线性代数第1章详解

合集下载

线性代数第一章行列式课件

线性代数第一章行列式课件

a11
a12
a1n
a11 a12
a1n a11 a12
a1n
ai1 bi1 ai2 bi2
ain bin ai1 ai2
ain bi1 bi2
bin
an1
an2
ann
an1 an2
ann an1 an2
ann
性质5 将行列式的某一行(列)的所有元素同乘以 一个数 k 加到另外一行(列)上,行列式不变,即
a1,n1 a2,n1
a1n a2n
a11 a21
a12 a22
a1,n1 a2,n1
an1,1 0
an1,2 0
an1,n1 0
an1,n 1
a a n1,1
n1,2
an1,n1
其中等号左端的行列式是一个 n 阶行列式;等号右端
的行列式是左端 n 阶行列式的前 n-1 行前 n-1 列的元
素所组成的 n-1 阶行列式,即左端行列式第 n 行第 n
j 1, 2, , n
ann
a1n
(1)i j aij
ai 1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
an1
an, j1
an, j1
ann
定理4 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式, Aij 为 D 的第 i 行第 j 列元素 aij 的代数余子式,则有
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设

第一章线性代数

第一章线性代数

2. 初等矩阵的性质 定理1.1. 定理1.1. 对m×n矩阵A施行一次初等行变换 矩阵A施行一次初等行 相当于在A 相当于在A的左边乘以相应的初等 矩阵; 施行一次初等列 矩阵; 对A施行一次初等列变换相 当于在A 当于在A的右边乘以相应的初等矩 阵.
第一章 矩阵
§1.5 方阵的逆矩阵
§1.5 方阵的逆矩阵 一. 逆矩阵的概念 1. 定义: 设A为方阵, 若存在方阵B, 使得 定义: 为方阵, 若存在方阵B AB = BA = E, 则称A可逆, 并称B 则称A可逆, 并称B为A的逆矩阵. 逆矩阵. 2. 逆矩阵是唯一的, A−1. 逆矩阵是唯一的, 记为A 记为 3. 性质:设A, B为同阶可逆方阵, 数k ≠ 0. 则 性质: 为同阶可逆方阵, (1) (A−1)−1 = A. (2) (AT)−1 = (A−1)T. (A (3) (kA)−1 = k−1A−1. (4) (AB)−1 = B−1A−1.
则λA =
λA11 λA12 … λA1r λA21 λA22 … λA2r
… … … … . λAs1 λAs2 … λAsr
第一章 矩阵
§1.3 分块矩阵
3. 分块乘法
设A为m×l矩阵, B为l ×n矩阵, 将它们分块如下 矩阵, 矩阵, A11 A12 … A1t B11 B12 … B1r A21 A22 … A2t B21 B22 … B2r A= … … … … , B= … … … … , As1 As2 … Ast Bt1 Bt2 … Btr 其中A 的列数分别与B 其中Ai1, Ai2, …, Ait的列数分别与B1j, B2j, …, Btj的 行数相等. 行数相等. C11 C12 … C1r t C21 C22 … C2r 其中C 则AB = … … … … , 其中Cij = Σ AikBkj , k=1 Cs1 Cs2 … Csr (i = 1, 2, …, s; j = 1, 2, …, r.)

