双曲函数及其几何意义
双曲空间中的双曲线_寿乐丽
注意到(13)式, 上式右端当且仅当 sin 2θ = 0
时取零值. 另由(21)式可知, 此时θ 只能取 0 和 π ,
分别对应双曲பைடு நூலகம்在 x 轴上的 2 个顶点. 进一步由正
弦函数的性质可得, 双曲线上的点到其中心的距
离当且仅当在顶点上达到最小值.
定理 4 的证明 由定义 3 可知, 双曲线的渐近
ch d1 = ch δ ch c − shδ sh c cos(π − θ ) ,
(18)
ch d2 = chδ ch c − shδ sh c cosθ .
(19)
另一方面, 由 ch(d1 −d2 ) = ch d1 ch d2 − sh d1 sh d2
和 sh2 di = ch2 di − 1, 则有:
由此建立在 H 2 (−1) 上到 F1 和 F2 两点距离之 差为常数 2a < 2c 点的轨迹方程. 为此, 在 H 2 (−1)
的测地极坐标系中取异于 F1 和 F2 的点 P(δ ,θ ) . 记
+ + P 到 Fi 的距离为 di , 由双曲余弦定理(16)式, 在 OPF1 和 OPF2 中分别有:
基金项目: 国家自然科学基金(11101230); 宁波大学学科项目(XKL11D2051).
第一作者: 寿乐丽(1978-), 女, 浙江诸暨人, 硕士/讲师, 主要研究方向: 微分几何. E-mail: shouleli@
第2期
寿乐丽, 等: 双曲空间中的双曲线
53
定义 2 在双曲平面上, 双曲线与其对称轴的 交点称为双曲线的顶点.
者将在双曲空间中引进恰当的双曲线概念, 并详
细探讨其几何性质, 考察其与欧氏空间中双曲线
21.5.3反比例函数的几何意义课件
解析
本题考查了反比例函数的性质以及等比数列求和 公式。首先根据 x^2n = 9 求出 x^n 的值,然后 将原式变形为等比数列求和的形式进行计算即可 。
解析
本题考查了反比例函数的性质以及不等式组的解 法。首先根据题意列出不等式组求解即可得出 m 的取值范围。
06
总结回顾与课后作业布置
重点难点总结回顾
21.5.3反比例函数 的几何意义课件
汇报人:XXX 2024-01-26
目录
• 反比例函数基本概念 • 反比例函数与直线交点问题 • 反比例函数与面积问题 • 反比例函数在几何图形中应用 • 拓展延伸:反比例函数综合题解析 • 总结回顾与课后作业布置
01
反比例函数基本概念
定义与性质
定义:形如 $y = frac{k}{x}$($k$ 为常 数,$k neq 0$)的函数称为反比例函 数。
在三角形中应用
面积与底高的反比例关系
在三角形中,当底边长度固定时,面积与高成反比例关系; 同样,当高固定时,面积与底边长度成反比例关系。
相似三角形的边长与面积关系
对于两个相似的三角形,其对应边长之比等于相似比的平方 ,而面积之比等于相似比的平方。利用反比例函数可以方便 地求解相关问题。
在四边形中应用
本题考查了反比例函数与一次 函数的交点问题,通过已知条 件列出方程组求解即可。
已知反比例函数 y = k/x (k > 0) 的图象上有两点 A(x1, y1) 和 B(x2, y2),且 x1 < x2,试 比较 y1 和 y2 的大小。
本题考查了反比例函数的增减 性,根据反比例函数的性质, 当 k > 0 时,在每个象限内, y 随 x 的增大而减小。因此, 由于 x1 < x2,可以得出 y1 > y2。
初等函数的求导问题双曲函数与反双曲函数的导数
切线斜率
在几何上,导数等于曲线在某一点处 的切线斜率。
导数的计算方法
链式法则
对于复合函数的导数,链式法 则是重要的计算方法,即求内 层函数的导数后再乘以外层函
数的导数。
乘积法则
两个函数的乘积的导数是两个 函数分别求导后再求和。
商的导数公式
商的导数是分子和分母分别求 导后再相减。
幂函数的导数
幂函数的导数根据指数的不同 有不同的公式,如指数为1时, 幂函数的导数为y' = nx^(n-1)
实例
求双曲函数$y = sinh(2x)$的导
数。根据求导公式,$y'
=
cosh(2x)$。
反双曲函数求导实例
反双曲函数求导公式
对于反双曲函数$y = arcsin(x)$,其 导数为$y' = frac{1}{sqrt{1 - x^2}}$。
实例
求反双曲函数$y = arcsin(frac{1}{2})$的导数。根据求导 公式,$y' = frac{1}{sqrt{1 (frac{1}{2})^2}} = frac{1}{frac{sqrt{3}}{2}} = frac{sqrt{3}}{3}$。
应用实例分析
应用实例
在物理学中,双曲函数和反双曲函数常用于描述某些物理现 象,如波动、振动等。通过求导,可以进一步研究这些现象 的变化规律和性质。
应用实例
在经济学中,反双曲函数也常用于描述某些经济现象,如投 资回报率、风险评估等。通过求导,可以进一步研究这些现 象的变化趋势和最优解。
