放缩法证明数列不等式经典例题复习进程
放缩法证明不等式
高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n knk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (15))2(1)1(1≥--<+n n n n n说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n .由k k k11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n201417. (12分)已知数列{}n a 满足111,31n n a a a +==+.(I)证明{12}n a +是等比数列,并求{}n a 的通项公式;(II)证明2111132n a a a +++<.【答案解析】解析:(I)∵131n n a a +=+11331111)223(22n n n n a a a a ++∴⇒+=+++=+ 1112132a a =+⇒= ∴{12}n a +是首项为32,公比为3的等比数列∴1*131333,2222n n n n n a a n N --⋅+==∈=⇒ (II)由(I)知,*13,2n n a n N -=∈,故 121213*********(13)n n a a a +++=++-+-- 12110331112()3333n n --+-≤+-+12111()11131331(1()).133323213nn n --=++++==⋅-<- 例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以 35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n。
放缩法技巧及经典例题讲解
放缩法技巧及经典例题讲解一.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”.常用的放缩技巧(1)若0,,t a t a a t a >+>-<(2)<>,11>n >= (3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++-- (4)=<=<= (5)若,,a b m R +∈,则,a a a a m b b m b b +><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+ (7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111n n n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++ 或11111111123222222n n n n n n n n n +++⋅⋅⋅+≥++⋅⋅⋅+==+++ (8)1⋅⋅⋅+>⋅⋅⋅+== (9))1(11)1(12-<<+k k k k k ,⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211 (10)12112-+<<++k k k k k【经典例题】例1、设数列{}n a 满足12,311+-==+n a a a n n(1) 求{}n a 的通项公式;(2) 若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c 求证:数列{}n n d b ⋅的前n 项和31<n S例2、已知正项数列{}n a 满足()()*21111,1N n a n a a a n n n ∈⋅++==+ (1) 判断数列{}n a 的单调性;(2) 求证:()2111112111+<-<+-++n a a n n n n经典方法归纳:一.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a s ,试求:(1)数列{}n a 的通项公式;(2)设11+=n n n a a b ,数列{}n b 的前n 项的和为,n B ,求证:21<n B例2、已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈二.先放缩再求和1.放缩后成等差数列,再求和例1.已知各项均为正数的数列{}n a 的前n 项和为n S ,且n n n as a a 22=+.(1) 求证:4221++<n a a S n n ;(2) 求证:2121321-<+⋅⋅⋅+++<+n n n s s s s s s例2.已知数列{}n a 满足:()⋅⋅⋅=⎪⎭⎫ ⎝⎛+==+3,2,121,111n a n a a n n n .求证:11213-++-≥≥n n n n a a .2.放缩后成等比数列,再求和例2.(1)设a ,n ∈N *,a ≥2,证明:()()n nn a a a a 12+≥--; (2)等比数列{a n }中,211-=a ,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nn n a a b -=12 , 数列{b n }前n 项的和为B n ,证明:31<n B .3.放缩后为裂项相消,再求和例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列()()32111⋅⋅⋅-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数.63=a .(1)求a 4、a 5,并写出a n 的表达式;(2)令,11nn n n n a a a a b +++=,证明,32221+<+⋅⋅⋅++<n b b b n n ⋅⋅⋅=2,1n三. 裂项放缩1、若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。
数列及有关不等式证明方法之放缩法例解
1) a n ≥( a + 1) a n .
(2) 因为 A9 - A7 = a8 + a9 ꎬA8 - A9 = a9 ꎬa8 + a9 =
- a9 ꎬ所以公比 q =14nFra bibliotek1 n
1 - æç - ö÷
è 2 ø
=
a9
1
1
= - . ∴ a n = æç - ö÷ ꎬb n =
a8
2
è 2 ø
1
ꎬ数列 { b n } 的前 n 项的和为
an an + 1
1
.
2
为 2 的 等 差 数 列ꎬ 由 2
a n = 2n - 1.
S1 = a1 + 1 得 a1 ꎬ 所 以
1
1
(2) b n =
=
a n a n + 1 (2n - 1) (2n + 1)
1
1 ö÷
1
-
= æç
ꎬ
2 è 2n - 1 2n + 1 ø
列ꎬ即指数列{ a n } 满足条件 a n + 1 - a n = f( n) ) 求和
或者利用分组、裂项、倒序相加等方法来求和.
S1 +
S2 + +
Sn <
Sn + 1 - 1
2
.
2a1 ꎬ∵ a1 > 0ꎬ ∴ a1 = 1. 又 由 条 件 a2n + a n = 2S n 有
a2n + 1 + a n + 1 = 2S n + 1 ꎬ上述两式相减ꎬ又 a n + 1 = S n + 1 -
=
=
ꎻ
2
2 2
2
S1 +
S2 + +
n
<
2
Sn =
最新高中数学数列放缩专题用放缩法处理数列和不等问题(精品收藏)
数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}na 的前n 项的和nS ,满足12+=n n a S ,试求:(1)数列{}na 的通项公式;(2)设11+=n n na a b,数列{}n b 的前n 项的和为n B ,求证:21<n B 解:(1)由已知得2)1(4+=nna S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n nnna a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}na 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a bn n n,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 真题演练1:(06全国1卷理科22题)设数列{}na 的前n 项的和,14122333n nnS a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n n nT S =,1,2,3,n =,证明:132ni i T =<∑。