线性代数第一章ppt

线性代数第一章ppt
线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。

线代第一章讲义

线代第一章讲义

线性代数与几何(A)主讲教师殷洪友E-mail: hyyin@第一章n 阶行列式1.1二阶和三阶行列式1.2排列1.3n阶行列式的概念1.4行列式的性质1.5行列式的展开定理1.6Cramer法则求解如下二元线性方程组)1.1(,,22221211212111⎩⎨⎧=+=+b x a x a b x a x a 1.1 二阶和三阶行列式其中a 11, a 12, a 21, a 22 称为方程组(1.1)的系数,b 1, b 2 称为常数项.方程组(1.1)的系数按所在的位置排成了一个两行两列的数表,称为(1.1)的系数矩阵.⎟⎟⎠⎞⎜⎜⎝⎛22211211a a a a;212221*********b a a b x a a a a −=−)(根据消元法,可得.211211*********a b b a x a a a a −=−)(时,当021122211≠−a a a a 方程组(1.1)有唯一解:,211222112122211a a a a b a a b x −−=.211222112112112a a a a a b b a x −−=由系数矩阵确定.⎟⎟⎠⎞⎜⎜⎝⎛22211211a aa a设是一个两行两列的数表,则表达式称为该数表所确定的二阶行列式,记作⎟⎟⎠⎞⎜⎜⎝⎛22211211a a a a 21122211a a a a −.2112221122211211a a a a a a a a −=其中称为行列式的元素,下标i j 表示该元素位于第i 行,第j 列.ij a11a 12a 22a 21a 主对角线副对角线2211a a =.2112a a −注意二阶行列式的计算满足对角线法则根据二阶行列式的定义,有.,211211221111212221222121a b b a b a b a b a a b a b a b −=−=若记,22211211a a a a D =对于二元线性方程组(1.1),,2221211a b a b D =.2211112b a b a D =则当系数行列式D ≠0时,方程组有唯一解:,2221121122212111a a a a a b a b D D x ==.2221121122111122a a a a b a b a D D x ==,333213232212312111⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛a a a a a a a a a 记,312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a −−−++=333231232221131211a a a a a a a a a 则称其为该数表所确定的三阶行列式.类似地,设有9 个数排成的三行三列的数表333231232221131211a a a a a a a a a 332211a a a =.322311a a a −计算三阶行列式的对角线法则注意 1. 红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号;2. 对角线法则只适用于二阶与三阶行列式.322113a a a +312312a a a +312213a a a −332112a a a −如果三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111,,bx a x a x a b x a x a x a b x a x a x a 的系数行列式333231232221131211a a a a a a a a a D =,0≠利用三阶行列式求解三元线性方程组若记,3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =,3323122221112113b a a b a a b a a D =2-43-122-4-21D =计算三阶行列式例1.1则三元线性方程组有唯一解:,11DD x =,22DD x =.33DD x =.094321112=xx 求解方程例1.2例1.3 解线性方程组⎪⎩⎪⎨⎧=−+−=−+−=+−.0,132,22321321321x x x x x x x x x 解方程组的系数行列式111312121−−−−=D 5−=,0≠所以方程组有唯一解.因为113111221−−−−=D ,5−=113121212−−−−=D ,10−=0111122213−−−=D ,5−=故方程组的唯一解为:,111==DD x ,222==DD x .133==DD x思考题使得求一个二次多项式),(x f ()()().283,32,01=−==f f f定义1.1由自然数组成的一个有序数组称为一个n 阶排列.通常用表示n 阶排列.n ,,2,1"n j j j "21 定义1.2在一个排列中,如果一个较大数排在一个较小数之前,就称这两个数构成一个逆序.一个排列的逆序总个数称为这个排列的逆序数.排列具有自然顺序,即逆序数为0,称之为自然排列.n "3 2 1 1.2排列排列的逆序数记为).(21n j j j t " n j j j "21如果一个排列的逆序数为偶数,则称这个排列为偶排列,否则称为奇排列.计算排列的逆序数有两种方法:向前记数法和向后记数法.()2179863541()()()321212"−−n n n ()()()()()()kk k k k k 11322212123+−−−"例1.4计算下列排列的逆序数,并讨论它们的奇偶性.定理1.1对换改变排列的奇偶性.在一个排列中,把其中两个数的位置互换,而保持其余数的位置不动,这种变换称为一个对换.定理1.2在全部n 阶排列中,奇偶排列各占一半.()2≥n 定理1.3任意一个n 阶排列可经过一系列对换变成自然排列,并且所作对换次数的奇偶数与这个排列的奇偶性相同.1.3n 阶行列式的概念考察三阶行列式333231232221131211a a a a a a a a a D =332112322311312213aa a a a a a a a −−−(1)三阶行列式的展开式共有3!=6项;(2)每项都是位于不同行不同列的三个元素的乘积,并且每个这样的乘积都出现在展开式中;322113312312332211a a a a a a a a a ++=不难发现以下特征:.)1(321321321321)(333231232221131211∑−=j j j j j j j j j t a a a a a a a a a a a a (4)如果以表示对所有3阶排列求和,则有∑321j j j (3)每项的行指标按自然顺序排列,其正负号取决于列指标构成的排列的奇偶性;其中表示对所有n 阶排列求和.∑nj j j "21定义1.3由数表所确定的n 阶行列式定义为:⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛nn n n n n a a a a a a a a a """""""212222111211()(),121212121212222111211n n nnj j j j j j t j j j nnn n n n a a a a a a a a a a a a """"""""""∑−=n 阶行列式的展开式主对角线副对角线几点说明:(1)行列式是一种特定的算式,它是为求解线性方程组而定义的;(2)n 阶行列式是项的代数和;!n (3)n 阶行列式的每项都是位于不同行不同列的n 个元素的乘积;(5)一阶行列式不要与绝对值记号相混淆;a a =(4)一般项前面所带符号为n nj j j a a a "2121();1)(21nj j j t "−(6)定义中的n 阶行列式可以简记为.n ij a D =例1.5证明上三角行列式nnnna a a a a a D """""""0022211211=.2211nn a a a "=同理可证下三角行列式和对角行列式nnn n a a a a a a """""""21222111000.2211nn a a a "=nna a a """""""0000002211=例1.6试证0000000052514241323125242322211514131211==a a a a a a a a a a a a a a a a D思考题已知()1211123111211xx x xx f −=.3的系数求x注意n 阶行列式的展开式也可表为:()()ni i i i i i t i i i nnn n n nn n n a a a a a a a a a a a a """"""""212122221112112121211∑−==′D ,nna a a %2211"#n n a a a 2112#""2121n n a a a 1.4行列式的性质行列式D'称为行列式D 的转置行列式.