选修2-3离散型随机变量及其分布知识点

合集下载

人教课标版高中数学选修2-3《离散型随机变量的分布列》参考课件

人教课标版高中数学选修2-3《离散型随机变量的分布列》参考课件
2.1.2 离散型随机变量的分布列
1. 随机变量 如果随机试验的结果可以用一个变量来表示,(或
随着试验结果变化而变化的变量),那么这样的变量 叫做随机变量.
随机变量常用希腊字母X、Y、ξ、η等表示。
2. 离散型随机变量 所有取值可以一一列出的随机变量,称为离散型随
机变量。
如果随机变量可能取的值是某个区间的一切值,这 样的随机变量叫做连续型随机变量.
分布列的是( B )
A
0
1
P
0.6 0.3
B
0
1
2
P 0.9025 0.095 0.0025
C 0 1 2 …n D 0 1 2 … n
P 1 1 1 …1
2 48
2n1
P
1 3
12 33
1 3
2 3
2

1 3
2 3
n
2、设随机变量
的分布列为
P(
ቤተ መጻሕፍቲ ባይዱ
i)
a
1
i
,
i
1,2,3
则 a的值
27
ξ 2 3 4 5 6 7 8 9 10 11 12

1 36
2 36
34 36 36
5 36
6 36
5 36
4 36
32 36 36
1 36
例1:某一射手射击所得环数ξ 的分布列如下:
ξ 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22
求此射手”射击一次命中环数≥7”的概率. 分析: ”射击一次命中环数≥7”是指互斥事
3

. 13
课堂练习:
3、设随机变量的分布列如下:

高二数学选修2-3离散型随机变量及分布列(一)

高二数学选修2-3离散型随机变量及分布列(一)
值的概率是多少?
解: 的取值有1、2、3、4、5、6
则 P( 1) 1
6
P( 4) 1
6
P( 2) 1
6
P( 5) 1
6
P( 3) 1
6
P( 6) 1
6

12
34
56
1
1
1
1
1
1
P6
6
6
6
6
6
⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率.
例 6、从一批有10个合格品与3个次品的产品中,一
件一件的抽取产品,设各个产品被抽到的可能性相 同,在下列两种情况下,分别求出取到合格品为止
时所需抽取次数 的分布列。
(1)每次取出的产品都不放回该产品中; (2)每次取出的产品都立即放回该批产品中,然后
再取另一产品。
变式引申:
1、某射手射击目标的概率为0.9,求从开始射击到击中目标

C11C22 C63

1 20

4”
表 另示两其个中都比一“个4球”小号码等于“4”,∴
P(

4)

C11C32 C63
3
20
“ 5”
表 另示两其个中都比一“个5球”小号码等于“5”,∴
P(

5)

C11C42 C63
3
10

6”
表 另示两其个中都比一“个3球”小号码等于“3”,∴
也是一个随机变量,且 2 ,可见 f ( ) 也为
随机变量。
2、离散型随机变量
所有取值可以一一列出的随机变量,称为离 散型随机变量。
如果随机变量可能取的值是某个区间的一切 值,这样的随机变量叫做连续型随机变量.

2-2 2-3 离散型随机变量及其分布

2-2 2-3 离散型随机变量及其分布
P{x = k} = C
k M
⋅C n C N
n − k N − M
, N 均为正整数,
k = 0 ,1 , 2 ,... n ; 其中, 且 n ≤ N , M ≤ N
n , M,
则称 R.V.X 服从超几何分布.记为X~H(n, M, N) 实例 设某批产品的次品率为 p,对该批产品做无 放回的抽样检查 , 抽到的次品数x服从超几何分 放回 布, X~H(n, M, N).
X
0
1
⎝1⎠
2
⎝ 2⎠
3
⎝3⎠
⎝4⎠
4
5
⎞ ⎞ pk (0.4)5 ⎛5⎟0.6⋅ 0.44 ⎛5⎞0.62 ⋅ 0.43 ⎛5⎞0.63 ⋅ 0.42 ⎛5⎟0.64 ⋅ 0.4 0.65 ⎜ ⎜ ⎟ ⎜ ⎟ ⎜
例2 按规定, 某种型号电子元件的使 用寿命超过
1500 小时的为一级品 . 已知某一大批产品的一 级 品率为0.2, 现在从中随机地抽查 20只. 问20只元件 中恰有 k 只( k = 0,1,L,20) 一级品的概率是多少 ?
0 1 2 3 4
pk 0.5
0.25
0.125
0.0625
0.0625
2-3 常见离散型随机变量的概率分布
1. 两点分布
设随机变量 X 只可能取0与1两个值 , 它的分 布律为
X pk
0 1− p
1 p
则称 X 服从 (0—1) 分布或两点分布.
实例1 “抛硬币”试验,观察正、反两面情况.
⎧0, 当e = 正面 , X = X (e ) = ⎨ ⎩ 1, 当e = 反面 .
2. 等可能分布 *
如果随机变量 X 的分布律为 a1 a2L an X 1 1 1 pk L n n n 其中 (ai ≠ a j ), ( i ≠ j ) , 则称 X 服从等可能分布 . 实例 抛掷骰子并记出现的点数为随机变量 X, 则有

