专题4统计与概率学生版陟乃赋老师中考二轮资料
中考数学总复习 第二部分 统计与概率 第4单元 统计与概率 第 数据的收集、整理与描述课件
4.[教材原题]江涛同学统计了他家 10 月份的长途电话
明细清单,按通话时间画出频数分布直方图.
(1)他家这个月一共打了 频数 (通话次数) 102 次长途电话; 30 30
(2)通话时间不足 10 min 25 23
21
的 53 次;
20
(3)通话时间在
0~5
min
15 10
13 15
范围最多,
12/9/2021
3.[变式]为了解某市老人的身体健康状况,需 要抽取部分老人进行调查,下列抽取老人的 方法最合适的是( D ) A.随机抽取 100 位女性老人 B.随机抽取 100 位男性老人 C.随机抽取公园内 100 位老人 D.在城市和乡镇各选 10 个点,每个点任选 5 位老人
12/9/2021
165≤x<170 14 b
x≥170
6 12%
总计
100%
频数(学生人数)
20
15
15 14
10
10
55
6
0
155 160 165 170 身高/cm
(1)填空:a 10 ,b 28% ;
(2)补全频数分布直方图;
解:(2)补全的频数分布直方图如上图所示;
12/9/2021
(3)该校九年级共有 600 名学生,估计身高不低 于 165 cm 的学生大约有多少人?
“社科类”书籍的学生人数.
解:(2)如图所示;
(4)∵
2500
24 200
300
∴该校喜欢“社科类”书籍的学生人数约
为 300 人.
12/9/2021
6.[变式]下列各图中,最能清楚地显示数据的变
化趋势的统计图是( C )
广东省中考二轮热点专题复习课件:统计与概率应用专题
(4)900×6+24+16=828(人).
50
答案图
答:估计该校“关注”“比较关注”及“非常关注”航天科技的人数共
有 828 人.
3.(202X盐城模拟)在某次疫情产生后,根据疾控部门发布的统 计数据,绘制出如图所示的统计图:图①为A地区累计确诊人 数的条形统计图,图②为B地区新增确诊人数的折线统计图.
请用画树状图(或列表)的方法,求小明两次抽到的纪念章中至 少有一枚印有“嫦娥五号”图案的概率.
解:画树状图如图:
共有 9 种等可能的结果数,其中小明两次抽到的纪念章中至少有 一枚印有“嫦娥五号”图案的结果数为 5,则小明两次抽到的纪念 章中至少有一枚印有“嫦娥五号”图案的概率是5.
9
5.(202X湘潭模拟)生死守护,致敬英雄.湘潭28名医护人员所 在的湖南对口支援湖北黄冈医疗队红安分队,精心救治每一 位患者,出色地完成了医疗救治任务.为致敬英雄,某校音乐兴 趣小组根据网络盛传的“红旗小姐姐”跳的儋州调声组建了舞 蹈队.现需要选取两名学生作为舞蹈队的领舞,甲、乙两班各 推举了一男生和一女生.(温馨提示:用男1、女1,男2、女2分别 表示甲、乙两班4个学生)
(1)请用列举的方法写出所有可能出现的结果; (2)若选取的两人来自不同的班级,且按甲、乙两班先后顺序 选取.请用列表或画树状图的方法求出恰好选中一男一女的 概率.
解:(1)可能出现的结果有:男 1 女 1、男 1 男 2、男 1 女 2、
男 2 女 1、男 2 女 2、女 1 女 2;
(2)列表法表示所有可能出现的结果如下:
甲班
乙班
男1
女1
男2
男1男2
女1男2
女2
男1女2
女1女2
【人教通用版】2019年 九年级数学中考二轮 统计与概率 专题复习30题(含答案)
2019年九年级数学中考二轮统计与概率专题复习1.我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?2.九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”知识竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:请解答下列问题:(1)完成频数分布表,a=___________,b=___________;(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩在90≤x<100范围内的学生有多少人?3.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书.学校组织学生会随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类.根据调查结果绘制了统计图(未完成).请根据图中信息,解答下列问题:(1)此次共调查了____________名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为____________度;(4)若该学校共有学生2 500人,估计该校喜欢“社科类”书籍的学生人数.4.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有____________人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是____________度;(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.5.某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2 300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?6.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a=____________,b=____________;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2 000名学生中评为“阅读之星”的有多少人?7.联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了下面的两个统计图.其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类B:能将垃圾放到规定的地方,但不会考虑垃圾的分类C:偶尔会将垃圾放到规定的地方D:随手乱扔垃圾根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全条形统计图;(2)如果该校共有师生2 400人,那么随手乱扔垃圾的约有多少人?8.为了解某县初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有名;(2)表中x,y和m所表示的数分别为:x= ,y= ,m= ;(3)请补全条形统计图;(4)根据抽样调查结果,请你估计该县5400名初中毕业生实验考查成绩为D类的学生人数.9.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有__________人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是__________度.(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.10. “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有_______个班级;各班留守儿童人数的中位数是_______;并补全条形统计图;(2)若该镇所有小学共有65 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.11.为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如下表:然后做上记号再放回鱼塘中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点);(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).12.某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表:(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,则谁将被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3∶5∶2的权确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.13.