感谢您的观看
利用导数研究函数的图像
总结词
通过求导可以绘制出函数的图像,并 了解其变化趋势。
详细描述
双曲线b的几何意义
双曲线b的几何意义
双曲线是一种具有曲线的几何图形,它有两个曲线,被称为双曲线b。
它的几何意义是,它是一种反比例函数,即当一
个变量增加时,另一个变量减少,反之亦然。
这个关系可以用曲线来表示。
双曲线b可以用一个变量x表示,另一个变量y也可以表示,这两个变量之间的关系可以用一个关系式来表示:y=1/x。
因此,双曲线b的几何意义是,当x增加时,y减少,反之亦然。
双曲线b的几何意义被广泛应用于数学、物理和化学等科学领域。
例如,在物理学中,双曲线b可以用来描述一个物体的力学运动;在化学中,它可以用来描述反应的速率;在数学中,它可以用来描述曲面的几何形状。
双曲线b还被广泛应用于商业领域,如财务分析、市场研究和经济学等。
例如,双曲线b可以用来描述消费者的需求和价格之间的关系,以及企业的收入和利润之间的关系。
双曲线
b还可以用来描述投资者的风险和回报之间的关系,以及市场
的供求关系等。
总之,双曲线b的几何意义是,它是一种反比例函数,表示两个变量之间的关系,它被广泛应用于数学、物理、化学和商业等不同领域。
反比例函数中K的几何意义
反比例函数中K的几何意义
在反比例函数中,K表示比例系数或常数,也被称为反比例常数。
它
是用来确定两个变量之间反比关系的重要参数。
反比例函数的一般形式为:y=K/x,其中K表示比例系数。
K的几何意义可以通过分析反比例函数的图像得出。
反比例函数的图
像是一个双曲线,特点是曲线趋向于两个坐标轴。
下面将详细讨论K的几
何意义。
1.K的符号对于曲线的位置以及开口方向具有重要影响。
如果K为正数,那么曲线将位于第一和第三象限,并且开口方向为右上和左下。
如果
K为负数,那么曲线将位于第二和第四象限,并且开口方向为左上和右下。
2.K的绝对值越大,曲线就越“陡峭”。
当K增大时,曲线将更加接
近于坐标轴,并且在原点附近的斜率会越来越大。
反之,当K变小时,曲
线将更加平缓,斜率将减小。
3.K决定了特定坐标点的函数值。
例如,在函数y=K/x中,当x为K 时,y的值将为1、这是因为x与y成反比关系,而K是这种关系的常数。
4.K还决定了曲线相对于坐标轴的位置。
具体而言,当K增大时,曲
线将向坐标轴移动,而当K减小时,曲线将远离坐标轴。
总之,K代表了反比例函数中的比例系数或常数,它对于函数的位置、开口方向、陡峭程度以及特定坐标点的函数值都具有重要影响。
通过对K
的分析,我们可以更好地理解和解释反比例函数的几何特征。
函数几何知识点总结
函数几何知识点总结一、函数的几何意义函数的几何意义是指函数在几何中的表现和应用。
在几何中,函数可以被用来描述和分析各种图形和曲线的形态、性质和特点。
函数的几何意义通常是通过函数的图像来展现的。
1.1 函数的图像函数的图像是函数在平面直角坐标系中的表现形式,通过绘制函数的图像,我们可以直观地看到函数的性质和特点。
对于一元函数f(x),其图像是由一组点(x, f(x))构成的集合,这些点表示了函数在定义域上的取值情况。
函数的图像可以帮助我们直观地理解函数的变化规律和特点,例如函数的增减性、奇偶性、周期性、极限性等。
通过函数的图像,我们可以了解函数的几何特性,以及函数与其他图形之间的关系。
1.2 函数的几何性质在几何中,函数的几何性质是指函数在平面几何中的几何特点和规律。
通过函数的图像和几何分析,我们可以得到函数的一些重要几何性质,如函数的极值、拐点、渐近线、对称轴等。
函数的极值是指函数在定义域内取得的最大值和最小值,函数的极值可以通过函数的导数和二阶导数进行求解。
函数的拐点是指函数图像上的点,其切线在该点处有一个拐点,即函数的导数的变化率发生突变的点。
函数的渐近线是指函数图像在无限远处的一个趋势线,通过渐近线可以描述函数的趋势和变化规律。
函数的对称轴是指函数图像上存在的一条对称轴线,函数关于对称轴线呈现对称性。
1.3 几何图形的方程函数可以用来描述和分析各种几何图形的形态和性质,例如直线、圆、椭圆、双曲线、抛物线等。
在几何中,通过函数的方程我们可以得到各种几何图形的数学描述,例如直线的方程可以用一元一次函数来表示,圆的方程可以用二元二次函数来表示。
通过函数的方程,我们可以分析几何图形的各种性质和特点,例如直线的斜率和截距、圆的半径和圆心、椭圆的焦点和长轴、双曲线的渐近线和焦点等。
函数的方程在几何中有着广泛的应用,可以帮助我们更好地理解几何图形的形态和性质。
二、函数的性质函数的性质是函数在数学中的一些重要特点和规律,这些性质包括增减性、奇偶性、周期性、单调性、最值和极值等。
高考双曲线知识点
高考双曲线知识点高考双曲线知识点在我们的学习时代,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