记#""n na a a 2112"#2121n n a a a =D nna a a %2211性质1.1行列式与它的转置行列式相等.注意性质1.1表明:行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立.性质1.2互换行列式的两行(列)的位置,行列式反号,即推论1.1如果行列式有两行(列)完全相同,则此行列式等于0..111111111111nnn pn p qn q n nn n qn q pn p n a a a a a a a a a a a a a a a a "##"##"##""##"##"##"−=性质1.3用数k 乘行列式的某一行(列),等于用数k 乘此行列式,即nnn n pn p p na a a ka ka ka a a a """""""""""""""""212111211推论1.2如果行列式的某一行(列)元素全为0,则此行列式等于0..212111211nnn n pn p p na a a a a a a a a k """""""""""""""""=推论1.3如果行列式中有两行(列)元素成比例,则此行列式等于0.性质1.4若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和,即nn n n pnpn p p p p na a a a a a a a a a a a """""""""""21221111211′+′+′+.212111211212111211nnn n pn p p nnnn n pn p p na a a a a a a a a a a a a a a a a a """"""""""""""""""""""′′′+=nn n qn q pn p n a a a a a a a a "##"##"##"111111.1111111nnn qnq qnpn q p n a a a a ka a ka a a a "##"##"##"++=×k 性质1.5 把行列式的某一行(列)的倍数加到另一行(列)上去,行列式的值不变,即例1.7计算四阶行列式2421164214112111−−−−−=D 例1.8试证3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++例1.9计算n 阶行列式abbbba b b bbabb b b a D """""""""=具有如下形式的行列式称为反对称行列式,0000321323132231211312"""""""""nnnn n n a a a a a a a a a a a a D −−−−−−=证明:奇数阶反对称行列式等于0.例1.101.5行列式的展开定理312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a −−−++=333231232221131211a a a a a a a a a 注意到三阶行列式可以改写为:()3223332211a a a a a −=()3123332112a a a a a −−()3122322113a a a a a −+323122211333312321123332232211a a a a a a a a a a a a a a a +−=()ij ji ij M A +−=1叫做元素a ij 的代数余子式.例如44434241343332312423222114131211a a a a a a a a a a a a a a a a D =44424134323114121123a a a a a a a a a M =()2332231M A +−=.23M −=行第j 列,由余下的元素按原来的排法构成的n -1 阶行列式叫做元素的余子式,记作ij a .M ij 定义1.4在n 阶行列式中,划去元素所在的第i ij a,44434241343332312423222114131211a a a a a a a a a a a a a a a a D =,33323123222113121144a a a a a a a a a M =().144444444M M A =−=+注意 1.行列式的每个元素都对应一个余子式和一个代数余子式;2.每个元素的余子式和代数余子式只与这个元素的位置有关,而与这个元素的大小无关.n 阶行列式nnn n n n a a a a a a a a a D """""""212222111211=等于它的任意一行(列)的所有元素与其对应的代数余子式乘积之和,即ni A a A a A a D in in i i i i ,,2,1,2211""=+++=),,2,1,(2211n j A a A a A a D nj nj j j j j ""=+++=定理1.4中任一行(列)的所有元素与另一行(列)相应元素的代数余子式乘积之和等于0,即n 阶行列式nnn jn j in i n a a a a a a a a D "##"##"##"111111=.j i ,A a A a A a jn in j i j i ≠=+++02211").,0(2211j i A a A a A a nj ni j i j i ≠=+++"定理1.5关于代数余子式的重要性质⎩⎨⎧≠===∑=.,0,,1j i j i D D A a ij nk kj ki 当当δ⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk jk ik 当当δ则当当如果记⎩⎨⎧≠===,,0,,1,j i j i a D ij nij δ例1.11计算n 阶行列式xyy x y x y x D n 000000000000""#####""=例1.12证明范德蒙德(Vandermonde)行列式.2,)(1111112112222121≥−==∏≤<≤−−−n x xxxxxx xx x x D ni j j in nn n nn n "###"""例1.13计算三对角行列式βααβαββααββα+++=11%%%%%%%n D例1.14,000111111111111nnn n nkn k kk k k b b b b c c c c a a a a D "##""##""##""##"=设,11111kkk ka a a a D "##"=,11112nnn nb b b b D "##"=.21D D D =证明:例1.14中的行列式D 称为准下三角行列式..00011111111111111111111nnn nkk k k nnn nknk nkk k k b b b b a a a a b b b b c c c c a a a a "##""##""##""##""##""##"⋅=同理可以证明准上三角行列式思考题阶行列式设n )1(10001030012321"#%###"""n nD n −−−=求第一行各元素的代数余子式之和.11211n A A A +++"(2)设计一个n 阶行列式D n ,使得并计算这个行列式.,12+++=n n n D D D1.6Cramer法则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++,,,22112222212111212111n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a """""""""""""""设线性方程组,,,,21不全为零若常数项n b b b "则称此方程组为非齐次线性方程组;此时称方程组为齐次线性方程组.,,,,21全为零若常数项n b b b "如果线性方程组)2.1(22112222212111212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a """""""""""""""的系数行列式,0212222111211≠=nnn n nna a a a a a a a a D """"""""""定理1.7则该线性方程组有唯一解:)3.1(.,,,2211D D x D D x DD x n n ===".,,2,1,1,1,121,221,22111,111,111n j a a b a a a a b a a a a b a a D nnj n nj n n nj j nj j j """"""""""""""==+−+−+−其中推论2推论1)4.1(000221122221211212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n nn n n nn n n x a x a x a x a x a x a x a x a x a """""""""""""""的系数行列式,0≠D 如果齐次线性方程组则其只有零解;若(1.4)有非零解,.0=D 则必有如果线性方程组(1.2)无解或有两个不同的解,则它的系数行列式必为零.。