解: (Ⅰ)由 S n=错误!a n -错误!×2n +1+错误!, n=1,2,3,… , ①得 a 1=S 1= \f (4,3)a 1—错误!×4+错误! 所以a 1=2再由①有 Sn —1=\f (4,3)a n -1-错误!×2n+错误!, n=2,3,4,…将①和②相减得: a n =S n -S n-1= 错误!(an -a n-1)-错误!×(2n+1—2n),n=2,3, …整理得: a n +2n=4(an-1+2n-1),n=2,3, … , 因而数列{ a n +2n}是首项为a 1+2=4,公比为4的等比数列,即 : a n +2n =4×4n-1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …,(Ⅱ)将a n =4n —2n 代入①得 S n = \f (4,3)×(4n -2n)—\f (1,3)×2n+1 + 错误! = 错误!×(2n+1-1)(2n+1-2) = \f(2,3)×(2n+1-1)(2n-1)T n= \f(2n,S n) =错误!×错误! = 错误!×(错误! - 错误!)所以, 1ni i T =∑=错误!1(ni =∑错误! - 错误!) = 错误!×(错误! -1121n +-) < \f (3,2)二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}na 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nnn a a b -=12,数列{}nb 前n 项的和为nT ,证明:13nT<. 解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812aq a==-.∴n na)21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=.(利用等比数列前n 项和的模拟公式n nSAq A=-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤nn 。
证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]
证明数列不等式之放缩技巧以及不等式缩放在数列中应用大全证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时,(2)12nn n +<. 证法一:令)6(2)2(≥+=n n n c nn ,则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,66831.644n c c ⨯≤==< 于是当6n ≥时,2(2)1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时,66(62)48312644⨯+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2)1.2kk k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3)1.222(2)(2)2k k k k k k k k k k k k k k++++++++=⨯<<++g 由(1)、(2)所述,当n ≥6时,2(1)12n n +<. 二、借助数列递推关系 例2.已知12-=n n a .证明:()23111123n n N a a a *++++<∈L . 证明:nn n n n a a 121121212211211111⋅=-⋅=-<-=+++Θ, ∴32])21(1[321)21(...12111112122132<-⋅=⋅++⋅+<+++=-+n n n a a a a a a S Λ. 例3. 已知函数f(x)=52168xx+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.(1) 试比较n a 与54的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1ni i b =∑.证明:当n ≥2时,S n <14(2n-1).分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。
放缩法典型例题
放缩法典型例题第一篇:放缩法典型例题放缩法典型例题数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.一.先求和后放缩例1.正数数列(1)数列的前项的和的通项公式;,满足,试求:(2)设解:(1)由已知得,数列的前项的和为,所以时,求证:,作差得:,又因为,得为正数数,所列,所以以,即是公差为2的等差数列,由(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列的前项和为,且.满足条件)求和或者利用分组、裂项、(1)求证:;(2)求证:解:(1)在条件中,令有,得,上述两式相减,注意到∴,又由条件得所以,所以(2)因为,所以,所以;2.放缩后成等比数列,再求和例3.(1)设a,n∈N*,a≥2,证明:;(2)等比数列{an}中,前n项的和为An,且A7,A9,A8成等差数列.设,数列{bn}前n项的和为Bn,证明:Bn<.解:(1)当n为奇数时,an≥a,于是,当n为偶数时,a-1≥1,且an≥a2,于是..(2)∵,,∴公比.∴..∴3.放缩后为差比数列,再求和.例4.已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.4.放缩后为裂项相消,再求和例5.在m(m≥2)个不同数的排列P1P2…Pn中,若1≤i<j≤m 时Pi>P(即前面某数大于后面某数),则称Pi与Pj构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列.j(1)求a4、a5,并写出an的表达式;的逆序数为an,如排列21的逆序数,排列321的逆序数(2)令,证明,n=1,2,….(2)因为,所以.又因为,所以=综上,..注:常用放缩的结论:(1)(2).在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论、为等差数列求和结果的类型,则把通项放缩为等差数列,再求和即可;如例3要证明的结论为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论为差比数列求和结果的类型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.为裂项第二篇:放缩法证明数列不等式经典例题放缩法证明数列不等式主要放缩技能: 1.1111111-=<2<=- nn+1n(n+1)nn(n-1)n-1n114411<===2(-)22n4n-1(2n+1)(2n-1)2n-12n+1n2-42.==>===<=2)=<====<== 4.2n2n2n-1115.n <==-(2-1)2(2n-1)(2n-2)(2n-1)(2n-1-1)2n-1-12n-16.n+22(n+1)-n11==- n(n+1)⋅2n+1n(n+1)⋅2n+1n⋅2n(n+1)⋅2n+1x2-x+n*c=(n∈N)例1.设函数y=的最小值为,最大值为,且abnnn2x+1(1)求cn;(2)证明:例2.证明:16<1+例3.已知正项数列{an}的前n项的和为sn,且an+2(1)求证:数列sn是等差数列;11117+++Λ+< 444c14c2c3cn4+Λ+<17 1=2sn,n∈N*; an{}(2)解关于数列n的不等式:an+1⋅(sn+1+sn)>4n-8(3)记bn=2sn,Tn=331111<Tn<-+++Λ+,证明:1 2b1b2b3bn例4.已知数列{an}满足:⎨n+2⎧an⎫an+1;⎬是公差为1的等差数列,且an+1=nn⎩⎭(1)求an;(2++Λ<2 例5.在数列{an}中,已知a1=2,an+1an=2an-an+1;(1)求an;(2)证明:a1(a1-1)+a2(a2-1)+a3(a3-1)+Λ+an(an-1)<32n+1an例6.数列{an}满足:a1=2,an+1=; n(n+)an+225112n(1)设bn=,求bn;(2)记cn=,求证:≤c1+c2+c3+Λ+cn< 162n(n+1)an+1an例7.已知正项数列{an}的前n项的和为sn满足:sn>1,6sn=(an+1)(an+2);(1)求an;(2)设数列{bn}满足an(2n-1)=1,并记Tn=b1+b2+b3+Λ+bn,b求证:3Tn+1>log2n(a+3)(函数的单调性,贝努力不等式,构造,数学归纳法)例8.已知正项数列{an}满足:a1=1,nan+1(n+1)an=+1,anan+1 记b1=a1,bn=n[a1+(1)求an;(2)证明:(1+2111++Λ+](n≥2)。
放缩法证明数列不等式
似,只不过放缩后的 bn 是可求积的模型,能求积的常见的数列
模型是 bn
cn1 cn
(分式型),累乘后约简为
n i 1
bi
cn1 c1
.
n
(三)形如 a f (n) i
i 1
例6
求证:1 3 5 2n 1 1 (n N)
246
2n 2n 1
1 3 5 2n 1 1
对 1 放缩方法不同,得到的结果也不同. 显然 5 7 2 ,
n2
34
故后一个结论比前一个结论更强,也就是说如果证明了变式 3,
那么变式 1 和变式 2 就显然成立.
对1 n2
的 3 种放缩方法体现了
三种不同“境界”,得到
n k 1
1 k2
的三个“上界”.