相信很多人都在为知识点发愁,下面是店铺精心整理的高考双曲线知识点,欢迎阅读,希望大家能够喜欢。
高考双曲线知识点篇1高考双曲线知识点1.双曲线定义的文字表述双曲线,是指一动点移动于一个平面上,与平面上两个定点的距离的差的绝对值始终为一定值时所成的轨迹叫做双曲线。
2.双曲线定义的分析1)点:两个定点 ,一个动点2)距离:三个3)量:两个(常数)4)关系式:两个;一个等式 ,一个不等式3.判断一个动点轨迹是否是双曲线的标准1)看动点到两个定点的距离的差的绝对值是否为常数2)看这个常数是否小于两个定点之间的距离高考数学三角函数知识点一、三角函数三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解最简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的应用,如何运用三角函数的图像解决问题能够帮助对数形结合思想的掌握。
二、三角函数诱导公式1.公式一:设α为任意角,终边相同的角的同一三角函数的值相等运用同角三角函数的基本关系式求值2.公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα高考数学几何定理1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角猜你感兴趣:1.2018高考数学知识点归纳总结2.高考数学知识点总结3.2018数学高考知识点4.高考导数大题解题技巧5.8年级下册数学知识点6.2018高考全国卷I理科数学试卷评析高考双曲线知识点篇2一、用好双曲线的对称性例1若函数y=kx(k>0)与函数y=的图象相交于A、C两点,AB⊥x 轴于B。
反比例函数高频考点重难点总结
反比例函数高频考点重难点总结一、反比例函数的概念:一般地,形如 y = k/x ( k是常数, k ≠ 0 ) 的函数叫做反比例函数。
二、反比例函数的图象和性质:1、形状:图象是双曲线。
2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时,>3、增减性:(1)当k>0时,在每个象限内,y随x的增大而减小;(2)当k<>在每个象限内,y随x的增大而增大。
4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交。
5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点中心对称;(2)对于k取互为相反数的两个反比例函数(如:y = 6/x 和y = -6/x)来说,它们是关于x轴,y轴对称。
三、反比例函数中比例系数k的几何意义:1、反比例函数与矩形面积:若P(x,y)为反比例函数y=k/x(k≠0)图像上的任意一点如图1所示,过P作PM⊥x轴于M,作PN⊥y轴于N,求矩形PMON的面积.分析:S矩形PMON=PM·PN=│y│·│x│=│xy│∵y=k/x,∴ xy=k,∴S =│k│.2、反比例函数与三角形面积:若Q(x,y)为反比例函数y=k/x(k≠0)图像上的任意一点如图2所示,过Q作QA⊥x轴于A(或作QB⊥y轴于B),连结QO,则所得三角形的面积为:S△QOA=│k│/2(或S△QOB=│k│/2).说明:以上结论与点在反比例函数图像上的位置无关.四、反比例函数图像与一次函数图像的交点(难点)求两个函数图像的交点,往往把两个函数的表达式联立组成方程组,方程组的解就是交点的坐标。
(1)正比例函数y=k₁x(k₁≠0)与反比例函数y=k₂/x(k₂≠0),当k₁与k₂同号时,正比例函数图像与反比例函数图像有两个交点,即对应方程组的解,且两个交点关于原点对称;当k₁与k₂异号时,两个函数图像没有交点。
反比例函数K的几何意义
【山东·全国考题回访】
1.(2014·济南中考)如图,△OAC和△BAD都是等
如图,过y轴正半轴上的任意一点P,作x轴 的平行线,分别与反比例函数y=-4/x和 y=2/x交于点A和点B,若点C是x轴上任意一 点,连接AC、BC,则△ABC的面积为
点B,D在反比例函数y=b/x(b<0)的图象上,
AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,
AB与CD的距离为5,则a-b的值是
则S△OBC=
1·(-x)·22y=6.解得k=xy=-6. 2
答案:-6
如图,直线l⊥x轴于点P,且与反比例函数 y1=k1/x(x>0)及y2=k2/x(x>0)的图像分别交于点A, B,连接OA,OB,已知△OAB的面积为3,则k1-k2 的值等于( )
如图△P1OA1,△P2A1A2是等腰直角三角形,点P1, P2在函数y=4/x(x>0)的图象上,斜边OA1,A1A2 都在x轴上,则点A2的坐标是______.