高中数学选修2-3知识点汇编

高中数学选修2-3知识点汇编

随机变量及其分布知识点1.什么是随机变量?答:在某试验中,可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量。

离散型随机变量:如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量。

2.什么是概率分布列?答:要掌握一个离散型随机变量X 的取值规律,必须知道:(1)X 所有可能取的值n x x x ,,,21 ; (2)X 取每一个值i x 的概率n p p p ,,,21 ; 我们可以把这些信息列成表格(如此):X1x 2x …i x …n xP1p 2p …i p…np上表为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列。

3.什么是二点分布? 答:X1 0Ppq其中p q p -=<<1,10,则称离散型随机变量X 服从参数为p 的二点分布。

4.什么是超几何分布?答:一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取()N n n ≤件,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为()nNmn MN m M C C C m X P --==(l m ≤≤0,l 为n 和M 中较小的一个)。

我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为n M N ,,的超几何分布。

5.什么是条件概率?答:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号()A B P 来表示。

6.什么是事件的交(积)?答:事件A 和B 同时发生所构成的事件D ,称为事件A 和B 的交(积)。

7.什么是相互独立事件?答:事件A 是否发生对事件B 发生的概率没有影响,即()()B P A B P =,这时我们称两个事件A 和B 相互独立,并把这两个事件叫做相互独立事件。