为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数、众数和中位数;(3)根据样本数据,估计市直机关500户家庭中月平均用水量不超过12吨的约有多少户?14.九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是____________;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.15.我市民营经济持续发展,城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工月平均收入随机抽样调查,将抽样的数据按“2 000元以内”、“2 000元~4 000元”、“4 000元~6 000元”和“6 000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有____________人,在扇形统计图中x的值为____________,表示“月平均收入在2 000元以内”的部分所对应扇形的圆心角的度数是____________;(2)将不完整的条形统计图补充完整,并估计我市城镇民营企业20万员工中,每月的收入在“2 000元~4 000元”的约多少人?(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4 872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?16.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?17.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.18.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试(1)在表中,a= ,b= ,c= ;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?19.参与我市教育资源倍增工程的学校有A、B两个校区,为了加强融合,两个校区的学生特举办了以“弘扬校园真善美,文名礼仪在我心”为主题的演讲比赛.两校区参赛人数相等,比赛结束后,按分数进行分类统计,共有7分、8分、9分、10分(满分10分)四个等级.依据统计数据绘制了如下尚不完整的统计图表.(1)根据图表信息可知两个校区参加的人数为人,并将图2的统计图补充完整;(2)经计算,B校区的平均分是8.3分,中位数是8分,请计算A校区的平均分、中位数,并从平均数和中位数的角度分析哪个校区成绩较好;(3)如果该学校要组织8人的代表队参加学区内的演讲团体赛,决定从这两个校区中的一所挑选参赛选手,请你分析,应选哪个小区?20.某商场在今年“十·一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.21.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.22.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.24.把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.25.为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.26. “学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.27.在一个不透明的盒子里,装有三个分别写有数字6, 2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.28.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.29.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?参考答案1.解:(1)这次抽取的样本容量为24÷20%=120;(2)C等级人数为120×30%=36(份),D等级人数为120﹣(24+48+36)=12(份),补全条形图如下:(3)750×=450(份),答:估计参赛作品达到B级以上(即A级和B级)有450份.2.(1)4,4;(2)略.(3)50(人).答:估计该校成绩在90≤x<100范围内的学生约有50人.3.解:(1)200;(2)图略.(3)126;(4)2 500×=300(人).答:估计该校喜欢“社科类”书籍的学生人数约为300人.4.(1)500;(2)A的人数:500-75-140-245=40(人),统计图2补充略.(3)54;(4)245÷500×100%=49%,3 600×49%=1 764(人).答:估计该校喜欢健美操的学生有1 764人.5.解:(1)由统计表可知,样本容量为57÷0.38=150,∴a=150×0.3=45,c=1-0.3-0.38-0.06=0.26,b=150×0.26=39.补全统计图略.(2)2 300×0.26=598(人).答:估计该校“不重视阅读数学教科书”的初中生人数约为598人.(3)①从该校初中生重视阅读数学教科书的人数比例来看,该校初中生对阅读数学教科书的重视程度不够,建议数学教师在课内外加强引导学生阅读数学教科书,逐步提高学生数学阅读能力,重视数学教材在数学学习过程中的作用.②考虑到样本具有的随机性、代表性和广泛性,要了解全省初中生阅读数学教科书的情况,抽样时要选择城市、乡镇不同层次的学校.6.解:(1)25,0.10;(2)阅读时间为6<t≤8的学生有25人,补全频数分布直方图略.(3)2 000×0.10=200(人).答:估计该校2 000名学生中评为“阅读之星”的有200人.7.解:(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人).D种情况的人数为300-(150+30+90)=30(人),补全统计图略.(2)随手乱扔垃圾的人约为240(人).8.解:(1)60÷30%=200名;(2)x=200×50%=100,y=200×15%=30,m=1﹣95%=5%; (3)(4)5400×5%=270名.答:估计2011年该县5400名初中毕业生实验考查成绩为D 类的学生人数为270名 9.解:(1)500(2)A 的人数:500-75-140-245=40,图略; (3)54(4)245÷500×100%=49%,3600×49%=1764(人). 答:估计该校喜欢健美操的学生有1764人. 10. (1) 16;9名;5个.(2) 解:1(617285106122)6516⨯⨯+⨯+⨯+⨯+⨯⨯585=. 答:该镇小学生中,共有585名留守儿童. 11.解:(1)补图略.(2)其质量落在0.5~0.8 kg 这一组的可能性最大. (3)质量落在0.8~1.1 kg 这一组内.(4)平均数x=0.904(kg ),50÷1002×0.904=2 260(kg ). ∴水库中成品鱼的总质量约为2 260 kg.(答案不唯一,合理即可) 12.解:(1)∵x 甲=84(分),x 乙=85(分),∴x 甲<x 乙.∴乙将被录用.(2)∵x 甲′=85.5(分),x 乙′=84.8(分),∴x 乙′<x 甲′.∴甲将被录用. (3)甲一定被录用,而乙不一定能被录用.理由如下:由直方图可知成绩最高一组分数段85≤x<90中有7人,公司招聘8人, 又因为x 甲′=85.5分,显然甲在该组,所以甲一定能被录用; 在80≤x<85这一组内有10人,仅有1人能被录用,而x 乙′=84.8分,在这一组内不一定是最高分,所以乙不一定能被录用. 由直方图知,应聘人数共有50人,录用人数为8人, 所以本次招聘人才的录用率为:16%.13.解:(1)月平均用水11吨的用户为:100-20-10-20-10=40(户).补图略.(2)平均数为11.6吨,众数为11吨,中位数为11吨. (3)样本中不超过12吨的有20+40+10=70(户),∴黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:350(户). 14.解:(1)C 组;(2)图略.(3)小明的判断符合实际.