答案:6
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同 时落在反比例函数的图象上,猜想是哪两个点, 并求矩形的平移距离和反比例函数的解析式.
(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4, 点A的坐标为(2,6). ∴AB=CD=2,AD=BC=4, ∴B(2,4),C(6,4),D(6,6);
腰直角三角形,∠ACO=∠ADB=90°,反比例函数 y= k 在第一象限的图象经过点B,若OA2-AB2=12, 则kx的值为_______.
双曲函数和三角函数
三角函数的定义直角坐标系中定义直角三角形定义a, b, h 为角A的对边、邻边和斜边在笛卡尔平面上f(x) = sin(x) 和f(x) = cos(x) 函数的图像。
单位圆定义六个三角函数也可以依据半径为一中心为原点的单位圆来定义。
单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。
但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和π/2 弧度之间的角。
它也提供了一个图像,把所有重要的三角函数都包含了。
根据勾股定理,单位圆的等式是:x2+y2=1对于大于 2π或小于−2π的角度,可直接继续绕单位圆旋转。
在这种方式下,正弦和余弦变成了周期为 2π的周期函数:级数定义只使用几何和极限的性质,可以证明正弦的导数是余弦,余弦的导数是负的正弦。
(在微积分中,所有角度都以弧度来度量)。
我们可以接着使用泰勒级数的理论来证明下列恒等式对于所有实数x都成立:这些恒等式经常被用做正弦和余弦函数的定义。
它们经常被用做三角函数的严格处理和应用的起点(比如,在傅立叶级数中),因为无穷级数的理论可从实数系的基础上发展而来,不需要任何几何方面的考虑。
这样,这些函数的可微性和连续性便可以单独从级数定义来确立。
在这种形式的表达中,分母是相应的阶乘,分子称为“正切数”,它有一个组合解释:它们枚举了奇数势的有限集合的交错排列(alternating permutation)。
在这种形式的表达中,分母是对应的阶乘,而分子叫做“正割数”,有组合解释:它们枚举偶数势的有限集合的交错排列。
从复分析的一个定理得出,这个实函数到复数有一个唯一的解析扩展。
它们有同样的泰勒级数,所以复数上的三角函数是使用上述泰勒级数来定义的。
与指数函数和复数的联系可以从上述的级数定义证明正弦和余弦函数分别是复指数函数在它的自变量为纯虚数时候的虚数和实数部分:这个联系首先由欧拉注意到,叫做欧拉公式。
在这种方式下,三角函数在复分析的几何解释中变成了本质性的。
反比例函数k 的几何意义
反比例函数k 的几何意义全文共四篇示例,供读者参考第一篇示例:反比例函数是一种常见的函数形式,它在数学中起着重要的作用。
在数学中,反比例函数通常表示为y = k/x,其中k是一个常数。
在本文中,我们将探讨反比例函数k的几何意义,以便更好地理解它在数学中的应用。
让我们来看看反比例函数y = k/x的图像是什么样子的。
当k大于0时,函数图像呈现出一种特殊的形状,即一条从第一象限经过原点的曲线。
这种曲线被称为双曲线。
双曲线在数学中有着广泛的应用,例如在物理学和工程学中,它往往用来描述两个量之间呈反比例关系的情况。
在几何意义上,反比例函数k的值可以理解为曲线在坐标系中的形态和性质。
当k越大时,曲线越扁平,即曲线的曲率越小。
反之,当k 越小时,曲线越尖锐,曲率越大。
反比例函数k的值可以用来描述曲线的形状和性质。
反比例函数k的几何意义还可以从另一个角度来理解。
在数学中,函数y = k/x表示了两个变量之间的反比例关系。
当x增大时,y的值会减小。
这表明两个变量之间存在一种相反变化的关系。
在几何上,这种反比例关系可以理解为一种“交换”的关系,即当一个变量增大时,另一个变量会减小,反之亦然。
反比例函数k在数学中具有重要的几何意义。
它不仅可以描述曲线的形状和性质,还可以揭示两个变量之间的反比例关系。
通过深入研究反比例函数k的几何意义,我们可以更好地理解它在数学中的应用,并丰富我们对数学的认识和理解。
【文章字数不足,如有需要可继续添加内容】。
第二篇示例:反比例函数是数学中常见的一类函数,其数学表达式为y = k/x,其中k为一个常数且k≠0。
反比例函数在数学中有很多重要的应用,尤其是在几何中具有重要的意义。
我们来看反比例函数在几何中的基本性质。
对于反比例函数y =k/x,我们可以通过绘制其图像来直观地理解其性质。
当x取正值时,y 的值随着x的增大而减小;当x取负值时,y的值随着x的增大而增加。
这说明反比例函数是一个非对称的函数,它在坐标系中的图像呈现出一种特殊的形态。
九年级数学第三十章 第1-2节 反比例函数及其性质冀教版知识精讲