【方法总结之二】
放缩法证明与数列求和有关的不等式的过程 中,很多时候要“留一手”, 即采用“有所保留” 的方法,保留数列的第一项或前两项,从数列的第 二项或第三项开始放缩,这样才不致使结果放得过 大或缩得过小.
求证:(11)(1 1)(1 1) (1 1 ) 3 3n 1 (n N*)
47
3n 2
课堂小结
本节课我们一起研究了利用放缩法证明数列不等 式,从中我们可以感受到在平时的学习中有意识地去 积累总结一些常用的放缩模型和放缩方法非常必要, 厚积薄发,“量变引起质变”
例如:我们可以这样总结本节课学到的放缩模型:
23
100
分析 不能直接求和式 S ,须将通项 1 放缩为裂项相消模型后求和. n
思路 为了确定S的整数部分,必须将S的值放缩在相邻的两个
整数之间.
例4 (2012广东理19第(3)问) 求证: 1 1 1
高考数学 放缩法证明“数列+不等式”问题的两条途径 新人教版
放缩法证明“数列+不等式”问题的两条途径数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。
1、 先放缩再求和例1 (05年湖北理)已知不等式],[log 21131212n n >+++ 其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。
设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2( =n ,证明:][log 222n b b a n +<, 5,4,3=n 分析:由条件11--+≤n n n a n na a 得:n a a n n 1111+≥- na a n n 1111≥-∴- )2(≥n111121-≥---n a a n n ……211112≥-a a 以上各式两边分别相加得:21111111++-+≥- n n a a n 2111111++-++≥∴ n n b a n ][l o g 2112n b +> )3(≥n =bn b 2][log 22+ ∴ ][log 222n b b a n +<)3(≥n 本题由题设条件直接进行放缩,然后求和,命题即得以证明。
例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n(1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式;(3)证明:对任意的整数4>m ,有8711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n n n a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
高考数学复习放缩法与数列不等式
a3 a 2 a1 ,并加以灵活 a2 a1
运用。
例 3 已知 n∈ N, n>1,求证: 4 6 8 35 7
2n 1 2n 1. 2n 1 2
证 4n2 4n2 1
2n
2n 1 , (从何而来你可知到?)
2n 1 2n
468 357
2n 5 7 9 2n 1 4 6 8
2n 1, 2n
468 ( 357
1
a
2 n
1
11 (
a
2 n
1)2
( 1 )1
a 2 22 n2
a
aa
a
( 1 )1 2 ( 1
an2
) 22
3
aa
( 1 )1 2 22
a2 3 n3
a
( 1 )1 2 22 a
a 2 n 2
2n 1 1
(1)2n 1
a 2n 1 1
a
an
a(
a1
) 2n
1
.
a
证明
( II )由
a=1,
1 a1 ≤2
线段 Pn-1Pn+1 作 n 等分的分点中最靠近 Pn+1 的点,设线段 P1P2,P2P3,… ,PnPn+1 的长度分别为
a1,a2,a3, … ,an,其中 a1=1. (I) 写出 a2,a3 和 an(n ≥ 2,∈n N*) 的表达式;
(II) 证明: a1+a 2+a3+… +an<3(n∈ N *).
1) xn
C1n xn 1
1 x
C
2 n
x
n
2
1 x2
C
专题 数列不等式放缩问题(课件)-高考数学二轮专题复习
3 2
an1
3
②,
由② ①得: an 3an1 ,
所以数列{an} 是以 6 为首项,3 为公比的等比数列.
所以 an 6 3n1 2 3n .
(Ⅲ)当
n
1 时,
b1
3 4
1
;
当n
2 时, bn
2an (an 2)2
4 3n (2 3n 2)2
3n (3n 1)2
(3n
3n 1)(3n
a1 a2
an
典型例题讲解:
解:(1) a1 2 ,{3an 2Sn} 是公差为 2 的等差数列,
3a1 2S1 a1 2 ,
3an 2Sn 2 2(n 1) 2n ,
即
Sn
3 2
an
n
,
当n
2
时,
an
Sn
Sn1
3 2
an
n
3 2
an1
(n
1)
,
即 an 3an1 2 ,
an 1 3(an1 1) ,又 a1 1 3 ,
(Ⅰ)求{an} 的通项公式;
(Ⅱ)证明数列
bn 2n
1
是等比数列,并求{bn} 的通项公式;
(Ⅲ)求证:对任意的 n N* , n 1 3 . b i1 i 2
(Ⅰ)解:设等差数列{an} 的公差为 d , d 0 , 因为 a3 3a4 S5 , a1a5 S4 ,
则
aa11
所以 n 1 3 . b i1 i 2
变式练习:
附:本题可以运用糖水不等式进行放缩, 也可以运用指数不等式进行放缩。
变式练习:
变式 4.已知数列{an} 满足 a1 a2 an1 an 2(n 2 且 n N*) ,且 a2 4 .