理由:这次活动中做家务的时间的中位数所在的范围是1.5≤x<2,小明这一周做家务2小时,所在的范围是2≤x<2.5,所以小明的判断符合实际.15.解:(1)500 14 21.6°;(2)图略.估计我市城镇民营企业20万员工中,每月的收入在“2 000元~4 000元”的约:20×60%=12(万人).(3)用平均数反映月收入情况不合理.理由如下:从统计的数据来看,月收入在2 000元~4 000元的员工占60%,而在4 000元~6 000元的员工仅占20%,6 000元以上的员工占14%,因此,少数员工的月收入将平均数抬高到了4 872元.因此,用平均数反映月收入情况不太合理. 16.解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.17.解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.18.解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.19.解:(1)20;补充统计图如图所示;(2)A 校区的平均分为8.第10名与第11名都得7分,所以中位数为7分;由于两校区平均分相等,B 校区成绩的中位数大于A 校区的中位数, 所以B 校区的成绩较好.(3)因为选8名学生参加学区内的演讲团体赛, 20.解:P (两次摸出的小球的标号之和为“8”或“6”)=41. 21.解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16种等可能结果,小于45的两位数共有6种.∴63168P ==(甲获胜),105168P ==(乙获胜).∵8583≠,∴这个游戏不公平. 22.解:树状图为:由上述树状图或表格知:所有可能出现的结果共有16种.∴P (小明赢)=63168=,P (小亮赢)=105168=.∴此游戏对双方不公平,小亮赢的可能性大. 23.解:(1)表中a 的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44;答:本次测试的优秀率是0.44;(4)用A 表示小宇B 表示小强,C 、D 表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,则小宇与小强两名男同学分在同一组的概率是=.24.解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,故3193)(==牌面数字相同P , 3296)(==牌面数字不同P .∵31<32,∴此游戏规则不公平,小李赢的可能性大.25.解:(1)本次抽样测试的学生人数是:=40(人),故答案为:40;(2)根据题意得:360°×=54°,答:图1中∠α的度数是54°;C 级的人数是:40﹣6﹣12﹣8=14(人),如图:故答案为:54°;(3)根据题意得:3500×=700(人),答:不及格的人数为700人.故答案为:700;(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P (选中小明)==.26.解:(1)画树状图分析如下:(2)九年级学生代表到社区进行义务文艺演出的概率为2163P ==. 27.解:(1)P (两数相同)=13.(2)P (两数和大于10)=49. 28.解:(1)10,50;(2)解:树状图如下:从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果, 因此P (不低于30元)=82123=. 29.答案为:三;104人;0.20 30 10 20 30 10 02030 10 30 40 010 30 20 20 30 50 2030 050 30 40 第一次第二次 和 树形图6 76 -276 7 7 6 -2 -2 -2。
专题9信息类问题学生版——陟乃赋老师中考二轮精品资料
专题九:信息类问题一、考点综述考点内容:图表信息题,是指将已知信息用图象或表格形式给出的一类问题。
它要求学生从已知图象或表格中获取数据,去分析、解决实际问题。
考纲要求:能根据图表信息所给的条件,结合学过的函数、统计等知识能灵活运用考查方式及分值:图表信息题是近两年以来,应用题设计中的新题型,也是中考命题的新形式之一,在选择、填空、解答等题目中都有出现,分值在15分左右。
备考策略:1、细读图表:(1)注重整体阅读。
先对材料或图表资料等有一个整体的了解,把握大体方向。
要通过整体阅读,搜索有效信息;(2)重视数据变化。
数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节。
图表中一些细节不能忽视,他往往起提示作用。
如图表下的“注”“数字单位”等。
2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢。
题目要求包往往括字数句数限制、比较对象、变化情况等。
3、准确表达解答图表题需要用简明的语言进行概括。
解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论。
在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制。
二、例题精析1.规律型找规律是解决数学问题的一种重要手段,找规律既需要敏锐的观察力,又需要一定的逻辑推理能力。
在解决图形问题的时候应从图形的个数、形状以及图形的简单性质入手。
例1.如下图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形有多少个?()A.54个B.90个C.102个 D.114个94xy O P DC B A 2.函数型此类题目以图象的形式出现,有时用函数图象的形式出现,需要要把所给的图象信息进行分类、提取加工,再合成.例2.如图,在矩形ABCD 中,动点P 从点B 出发, 沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )A.10B.16C.18D.203.从表格中寻求规律能从表格中发现两个量之间存在规律,归纳出相应的关系式.在探索规律的时候,如对于数字问题,可以把等式横向、纵向进行比较,找到其中的数字与其式子的序号之间的关系,然后找到其中的变化规律.例 3.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?4.统计型结合图表利用统计的知识来解决、分析问题例4下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格.5.实际问题综合型结合图表、图像各种知识的综合运用例5今年夏季我国部分地区遭受水灾,空军某部奉命赶赴灾区空投物资。
老高考适用2023版高考数学二轮总复习第2篇经典专题突破核心素养提升专题4统计与概率第2讲概率文课件
B.π4 D.π6
【解析】 设正方体的边长为 a, 正方体体积为 a3,“牟合方盖”的体积为23a3, 而内切球的体积为43πa23=π6a3, 所以在该“牟合方盖”内任取一点,
由内切球在“牟合方盖”内部, πa3
此点取自正方体内切球内的概率为 6 =π, 23a3 4
故选 B.
【名师点拨】 求解几何概型应把握的两点 (1)几何概型适用条件:当构成试验的结果的区域为长度、面积、体 积时,应考虑使用几何概型求解. (2)求解关键:寻找构成试验的全部结果的区域和事件发生的区域, 有时需要设出变量,在坐标系中表示所需要的区域.
2.(2022·全国甲卷)从分别写有 1,2,3,4,5,6 的 6 张卡片中无放回随机
抽取 2 张,则抽到的 2 张卡片上的数字之积是 4 的倍数的概率为( C )
A.15
B.13
C.25
D.23
【解析】 根据题意,从 6 张卡片中无放回随机抽取 2 张,有(1,2), (1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6), (4,5),(4,6),(5,6),共 15 种取法,其中抽到的 2 张卡片上的数字之积是 4 的倍数有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6),共 6 种情况,则抽到 的 2 张卡片上的数字之积是 4 的倍数的概率 P=165=25;故选 C.
由随机模拟试验可得:S黑= 605 ,又 S正 1 089
S
正=9,
可得 S 黑=1600859×9≈5.故选 B.