一般地,当事件A 和B 相互独时,A 和B ,A 和B ,A 和B 也相互独立。

高中数学选修2-3优质课件:离散型随机变量及其分布列

高中数学选修2-3优质课件:离散型随机变量及其分布列

离散型随机变量及其分布列1.随机变量(1)定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着整结果变化而变化的变量称为鰹壁(2)表示法:随机变量常用字母X,丫,f,〃,…表示.2.离散型随机变量所有取值可以一一列岀的随机变量,称为离散型随机变量.3.分布列的定义若离散型随机变量X可能取的不同值为兀1,兀2,…,5X取每一个值Xi(i=l,29…,兀)的概率P(X=Xi)=p i9以表格的形式表示如下:此表称为离散型随机变量X的概率分布列,简称为X的含鯉4.分布列的性质(1”NO, Z=1,2,3 n1=15.两点分布称分布列为两点分布列•若随机变量X的分布列为一两点分布列,就称X服从两点分布,并称“=P(X=1)_为成功概率.6.超几何分布在含有M件次品的N件产品中,任取〃件,其中恰有X件次品,则P(x=k)= _______ 鱼,疋=0,1,2, •••, m,其中/w=min{M, n}9且MWN, n, M, NwZ.称分布列为超几何分布列•如果随机变量X的分布列为超几何分布列,则称随机变量X月艮从_超几何分布【冷考龜鰹】离散型随机变量[例1]写出下列随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果.(1)在含有10件次品的100件产品中,任意抽取4件, 可能含有的次品的件数X是随机变量;⑵一袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数e是一个随机变量.[解]⑴随机变量X可能的取值为:04,2,3,4. {X=0},表示抽出0件次品;{X=l},表示抽出1件次品;{X=2}f表示抽出2件次品;{X=3},表示抽出3件次品;{X=4},表示抽出的全是次品.(2)随机变量可能的取值为:04,2,3.K=o},表示取出o个白球, 3个黑球; 忙=1},表示取出1个白球, 2个黑球; K=2},表示取出2个白球, 1个黑球; K=3},表示取出3个白球, 0个黑球.这类问题主要考查随机变量的概念,解答过程中要明确随机变量满足的三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.[对点训练]判断下列各个变量是否是随机变量,若是,是否是离散型随机变量?⑴天成书业公司信息台一天接到的咨询电话个数;(2)从10张已编好号码的卡片(从1号到10号)中任取一张,被抽出卡片的号数;(3)某林场的树木最高达30 m,在此林场中任取一棵树木的高度;(4)体积为27 cm3的正方体的棱长.解:⑴接到的咨询电话的个数可能是0,1,2,3,…,出现哪一个结果是随机的,因此是随机变量,并且是离散型随机变量.(2)被抽取的卡片号数可以一一列岀,符合离散型随机变量的定义,是离散型随机变量.(3)林场树木的高度是一个随机变量,它可以取(0,30]内的一切值,无法一一列岀,不是离散型随机变量.(4)体积为27 cm3的正方体的棱长为3 cm,为定值,不是随机变量•[例2]设随机变量X的分布列为比=|)=吨=1,2,3,4,5).⑴求常数"的值;(3)⑵求P\X^(1 7)⑶求缶<Xv討55[解]⑴由P\^=i =必仇=1,2,3,4,5),可知工=》ak=I »丿k=l ' 丿k=\a+2a+3a+4«+5a = l,解得"=在]A k 3\ 3\(2)由⑴可知片X=j=左仇=1,2,3,4,5),所以P\X^^=P\X=^(4)3454+申可+P("1)在+計后p(1 7〕r n f 2)⑶%<Xv帀=p+P3)+忙沪ii+4+4=在求解有关离散型随机变量性质的题目时,记准以下两条即可1 = 1,2,…,n;n(2)2j?z=l.1=1[对点训练]若离散型随机变量X的分布列为:试求出常数C.解:由离散型随机变量的分布列性质可知: P(X=O)+P(X=1)=1,1亠 2 即9C2-9C+3=1,得C=3或C=y(9C2-C^0,又因为〔3-8CM0,13 1解得所以C=y:型三离散型随机变量的分布列[例3]放有大小相同的红色、绿色、黄色三种小球的盒子中,已知红球个数是绿球个数的2倍,黄球个数是绿球个数的一半.现从中随机取出一个小球,若取出红球得1分,取出黄球得0分,取出绿球得一1分,试写出从该盒中取出一球所得分数X的分布列.[解]设黄球有«个,则由题意知绿球有2n个,红球有4〃个,球的总数为7〃个.X的可能取值为一1,0,1.In 2所以从该盒中取出一球所得分数X的分布列为-101P 271747n 1 4n 4[类题通法]求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值,以及取每个值所表示的意义;(2)利用概率的有关知识求出随机变量取每个值的概率;(3)按规范形式写岀分布列.[对点训练]某班有学生45人,其中O型血的有10人,A型血的有12人,B型血的有8人,型血的有15人.现从中抽1人,其血型为随机变量X,求X的分布列.题型四超几何分布的应用解:将O, A, B, 4B四种血型分别编号为1,2,3,4,则X的可能取值为1,2,3,4.De C;o 2 C%4P(X-l)-c i -^, P(X-2)-c i s-15,P(X=3)=^=余’P(X=4)=^=l故其分布列为[例4]在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张, 每张可获价值10元的奖品;其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列;(2)顾客乙从10张奖券中任意抽取2张,①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为y元,求丫的分布列.题型四超几何分布的应用[解](1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.cl 4 22 3则P(X=O)=I—P(X=I)=I—因此X的分布列为(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P=虫苧②Y 的所有可能取值为0,10,20,50,60,且 15 1 45_3‘ C}CJ 6 2 p(Y=50)=^=-=-c{cl 3 1p (y=io )=^^= 5o 18_2 45=5, 尸(丫=20)=琴目= 5o 3 1 45一15’P(Y=60)=~^2^=5o45 15*此随机变量F的分布列为[类题通法]解决此类问题,先分析随机变量是否满足超几何分布,若满足超几何分布,则建立超几何分布列的组合关系式,求出随机变量取相应值的概率;否则直接利用概率公式和计数原理求随机变量取相应值的概率.在解题中不应拘泥于某一特定的类型.[对点训练]从一批含有13件正品、2件次品的产品中,不放回的任取3 件,求取得次品数为X的分布列.解:设随机变量X表示取出次品的个数,则X服从超几何分布,其中N =15, M=2, w=3, X可能的取值为0丄2湘应的概率依次为所以随机变量X的分布列为【條対反績】1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为y,则丿所有可能值的个数是()A. 25B. 10C. 7D. 6解析:y的可自老取值为3,4,5,6,7,8,9,共7个.答案:c2. 一批产品共10件,次品率为20%,从中任取2件,则恰好取到1件次品的概率为解析:由题意知10件产品中有2件次品,故所求概率为答案:BP(X=1)=^^=5o 16 45*28 A -- 入4517 D 453.某篮球运动员在一次投篮训练中的得分X的分布列如下表,其中a, b, c成等差数列,且c=ab,则这名运动员得3分的概率是 ____________解析:由题中条件,知2b=a+c f c=ab,再由分布列的性质, 知a+方+c = l,且a, b, c都是非负数,由三个方程联立成方程组,可解得"=£,方=扌’c=£,所以得3分的概率是”.答案応尖向上的概率为0.8,随机变量X 的分布列为 解析:随机变量X 服从两点分布,KP(X=0)+P(X=l)=l, 由 P(X=l)=0.8,可得 P(X=0) = l-0-8=0.2,故可写出 X 的分布列・ 答案:5.已知一批200件的待出厂产品中,有1件不合格品,现从中任意抽取2件进行检查,若用随机变量X 表示抽取的2件 产品中的次品数,求X 的分布列.4.在掷一枚图钉的随机试验中,令%=1(针尖向上), 0(针尖向下),如果针解:由题意知,X服从两点分布,p(x=0)=^F=^, ~ 99 1所以P(X=1) = 1—硕=硕・所以随机变量X的分布列为。