九年级数学第三十章 第1-2节 反比例函数及其性质冀教版【本讲教育信息】一、教学内容:反比例函数及其性质 1. 反比例函数的定义.2. 反比例函数的图像和性质.二、知识要点: 1. 反比例函数(1)一般地,如果变量y 和x 之间的函数关系可以表示成y =k x(k 是常数,且k ≠0)的形式,则称y 是x 的反比例函数.(2)一般地,反比例函数y =k x(k ≠0)的图像由分别位于两个象限内的两条曲线组成,这样的曲线叫做双曲线. 双曲线是由两个分支组成的. 它不是连续的整体图形,而是断开的两个独立的分支,它无限接近两坐标轴但永远也不能到达坐标轴.(3)确定解析式的方法仍是待定系数法,由于在反比例函数y =k x中,只有一个待定系数,因此只需一对对应值或图象上一个点的坐标,即可求出k 的值,从而确定解析式.注:如果xy =k (k 是常数,k ≠0),那么x 与y 这两个量成反比例关系,这里x 、y 既可代表单独的一个字母,也可代表多项式或单项式,成反比例的关系式,不一定是反比例函数,如y -3=k z +2中,y -3与z +2成反比例,但y 与z 不是反比例函数;又如y =2x 2中,y与x 2成反比例,但y ,x 不是反比例函数,但反比例函数y =k x(k ≠0)中的两个变量必成反比例关系.2. 反比例函数的性质和图象反比例函数y =k x,当k >0时,图像的两个分支位于一、三象限. 在每个象限内y 随x 的增大而减小;当k <0时,图像的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大.3. 反比例函数y =kx (k ≠0)中的比例系数k 的几何意义过双曲线y =kx上任一点P 作x 轴、y 轴的垂线PM 、PN ,所得的矩形PMON 的面积为S =PM ·PN =︱y ︱·︱x ︱=︱xy ︱,∵y =kx,∴xy =k ,∴S =︱k ︱. 即①过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形的面积为︱k ︱. ②过双曲线上任意一点作x 轴(y 轴)的垂线,由该点、垂足和原点所构成的三角形的面积都是12︱k ︱.三、重点难点:本节的重点是反比例函数的图象和性质,难点是在学习过程中要全面理解其性质及图象的特征,结合图象来理解,采用数形结合的思想方法.【典型例题】例1. 判断下列函数式,y 与x 是反比例函数关系的有哪些?①y =2x +1;②y =πx ;③y =a x ;④y =4x 2+x -x 2;⑤xy =3;⑥y =13x ;⑦x (y +1)=3;⑧2x ·3y =7.分析:按照反比例函数关系式的特征判断. ①中,y 与x +1成反比例,不是y 与x 成反比例. ③中没有说明a 的条件. ⑦化简后为y =3x-1,不符合反比例函数的形式,所以①③⑦不是反比例函数. 对于②中,π为常数. ④中化简得y =4x . ⑤可变形为y =3x. ⑥可变形为y =13x . ⑧可变形为y =76x. 都符合反比例函数的一般形式,所以②④⑤⑥⑧是反比例函数.解:②④⑤⑥⑧是反比例函数. 评析:(1)判断两种量是否成反比例关系时,通常写出这两种量的关系式. 然后化简,再对照反比例函数式的特征进行解答. (2)反比例函数式y =k x(k 为常数,k ≠0)还可以写成y =kx -1或xy =k (k 为常数,k ≠0).例2. 已知y 是x 的反比例函数,且当x =3时,y 的值是-5. (1)求y 与x 的关系式.(2)求当x =-5时,y 的值.分析:y 是x 的反比例函数,即x 与y 满足y =k x这个关系式,且当x =3时,y 的值是-5,将这两个数值代入即可求出k 的值.解:(1)设y =k x (k ≠0),把x =3,y =-5代入得,-5=k3.解之得,k =-15,所以,解析式为y =-15x.(2)把x =-5代入,得y =-15-5=3.所以,当x =-5时,y 的值是3.评析:待定系数法求反比例函数解析式的步骤是:(1)设出函数解析式的一般形式为y=k x(k ≠0). (2)把对应的x 与y 的值代入,得到一个关于k 的方程. (3)解方程,求出待定系数k 的值. (4)代入解析式即可得到要求的解析式.例3. (1)已知反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,则该函数关系式是__________.(2)已知反比例函数y =1-3mx的图象上有两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值X 围是__________.分析:(1)因为反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,所以有⎩⎪⎨⎪⎧a -2<0a 2-5=-1 解得⎩⎪⎨⎪⎧a <2a 2=4 即⎩⎪⎨⎪⎧a <2a =±2 . 所以a =-2,当a =-2时,函数关系式为y =-4x .(2)反比例函数的图象有两种情况:当1-3m >0时,如图(1)所示,此时y 1<y 2;当1-3m <0时,如图(2)所示,此时y 1>y 2;故可得1-3m >0,即m <13.(2)解:(1)y =-4x (2)m <13评析:(1)对于y =k x(k 为常数,k ≠0)来说,当k >0时,反比例函数的图象的两个分支位于一、三象限. 在每个象限内y 随x 的增大而减小;当k <0时,反比例函数的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大. 所以在此题中,应该有a -2<0. (2)反比例函数y =kx,当k <0时,在每个象限内,y 随x 的增大而增大,但并不是说反比例函数的整个图象是从左往右上升的,因此一定注意“在每个象限内”这个条件.例4. (1)若反比例函数y =k x(k <0)的函数图像过点P (2,m )、Q (1,n ),则m 与n 的大小关系是:m __________n (选择填“>”、“=”、“<”).