4.已知区域A={(x,y)||x|≤2,|y|≤2}和B={(x,y)|x>0,y>0,x
专题1数与式学生版——陟乃赋老师中考二轮精品资料
专题一:数与式一、考点综述(1)实数●借助数轴理解相反数、倒数、绝对值意义及性质.●掌握实数的分类、大小比较及混合运算.●会用科学记数法、有效数字、精确度确定一个数的近似值.●能用有理数估计一个无理数的大致范围.(2)代数式●了解整式、分式、二次根式、最简二次根式的概念及意义.会用提公因式法、公式法对整式进行因式分解.●理解平方根、算术平方根、立方根的意义及其性质.根据整式、分式、二次根式的运算法则进行化简、求值考题分值:数与式约占总分的17.1%备考策略:①夯实基础,抓好“双基”. ②把课本的典型、重点的题目做变式和延伸.③注意一些跨学科的常识. ④关注中考的新题型.⑤关注课程标准里面新增的目标. ⑥探究性试题的复习步骤:1.纯数字的探索规律.2.结合平面图形探索规律.3.结合空间图形探索规律,4.探索规律方法的总结.二、例题精析例2.阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-3,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-4,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-5,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-6,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.综上,数轴上A 、B 两点之间的距离AB a b =-. 回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 . (2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = .baA 图1-6O 0B baA 图1-5O 0O 0bB 图1-4aAO (A ) 0bB 图1-3B例3.0细心观察图形,认真分析各式,然后解答问题。
备考2023年中考数学二轮复习-统计与概率_数据分析_用样本估计总体
备考2023年中考数学二轮复习-统计与概率_数据分析_用样本估计总体用样本估计总体专训单选题:1、(2015兴安盟.中考真卷) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 2002、(2017苏州.中考真卷) 为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有名学生中随机征求了名学生的意见,其中持“反对”和“无所谓”意见的共有名学生,估计全校持“赞成”意见的学生人数约为()A .B .C .D .3、(2015镇江.中考真卷) 有4万个不小于70的两位数,从中随机抽取了3000个数据x 70<x<79 80<x<89 90<x<99个数800 1300 900平均数78.1 85 91.9请根据表格中的信息,估计这4万个数据的平均数约为()A . 92.16B . 85.23C . 84.73D . 77.974、(2017杭州.中考模拟) 为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A . 9B . 10C . 12D . 155、(2015舟山.中考真卷) 质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A . 5B . 100C . 500D . 100006、(2012丽水.中考真卷) 为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A . 12B . 48C . 72D . 967、(2016日照.中考真卷) 积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整节水量(单位:0.5 1 1.5 2吨)家庭数(户) 2 3 4 1请你估计该200户家庭这个月节约用水的总量是()A . 240吨B . 360吨C . 180吨D . 200吨8、(2017天门.中考模拟) 质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A . 5B . 100C . 500D . 100009、(2013贺州.中考真卷) 为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A . 500名B . 600名C . 700名D . 800名10、某校950名七年级学生参加跳绳测试,随机抽取部分学生成绩并绘制频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,若校方规定次数达到130次(包括130次)的成绩为“优良”,则该校成绩“优良”的学生人数约为()A . 35B . 65C . 350D . 650填空题:11、(2022柯桥.中考模拟) 为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力4.7以下4.7 4.8 4.9 4.9以上人数102 98 80 93 127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是________.12、(2017顺义.中考模拟) 图1为北京城市女生从出生到15岁的平均身高统计图,图2是北京城市某女生从出生到12岁的身高统计图.请你根据以上信息预测该女生15岁时的身高约为________,你的预测理由是________.13、(2017虎丘.中考模拟) 某校在“祖国好、家乡美”主题宣传周里推出五条A、B、C、D、E旅游线路.某校摄影社团随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图.全校2400名学生中,请你估计,选择“C”路线的人数约为________.14、(2019襄阳.中考模拟) 某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 62 36 15 51 4540 42 40 32 43 36 34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.分组频数频率4.5﹣22.5 2 0.05022.5﹣30.5 330.5﹣38.5 10 0.25038.5﹣46.5 1946.5﹣54.5 5 0.12554.5﹣62.5 1 0.025合计40 1.000(2)填空:在这个问题中,总体是,样本是.由统计结果分析的,这组数据的平均数是38.35(分),众数是,中位数是.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?15、(2018南宁.中考模拟) 李好在六月月连续几天同一时刻观察电表显示的度数,日期1号2号3号4号5号6号7号8号…30号电表显120 123 127 132 138 141 145 148 …示(度)估计李好家六月份总月电量是________。
统计与概率中考复习共69页文档
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
统计与概率中考复习4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
适用于新高考新教材2023届高考数学二轮总复习专题四概率与统计课件
4.独立性检验
对于取值分别是{x1,x2}和{y1,y2}的分类变量X和Y,其2×2列联表是:
变量
y1
y2
合计
x1
a
b
a+b
x2
c
d
c+d
a+c
b+d
n
合计
随机变量
2
(-)
2
χ =(+)(+)(+)(+),其中 n=a+b+c+d.
5.概率的计算公式
事件包含的基本事件数
1.重视新增知识,如百分位数、条件概率与全概率公式、分层抽样中
的样本数字特征等,在理解的基础上能熟练运用相关公式进行计算.
2.重视阅读理解,本部分知识与实际联系密切,一般阅读量较大,需要平
时多加训练,抓住材料本质,提炼关键内容,通过数学建模达到处理题
备考 目信息的目的.
策略 3.重视对统计图表信息题的训练,此类问题常通过真实的统计图表,以
3.(2021·全国甲·理10)将4个1和2个0随机排成一行,则2个0不相邻的概率为
(
)
1
A.3
2
B.5
2
C.3
4
D.5
答案 C
解析 将 4 个 1 和 2 个 0 随机排成一行的总的排法为C62 =15 种,其中 2 个 0 不相
邻的排法为C52 =10
种,所以 2 个 0
2
不相邻的概率为 .