高考数学 数列压轴题放缩法技巧
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r rr n r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn Λ(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n(8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++ΛΛ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n ΛΛ当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111 例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nn na a a T +++=Λ212,求证:23321<++++n T T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n n T -+-=-----=+++-++++=ΛΛ 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T ΛΛ 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n xn,求证: *))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ. 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ΛΛ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ2ααα 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:32]1)1(ln[->++n n ,叠加之后就可以得到答案:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n nΛ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n na a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+nnn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
证明不等式稿——放缩技巧(网上搜集)
放缩技巧一 直接放缩例题1已知数列a 1=3,a n *N ∈a 1+n =(a n -1)2+1,求证:a 1a 2∙…∙a n <2n2例题2数列{a n }满足S n =2n a n ,(n *N ∈),S n 是数列{a n }的前n 项和,a 2=1, (1)求S n ; (2)证明:23<(1+1a 21+n )n <2例题3已知数列{a n }满足a n 》0,且对一切的n *N ∈有∑=ni i 13a=S 2n,其中S n =∑=n i i 1a ,∑=ni i13a=a 31+a 32+…+a 3n(1) 求证:对一切的n *N ∈,都有a 21n +-a 1+n =2 S n ;(2)求数列{a n }的通项公式;(3)求证:∑+=11k 2n kak<3二 裂项放缩常见裂项公式:111)1(1+-=+n n n n)121121(21)12)(12(1+--=+-n n n n)211(21)2(1+-=+n n n n ])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n!)!1(!n n n n -+=⋅)!1(1!1)!1(+-=+n n n n in i n i n C C C 111----=n n n-+=++11n 1例题4已知数列{a n }满足a 0=21, a n =a 1n -+21na 21n -, n *N ∈,求证:21n ++n < a n <n例题5数列{a n }为等差数列,a n 为正整数,其前n 项和为S n ,数列{b n }为等比数列,且a 1=3, b 1=1, 数列{b n a }是公比为64的等比数列,b 2S 2=64, (1)求a n ,b n (2) 求证:+1S 1+2S 1…+n S 1<43,例题6在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a 1+n 成等差数列,b n ,a 1+n ,b 1n +成等比数列 (n *N ∈)(1)a 2, a 3, a 4及b 2, b 3, b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论; (2)证明++++22111a 1b a b …+n n b a +1<125,例题7设函数f(x)=(1+n 1)n (n *N ∈且n ≥I, x N ∈), (1)当x=6时,求(1+n1)x 的展开式中二项式系数最大的项; (2)对任意的实数x ,证明:)((),(2)2()2(''x f x f f x f >+是f(x)的导函数); (3)是否存在a N ∈,使得an<k nk )11(1k ∑=+<(a+1)n 恒成立?若存在,证明你的结论,并求出a 的值;若不存在,说明理由。
数列放缩通项证明不等式与数列不等式恒成立问题(解析版)
数列放缩通项证明不等式与数列不等式恒成立问题数列通项放缩问题是放缩问题的常考类型,相较于求和之后再比较大小的题型而言,这一部分对放缩对象的处理需要一定的技巧,因而对很多学生来说具有挑战性,是数列放缩中的难点. 此节中,我将分为如下几个点展开:第一,将通项放缩为可裂项的结构,然后裂项求和;第二,将通项放缩为等比结构(等差比结构)然后错位相减求和,总之,处理的基本原则就是将不可求和放缩成可求和再求和放缩. 当然,下面的这些常见的裂项公式与放缩公式需要注意.目录题型一 通项放缩 (3)题型二 与导数结合的放缩 (8)题型三 数列恒成立问题 (9)1.常见的裂项公式:必须记例如:n n n n n )1(11)1(12−<<+或者12112−+<<++n n n n n 等 2.一个重要的指数恒等式:n 次方差公式123221()().n n n n n n n a b a b a a b a b ab b −−−−−−=−+++++这样的话,可得:1)(−−>−n n n a b a b a ,就放缩出一个等比数列. 3.糖水不等式:设0,0>>>c m n ,则cn cm n m ++<. 4.利用导数产生数列放缩:由不等式1ln −≤x x 可得:+∈<+<+N n nn n ,1)11ln(11.常见放缩公式:(太多了,不一定要全部记,自行选择) 一、等差型(1)()()21111211<=−≥−−n n n n n n; (2)()2111111>=−++n n n n n ; (3)2221441124412121 =<=− −−+n n n n n ; (4)()()()11!111112!!!11+=⋅=⋅<<=−≥−−−rr n r r n T C r n r n r n r r r r r; 二、根式型 (5(()22=<=+≥n ; (7(2>=;(8<2=−()22<−≥n;(9<)2==≥n ;三、指数型(10)()()()()()()()1211222211212121212122212121−−−=<==−−−−−−−−−−nn n n n n n n n n n n n()2≥n ;(11)()1111111312231+<+++++< ××−nn n n ; (12)()()01211122221111111=<==−−++−+++−n n n n n C C C n n n n ; (13)()()()111121122121212121−−−<=−≥−−−−−n nn n n n n . (14)=<<.(2021浙江卷)已知数列{}n a满足)111,N n a a n ∗+==∈.记数列{}n a 的前n 项和为n S ,则( ) A .100332S << B .10034S << C .100942S << D .100952S <<解析:由211111124n n n a a a ++ ==−2111122n a +∴<+⇒<12<11122n n −++=,当且仅当1n =时取等号,112311n n n n a n a a a n n ++∴≥∴=≤=+++. 