高中数学选修2-3(人教A版)第二章随机变量及其分布2.1知识点总结含同步练习及答案

高中数学选修2-3(人教A版)第二章随机变量及其分布2.1知识点总结含同步练习及答案

描述:例题:高中数学选修2-3(人教A版)知识点总结含同步练习题及答案第二章随机变量及其分布 2.1离散型随机变量及其分布列一、学习任务1. 了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列.2. 通过实例理解两点分布、超几何分布,理解其公式的推导过程,并能简单的运用.二、知识清单离散型随机变量的概念离散型随机变量的分布列三、知识讲解1.离散型随机变量的概念在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这种对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量(random variable).随机变量常用字母 ,,,, 表示.如果随机变量 的所有可能的取值都能一一列举出来,则称为离散型随机变量.X Y ξη⋯X 投掷均匀硬币一次,随机变量为( )A.出现正面的次数 B.出现正面或反面的次数C.掷硬币的次数 D.出现正、反面次数之和解:A掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述一个随机试验,那么正面向上的次数就是随机变量 , 的取值是 ,,故选 A.而 B 中的事件是必然事件,C 中掷硬币次数是 ,不是随机变量,D 中对应的事件是必然事件,故选 A.ξξ011下列所述:①某座大桥一天经过的车辆数 ;②某无线电寻呼台一天内收到寻呼次数 ;③一天之内的温度 ;④一位射手对目标进行射击,击中目标得 分,未击中目标得 分,用 表示该射手在一次射击中的得分.其中 是离散型随机变量的是( )A.①②③ B.①②④ C.①③④ D.②③④解:B根据离散型随机变量的定义,判断一个随机变量是不是离散型随机变量,就是看这一变量的所有可能的取值是否可以一一列出.①②④中的 可能取的值,可以一一列举出来,而③中的 可以取某一区间内的一切值,不可以一一列出.X X X 10X X X X。

高中数学选修2-3离散型随机变量课件

高中数学选修2-3离散型随机变量课件

新知探究
思考
(2)ε,η为希腊字母,读音分别为[ksai],[i:te].
随机变量和函数有类似的地方吗?
新知探究
知识要点 2.随机变量和函数的相同点
(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映 射为实数;
(2)在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当 于函数的值域.
新知探究
思考 电灯泡的寿命X是离散型随机变量吗? 分析: 电灯泡的寿命X的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X不是离散 型随机变量. 注意 在研究随机现象时,需要根据所关心的问题恰当的定义随机变量. 例如,如果我们仅关心电灯泡的使用寿命是否不少于1000小时,那么就可以定义如下的随机变量:
(2)求数学期望Eξ; (3)求概率蝇的事件(k=0,1,…,6),可以有多种不同的计算P的方法.
方法1(组合模式):当事件A发生时,第 8-k只飞出的蝇子是苍蝇,且在前7-k只飞
出的蝇子中有1只苍蝇,所以
P(Aξ
)
=
C1 7 -k
C82
7 -k =
28
课堂练习
新知探究
例题1 任意掷一枚硬币,可能出现正面向上、反面向上这两种结果,虽然这个随机试验的结果不具有数 量性质,但仍可以用数量来表示它.通常我们用ε来表示这个随机试验的结果:
ε=0,表示正面向上; ε=1,表示反面向上.
新知探究
知识要点 3.离散型随机变量 如果随机变量X的所有可能值只有有限多个或可列多个(所有值可以一一列出)则称之为离散型 随机变量. 说明:
A.一颗是3点,一颗是1点 B.两颗都是2点 C.两颗都是4点
√D.一颗是3点,一颗是1点或两颗都是2点