3
(1)古典概型的概率计算公式 P(A)=
基本事件总数
(2)互斥事件的概率计算公式 P(A∪B)=P(A)+P(B);
(3)对立事件的概率计算公式 P()=1-P(A);
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-解答题专训及答案
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-解答题专训及答案用样本估计总体解答题专训1、(2017海淀.中考模拟) 某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.2、(2017河北.中考模拟) 某校为了解全校1600名学生每周课外体育活动时间的情况,随机调查了其中的部分学生,对这些学生每周课外体育活动时间x(单位:小时)进行了统计,根据所得数据绘制了一幅统计图,根据以上信息及统计图解答下列问题(Ⅰ)本次接受随机抽样调查的学生人数为________;(Ⅱ)求这些学生每周课外体育活动时间的平均数________;(Ⅲ)估计全校学生每周课外体育活动时间不多于4小时的人数________ .3、(2016丹东.中考模拟) 某校为了解七年级男生体操测试情况,随机抽取了50名男生的测试成绩进行统计,根据评分标准,将他们的成绩分为A,B,C,D四个等级,并绘制成频数分布表和扇形统计图(如图).等级成绩x/分频数/(人数)频率A 9.0≤x≤10.0a mB 7.0≤x<9.0 23 0.46C 6.0≤x<7.0 b nD 0.0≤x<6.0 3 0.06合计50 1.00(1)在被调查的男生中,成绩为B等级的有多少人,占被调查男生人数的多少,m 等于多少;(2)求a,b,n的值;(3)如果该校七年级共有200名男生,试估计这200名男生中成绩达到A等级和B等级的共有多少人.4、(2019宁江.中考模拟) 某校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):整理数据:按如下分段整理样本数据并补全表格:分析数据:补全下列表格中的统计量:得出结论:⑴用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为▲;⑵如果该校现有学生400人,估计等级为“B”的学生有多少人?⑶假设平均阅读一本课外书的时间为320分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?5、(2020徽.中考模拟) 为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.1.5小时以上 B.1~1.5小时 C.0.5~1小时 D.0.5小时以下图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了名学生;学生参加体育活动时间的中位数落在时间段(填写上面所给“A”、“B”、“C”、“D”中的一个选项);(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.6、(2017启东.中考模拟) 体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.(1)求女生进球数的平均数、中位数;(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?7、(2018拱墅.中考模拟) 某校实验课程改革,初三年级设罝了A,B,C,D四门不同的拓展性课程(每位学生只选修其中一门,所有学生都有一门选修课程),学校摸底调査了初三学生的选课意向,并将调查结果绘制成两个不完整的统计图,问该校初三年级共有多少学生?其中要选修B、C课程的各有多少学生?8、(2018嘉兴.中考模拟) 为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:A.数学思维,B.文学鉴赏,C.红船课程,D.3D打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)请将条形统计图补充完整;(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数。
中考总复习第四单元统计与概率ppt、中考真题及模拟(附答案)
则这 10 个区县该日最高气温的众数和中位数分别是( A ) A.32,32 B.32,30 C.30,32 D.32,31
3.[2009,北京] 在每年年初的市人代会上,北京市财政局都要报告上一年度市财 政预算执行情况和当年预算情况.以下是根据 2004—2008 年报告中的有关数据制 作的市财政教育预算与实际投入统计图表的一部分. 2004—2008 年北京市财政教育预算与实际投入对比统计图
二、京考真题
【考情分析】
年份 2009 题型 选择 4分 解答 众数、 中位数 算术 平均数 平均数 方差 众数、 中位数 众数、 中位数 算术 平均数 加权平 均数 2010 2011 2012 2013 2014 猜猜看
【热考精讲】
► 热考一 统计方式的选择
例 1 下列采用的调查方式合适的是 ( C ) A.为了了解炮弹的杀伤力,采用普查的方式 B.为了了解全国中学生睡眠状况,采用普查的方式 C.为了了解人们保护水资源的意识,采用抽样调查的 方式 D.对载人航天器“神舟七号”零部件的检查,采用抽 样调查的方式
(1)方差是各个数据与平均数的差的平方的平均数. (2)方差反映了一组数据的波动大小,方差越大,数据 波动越大;方差越小,波动越小.
三、试金石
1.[2013,北京]某中学随机地调查了 50 名学生,了解他们一周在校 的体育锻炼时间,结果如下表所示: 时间 (小时) 人数 5 10 6 15 7 20 8 5
B
则这 50 名学生这一周在校的平均体育锻炼时间是( A.6 2 小时 B.6 4 小时 C.6
)
5 小时 D.7 小时
2.[2012,北京] 北京市今年 6 月某日部分区县的最高气温如下表: 区 县 最 高 气 温 (℃) 大 兴 32 通 州 32 平 谷 30 顺 义 32 怀 柔 30 门 头 延 沟 32 庆 29 昌 平 32 密 云 30 房 山 32
专题 统计与概率学生陟乃赋老师中考二轮精品资料
2121050215869013132515117350010001500200025003000舟山嘉兴宁波湖州绍兴杭州台州亿元1716.515.515.415.31513.65101520舟山嘉兴宁波湖州绍兴杭州台州%图1图2专题四:统计与概率一、考点综述考点内容:1、数据的收集、整理、描述与分析等统计的意义2、总体、个体、样本,全面调查及抽样抽查,频数、频率等概念3、利用扇形图、条形图、直方图及折线图进行数据整理4、理解概率的意义,会用列举法及频率求概率5、能利用统计与概率知识解决实际生活中的有关问题 备考策略:1.提高运算技能,平均数、中位数、极差、方差、频率等数值都要定的数学运算得到,而运算的结果将会影响到统计的预测.2.提高阅读理解和识别图表的能力,统计问题的试题中,许多问题都是以社会热点为背景,形式灵活多样,综合性较强,强调课内知识和课外活动相结合,调查分析和收集整理相结合;3.注重在具体情境中体会概率的意义,理解概率对生活指导的现实作用;4.加强统计与概率之间的关系,同时要避免将概率内容的学习变成数字运算的练习; 5.加强训练,能用规范的语言表述自己的观点. 二、例题精析例1、“长三角”16个城市中浙江省有7个城市.图1、图2分别表示2008年这7个城市GDP (国民生产总值)的总量和增长速度.则下列对嘉兴经济的评价,错误..的是 A .GDP 总量列第五位 B .GDP 总量超过平均值 C .经济增长速度列第二位 D .经济增长速度超过平均值例2、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为“甲”或“乙”谁获胜的可能性更大.