一方面:252111)1(41002>⇒+−+>+>S n n n a n . 另一方面113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S≤−+−+−++−=−<,即100332S <<.故选:A .题型一 通项放缩1.已知1n a n =+,若数列21n a的前n 项和为n T ,求证:23n T <.【详解】证明:由(1)得()*1n a n n =+∈N , 重点题型·归类精讲所以()()()()()22221144411221232123141411na n n n n n n n ==<==− ++++ +++−, 所以()222211*********1222223435577921231nT n n n =+++⋅⋅⋅+<−+−+−+⋅⋅⋅+− ++ +111111111122235577921233233n n n −+−+−+⋅⋅⋅+−=−< +++1121212331333n n n n a +=×<×=+, 所以2341112321111112222111931333333313n n n n a a a a ++− ++++<++++==−<−3.(2014全国2卷)已知312n n a −=,证明:1231112n a a a ++<…+.解析:1231n n a =−,因为当1n ≥时,13123n n −−≥×,所以1113123nn −≤−× 于是2-112311-111111313311-1332321-3n n n na a a a ++++<+++==< (). 所以123111132na a a a ++++< . 注:此处13123n n −−≥×便是利用了重要的恒等式:n 次方差公式:123221()().n n n n n n n a b a b a a b a b ab b −−−−−−=−+++++当然,利用糖水不等式亦可放缩:13133132−=<−n n n ,请读者自行尝试.4.已知21na n =−,{}n a 的前n 项和为n S ,0nb >,2121n n b S +=+,数列{}n b 的前n 项和为n T ,证明:1n T n <+.【详解】2n S n =,则21(1)n S n +=+,2221(1)n b n =++.22223(1)nn n b n ++=+,则n b =∴()()211121n b n n −=<=+⋅+ 2111(1)1n n n <−++.∴121111n n T b b b n n n =+++<+−<++5) A .3 B .4 C .5 D .6 【答案】B【分析】注意到据此可得答案. 【详解】..故,即整数部分为4.<>< 152<> 12>−+−+−++−92>=952<<2023届·广东省综合素质测试(光大联考)【详解】(1)当2,N n n ∗≥∈时,由22211121211n n n n n n n n n n a a S S S S S S S S −−−−−=−⇒=−⇒−=, 所以数列{}2n S 是等差数列;(2)112211211S S S S =−⇒=,由(1)可知数列{}2n S 是等差数列,且公差为1, 所以21(1)1n Sn n =+−⋅=,又因为数列{}n a 是正项数列,所以=n S,即1n S=,1001)1)1)18T >−+++> .2024届·广州·仲元中学校考7.已知是公差为2的等差数列,其前8项和为是公比大于0的等比数列,, (1)求和的通项公式: (2)记,证明: 【答案】(1), (2)证明见解析【分析】(1)由等差数列与等比数列的性质求解, (2)由放缩法与错位相减法求和证明. 【详解】(1)对于等差数列,,而,解得,故, 对于等比数列,,则,而公比,解得,故 (2)令,则,两式相减得, 得,故,原式得证{}n a {}64.n b 14b =3248.b b −={}n a {}n b *21,N n n n c b n b =+∈)*N n k n =<∈21na n =−4n nb ={}n a 81878642S a d ×=+=2d =11a =21na n =−{}nb 14b =232)484(b q b q −=−=0q >4q =4n n b =2144nn n c =+<212222n n S =+++ 2311122222n nS +=+++ 2111111112222222n n n n n n S ++=+++−=−− 112222n n nS −=−−<nk =<<【详解】121212311n n n T a a a n n =⋅⋅⋅⋅⋅⋅=××⋅⋅⋅×=++.所以2221222211123(1)n n S T T T n =+++=++++ 111111111112334(1)(2)23341222n n n n n >++=−+−++−=−××+++++ . 又因为11111122222n n a n n ++−=−=−++, 所以112n n S a +>−.【分析】当1n =时,验证所证不等式成立,当2n ≥时,由放缩法可得出11134n n b −≤⋅,再结合等比数列求和公式可证得原不等式成立,综合可得出结论.【详解】解:由141nn n b na =−=−,所以,1111441344134n n n n n b −−−−=⋅−=⋅+−≥⋅, 所以,11134n n b −≤⋅, 当1n =时,111439b =<, 当2n ≥时,211211*********144111344394914nn nn b b b −⋅−+++<++=⋅=−<− . 综上所述,对任意的n ∗∈N ,1211149n b b b +++< .10.已知11223n n n a ++=−,若2nn n b a a =−,n S 为n b 的前n 项和,证明:1215n S ≤<. 【解析】11223n n n a ++=− ,2n n nb a a =−,111211112223123232323n n n n n n n n n n b a a +++++++ ∴=−−=× −−−− =, 11111123N ,230,0,122323n n n n n n n b S S b +∗+++∈−>∴=×>∴≥==−− ,1111112323116,232323232323n n n n n n n n n b ++++++ ×<×− −−−−−−21224121525S b b ∴=+=+<,123445131N ,3,1111116232323232323241124654126121215,25232325525n n n n n n S b b ∗++∴∈≥ <++−+−++−−−−−−− =++−=++=+<−− 1215n S ∴≤<.题型二 与导数结合的放缩利用导数产生数列放缩:由不等式1ln −≤x x 可得:+∈<+<+N n n n n ,1)11ln(11.11.(2017全国3卷)已知函数()1ln f x x a x =−−. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋅⋅⋅+<,求m 的最小值. 解析:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x −−>,令112nx =+得11ln(1)22n n +<,从而221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=−<.故2111(1)(1)(1)222n e ++⋅⋅⋅+<,23111(1)(1)(1)2222+++>,所以m 的最小值为3.2,.两个正数a 和b 的对数平均定义:(),(,)ln ln ().a ba b L a b a b a a b − ≠=− = 对数平均与算术平均、几何平均的大小关系:(,)2a bL a b +≤≤(此式记为对数平均不等式,取等条件:当且仅当a b =时,等号成立. 进一步,在不等式左端结合均值不等式可得:当0b a >>时211ln ln b a b a a b−>−+,即111ln ln ()2b a b a a b −<+−.令,1a n b n ==+,则111ln(1)ln ()21n n n n +−<++,所以111ln(1)ln ()21n n n n +−<++①.(,)L a b <1ln ln ln 2ln (1)a a b x x x b x ⇔−<⇔<⇔<−=>其中,接下来令t=2−>1(1)lnn>+,1()nlnn+>②.12.已知函数(1)()ln(1)1x xf x xxλ++−+,设数列{}na的通项111123nan=++++,证明:21ln24n na an−+>.