双曲函数及其几何意义

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hyperbolic functions(双曲函数)and their geometric meaning

In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular, functions. The basic hyperbolic functions are the hyperbolic sine "sinh" (/ˈsɪnt ʃ/ or /ˈʃaɪn/), and the hyperbolic cosine "cosh" (/ˈkɒʃ/), from which are derived the hyperbolic tangent "tanh" (/ˈtæntʃ/ or /ˈθæn/), hyperbolic cosecant "csch" or "cosech" (/ˈkoʊʃɛk/ or /ˈkoʊsɛtʃ/), hyperbolic secant "sech" (/ˈʃɛk/ or /ˈsɛtʃ/), and hyperbolic cotangent "coth" (/ˈkoʊθ/ or /ˈkɒθ/),[1] corresponding to the derived trigonometric functions. The inverse hyperbolic functions are the area hyperbolic sine "arsinh" (also called "asinh" or sometimes "arcsinh")[2] and so on.

Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the equilateral hyperbola. The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.

Hyperbolic functions occur in the solutions of some important linear differential equations, for example the equation defining a catenary, of some cubic equations, and of Laplace's equation in Cartesian coordinates. The latter is important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.

In complex analysis, the hyperbolic functions arise as the imaginary parts of sine and cosine. When considered defined by a complex variable, the hyperbolic functions are rational functions of exponentials, and are hence meromorphic.

Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert.[3] Riccati used Sc. and Cc. ([co]sinus circulare) to refer to circular functions and Sh. and Ch. ([co]sinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names but altered the abbreviations to what they are today.[4] The abbreviations sh and ch are still used in some other languages, like European French and Russian.

A ray through the origin intercepts the unit hyperbola in the point , where is twice the area between the ray, the hyperbola, and the -axis. For points on the hyperbola below the -axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

相关文档
最新文档