例3、我市部分学生参加了2008年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:分数段0-19 20-39 40-59 60-79 80-99 100-119120-140人数0 37 68 95 56 32 12 请根据以上信息解答下列问题:(1)全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?(2)经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3)决赛成绩分数的中位数落在哪个分数段内?(4)上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.例4、如图所示,A 、B 两个旅游点从2002年至2006年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A 、B 两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100xy =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?例5、小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆,蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束后,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”.请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)2002 2003 2004 2005 2006 年6 5 4 3 2 1万人A B综合训练一、选择题1.在一所有1000名学生的学校中随机调查了100人,其中有85人上学之前吃早餐,在这所学校里随便问1人,上学之前吃过早餐的概率是( )A .0.85B .0.085C .0.1D .8502.一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )A .825B .15C .1225D .13253.某商店举办有奖销售活动,购物满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个,若某人购物满100元,那么他中一等奖的概率是( )A .1100B .11000C .110000D .111100004.如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A .25B .310C .320D .155.军军的文具盒中有两支蜡笔,一支红色的、一支绿色的;三支水彩笔,分别是黄色、黑色、红色,任意拿出一支蜡笔和一支水彩笔,正好都是红色的概率为( )A .56B .13C .15D .166.甲、乙两位学生一起在玩抛掷两枚硬币的游戏,游戏规定:甲学生抛出两个正面得1分;乙学生抛出一正一反得1分.那么各抛掷100次后他们的得分情况大约应为( )A .甲→25分,乙→25分B .甲→25分,乙→50分C .甲→50分,乙→25分D .甲→50分,乙→50分 二、填空题1.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是____.2. 一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.3.2006年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、A B34、30、32、31,这组数据的中位数是__________.4.为了缓解旱情,我市发射增雨火箭,实施增雨作业.在一场降雨中,某县测得10个面积相等区域的降雨量如下表:区域 1 2 3 4 5 6 7 8 9 10 降雨量(mm) 10 12 13 13 20 15 14 15 14 14则该县这10个区域降雨量的众数为_______(mm);平均降雨量为___________(mm).5.一个骰子,六个面上的数字分别为1、2、3、3、4、5,投掷一次,向上的面出现数字3的概率是_____.6.某校学生会在“暑假社会实践”活动中组织学生进行社会调查,并组织评委会对学生写出的调查报告进行了评比.学生会随机抽取了部分评比后的调查报告进行统计,绘制了统计图如下,请根据该图回答下列问题:(1)学生会共抽取了______份调查报告;(2)若等第A为优秀,则优秀率为_____________ ;第6题(3)学生会共收到调查报告1000 份,请估计该校有多少份调查报告的等第为 E ?7.有100张已编号的卡片(从1号到100号)从中任取1张,计算卡片是奇数的概率是_______,卡片号是7的倍数的概率是________.8.掷一枚正六面体的骰子,掷出的点数不大于3的概率是_________.三、解答题1.小谢家买了一辆小轿车,小谢连续记录了七天每天行驶的路程.第一天第二天第三天第四天第五天第六天第七天路程(千米) 46 39 36 50 54 91 34 请你用统计初步的知识,解答下列问题:(1)小谢家小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升3.45元.请你求出小谢家一年(一年按12个月计算)的汽油费是多少元?2.今年“五一黄金周”期间,花果山风景区共接待游客约22.5万人.为了了解该景区的服务水平,有关部门从这些游客中随机抽取450人进行调查,请他们对景区的服务质量进行评分,评分结果的统计数据如下表:档次第一档第二档第三档第四档第五档分值a(分)a≥90 80≤a<90 70≤a<80 60≤a<70 a<60 人数73 147 122 86 22 根据表中提供的信息,回答下列问题:(1)所有评分数据的中位数应在第几档内?(2)若评分不低于70分为“满意”,试估计今年“五一黄金周”期间对花果山景区服务“满意”的游客人数.3.在青岛市政府举办的“迎奥运登山活动”中,参加崂山景区登山活动的市民约有12000人,为统计参加活动人员的年龄情况,我们从中随机抽取了100人的年龄作为样本,进行数据处理,制成扇形统计图和条形统计图(部分)如下:(1)根据图①提供的信息补全图②;(2)参加崂山景区登山活动的 12000 余名市民中,哪个年龄段的人数最多?(3)根据统计图提供的信息,谈谈自己的感想.(不超过30字)4.袋中装有编号为1、2、3的三个形状大小相同的小球,从袋中随意摸出1球.并且随意抛掷一个面上标有1,2,3,4,5,6各一数字的正方体均匀骰子.(1)如果摸出1号球和骰子朝上的数字为1则甲胜;如果摸出2号球和骰子朝上的数字为2,则乙胜.这个游戏对双方公平吗?(2)如果摸出的球编号为奇数和骰子朝上的数字为奇数则甲胜;如果摸出的球编号为偶数和木块朝上的数字为偶数,则乙胜.这个游戏对双方公平吗?说明理由.。
中考数学专题统计与概率(解析版)
(1)本次抽样调查了多少户贫困户?
(2)抽查了多少户C类贫困户?并补全统计图;
(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?
(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.
1.(2020年湖北省武汉市江汉区常青第一学校中考数学一模试题)某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
学校这次调查共抽取了名学生;
求 的值并补全条形统计图;
在扇形统计图中,“围棋”所在扇形的圆心角度数为;
②列表如图所示:
共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,
∴乙组两次都拿到8元球的概率为 .
【名师点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.