解析:由上述不等式①,所以111ln(1)ln()21n nn n+−<++,111ln(2)ln(1)()212n nn n+−+<+++,111ln(3)ln(2)()223n nn n+−+<+++…,111ln2ln(21)()2212n nn n−−<+−.将以上各不等式左右两边相加得:1122221ln2ln()2123212n nn n n n n n−<+++++++++−,即111211ln22123214n n n n n n<+++++++++−,故11211ln212324n n n n n+++++>+++,即21ln24n na an−+>.13.已知函数()ax xf x xe e=−.(1)当1a=时,讨论()f x的单调性;(2)当0x>时,()1f x<−,求a的取值范围;(3)设*n N∈(1)ln n+…+>+.【答案】(31()nlnn+>,进一步求和可得:11231()(...)(1)12n nk kk nln ln ln nk n=++>=×××=+∑, (1)ln n+>+.题型三数列恒成立问题14.已知等差数列{}n a的前n项和记为n S(*n∈N),满足235326a a S+=+,数列{}n S为单调递减数列,求1a的取值范围. 【答案】(),2−∞【分析】设等差数列{}n a 的公差为d ,由已知可得2d =−,求得n S ,由数列的单调性列不等式即可得1a 的取值范围;【详解】设等差数列{}n a 的公差为d ,由于235326a a S +=+, 所以()()1113225106a d a d a d +++=++,解得2d =−, 所以()()211112n n n S na d n a n −=+=−++,若数列{}n S 为单调递减数列,则10n n S S +−<对于*n ∈N 恒成立,所以()()()()221111111120n n S S n a n n a n a n + −=−++++−−++=−<在*n ∈N 上恒成立, 则12a n <,所以()1min 2a n <,又数列{}2n 为递增数列,所以()min 2212n =×=,即12a <, 故1a 的取值范围为(),2−∞15.已知数列{}n a 满足:11a =,12n n a a +=.设()232n n b nn a −−⋅,若对于任意的N n ∗∈,n b λ≤恒成立,则实数λ的取值范围为 【答案】1,2+∞【分析】由11a =,12n n a a +=可得112n n a −=,进而得到21322n n n n b −−−=,结合()152n nnn n b b +−−=−,分15n ≤≤和6n ≥分类讨论,确定数列{}n b 的单调性,求出n b 最大值,进而得解.【详解】由数列{}n a 满足11a =、1n n a a +=得:{}n a 是首项为1,公比为12的等比数列, ∴112n n a −=,∴21322n n n n b −−−=,∴()()()22111312532222n nn n nn n n n n n b b +−+−+−−−−−=−=−, 当15n ≤≤时,10n n b b +−≥,∴1n n b b +≥,当且仅当5n =时取等号,65b b =, 当6n ≥时,10n n b b ,∴1n n b b +<,当5n ≤时,数列{}n b 单调递增,当6n ≥时,数列{}n b 单调递减,则当5n =或6n =时,()24max 2512152n b −==−, 而任意的N n ∗∈,n b λ≤恒成立,则12λ≥,∴实数λ的取值范围为1,2+∞.16.已知数列{an }对任意m ,n ∈N *都满足am +n =am +an ,且a 1=1,若命题“∀n ∈N *,λan ≤2n a +12”为真,则实数λ的最大值为 . 【答案】7【分析】先求出{}n a 的通项公式,然后参变分离转化为求最值【详解】令m =1,则a n+1=a n +a 1,a n+1-a n =a 1=1,所以数列{a n }为等差数列,首项为1,公差为1,所以a n =n , 所以λa n ≤2n a +12⇒λn ≤n 2+12⇒λ≤n +12n, 又函数12y x x=+在(0,上单调递减,在)+∞上单调递增, 当3n =或4n =时,min 12()7n n+=所以7λ≤【分析】先由题设求得n a ,然后利用数列的单调性求得其最大值,把对任意0λ>,所有的正整数n 都有22n k a λλ−+>成立转化为12k λλ<+对任意0λ>恒成立,再利用基本不等式求得12λλ+的最小值,即可得到答案.【详解】由()()211231222113n n a a a a n n n −++++=+− , 当2n ≥时,()()2212311222123n n a a a a n n n −−++++=−− , 两式相减可得:()()()()()112111213n n a n n n n n n n n −=+−−−−=−, ∴()112n n n n a −−=,由10a =,显然成立, 设()()22211112232222n nnn n nn n n n n n n n n na a +−+−+−+−+−=−==, ∴当03n <≤时,10n n a a +−>,当4n ≥时,10n n a a +−<,因此,03n <≤,数列{}n a 单调递增,当4n ≥时,数列{}n a 单调递减, 由332a =,432a =,故当3n =或4n =时,数列{}na 取最大值,且最大值为32,对任意0λ>,所有的正整数n 都有22n k a λλ−+>成立,可得2322k λλ−+>, 因此,212k λλ<+,即12k λλ<+对任意0λ>恒成立,由12λλ+≥12λλ=,即λ=min 12k λλ <+ ∴实数k 的取值范围是(−∞.18.已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是 .【答案】15,4 +∞【分析】先分离参数将问题转化为232n n n λ+≤对于任意*n ∈N 恒成立,进而转化为2max 3()2n n n λ+≤,构造232n nn nb +=,再作差判定单调性求出数列{}n b 的最值,进而求出λ的取值范围. 【详解】因为23n a n n =+,且2nn a λ≤对于任意*n ∈N 恒成立,所以232nn n λ+≤对于任意*n ∈N 恒成立,即2max 3()2n n n λ+≤, 令232n nn n b +=,则2221113(1)(1)3354222n nn n n n n n n n n b b +++++++−++−=−=, 因为21302b b −=>,32104b b −=>,43102b b −=−<, 且21135402n nn n n b b ++−++−=<对于任意3n ≥恒成立, 所以12345b b b b b <<>>>⋅⋅⋅,即2max 3315()24nn n b +==, 所以实数λ的取值范围是15,4+∞【分析】利用11,1,2n n n S n a S S n −= =−≥ ,得到118a =,1433nn n a a −=×−,变形后得到3n n a 是等差数列,首项为6,公差为4,从而求出()423nn a n =+⋅,故代入n a ≥3n n ≥,利用作差法得到3n n 单调递减,最小值为13,列出不等式求出答案.【详解】当1n =时,2111332a S a ==−,解得:118a =, 当2n ≥时,111333322n n n n n n n a S a a S −−+==−+−−, 整理得1433nn n a a −=×−,方程两边同除以3n ,得11343n n nn a a −−−=,又163a =,故3n n a 是等差数列,首项为6,公差为4, 所以()123644nnn n a =+−=+, 故()423n n a n =+⋅,经验证,满足要求,所以n a ≥为()423nn +⋅≥故3nn≥,对任意N n +∈恒成立, 111113123333n n n n n n n n n+++++−−−==,当1n ≥时,111120333n n n n n n +++−−=<, 故1133n n n n ++<, 3n n 单调递减,当1n =时,3nn 取得最大值13,故13≥,解得:136k ≥, 则k 的最小值为136【分析】先利用等差数列通项公式求解n a ,再利用数列的单调性求解数列()()221212n n n b n −−=−⋅的最大值,进而解决不等式恒成立问题即可.【详解】由()*122n n n a a a n ++=+∈N 可知数列{}n a 是等差数列,设其公差为d , 解方程218650x x −+=得5x =或13x =,又73a a >, ∴37513a a ==,,73135424d a a d −−=∴== ,, ()52321n a n n ∴=+−=−.