大一线性代数第一章知识点

大一线性代数第一章知识点

大一线性代数第一章知识点线性代数是现代数学的一个重要分支,它研究向量空间和线性映射之间的关系。

在大一的线性代数课程中,第一章是介绍向量和矩阵的基本概念。

以下将对第一章的几个知识点进行论述。

一、向量的定义和性质在线性代数中,向量是一个有大小和方向的量。

它可以用一个有序的数组表示,每个数组元素代表向量在某个坐标轴上的分量。

向量有很多基本性质,包括加法、数乘、模长等。

其中,向量的加法和数乘是线性代数中最基本的运算。

向量的加法满足交换律和结合律,数乘满足结合律和分配律。

二、向量空间的定义和性质向量空间是指具有加法和数乘运算的集合,满足一定的公理。

在线性代数中,向量空间是向量运算的集合,它具有许多基本性质。

向量空间中的向量可以进行加法和数乘运算,并且满足一些规律,如交换律、结合律和分配律等。

三、矩阵的定义和性质矩阵是线性代数中另一个重要的概念。

它由若干行和列组成的矩形阵列。

矩阵可以表示为一个矩阵元素的矩阵,每个矩阵元素代表矩阵在某个位置上的值。

矩阵有许多基本性质,包括加法、数乘、乘法等。

矩阵的加法和数乘满足一些基本规律,如交换律和结合律。

矩阵的乘法是线性代数中比较复杂的运算,它是指将两个矩阵相乘得到一个新的矩阵,满足一定的规律。

四、矩阵的行列式和逆矩阵行列式是一个与矩阵相关的数值,它可以用来判断一个矩阵的特征。

对于一个n阶矩阵,它的行列式是一个数值,代表了矩阵的一些性质。

行列式有一些基本性质,如反演性、行列式的性质和行列式的计算方法等。

逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵。

只有非奇异矩阵才有逆矩阵,奇异矩阵没有逆矩阵。

矩阵的逆矩阵具有一些基本性质,如逆矩阵的性质和逆矩阵的计算方法等。

五、线性方程组的解法线性方程组是线性代数中的一个重要概念,它由一系列线性方程组成。

线性方程组的解是指使得方程组成立的未知数的值。

线性方程组的解法有很多种,包括高斯消元法、矩阵求逆法和向量法等。

高斯消元法是一种常用的解线性方程组的方法,它通过一系列消元和代入操作,将方程组转化为简化的阶梯形矩阵,进而求得方程组的解。

线性代数第一章课件

线性代数第一章课件

(五)性质5:把行列式的某一列(行) 的各元素乘以同一数,然后加到另一列 (行)对应的元素上去,行列式不变.
(以数 k 乘第 j 列加到第 i 列上,记作:ci kc j 以数 k 乘第


j 行加到第 i 行上,记作: ri krj )
a11 a21 an1
a1i a2i ani
a11
aij
的第一个下标i称为行标,表明该元
素位于第i行,第二个下标j称为列标,表明 该元素位于第j列,位于第i行第j列的元素称
为行列式的 i, j 元


a11 到 a22 的实联线称为主对角

线, a12
a21
的虚联线称为副对
角线 。
3、二元线性方程组的解
a11 x1 a12 x2 b1 的解为 a21 x1 a22 x2 b2
第一章 行列式 § 1-1 n阶行列式的定义
一、二阶与三阶行列式 ㈠ 二阶行列式与二元线性方程组 1、二阶行列式计算式:
D
a11
a12
a21 a22
a11a22 a12 a21
2、相关名称 a11 a12 在二阶行列式 中,把数 a21 a22
aij i 1.2; j 1.2 称为行列式的元素,元素
注意不要与绝对值记号相混淆。
a a
2、n阶行列式展开式的特点 (1)行列式由n!项求和而成 (2)每项是取自不同行、不同列的n个 元素乘积,每项各元素行标按自然顺序 排列后就是行列式的一般形式,
1
j1 j2
jn
a1 j1 a2 j2
anjn
(3)若行列式每项各元素的行标按自然 数的顺序排列,列标构成n级排列 j1 j2 jn j1 j2 jn 则该项的符号为 1

《线性代数》课件第1章

《线性代数》课件第1章

3
1
1 r1 6
1131
1113
1 1 1 1 r2 r1 1 1 1 1
1 3 1 1 r3 r1 0 2 0 0
6
6
48
1 1 3 1 r4 r 1 0 0 2 0
11 1 3
0002
例1.3.4 计算
a1 a1 0 0
0
a2 a2
0 .
0 0 a3 a3
11 1 1
解 根据行列式的特点,可将第1列加至第2列,然后将
an1 an2
a nj
a nn
an1 an2
bn
a nn
性质6 把行列式的某一行(列)的各元素乘以同一数然后 加到另一行(列)对应的元素上去,行列式的值不变,即
a11
a1n
a11
a1n
ai1
ain ri krj ai1 ka j1
ain a jn
a j1
a jn
(1.3.1.3) a1…alabb1…bmc1…cn
再作m+1次相邻对换,式(1.1.4) a1…albb1…bmac1…cn
(1.1.2) (1.1.3) (1.1.4) ( 1.1.5)
1.2 行列式的定义
1.2.1
定义1.2.1 由4个元素aij(i=1,2;j=1,2)排成两行两列, 并定义
3a11 a12
5a23 2 3a21 a22
5a33
3a31 a32
a11 2 (3) 5 a21
a31
5a13 5a23 5a33
a12 a13 a22 a23 a32 a33
2 (3) 51 30.
例1.3.2 计算
3 1 1 2 5 1 3 4 D 2 0 1 1 1 5 3 3