4.(2019年江西中考)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
B组同学的测试成绩按照从小到大排列是:83,84,85,86,87,88,88,94,97,98,
则a=(87+88)÷2=87.5,
b=91,
c= =5.8,
故答案为:87.5,91,5.8;
(完整word版)统计与概率专题复习
中考复习教案-—概率与统计第一讲统计教学目标:1.立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、基本方法和基本技能。
2.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.3.通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.教学重点与难点重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力,.难点:把数学知识转化为自身素质。
增强用数学的意识.【知识回顾】一、中考说明的解读二、知识结构图三、考点分类、解读1、考点①调查方式的选择收集数据的方式,即获得数据采取的方法一般为普查和抽样调查.很多考题结合生活中的实际问题,依据两种调查方式的特点,判断采用哪种方式进行调查.此类型问题近年出现频率较高,解题时一要彻底掌握两种方式的优缺点,二要考虑实际情况以选择既准确又快捷的调查方式.【例1】下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式思路分析:普查适合于调查范围小(或个体较少),要求比较准确(人口普查)调查对象较稳定这样事件的调查;抽样调查适合于调查范围大,个体数目庞大,流动数据或带有破坏性等事件的调查,A项具有破坏性;B 项调查对象较少;C项范围广;D项数目较大.答案:C2、考点②平均数、中位数和众数平均数、中位数和众数作为数据的代表,是历年中考必考内容,重点是计算一组数据的平均数或加权平均数,找出一组数据的中位数或众数.难点是根据实际问题判断这三种数哪一个最能反映一组数据的平均水平.解答时,一定熟记平均数的计算公式,平均数、众数、中位数各自的意义,它们的优缺点【例2】物理兴趣小组20位同学在实验操作中的得分情况如下表:得分(分)10987人数(人)5843问:(1)求这20位同学实验操作得分的众数、中位数;(2)这20位同学实验操作得分的平均分是多少?3、考点③极差、方差和标准差本考点主要考查计算一组数据的极差、方差或标准差,利用极差、方差以及标准差反映数据的波动大小从而确定哪组数据更稳定;由已知数据的平均数计算数据的方差,此类问题的解答,一要熟记方差公式,二是明确公式中各字母表示的意义。
备考2023年中考数学二轮复习-统计与概率_数据分析_极差、标准差
备考2023年中考数学二轮复习-统计与概率_数据分析_极差、标准差极差、标准差专训单选题:1、(2019南海.中考模拟) 有一组数据:2,5,7,2,3,3,6,下列结论错误的是()A . 平均数为4B . 中位数为3C . 众数为2D . 极差是52、(2017萧山.中考模拟) 多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A . 极差是47B . 众数是42C . 中位数是58D . 每月阅读数量超过40的有4个月3、(2020中宁.中考模拟) 为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是捐款数额10 20 30 50 100人数 2 4 5 3 14、年龄(岁)13 14 15 16人数 1 5 4 2关于这12名队员年龄的年龄,下列说法错误的是()A . 众数是14B . 极差是3C . 中位数是14.5D . 平均数是14.85、(2017武汉.中考模拟) 为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/0 1 2 3 4周)人数(单位:人) 1 4 6 2 2A . 中位数是2B . 平均数是2C . 众数是2D . 极差是26、(2018福田.中考模拟) 我市某小区开展了“节约用水为环保做贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表月用水量(吨)8 9 10户数 2 6 2则关于这10户家庭的月用水量,下列说法错误的是()A . 方差是4B . 极差2C . 平均数是9D . 众数是97、(2018深圳.中考真卷) 下列数据:,则这组数据的众数和极差是( )A .B .C .D .8、(2018毕节.中考模拟) 已知一组数据1,5,6,5,5,6,6,6,则下列说法正确的是()A . 众数是5B . 中位数是5C . 平均数是5D . 极差是49、(2017罗平.中考模拟) 某校九年级数学模拟测试中,六名学生的数学成绩如下(单位:分):110,106,109,111,108,110,下列关于这组数据描述正确的是()A . 众数是110B . 方差是16C . 平均数是109.5D . 极差是610、捐款数额(元)5 10 20 50 100人数(名) 2 4 5 3 1下列说法正确的是( ).A . 众数是100B . 平均数是20C . 中位数是20D . 极差是20填空题:11、(2018玄武.中考模拟) 一组数据1,6,3,4,5的极差是________.12、(2019萍乡.中考模拟) 一组数据5,-3,0.2,x的极差是9,且x为自然数,则x=________ .13、(2016景德镇.中考模拟) 在一次体检中,测得某小组5名同学的身高分别是:170,162,155,160,168(单位:厘米),则这组数据的极差是________厘米.14、(2017诸城.中考模拟) 为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3,若这组数据的中位数是﹣1,在下列结论中:①方差是8;②极差是9;③众数是﹣1;④平均数是﹣1,其中正确的序号是________.15、(2019玉林.中考模拟) 已知一组数据:13,1,0,﹣5,7,﹣4,5,这组数据的极差是________.16、(2019广西壮族自治区.中考模拟) 两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为________.17、(2020武汉.中考模拟) 某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图的折线统计图,这组数据的中位数是________,极差是________,平均数是________.18、(2022长兴.中考模拟) 一个射箭运动员连续射靶5次,所得环数分别是:8,6,10,7,9,则这个运动员所得环数的标准差为.19、(2014湖州.中考真卷) 已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg)4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.04.53.64.8 4.3 3.6 3.4 3.5 3.6 3.5 3.73.7(1)求这组数据的极差;(2)若以0.4kg为组距,对这组数据进行分组,制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(部分空格未填),请在频数分布表的空格中填写相关的量某医院2014年3月份20名新生儿体重的频数分布表组别(kg)划记频数略略3.55﹣3.95 正一 6略略略合计20经检测,这20名婴儿的血型的扇形统计图如图所示(不完整),求:①这20名婴儿中是A型血的人数;②表示O型血的扇形的圆心角度数.20、(2011来宾.中考真卷) 小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是多少册,a是多少册;(2)请将条形统计图补充完整;类别语文数学英语物理化学其他数量(册)22 20 18 a 12 14频率0.14(3)数据22,20,18,a,12,14中的众数是多少,极差是多少;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.极差、标准差答案1.答案:C2.答案:C3.答案:B4.答案:D5.答案:D6.答案:A7.答案:A8.答案:C9.答案:A10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50010001500200025003000舟山嘉兴宁波湖州绍兴杭州台州
亿元
5101520舟山嘉兴宁波湖州绍兴杭州台州
%图1
图2
专题四:统计与概率
一、考点综述
考点内容:
1、数据的收集、整理、描述与分析等统计的意义
2、总体、个体、样本,全面调查及抽样抽查,频数、频率等概念
3、利用扇形图、条形图、直方图及折线图进行数据整理
4、理解概率的意义,会用列举法及频率求概率
5、能利用统计与概率知识解决实际生活中的有关问题 备考策略:
1.提高运算技能,平均数、中位数、极差、方差、频率等数值都要定的数学运算得到,而运算的结果将会影响到统计的预测.