由()()2241n n n a a λ−>−得()()()2224212n n n λ>−−−,()()2212142n n n λ−−>−∴−,设()()221212n n n b n −−=−⋅, 则()()()()2232111221252212212412n n n n n n n n n b b n n n −+−−−−+−−=−=+⋅−⋅−⋅,由()21412n n −−⋅>0对于任意*n ∈N 恒成立,所以只考虑32252n n −+−的符号,设()()322521f n n n n =−+−≥,()()2610235f n n n n n ′=−+=−−, 令()0f n ′>解得513n ≤<,即()f n 在513n ≤<上单调递增, 令()0f n ′<解得53n >,即()f n 在53n >上单调递减,()11f =,()22f =,()311f =−,当3n ≥,()()30f x f ≤<,当1n =,2n =时,()0f n >,即10n n b b +−>,123b b b ∴<<, 当3n ≥,()0f x <,即()221132520412n n n n n b b n +−−+−−=<−⋅, 即从3n ≥,n b 开始单调递减, 即325≤=n b b ,245λ∴−>,即185λ<,λ∴的取值范围为185−∞ ,.解:14122n n nb n na −−−=, 则()()211112135222n n nT −−=−+−×+−×++ ,则()2111132121322222n n n n n T −−−=−×+−×+++ , 两式相减得:()()2312111111112121122212()123+122222222212nn n n n n n n n n T −−−−−−=−+−×++++−=−+−×−=−−− 于是得3112126+2n n n n T −−−=−−, 由1361122n nn T +>−+得:12512n n −+<,即12250n n −−−>,令1225n n c n −−−,N n ∗∈, 显然,16c =−,27c =−,37c =−,45c =−,51c =,由111(227)(225)220n n n n n c c n n −−+−=−−−−−=−>,解得2n >,即数列{}n c 在3n ≥时是递增的,于是得当12250n n −−−>时,即510n c c ≥=>,5n ≥,则min 5n =, 所以不等式1361122n nn T +>−+成立的n 的最小值是5.22.已知数列{}n a 中,11a =,满足()*1221N n n a a n n +=+−∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,若不等式240nn S λ⋅++>对任意正整数n 恒成立,求实数λ的取值范围.解析:(1)()()1211221n n a n a n ++++=++, 所以{}21n a n ++是以12114a +×+=为首项,公比为2的等比数列, 所以1121422n n n a n −+++=×=,所以1221n n a n +−−.(2)()()()231122325221n n n S a a a n + =+++=−+−++−+ ()()23122235721n n ++++−+++++ ()()222212321122242n n n n n n +−++=−−−−−, 若240nn S λ⋅++>对于*N n ∀∈恒成立,即22222440n n n n λ+⋅+−−−+>,可得22222n n n n λ+⋅>+−即2242nn n λ+>−对于任意正整数n 恒成立, 所以2max 242n n n λ +>− ,令()242n n n n b +=−,则21132n n n n b b ++−−=, 所以1234b b b b <>>>…,可得()222max222422n b b +×==−=−,所以2λ>−,所以λ的取值范围为()2,−+∞。
典型例题:用放缩法证明不等式
用放缩法证明不等式之南宫帮珍创作所谓放缩法就是利用不等式的传递性, 对比证题目标进行合情合理的放年夜和缩小的过程, 在使用放缩法证题时要注意放和缩的“度”, 否则就不能同向传递了, 此法既可以独自用来证明不等式, 也可以是其他方法证题时的一个重要步伐.下面举例谈谈运用放缩法证题的罕见题型.一. “添舍”放缩通过对不等式的一边进行添项或减项以到达解题目的, 这是惯例思路.例1. 设a , b 为不相等的两正数, 且a 3-b 3=a 2-b 2, 求证143<+<a b .证明:由题设得a 2+ab +b 2=a +b , 于是(a +b )2>a 2+ab+b 2=a +b , 又a +b >0, 得a +b >1, 又ab <14(a +b )2, 而(a +b )2=a +b +ab <a +b +14(a +b )2, 即34(a +b )2<a +b , 所以a +b <43, 故有1<a +b <43. 例2. 已知a 、b 、c 不全为零, 求证: 证明:因为a ab b a b b a b a b a b 22222234222++=+++=++()>()≥, 同理b bc c b c222+++>,c ac a c a222+++>.所以a ab b b bc c c ac a a b c 22222232++++++++++>()二. 分式放缩一个分式若分子变年夜则分式值变年夜, 若分母变年夜则分式值变小, 一个真分式, 分子、分母同时加上同一个正数则分式值变年夜, 利用这些性质, 可到达证题目的.例3. 已知a 、b 、c 为三角形的三边, 求证:12<++<a b c b a c c a b+++.证明:由于a 、b 、c 为正数, 所以a b c a a b c +++>, b a c b a b c +++>, c a b c a b c+++>, 所以a b c b a c c a ba abc b a b c c a b c +++++>++++++++=1, 又a , b , c 为三角形的边, 故b +c >a , 则a b c +为真分数, 则a b c a a b c+++<2, 同理b a c b a b c +++<2, c a b ca b c+++<2,故a b c b a c c a b a a b c b a b c c a b c +++++++++=++<++2222. 综合得12<++<ab c b a c c a b+++. 三. 裂项放缩若欲证不等式含有与自然数n 有关的n 项和, 可采纳数列中裂项求和等方法来解题.例4. 已知n∈N*, 求n 2n131211<…++++.证明:因为, 则11213+++…<()()…()<++-+-++--=-1122123221212nn n n n, 证毕.例5. 已知*N n ∈且)1n (n 3221a n +++⨯+⨯=, 求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立.证明:因为n n n n =>+2)1(, 所以2)1n (n n 21a n +=+++> ,又2)1()1(+<+n n n n , 所以2)1n (21n 225232)1n (n 232221a 2n +=++++=++++++< , 综合知结论成立.四. 公式放缩利用已知的公式或恒不等式, 把欲证不等式变形后再放缩, 可获简解.例6. 已知函数1212)(+-=x x x f , 证明:对*N n ∈且3≥n 都有1)(+>n n n f . 证明:由题意知)12)(1()12(212211)111()1221(112121)(+++-=+-+=+--+-=+-+-=+-n n n n n n n n n n n n n n n f ,又因为*N n ∈且3≥n , 所以只须证122+>n n , 又因为1n 21n 2)1n (n n 1C C C C C )11(2nn 1n n2n 1n 0n n n +>+++-++=+++++=+=- 所以1)(+>n n n f . 例7. 已知2x 1)x (f +=, 求证:那时a b ≠f a f b a b ()()-<-.证明:f a f b a b a b a b a b a b a b ()()-=+-+=-+++=+-+++11111122222222ba ba ba )b a (ba b a b a -=+-+<+-+<证毕.五. 