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。

《线性代数》课件第1章

《线性代数》课件第1章

则规定它们的加法与减法为(当m ≤ n时 ) f (x) ± g(x) = (a0 ± b0 ) + (am ± bm )x + + (am ± bm )xm ± bm+1xm+1 ± ± bn xn;
它们的乘法为
f (x)g (x) = c0 + c0 x + + cm+n x m+n ,
其中
ck
定义1.3:如果多项式 f (x) 和 g(x) 的同次项系数全 相等,则称 f (x)和 g(x)相等,记为 f (x) = g(x).
和 初 等 代 数 一 样 , 我 们 可 以 定 义 Ω 上 的 一 元 多 项 式 的 运 算.设 f ( x ) = a0 + a1 x + + am x m , g ( x ) = b0 + b1 x + + bn x n ,
若f = 0或deg f < n,则取q = 0, r = f 即可.若f 不等于0,且次数 ≥ n,
则用g去消f 的首项,可得“商”q1
=
a b
xm−n及“余”f1
=
f
− q1g,
从而
f = q1g + f1, 若f1 = 0或deg f1 ≤ n,则取q = q1, r = f1即可.若f1不等于0,且其次数 ≥ n, 则再用g去消f1的首项,并设所得的“商”和“余”分别为q2, f2,则有
标准分解定理 Ω上的次数大于0的多项式 f (x)均有如下分解 : f (x) = ap1(x)k1 p2 (x)k2 pt (x)kt ,
其中a为Ω中的非零常数, p1(x),…, pt (x)为互异的首项系数为1的 即约多项式, k1,…, kt为自然数,它们都是由唯一确定的.

线性代数第一章总结

线性代数第一章总结

线性代数第一章总结线性代数作为一门重要的数学学科,是研究向量空间及其变换性质的数学理论。

通过线性代数的学习,我们可以更好地理解和描述现实世界中的各种现象和问题。

本文将对线性代数第一章的主要内容进行总结和归纳。

1. 向量和向量空间向量是线性代数的基本概念之一,它可以用来表示空间中的点或物体。

在向量空间中,向量具有平移、缩放和加法等运算性质。

向量空间是由一组满足加法和数乘运算定义的向量组成的结构,可以用来描述和求解各种线性方程组的性质和解。

2. 矩阵和矩阵运算矩阵是线性代数中另一个重要的概念,它是一个二维数组,具有行和列的特性。

矩阵可以通过线性变换来描述空间中的映射关系。

矩阵可以进行加法和数乘运算,还可以通过矩阵乘法来描述线性变换的复合。

3. 线性方程组和矩阵方程线性方程组是线性代数的一个经典问题,它可以通过矩阵方程的形式来表示。

利用矩阵的性质和运算,可以求解线性方程组的解,并进一步研究其解的特性和性质。

矩阵方程的求解通过矩阵的逆、转置、秩和特征值等方法进行。

4. 特征值和特征向量特征值和特征向量是描述线性变换性质的重要指标。

特征值表示线性变换中不变的方向,而特征向量表示该方向的具体向量。

通过求解特征值和特征向量,可以得到线性变换的不变轴和其对应的缩放比例。

特征值和特征向量在机器学习中有着广泛的应用。

5. 行列式和矩阵的逆行列式是矩阵的一个特殊的数值,它可以用来描述线性变换的伸缩性质。

行列式的值非零表示线性变换具有可逆性,可以求解矩阵的逆。

矩阵的逆在求解线性方程组和求解特征值特征向量等问题中起着重要的作用。

通过对线性代数第一章的学习,我们了解了向量和向量空间的基本概念,矩阵及其运算的性质,线性方程组的求解方法,特征值和特征向量的应用,以及行列式和矩阵逆的概念和作用。

这些知识为我们后续学习和应用线性代数打下了坚实的基础。

线性代数作为数学的一支,不仅在理论上具有重要意义,也在实际应用中有着广泛的应用。

它被广泛应用于物理学、经济学、计算机科学、工程学等领域,为实际问题的建模、求解和分析提供了有效的数学工具。

线性代数第1章行列式n阶行列式的定义

线性代数第1章行列式n阶行列式的定义

行列式中如果有两行( 列)元素成比例,则此 行列式等于零。
把行列式的某一列(行 )的各元素乘以同一数 然后加到另一列(行) 对应的元素上去,行列 式不变。
行列式的计算
80%
直接计算法
按照定义直接计算,适用于低阶 行列式。
100%
降阶法
利用性质将高阶行列式降为低阶 行列式计算,适用于高阶行列式 。
80%
将深入讲解特征值与特征向量的定义、性质以及 计算方法等。
向量与线性方程组
将探讨向量的概念、向量的线性组合与线性方程 组的关系等内容。
二次型与正定矩阵
将介绍二次型的概念、正定矩阵的判定以及二次 型的标准化等内容。
学习建议与要求
熟练掌握行列式的定义、性 质和计算方法,能够灵活运 用所学知识解决相关问题。
线性代数第1章行列式n阶行列 式的定义

CONTENCT

• 引言 • n阶行列式的定义 • 行列式的性质与计算 • 克莱姆法则 • 行列式的应用 • 总结与展望
01
引言
线性代数的重要性
02
01
03
是数学的一个分支,研究线性方程组、向量空间、矩 阵等概念和性质。
在计算机科学、物理学、工程学等领域有广泛应用, 如计算机图形学、量子力学、电路分析等。
本章内容与目标
01
掌握n阶行列式的定义和性质,理解行列式与矩阵的关系。
02
学会计算低阶行列式,了解高阶行列式的计算方法和技巧。
03
了解克拉默法则及其在线性方程组中的应用,理解行列式在 解决实际问题中的意义和作用。
02
n阶行列式的定义
行列式的概念
行列式是数学中的一个基本概念,表示一个方阵的 数值特征。

线性代数课件第1章行列式

线性代数课件第1章行列式

序不同时),则称这两个数有一个逆序.一 .
个n 元排列中所有逆序的总数,称为此排列 的逆序数,记为 ?( p1p 2 pn ) .
? 若排列的逆序数为奇数(偶数),则称此排
列为奇排列(偶排列).
课件
3
? 计算排列逆序数的方法:
? 设 p1 p2 pn 为 n个自然数 1,2, , n的一个排
列,考虑元素 pi (i ? 1,2 , ,, n)如果比 大p且i 排 在 前面pi 的数有 个,t 就说这个元素的逆序
? (3)将行列式的第 i 行(列)乘 k 加到第 j 行
(列)上,记为 rj ? kri (c j ? kci ) .