2.3.2 人教A版数学选修2-3 第2章 随机变量及其分布

2.3.2 人教A版数学选修2-3 第2章 随机变量及其分布

2.3.2 离散型随机变量的方差、标准差填一填1.(1)定义:设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑i =1n(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.3.服从两点分布与二项分布的随机变量的方差 (1)若X 服从两点分布,则D (X )=p (1-p ); (2)若X ~B (n ,p ),则D (X )=np (1-p ).4.离散型随机变量方差的线性运算性质设a,b为常数,则D(aX+b)=a2D(X).判一判判断(1.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值.(×)2.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平.(×)3.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平.(√)4.离散型随机变量的方差越大,随机变量越稳定.(×)5.若a是常数,则D(a)=0.(√)6.若随机变量X服从两点分布,且成功的概率p=0.5,则D(X)为0.5.(×)7.牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于0.196.(√)8.若X为随机变量则D(X-D(X))=D(X).(√)想一想1.提示:随机变量X的方差和标准差都反映了随机变量X取值的稳定与波动,集中与离散的程度,D(X)(或D(X))越小,稳定性越好,波动越小,显然D(X)≥0(D(X)≥0).2.离散型随机变量的方差与标准差的单位相同吗?提示:不同,方差的单位是随机变量单位的平方;标准差与随机变量本身有相同的单位.3.随机变量的方差与样本的方差有何联系与区别?提示:样本的方差是随着样本的不同而变化的,因此它是一个变量,而随机变量的方差是通过大量试验得出的,刻画了随机变量X 与其均值E (X )的平均偏离程度,因此它是一个常数(量).对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体的方差.4.决策问题中如何运用均值与方差?提示:离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先计算均值,看谁的平均水平高,然后再计算方差,分析谁的水平发挥相对稳定.当然不同的情形要求不同,应视情况而定。

新人教选修2-3第2章第3节离散型随机变量的分布列

新人教选修2-3第2章第3节离散型随机变量的分布列
1 C1 C12 C1 10 8 (2)当 X=1、2、3、4 时,P1=C1 ,P2=C1 ,P3=C1 , 45 45 45
C1 15 P4=C1 ,故其分布列为 45 X P 1 2 9 2 4 15 3 8 45 4 1 3
高考连接:
1.从装有3个红球、2个白球的袋中任取3个球, 则所取的3个球中至少有一个白球的概率是 2.一个盒子里装有4张大小形状完全相同的卡片, 分别标有数2,3,4,5;另一个盒子也装有4张大 小形状完全相同的卡片,分别标有数3,4,5,6. 现从一个盒子中任取一张卡片,其上面的数记为x; 再从另一盒子里任取一张卡片,其上面的数记为y, 记随机变量Y=x+y,求Y的分布列.
例1:在掷一枚图钉的随机试验中, 1, 针尖向上; 令X= 0,针尖向下. 如果针尖向上的概率为p, 试写出随机 变量X 的分布列.
[例 2] 袋内有 5 个白球,6 个红球,从中摸出两球,记
0 X= 1
两球全红 .求 X 的分布列. 两球非全红
例3:在含有5件次品的100件产品中,任取3件,求: (1)取到的次品数X的分布列; (2)至少取到一件次品的概率.
例4:在8个大小相同的球中,有2个黑球, 6个白球,现从中任取3个球,求取出的球 中白球个数X的分布列.
练习:从某医院的3名医生,2名护士中随机选 派2人参加抗洪抢险救灾,设其中医生的人数 为X,求随机变量X的分布列.
[解析] 依题意可知随机变量 X 服从超几何分布,所以
k 2-k C3 C2 P(X=k)= C2 (k=0,1,2). 5 0 2 C3 C2 1 P(X=0)= 2 = =0.1, C5 10 1 1 C3 C2 6 P(X=1)= 2 = =0.6, C5 10 2 0 C3 C2 3 P(X=2)= 2 = =0.3(或 P(X=2)=1-P(X=0)-P(X C5 10