换元放缩对不等式的某个部份进行换元, 可显露问题的实质, 然后随机进行放缩, 可达解题目的.例8. 已知c b a >>, 求证0ac 1c b 1b a 1>-+-+-. 证明:因为c b a >>, 所以可设t c a +=, )0u t (u c b >>+=, 所以0u t >-则0tuut t 1u 1t 1u 1u t 1a c 1c b 1b a 1>-=->-+-=-+-+-, 即0ac 1c b 1b a 1>-+-+-. 例9. 已知a, b, c 为△ABC 的三条边, 且有222c b a =+, 当*N n ∈且3n ≥时, 求证:n n n c b a <+.证明:由于a b c 222+=, 可设a=csina, b=ccosa (a 为锐角), 因为01<<sina , 01<<cosa , 则那时n ≥3, sin sin n a a <2,cos cos n a a <2,所以a b c a a c a a c n n n n n n n +=+<+=(sin cos )(sin cos )22.六. 单调函数放缩根据题目特征, 通过构造特殊的单调函数, 利用其单调性质进行放缩求解.例10. 已知a, b∈R, 求证b1b a1a ba 1b a +++≤+++.证明:构造函数)0x (x1x)x (f ≥+=, 首先判断其单调性, 设21x x 0<≤, 因为0)x 1)(x 1(x x x 1x x 1x )x (f )x (f 2121221121<++-=+-+=-, 所以()()21x f x f <, 所以)x (f 在],0[+∞上是增函数, 取b a x 1+=, b a x 2+=,显然满足21x x 0≤≤,所以|)b ||a (|f )b a (f +≤+, 即|b |1|b ||a |1|a ||b ||a |1|b ||b ||a |1|a ||b ||a |1|b ||a ||b a |1|b a |+++≤+++++=+++≤+++.证毕.。
放缩法证明数列不等式典例精讲
放缩法证明数列不等式典例精讲1.已知数列a n 的前n 项和为S n ,若4S n =2n -1 a n +1+1,且a 1=1(1)求证:数列a n 是等差数列,并求出a n 的通项公式(2)设b n =1a n S n ,数列b n 的前n 项和为T n ,求证:T n <32解:(1)4S n =2n -1 a n +1+1∴4S n -1=2n -3 a n +1n ≥2∴4a n =2n -1 a n +1-2n -3 a n n ≥2即2n +1 a n =2n -1 a n +1⇒a n +1a n =2n +12n -1∴a n a n -1=2n -12n -3,a n -1a n -2=2n -32n -5,⋯,a 3a 2=53∴a n a n -1⋅a n -1a n -2⋅⋯⋅a 3a 2=2n -12n -3⋅2n -32n -5⋅⋯⋅53即a n a 2=2n -13n ≥2 ∴a n =2n -13a 2,由4S n =2n -1 a n +1+1令n =1可得:4S 1=a 2+1⇒a 2=3∴a n =2n -1n ≥2 ,验证a 1=1符合上式∴a n =2n -1S n =n 2(2)由(1)得:b n =12n -1 n 2=1n 2n -1 b 1=1可知当n ≥2时,b n =1n 2n -1 <1n 2n -2 =12n n -1=121n -1-1n ∴T n =b 1+b 2+⋯+b n <b 1+121-12 +12-13+⋯+1n -1-1n=1+121-1n <32不等式得证2.设数列a n 满足:a 1=1,a n +1=3a n ,n ∈N ∗,设S n 为数列b n 的前n 项和,已知b 1≠0,2b n-b 1=S 1⋅S n ,n ∈N ∗(1)求数列a n ,b n 的通项公式(2)求证:对任意的n ∈N ∗且n ≥2,有1a 2-b 2+1a 3-b 3+⋯+1a n -b n<32解:(1)∵a n +1=3a n ∴a n 为公比是3的等比数列∴a n =a 1⋅3n -1=3n -1在b n 中,令n =1,2b 1-b 1=S 1⋅S 1⇒b 1=1∴2b n -1=S n 2b n -1-1=S n -1∴2b n -2b n -1=b n n ≥2 ⇒b n =2b n -1∴b n 是公比为2的等比数列∴b n =b 1⋅2n -1=2n -1(2)证明:1a n -b n =13n -1-2n -1<13n -21a 2-b 2+1a 3-b 3+⋯+1a n -b n<1+13+⋯+13n -2=1⋅1-13n -11-13=321-13n -1<323.已知正项数列a n 的前n 项和为S n ,且a n +1a n=2S n ,n ∈N ∗(1)求证:数列S 2n 是等差数列(2)记数列b n =2S 3n ,T n =1b 1+1b 2+⋯+1b n ,证明:1-1n +1<T n ≤32-1n解:(1)a n +1a n =2S n ⇒S n -S n -1+1S n -S n -1=2S n n ≥2∴1S n -S n -1=S n +S n -1∴S 2n -S 2n -1=1∴S 2n 为等差数列(2)思路:先利用(1)可求出S n 的公式进而求出b n =2n n ,则1b n =12n n,考虑进行放缩求和,结合不等号的方向向裂项相消的形式进行放缩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放缩法证明数列不等式
主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n
-=<<=-++-- 2221144112()141(21)(21)21214
n n n n n n n <===--+--+-
2. ==>=
==<=
=<=
==
4.
=<
=
= 5. 121122211(21)(21)(22)(21)(21)2121n n n n n n n n n n ---<==-------- 6.
111
22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+⋅+⋅⋅+⋅
例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b ,
且n c =(1)求n c ;(2)证明:
4444123111174n c c c c ++++<L
例2.
证明:16117<+
+<L
例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a +
=,*n N ∈; (1)求证:数列{}
2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++⋅+>-
(3)记312311112,n n n n b s T b b b b ==
++++L
,证明:312n T <<
例4. 已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭
是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2
2++<L
例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-;
(1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-<L
例6. 数列{}n a 满足:11122,1()22
n n n n n a a a n a ++==++; (1)设2n
n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162n c c c c ≤++++<L
例7. 已知正项数列{}n a 的前n 项的和为n s 满足:1,6(1)(2)n n n n s s a a >=++;
(1)求n a ;
(2)设数列{}n b 满足(21)1,n b
n a -=并记123n n T b b b b =++++L , 求证:(3)231log n a n T ++>(函数的单调性,贝努力不等式,构造,数学归纳法)
例8. 已知正项数列{}n a 满足:111
(1)1,1n n n n na n a a a a +++==+ , 记2111222231111,[](2)n n b a b n a n a a a -==+
+++≥L 。
(1)求n a ;
(2)证明:1231111(1)(1)(1)(1)4n b b b b ++++<L。