课件
26
? 例1 计算 1 2 0 1
D? 1 3 5 0 0156 1234
?解 1 2 0 1
120 1
120 1
0 r2 ? r1 1 5 ? 1 r4 ? r1 0 1 5 ?1 r3 ? r2 0 1 5 ?1
? 定理1 对排列进行一次对换,则改变其奇偶 性.
? 由定理1可得下面的推论.
? 推论1 奇排列调成自然(标准)排列的对换 次数为奇数,偶排列调成自然(标准)排列 的对换次数为偶数.
课件
6
? 推论2 全体 n元排列( n ? 1)的集合中,奇、
偶排列各占一半.
课件
7
1.2 行列式的概念
课件
8
? 1.2.1 二、三阶行列式 ? 一、二阶行列式 ? 求解二元一次方程组
D ? (b ? 4)2 (b ? 3)2 (b ? 2)2 (b ? 1)2 (c ? 4)2 (c ? 3)2 (c ? 2)2 (c ? 1)2
(d ? 4)2 (d ? 3)2 (d ? 2)2 (d ? 1)2

大一线代第一章知识点

大一线代第一章知识点

大一线代第一章知识点线性代数是数学的一个重要分支,它研究向量空间与线性变换的性质和结构。

在大一的学习中,我们首先接触到线性代数的基本概念和技巧,在第一章中,我们学习了一些重要的知识点。

本文将围绕这些知识点展开讨论。

向量在线性代数中,向量是一个基本的概念。

我们可以将向量看作有方向和大小的量。

一维向量可以表示为一个实数,二维向量可以表示为一个有序对,三维向量可以表示为一个有序三元组。

向量可以进行加法、减法和数乘等运算,这些运算规则被称为向量空间的运算规则。

向量空间向量空间是由一组具有相同性质的向量组成的集合。

这些向量满足线性组合和封闭性的性质。

线性组合指的是将向量乘以一个标量并进行加法运算,而封闭性指的是向量进行线性组合的结果仍然是属于这个向量空间的。

向量空间具有多个重要性质,比如零向量的存在性、加法逆元的存在性等。

矩阵矩阵是由数值按一定规则排列组成的矩形阵列。

在线性代数中,矩阵代表了线性变换和线性方程组。

矩阵的运算包括加法、减法和数乘。

此外,矩阵还具有乘法运算,矩阵乘法是矩阵运算中的重要操作,它将两个矩阵相乘得到一个新的矩阵。

行列式行列式是一个与矩阵相关的数值,它可以用来判断一个矩阵的性质和计算矩阵的逆阵。

行列式的定义是一个递归的过程,通过将矩阵按一定规则展开并进行计算得到。

行列式有很多重要的性质,比如行列式的值为零表示矩阵不可逆,行列式的绝对值表示面积或体积的倍率。

特征值与特征向量特征值与特征向量是矩阵和线性变换的重要性质。

特征向量是指矩阵在某个线性变换下方向不变的向量,而特征值则表示该特征向量的缩放倍率。

通过求解特征值和特征向量,可以帮助我们理解线性变换的行为和矩阵的结构。

逆矩阵逆矩阵是矩阵理论中的一个重要概念,它是指存在一个矩阵与原矩阵相乘得到单位矩阵。

逆矩阵的存在性与行列式的值密切相关,只有当矩阵的行列式不为零时,才存在逆矩阵。

逆矩阵在解线性方程组、求解线性变换的逆等问题中起到关键作用。

以上就是大一线性代数第一章的一些重要知识点。

线性代数_第一章

线性代数_第一章
n( n 1) -I=5*4/2-6=4 2
印证以上结论。
方法2 n个数中比i大的数有n- i个(i=1,2,…,n),若在排 列x1x2…xn中对i构成的逆序为li个,则在xnxn-1…x1中 对i构成的逆序为(n- i)-li,于是两排列中对i构成的 逆序之和为 表示 li+[(n-i)-li]= n-i (i=1,2,…,n) …… 从而 ( x1 x2 xn ) ( xn xn1 x1 ) n( n 1) ( n 1) ( n 2) 2 1 2 n( n 1) I .为所求 即 ( x n x n 1 x 1 ) 2
第1章 行列式
行列式是线性代数的一个重要组 成部分.它是研究矩阵、线性方程组、 特征多项式的重要工具.本章介绍了 n阶行列式的定义、性质及计算方 法,最后给出了它的一个简单应 用——克莱姆法则.
主要内容
1.1 1.2 1.3 1.4
n阶行列式的定义 行列式的性质 行列式按行(列)展开 克莱姆法则—行列式应用
是所有取自不同行、不同列n个元素的乘积 a1 j1 a2 j2 anjn ( j1 j2 jn ) 并冠以符号 ( 1) 的项的和.
(i) a1 j1 a 2 j2 a nj n 是取自不同行、不同列的n个元素乘积 (ii)行标按自然顺序排列,列标排列的奇偶性 ( j1 j2 jn ) 决定每一项的符号; (iii) 表示对所有的 j1 j2 jn 构成的n!个排列求和.
上三角行列式的值等于其主对角线上各元素的乘积 .
例5 计算
=-4-6+32-24-8-4
=-14
3 x1 x 2 x 3 26 例3 解线性方程组 2 x1 4 x 2 x 3 9 x1 2 x 2 x 3 16