2.提高阅读理解和识别图表的能力,统计问题的试题中,许多问题都是以社会热点为背景,形式灵活多样,综合性较强,强调课内知识和课外活动相结合,调查分析和收集整理相结合;
3.注重在具体情境中体会概率的意义,理解概率对生活指导的现实作用;
4.加强统计与概率之间的关系,同时要避免将概率内容的学习变成数字运算的练习; 5.加强训练,能用规范的语言表述自己的观点. 二、例题精析
例1、“长三角”16个城市中浙江省有7个城市.图1、图2分别表示2008年这7个城市GDP (国民生产总值)的总量和增长速度.则下列对嘉兴经济的评价,错误..
的是 A .GDP 总量列第五位 B .GDP 总量超过平均值 C .经济增长速度列第二位 D .经济增长速度超过平均值
例2、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为“甲”或“乙”谁获胜的可能性更大.
例3、我市部分学生参加了2008年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:
请根据以上信息解答下列问题:
(1)全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?
(2)经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;
(3)决赛成绩分数的中位数落在哪个分数段内?
(4)上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.
例4、如图所示,A 、B 两个旅游点从2002年至2006年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:
(1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年?
(2)求A 、B 两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;
(3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100
x
y =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?
例5、小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆,蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.
(1)你认为游戏公平吗?为什么?
(2)游戏结束后,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”.请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)
2002 2003 2004 2005 2006 年
6 5 4 3 2 1
万人
A B
综 合 训 练
一、选择题
1.在一所有1000名学生的学校中随机调查了100人,其中有85人上学之前吃早餐,在这所学校里随便问1人,上学之前吃过早餐的概率是( )
A .0.85
B .0.085
C .0.1
D .850
2.一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )
A .825
B .15
C .1225
D .1325
3.某商店举办有奖销售活动,购物满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个,若某人购物满100元,那么他中一等奖的概率是( )
A .1100
B .11000
C .110000
D .11110000
4.如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )
A .25
B .310
C .320
D .15
5.军军的文具盒中有两支蜡笔,一支红色的、一支绿色的;三支水彩笔,分别是黄色、黑色、红色,任意拿出一支蜡笔和一支水彩笔,正好都是红色的概率为( )
A .56
B .13
C .15
D .16
6.甲、乙两位学生一起在玩抛掷两枚硬币的游戏,游戏规定:甲学生抛出两个正面得1分;乙学生抛出一正一反得1分.那么各抛掷100次后他们的得分情况大约应为( )
A .甲→25分,乙→25分
B .甲→25分,乙→50分
C .甲→50分,乙→25分
D .甲→50分,乙→50分 二、填空题
1.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是__ __.
2. 一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.
3.2006年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、
A B
34、30、32、31,这组数据的中位数是__________.
4.为了缓解旱情,我市发射增雨火箭,实施增雨作业.在一场降雨中,某县测得10个面积相等区域的降雨量如下表:
区域 1 2 3 4 5 6 7 8 9 10 降雨量(mm) 10 12 13 13 20 15 14 15 14 14
则该县这10个区域降雨量的众数为_______(mm);平均降雨量为___________(mm).5.一个骰子,六个面上的数字分别为1、2、3、3、4、5,投掷一次,向上的面出现数字3的概率是_____.
6.某校学生会在“暑假社会实践”活动中组织学生进行社
会调查,并组织评委会对学生写出的调查报告进行了评比.学
生会随机抽取了部分评比后的调查报告进行统计,绘制了统计
图如下,请根据该图回答下列问题:
(1)学生会共抽取了______份调查报告;
(2)若等第A为优秀,则优秀率为_____________ ;
第6题(3)学生会共收到调查报告1000 份,请估计该校有多少份调查报告的等第为 E ?7.有100张已编号的卡片(从1号到100号)从中任取1张,计算卡片是奇数的概率是_______,卡片号是7的倍数的概率是________.
8.掷一枚正六面体的骰子,掷出的点数不大于3的概率是_________.
三、解答题
1.小谢家买了一辆小轿车,小谢连续记录了七天每天行驶的路程.
第一天第二天第三天第四天第五天第六天第七天路程(千米) 46 39 36 50 54 91 34 请你用统计初步的知识,解答下列问题:(1)小谢家小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升3.45元.请你求出小谢家一年(一年按12个月计算)的汽油费是多少元?
2.今年“五一黄金周”期间,花果山风景区共接待游客约22.5万人.为了了解该景区的服务水平,有关部门从这些游客中随机抽取450人进行调查,请他们对景区的服务质量进行评分,评分结果的统计数据如下表:
档次第一档第二档第三档第四档第五档分值a(分)a≥90 80≤a<90 70≤a<80 60≤a<70 a<60 人数73 147 122 86 22 根据表中提供的信息,回答下列问题:
(1)所有评分数据的中位数应在第几档内?
(2)若评分不低于70分为“满意”,试估计今年“五一黄金周”期间对花果山景区服务“满意”的游客人数.
3.在青岛市政府举办的“迎奥运登山活动”中,参加崂山景区登山活动的市民约有12000人,为统计参加活动人员的年龄情况,我们从中随机抽取了100人的年龄作为样本,进行数据处理,制成扇形统计图和条形统计图(部分)如下:
(1)根据图①提供的信息补全图②;
(2)参加崂山景区登山活动的 12000 余名市民中,哪个年龄段的人数最多?
(3)根据统计图提供的信息,谈谈自己的感想.(不超过30字)
4.袋中装有编号为1、2、3的三个形状大小相同的小球,从袋中随意摸出1球.并且随意抛掷一个面上标有1,2,3,4,5,6各一数字的正方体均匀骰子.
(1)如果摸出1号球和骰子朝上的数字为1则甲胜;如果摸出2号球和骰子朝上的数字为2,则乙胜.这个游戏对双方公平吗?
(2)如果摸出的球编号为奇数和骰子朝上的数字为奇数则甲胜;如果摸出的球编号为偶数和木块朝上的数字为偶数,则乙胜.这个游戏对双方公平吗?说明理由.。