(2)函数y =-ax +a 与y =-ax(a ≠0)在同一坐标系中的图象可能是( )分析:(1)由k <0知函数图象在二、四象限,且y 随x 的增大而增大,又图象过点P(2,m )、Q (1,n ),2>1,则m >n . (2)由函数图象判断-a 的正负,看是否一致,可以发现函数y =-ax +a 中,当x =1时,y =0,即直线过定点(1,0),所以可排除B 和D. 在A 中,根据直线的图象可知-a <0,根据双曲线的图象可知-a <0,它们是一致的. 在C 中,根据直线的图象可知-a >0,根据双曲线的图象可知-a <0,它们是不一致的,应排除.解:(1)>(2)A例5. 点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线PA 交双曲线y =1x于点A ,连接OA.(1)如图(1)所示,当点P 在x 轴的正方向上运动时,R t △AOP 的面积大小是否变化?若不变,请求出R t △AOP 的面积;若改变,试说明理由.(2)如图(2)所示,在x 轴上的点P 的右侧有一点D ,过点D 作x 轴的垂线DB 交双曲线y =1x于点B ,连接BO 交AP 于C ,设△AOP 的面积为S 1,梯形BCPD 的面积为S 2,则S 1与S 2的大小关系是S 1__________S 2. (选填“>”“<”或“=”)解:(1)设A 点坐标为(x ,y ),则x >0,y >0.S △AOP =12·OP ·AP =12·x ·y =12×1=12.所以当点P 在x 轴的正方向移动时,R t △AOP 的面积不发生变化.(2)由(1)的结果可知S △AOP =S △BOD ,而梯形BCPD 的面积小于S △BOD ,所以有S △AOP >S 梯形BCPD ,即S 1>S 2.评析:从双曲线y =k x(k ≠0)上任一点向x 轴作垂线. 则该点垂足及坐标原点构成的三角形面积都相等,其值为12︱k ︱.【方法总结】1. 反比例函数的图象是双曲线,双曲线所在的象限由比例系数k 来决定,当k >0时,双曲线在第一、三象限;当k <0时,双曲线在第二、四象限. 在记忆反比例函数图象的性质时,要与正比例函数的性质相对照,不要混淆.2. 在反比例函数y =k x(k ≠0)的图象上任取一点向x 轴作垂线,则由垂足、原点及该点构成的三角形面积不变,其值为12︱k ︱.【预习导学案】(反比例函数的应用)一、预习前知1. 反比例函数的性质有哪些?2. 说一说下列常用公式:三角形面积公式,电阻公式,压强公式,功率公式等. 二、预习导学1. 三角形面积一定时,一边长和这边上的高是什么函数关系?2. 水池内装有12m 3的水,如果从排水管中每小时流出的水是xm 3,则经过yh 就可以把水放完. 求出y 与x 的函数关系式,并写出自变量x 的取值X 围. 反思:如何从函数的角度解决实际问题?【模拟试题】(答题时间:50分钟)一、选择题1. 点P (1,3)在反比例函数y =k x(k ≠0)的图象上,则k 的值是( ) A. 13B. 3C. -13D. -32. 下列函数表达式中,是反比例函数的是( )A. y =x -1B. y =1x -1C. y =x2D. xy =-23. 在反比例函数y =1-kx的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以是( ) A. -1 B. 0 C. 1 D. 24. 一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( ) A. 正比例函数关系 B. 反比例函数关系 C. 一次函数关系 D. 不能确定5. 如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数y =1x的图象上,那么( )A. y 2<y 1<0B. y 1<y 2<0C. y 2>y 1>0D. y 1>y 2>06. 若r 为圆柱底面的半径,h 为圆柱的高. 当圆柱的侧面积一定时,则h 与r 之间的函数关系的图象大致是( )ABC D*7. 反比例函数y =kx(k >0)的部分图象如图所示,A 、B 是图象上两点,AC⊥x 轴于点C ,BD⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2的大小关系为( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 无法确定**8. 如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线y =3x(x>0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( )A. 逐渐增大B. 不变C. 逐渐减小D. 先增大后减小二、填空题1. 反比例函数y =k x的图像经过点(2,-1),则k 的值为__________. 2. 反比例函数y =15x 中,k =__________.3. 如果y =1x2n -5是反比例函数,则n =__________.4. 反比例函数y =2x图像的两支分别在第__________象限.5. 若A (x 1,y 1)、B (x 2,y 2)是双曲线y =3x上的两点,且x 1>x 2>0,则y 1__________y 2.(填“<”、“=”、“>”)*6. 