线性代数第一章第一节PPT课件

线性代数第一章第一节PPT课件

01递Biblioteka 公式法02递推公式法是根据行列式的性质和结构特点,利用递推公式来
计算行列式的方法。
递推公式法可以大大简化高阶行列式的计算过程,提高计算效
03
率。
行列式的计算方法
分块法
1
2
分块法是将高阶行列式分成若干个小块,然后利 用小块来计算整个行列式的方法。
3
分块法可以简化高阶行列式的计算过程,特别是 当行列式具有特定的结构特点时,分块法可以大 大提高计算效率。
01
向量空间
02
向量空间是线性代数中的一个重要概念,而行列式在向量 空间的定义和性质中也有着重要的应用。例如,通过行列 式可以判断一个向量集合是否构成向量空间,以及向量空 间的一些基本性质。
03
行列式在向量空间中的应用可以帮助我们更好地理解线性 代数的本质和结构特点。
05
特征值与特征向量
特征值与特征向量的定义
转置等特殊运算。
向量与矩阵的关系
关联性
04
向量可以用矩阵来表示,矩 阵中的每一行可以看作是一 个向量。
01 03
•·
02
向量和矩阵在数学中是密切 相关的概念,矩阵可以看作 是向量的扩展。
04
行列式
行列式的定义与性质
基本概念
行列式是由数字组成的方阵,按照一定的规则计 算出的一个数。
行列式具有一些基本的性质,如交换律、结合律、 分配律等。
向量可以用有向线段、坐 标系中的点或有序数对来 表示。
向量有大小和方向两个基 本属性,大小表示向量的 长度,方向表示向量的指 向。
矩阵的定义与运算
•·
02
基础运算
01
03
矩阵是一个由数字组成的矩 形阵列,表示二维数组。

