2014海口市高考调研测试理科数学试题及详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年海口市高考调研测试

数学(理科)试题(二)

注意事项:

1.本次考试的试卷分为试题卷和答题卷,本卷为试题卷,请将答案和解答写在答题卷指定的位置,在试题卷和其它位置解答无效. 2.本试卷满分150分,考试时间120分钟.

第Ⅰ卷 选择题

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的;每小题选出答案后,请用2B 铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在本卷上作答无效)

1.设集合12

{|,[1,4]}M y y x x ==∈,2{|log (1)}N x y x ==-,则()R C N M =

A .{|12}x x ≤≤

B .{|14}x x ≤≤

C .{2}x x ≤

D .∅ 2,设i 为虚数单位,则满足条件2(2)(1)i z i +=+的复数z 的共轭复数是

A .2455i +

B .2455i --

C .2455i -+

D .2455

i -

3.设n S 是数列{}n a 的前n 项和,命题p :{}n a 是等差数列,命题q :2n S An Bn C =++(,,A B C R ∈),则命题p 是命题q 成立的

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .以上都不正确 4.设随机变量(0,1)N ξ,若(1)P p ξ>=,则(10)P ξ-<<= A .

12p + B .1

2

p - C .12p - D .1p - 5.某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有

A .80种

B .90种

C .120种

D . 150种

6.如右图是一个根据△ABC 的三条边的边长,,a b c 判断三角形形状的程序框图,则框图中菱形内应该填写的是( )

A .?a c >

B .?a c <

C .?b c >

D .?b c < 7.等比数列{}n a 的前项和为n S ,8417S S =,

352a a =,则68a a =

A .32

B .64

C .128

D .256

(第6题图)

8.抛物线2x py =与直线10x ay ++=交于A 、B 两点,其中点A 的坐标为(2,1),设抛物线的焦点为F ,则||||FA FB +等于

A .1

3 B .176 C .289 D .319

9.空间直角坐标系中,△ABC 的三视图如右图所示,已知

(0,0,0)A ,(0,2,2)B ,则点C 的坐标是 A .(0,2,2)- B .(2,2,2)--

C .(2,0,0)

D .(2,2,2)-

10.在区域1{(,)|[1,],[0,]}2c D x y x c y +=∈-∈上随机取一个点(,)P x y ,落在10

00

x y x y c y -+≥⎧⎪

+-≤⎨⎪

≥⎩所表示的可行域内的概率值 A .

14 B .13 C .1

2

D .与c 的值有关 11.在△AB C 中,已知16AB AC ⋅=,sin cos sin C A B =,6ABC S ∆=,P 为线段AC 上的点,且

BA BC BP x

y

BA

BC

=+, 则xy 的最大值为

A .4

B .3

C .2

D .1

12.设球O 是正方体ABCD 1111A B C D -的内切球,若平面1ACD 截球O 所得的截面面积为6π,则球O

的半径为 A .

3

2

B .3

C

D 第Ⅱ卷 非选择题

二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卷中的横线上).

13.计算2

|1|x dx -=⎰_________.

14.过点(1,1)-的直线与圆2224110x y

x y +---=截得的弦长为则该直线的方程为 .

15.设角θ为第四象限角,并且角θ的终边与单位圆交于点00(,)P x y ,若001

3

x y +=-,则

cos 2θ=_________.

16.定义在R 上的运算“⊕”: 对实数x 和y ,x y ⊕=(),

(),

x x y y x y ≥⎧⎨<⎩ 设函数()f x =()

222x x +-

()22x ⊕-+,x R ∈。若函数()f x a +的图像与直线1y =恰有两个公共点,则实数a 的取值范围

是__________.

(第9题图)

三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)

设函数211

()sin(2)cos cos2622

f x x x x π=+--+,

(Ⅰ)求函数()f x 的最小正周期和在区间[0,

]2

π

上的取值范围;

(Ⅱ)△ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,若()1f B =,4a c +=,求b 的取值

范围.

18.(本小题满分12分)

如图所示,三棱锥D ABC -,已知平面ABC ⊥平面ACD ,

AD DC ⊥,6AC =

,AB =30CAB ∠=

(Ⅰ)求证:BC AD ⊥;

(Ⅱ)若二面角A BC D --为45,求直线AB 与平面BCD 所

成的角的正弦值.

19.(本小题满分12分)

2013年,国务院常务会议五项加强房地产调控的政策措施,俗称“国五条”.以下是对海口市工薪阶层关于“国五条”态度进行的调查数据,随机抽取了50人,他们月收入的频数分布情况及对“国五条”赞成的人数如下表所示:

(Ⅰ)由以上统计数据填写下面22⨯列联表并回答是否有99%的把握认为月收入以5500元为分

界点对“国五条”的态度有差异;

参考公式:2

2

()()()()()

n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.

(Ⅱ)若对月收入在[15,25),[25,35)内的被调查人员中各随机选取两人进行追踪调查,记选中

的4人中不赞成“国五条”的人数为ξ,求随机变量ξ的分布列及数学期望.

(第18题图)

相关文档
最新文档