统计学第十一章课后习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1
(1)绘制产量与生产费用的散点图,判断二者之间的关系形态。
散点图如下:
从上图,可以看出产量与生产费用的关系为正的线性相关关系。
(2)计算产量与生产费用之间的线性相关系数。
r=0.920232
(3)对相关系数的显著性进行检验(a=0.05),并说明二者之间的关系系数。 假设:H o :ρ=0,H 1:ρ≠0 计算检验的统计量:t=|r|
²=|0.92-232|
²
=7.435
当a=0。05时,t (12-2)=2.228。由于检验统计量t=7.435>t =2.228,拒绝原假设。表明产量与生产费用之间的线性关系显著。
11.2
(1)散点图如下:
(2)r=0.8621,正相关
11.3
ˆβ=10表示当X=0时Y的期望值为10
(1)
ˆβ=-0.5表示X每增加1个单位,Y平均下降0.5个单位。(2)
1
(3)X=6时,E(Y)=10-0.5x6=7
11.4.
(1)%904
3636
2=+=+==
SSE SSR SSR SST SSR R ,%902=R 表示,在因变量y 取值的变差中,有90%可以由x 与y 之间的线性关系来解释。 (2)5.02
184
2n =--=SSE S e 。5.0=e S 表示,当用x 来预测y 时,平均的预测
误差为0.5.
11.5
(1)散点图如下:
(2)r=0.9489,因为r>0.8,所以运送时间与运送距离有较强的正线性关系。
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
得到的回归方程为x 003585.0118129.0y
ˆ+=,回归系数003585.0ˆ=β表示运送距离每增加1公里,运送时间平均增加0.003585天。
11.6
(1)散点图如下:
从上图可知,人均gdp 和人均消费水平为正相关关系
(2)r=0.998128,具有非常强的正线性关系。
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
得到的回归方程为:x y 308683.06928.734ˆ+=。回归系数308683.0ˆ1=β表示人均GDP 每增加1元,人均消费水平平均增加0.308683元。
(4)判定系数996259.02=R ,表明在人均消费水平的变差中,有99.6259%是由人均GDP 决定的。
(5)首先提出如下假设:00:10≠=ρρ:,H H
由于significant F<05.0=∂,拒绝原假设,表明人均GDP 与人均消费水平之间的线性关系显著。
(6)(元)108.22785000308683.06928.734ˆ5000=⨯+=y
(7)当3035.247,571.2)27(05.02/05.0==-=∂e s t 时,。 置信区间:
4
.2871078.22787
.854750849)42857.122485000(713035.247571.21078.2278)()-(1
y
ˆ2
1
2
202/0±=-+
⨯⨯±=-+±∑=n i i e a x x x x n
s t
即(1990.7,2565.5)。 预测区间为:
8.6971078.22787
.854750849)42857.122485000(7113035.247571.21078.2278)()-(11y
ˆ2
1
2
202/0±=-+
+⨯⨯±=-++±∑=n i i e a x x x x n
s t 即(1580.3,2975.9)。
11.7
(1)散点图如下:
(2)用航班正点率作自变量,顾客投诉次数作因变量,建立估计的回归方程,并解释回归系数的意义。 答
:
得到的回归方程为:x y 7.41892.430ˆ-=。回归系数7.4-ˆ1=β表示航班正点率每增加1%,顾客投诉次数平均下降4.7次。
(3)回归系数检验的P-value=0.001108<05.0=∂,拒绝原假设,表明回归系数显著。
(4)次)(1892.54807.41892.430ˆ80=⨯-=y
(5)当8822.18,306.2)210(05.02/05.0==-=∂e s t 时,。 置信区间为:
48
.161892.54024
.39786.75-8010188722.18306.21892.54)()-(1
y
ˆ2
1
2
202/0±=+
⨯⨯±=-+±∑=)
(n i i e a x x x x n
s t 即(37.7,70.7) 预测区间:
57
.461892.54024
.39786.75-80101188722.18306.21892.54)()-(1
1y
ˆ2
1
2
202/0±=+
+⨯⨯±=-++±∑=)
(n i i e a x x x x n
s t 即(7.6,100.8)
11.8
解释和分析如图下:
由上表结果可知,出租率和月租金之间的线性回归方程为:x y
2492.03177.49ˆ+=。回归系数2492.0ˆ1
=β表示:月租金每增加1元,出租率平均增加0.2492%。 %22.632=R ,表明在出租率的变差中被出租率与租金之间的线性关系所解释的
比例为63.22%,回归方程的拟合程度一般。
估计标准误差6858.2e =s 表示,当用月租金来预测出租率时,平均的预测误差为2.6858%,表明预测误差并不大。
由方差分析表可知,significant F=2.79889E-0.5<05.0=∂,表明回归方程的线性关系显著。回归系数检验的P-value=0.0000<05.0=∂,表明回归系数显著,即月租金是影响出租率的显著性因素。 11.9