点A (2,1)在反比例函数y =kx的图像上,当1<x <4时,y 的取值X 围是__________. 7. 如图,双曲线y =k x与直线y =mx 相交于A 、B 两点,B 点坐标为(-2,-3),则A 点坐标为__________.**8. 如图所示,函数y =x 与y =4x的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,则△ABC 的面积为__________.三、解答题1. 已知反比例函数y =(m -12)x 22-m 的图像的两个分支分布在第二、四象限,求m 的值.2. 反比例函数y =2m -1x的图象如图所示,A (-1,b 1),B (-2,b 2)是该图象上的两点.(1)比较b 1与b 2的大小; (2)求m 的取值X 围.*3. 已知图中的曲线是反比例函数y =m -5x(m 为常数)图象的一支. (Ⅰ)这个反比例函数图象的另一支在第几象限?常数m 的取值X 围是什么?(Ⅱ)若该函数的图象与正比例函数y =2x 的图象在第一象限内的交点为A ,过A 点作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.试题答案一、选择题1. B2. D3. D4. B5. D6. B7. B8. C二、填空题1.-22. 153. 34. 一、三5. <6. 12<y <2 7.(2,3) 8. 4三、解答题1. 根据题意m 2-2=-1,则m =±1,又因为m -12<0,所以m <12. 所以m =-1.2. (1)由图知,当0x <时,y 随x 增大而减小. 又-1>-2,∴b 1<b 2.(2)由2m -1>0,得m >12.3. (Ⅰ)这个反比例函数图象的另一支在第三象限. 因为这个反比例函数的图象分布在第一、第三象限,所以m -5>0,解得m >5.(Ⅱ)反比例函数的解析式为y =8x . 交点A 的坐标同时满足y =2x 和y =8x,即2x 2=8,解得x =±2. 因为点A 在第一象限内,所以A (2,4).。
双曲线中b的几何意义
双曲线中b的几何意义
1双曲线中的b
双曲线是数学中的一类函数,它通过一系列关系式来表达不同的物理现象。
双曲线形式上一般有y=a/b*cosh(x/b),这里的b称为轴比系数,有着重要的几何意义。
2b的具体定义
b是双曲线y=a/b*cosh(x/b)中的参数,它表示双曲线的轴比系数,它反映了曲线两个焦点坐标之间的差值。
因此,轴比系数b可以通过测量双曲线的两个焦点来计算出来。
此外,它还可以用来描述双曲线离心率(e)的值,其公式为:
e=√(a2-b2)/b
3双曲线的应用
双曲线函数在空间几何中有着重要的作用,它可以用来描述不同类型的双曲线,也可以用来表示各种双曲线的外接矩形区域。
比如在空间,可以用双曲线来描述抛物线、心形线、圆锥曲线等各种曲线。
在机械制造中,双曲线也是应用广泛并有重大意义的,用于描述特定机械零件的一些曲面结构,也可以用来计算零件的截面面积等指标。
4结论
双曲线轴比系数b有着重要的几何和物理意义,可以更容易描述双曲线形状,计算双曲线的离心率等参数,并且在空间和机械方面有着重要的应用。
双曲线的a,b的几何意义
双曲线的a,b的几何意义
双曲线是一种二次函数图像,它有两个非常重要的参数:a和b。
本文将从几何意义的角度来探究这两个参数的含义。
1. a的几何意义
a是双曲线的开口大小的参数。
当a为正数时,双曲线的开口朝上和朝下;当a为负数时,双曲线的开口朝左和朝右。
具体来说,当a>0时,双曲线的图像类似于一个向上或向下打开的口,它有两条渐近线,分别与x轴夹角为±π/2a,这两条渐近线是无限长的,而且双曲线的图像离这两条线越来越接近,直到永远不能碰到它们。
这种几何意义可以用于实际应用中,比如在建筑工程中,当我们需要设计一座拱形的大门时,我们可以使用双曲线的函数来建模门的形状,而参数a将决定门的开口大小。
b是双曲线的形状参数,它表示双曲线的图像在y轴方向上的偏移量。
当b为正数时,双曲线的图像向上平移;当b为负数时,双曲线的图像向下平移。
具体来说,当b>0时,双曲线的图像沿y轴正方向平移|b|个单位;当b<0时,双曲线的图像沿y轴负方向平移|b|个单位。
这种几何意义同样可以应用于实际问题中。
比如我们可以用双曲线的函数来建模一个拱形天花板的曲线,而参数b则代表着曲线相对于地面的高度。
综上所述,双曲线的a和b参数分别代表着双曲线的开口大小和形状,分别对应着实际应用中的物理量和几何运算中的平移变换。
掌握这两个参数的几何意义,有助于我们更好地理解双曲线的性质和应用。
双曲线中b的几何意义
双曲线中b的几何意义
双曲线是数学中非常重要的一类曲线,其中有一个特殊的参数b,它具有重要的几何意义。
双曲线定义为:一类特殊的曲线,其函数满足y2 = x2a2 + b2。
双曲线的曲线方程的形式为:x2/a2 - y2/b2 = 1,其中x和y分别表示变量,a为非零实常数,b为实常数(b≠0)。
双曲线在几何中有着重要的意义,其中b也是双曲线曲率的重要参数之一。
双曲线的b参数表示,双曲线在某一方向上的曲率。
特别是,当b=0时,双曲线和椭圆之间有关系,其可以定义为椭圆;当b>0时,双曲线和圆心圆之间有关系,其可以定义为圆心圆,而当b<0时,双曲线和双曲线之间有关系,可以定义为双曲线。
从另一个角度考虑,双曲线的b参数可以用来表示双曲线的长短轴的长度的比值。