线性代数第1章n阶行列式

线性代数第1章n阶行列式
乘法性质可以用数学表达式表示为:C = A * B。
乘法性质在计算行列式和解决线性方程组时非常有用,因为它可以简化计算过程。
行列式的加法性质
01
行列式的加法性质是指两个同阶行列式相加时,其结果的行列式等于将这两个 行列式对应元素相加得到的行列式。即,如果A和B都是n阶行列式,那么它们 的和C也是一个n阶行列式,且C的值等于将A和B对应元素相加得到的行列式。
02
加法性质可以用数学表达式表示为:C = A + B。
03
加法性质在计算行列式和解决线性方程组时非常有用,因为它可以简化计算过 程。同时,它也表明行列式是一个线性空间中的元素,具有线性性质。
03
n阶行列式的展开
二阶行列式的展开
• 二阶行列式由两个元素组成,按照对角线法则,可以展开 为两个一元一次方程的乘积。
具体地,对于n阶行列式,其展开结果为若干个一元一次 方程的乘积之和。
04
行列式的计算方法
代数余子式
定义
在n阶行列式中,去掉某行和某列后所得 到的(n-1)阶行列式,与原来的n阶行列式 相比,该(n-1)阶行列式前面多了一个负号 ,这个(n-1)阶行列式称为代数余子式。
性质
代数余子式与原来的n阶行列式中的 元素有关,并且代数余子式的符号由 去掉的行和列的元素的排列顺序决定。
感谢您的观看
转置运算可以用数学表达式表示为:D' = D。
转置运算在行列式中非常重要,因为它可以简化计算过程,并且有助于理解行列式 与其他数学概念之间的关系。
行列式的乘法性质
行列式的乘法性质是指两个行列式相乘时,其结果的行列式等于将其中一个行列式的行与另 一个行列式的列相乘得到的行列式。即,如果A和B都是n阶行列式,那么它们的乘积C也是 一个n阶行列式,且C的值等于将A的行与B的列相乘得到的行列式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可导必连续
教是为了不教
学是为了会学
7
引 言
实现学习的目的——知识的继承与创新 教学目标:
1、能用所学知识去描述问题、解决问题; 2、学会学习,用已知学会研究未知的方法; 3、在质疑中培养创新意识及能力 . 教学方法的基本原则:
让学生用已有知识去学习、思考,使抽象变得自然 ;
让学生在主动的思考中获得知识,使学生知其然且
线性代数
Linear
理学院
Algebra
数学科学系 杨瑞
86843240(O)
yrhappy@
1
引 言
数学处于人类智能的中心领域……数学方
法渗透、支配着一切自然科学的理论分支……
它已愈来愈成为衡量成就的主要标志 .
---- Von Neumann
2
引 言 一门科学只有当它达到能够成功地运用
Solution: 设每日需食用脱
36 52
51 34
13 74
33 45
脂牛奶 x1 个单位、大
脂肪
0
7
1.1
3
豆粉 x2 个单位、乳清 x3 个单位 .
为了保证减肥所要
求的每日营养量, 则得如下线性方程组:
36 x1 51x2 13 x3 33 52 x1 34 x2 74 x3 45 7 x2 1.1x3 3
每100克食物所含营养量(g)
营养
脱脂牛奶 蛋白质 碳水化合物 大豆粉 乳清
减肥所要求的 每日营养量
36 52
能满足
营养要求?
脂肪
0
7
1.1
3 9
引 例
营养
每100克食物所含营养量(g) 脱脂牛奶 蛋白质 碳水化合物 大豆粉 乳清
减肥所要求的 每日营养量
4
引 言
学习方法是大学 线性代数和微积分学是数学的两大支柱,是所有理 无论从理论还是应用,线性代数,正受到数学、 教学的重要内容 工科学生的必修课程 . 科技、管理工作者的特别重视,已成为他们必须具备
线性代数的重要性在于它考虑了一类简单的数学模 的数学知识 . 型,而大量的理论及应用问题可以通过 “线性化”变 在后续的专业课中(特别是运用计算机技术的) , 成 将经常用到线性代数的知识 线性代数问题 . 特别是随着计算机技术的飞跃发展及广泛应用,有 未来的文盲不再是目不识丁的人,而是那些没 《线性代数》又是一门基础课,大量的定义、定 些非线性问题高精度地线性化与大型线性问题的可计算 有学会怎样学习的人 理及证明,使之具有高度的抽象性和严谨的逻辑性 .
Alvin Toffler 这有助数学素质的培养和学习方法的提高 . 性正在逐步实现,从而线性问题的重要性显得日益突出
起来 .
5
引 言
学数学目的不在定理和公式
中国科学院院士 李大潜 数学教育本质上是一种素质教育 8数学教育要创造一种环境,使同学身临其境地介入数学的 1 2 3 4 5 6 7 、通过数学的训练,可以使学生树立明确的数量 、提高学生的逻辑思维能力,使他们思路清晰, 、 数学上的推导要求每一个正负号、每一个小数 数学上追求的是最有用(广泛)的结论、最低 通过数学的训练,使学生知道数学概念、方法 通过数学的训练,可以使学生增强拼搏精神和 可以调动学生的探索精神和创造力,使他们更 使学生具有某种数学上的直觉和想象力,包括
发现或创造过程,鼓励并推动学生解决一些理论或实际的问
几何直观能力,能够根据所面对的问题的本质或特 点都不能含糊敷衍,有助于培养学生认真细致、一丝 的条件(代价)以及最简明的证明,可以使学生形成 应变能力,能通过不断分析矛盾,从表面上一团乱麻 观念,“胸中有数”,认真地注意事物的数量方面及 条理分明,有条不紊地处理头绪纷繁的各项工作。 和理论的产生和发展的渊源和过程,了解和领会由实 加灵活和主动,在改善所学的数学结论、改进证明的 题。这些问题没有现成的答案,没有固定的方法,没有指定的 其 不苟的作风。 精益求精的风格。 的困难局面中理出头绪,最终解决问题。 点,八九不离十地估计到可能的结论,为实际的需要 际需要出发、到建立数学模型、再到解决实际问题的 思路和方法、发现不同的数学领域或结论之间的内在
关的结论,并判断结论的对错与优劣。
么?学什么? 怎样教?怎样 学?
6
引 言
问:在高等数学课程中还记得什么?
MATLAB等工具 软件,只要一个 命令即可完成
如果重要的微积分的思想、什么情况下需要用、
什么条件下可以用则不关心;而课程中包含大量的学
习方法,没有很好地去体会. 白学了!
不仅仅是学会 接受新概念应与 已有知识进行比较 求新问题先考虑能 否转化为已解问题
知其所以然 .
怎样做? 为什么这样做? 不这样做可以吗?
How ?
Why ?
Other ways ?
8
第 一 章
线性方程组的解法
问题简化为3种 食物、3种营养
引例 1 剑桥减肥食谱问题 线性方程组及求解是科学研究和工程应用中最普遍
和最重要的问题之一,也是线性代数课程的核心内容之 一种在20 世纪80 年代很流行的食谱,是由 Howard 一 . 本课程将以线性方程组为主线引出线性代数课程的 博士领导的科学团队经过 8年对过度肥胖病人的临床研 主要内容 . 究,在剑桥大学完成的 . 这种低热量的粉状食品精确地 平衡了碳水化合物、高质量的蛋白质和脂肪、复合维生 素、矿物质、微量元素和电解质 . 如果用这三种食物 作为每天的主要食物,
参考书,没有规定的数学工具,甚至也没有成型的数学问题。
变化规律。 提供借鉴 。 全过程,提高他们运用数学知识处理现实世界中各种 联系、拓展数学知识的应用范围以及解决现实问题等 主要靠学生独立思考、反复钻研并相互切磋,去形成相应的数 复杂问题的意识、信念和能力。 方面,逐步显露出自己的聪明才智。 学问题,进而分析问题的特点,寻求解决问题的方法,得到有 大学数学教什
数学时,才算真正发展了.
---- Karl Marx 数学是一种语言,是一切科学的共同语言
Galileo : 展现在我们眼前的宇宙像一本用数学语言
写成的大书,如不掌握数学符号语言,就像在黑暗
的迷宫里游荡,什么也认识不清.
3
引 言 数学是一种技术,是高技术的本质 数学技术----数学方法与计算技术的结合形 成的一种关键性的、可实现的技术
相关文档
最新文档