/a3 (1/a a2n——3)4=1/a7·an——38=a·(an——3/a)23 =……=a·(a1/a)2n——1⑤an+1=ran/pan+q(p、q、r为常数,pr≠0,q≠r)将等式两边取倒数,得1/an+1=q/r·1/an+p/r,再构造成等比数列求an。
例12、在{an}中,a1=1,an+1=an/an+2,求an解:∵an+1=an/an+2∴1/an+1=2·1/an+1两边加上1,得1/an+1+1=2(1/an+1)∴{1/an+1}是以1/an+1=2为首项,2为公比的等比数列∴1/an+1=2×2n-1=2n∴an=1/2n-1以上罗列出求数列通项公式的解题思路虽然很清晰,但是一般考生对第三项中的5种类型题用构选法和迭代法都比较困难的。
遇到此情况,可转化为第一种类型解决,即从an与Sn的关系式求出数列的前几项,用观察法求an。
搜集整理,仅供参考学习,请按需要编辑修改。