从数学上来看,如果b>0,说明双曲线的短轴比长轴长,如果b<0,说明双曲线的长轴比短轴长。
如果b=0,则双曲线变成椭圆,短轴和长轴长度相同。
此外,双曲线的b参数也表示双曲线的非对称性。
从几何上来看,当b<0时,双曲线更倾向于左侧;当b>0时,双曲线更倾向于右侧;当b=0时,双曲线对称围绕中心点。
另外,双曲线的b参数也可用来计算双曲线的面积。
具体来说,面积的计算可以通过b参数和曲率来确定,例如如果b>0,则面积为4bπ;如果b<0,则面积恒为2π。
总之,双曲线的b参数具有重要的几何意义,它可以用来定义双曲线的曲率、长短轴的长度比、非对称性和面积等。
所以,正确理解
双曲线的b参数的几何意义,对于正确研究双曲线的多个性质都有必要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hyperbolic functions(双曲函数)and their geometric meaning
In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular, functions. The basic hyperbolic functions are the hyperbolic sine "sinh" (/ˈsɪnt ʃ/ or /ˈʃaɪn/), and the hyperbolic cosine "cosh" (/ˈkɒʃ/), from which are derived the hyperbolic tangent "tanh" (/ˈtæntʃ/ or /ˈθæn/), hyperbolic cosecant "csch" or "cosech" (/ˈkoʊʃɛk/ or /ˈkoʊsɛtʃ/), hyperbolic secant "sech" (/ˈʃɛk/ or /ˈsɛtʃ/), and hyperbolic cotangent "coth" (/ˈkoʊθ/ or /ˈkɒθ/),[1] corresponding to the derived trigonometric functions. The inverse hyperbolic functions are the area hyperbolic sine "arsinh" (also called "asinh" or sometimes "arcsinh")[2] and so on.
Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the equilateral hyperbola. The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.
Hyperbolic functions occur in the solutions of some important linear differential equations, for example the equation defining a catenary, of some cubic equations, and of Laplace's equation in Cartesian coordinates. The latter is important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.
In complex analysis, the hyperbolic functions arise as the imaginary parts of sine and cosine. When considered defined by a complex variable, the hyperbolic functions are rational functions of exponentials, and are hence meromorphic.
Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert.[3] Riccati used Sc. and Cc. ([co]sinus circulare) to refer to circular functions and Sh. and Ch. ([co]sinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names but altered the abbreviations to what they are today.[4] The abbreviations sh and ch are still used in some other languages, like European French and Russian.
A ray through the origin intercepts the unit hyperbola in the point , where is twice the area between the ray, the hyperbola, and the -axis. For points on the hyperbola below the -axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).。