高二数学选修2-3离散型随机变量及其分布列知识讲解

高二数学选修2-3离散型随机变量及其分布列知识讲解
1.将一颗均匀骰子掷两次,不能作为随机变量的是( D )
(A)两次出现的点数之和
(B)两次掷出的最大点数
(C)第一次减去第二次的点数差 (D)抛掷的次数
2.某人去商厦为所在公司购买玻璃水杯若干只,公司要求至少要 买50只,但不得超过80只.商厦有优惠规定:一次购买小于或等 于50只的不优惠.大于50只的,超出的部分按原价格的7折优惠. 已知水杯原来的价格是每只6元.这个人一次购买水杯的只数ξ 是一个随机变量,那么他所付款η是否也为一个随机变量呢? ξ、η有什么关系呢?
(4)接连不断地射击 ,2 首,3 次,4 命,5 , 中6 ,目7 ,标8 ,需9 ,要1 0 的,1 射1 ,击1 2 次数 .
1,2,3,L
连 (5)某一自动装置无故障运转的时间 .

(取(0,)内的一切值)
型 (6)某林场树木最高达30米,此林场树木的高度 .
(取0,30内的一切值)
5
练习二:
5 6 0 ( 5 ) 6 0 0 .7 4 .2 90
[5,8 0]0,N
注:随机变量即是随机试验的试验结果和实数之间的一种对应 关系.本质是建立了一个从试验结果到实数的对应关系。
6
思维训练 1:
1.袋中有大小相同的5个小球,分别标有1、2、3、4、5
五个号码,现在在有放回的条件下取出两个小球,设两
①试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的,并且不只一个; ③每次试验总是恰好出现这些可能结果中的一个,但在 一次试验之前却不能肯定这次试验会出现哪一个结果。
思考:你能举出一个随机试验的例子吗?并说明该随机试验 的所有可能结果.
2
举例说明 ζ(截塔)
举例1:某人在射击训练中,射击一次,命中的环数. 若用ξ表示命中的环数,ξ有哪些取值? ξ可取0环、1环、2环、···、10环,共11种结果

高中数学人教A版选修2-3课件2-1-2离散型随机变量的分布列

高中数学人教A版选修2-3课件2-1-2离散型随机变量的分布列
付款,其利润为250元;分4期或5期付款,其利润为300元.若η表示经
销一件该商品的利润,求η的分布列.
探究一
探究二
探究三
探究四
思维辨析
当堂检测
解:由题易得,η的可能取值为200元,250元,300元,
则P(η=200)=P(ξ=1)=0.12,
P(η=250)=P(ξ=2)+P(ξ=3)=0.24+0.18=0.42,
=1
【做一做1】 离散型随机变量X的分布列为
X
1
1
4
)
P
则m的值为(
A.
C.
1
2
1
4
B.
2
3
m
4
1
3
1
3
1
D.
6
1
1
1
1
4
3
6
4
解析:由概率分布列的性质知, +m+ + =1,得 m= .
答案:C
1
6
2.两点分布
随机变量X的分布列为
X
P
0
1-p
1
p
若随机变量X的分布列具有上表的形式,则称X服从两点分布,并
C 345
C 350
C 350
.
,
探究一
探究二
探究三
探究四
思维辨析
当堂检测
离散型随机变量的分布列
例1 从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱
中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球
输1元,取出黄球无输赢.
(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;

选修2-3第二章随机变量及其分布知识点总结

选修2-3第二章随机变量及其分布知识点总结

选修2-3第二章随机变量及其分布知识点总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 概率 总结一、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类 随机变量(如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

)离散型随机变量:连续型随机变量:3.离散型随机变量的分布列一般的,设离散型随机变量X 可能取的值为 x 1, x 2, ,x i , ,x n X 取每一个值 xi(i=1,2, )的 概率 P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列性质: ① ----------------------------------------------② -------------------------------------------------.二点分布如果随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件, 这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===,其中则称随机变量X 的分布列,为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B的交(或积).记作D=A ∩B 或D=AB3.条件概率计算公式:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二个又取到次品的概率.相互独立事件1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

人教版数学高二选修2-3讲义离散型随机变量的分布列

人教版数学高二选修2-3讲义离散型随机变量的分布列

2.1.2离散型随机变量的分布列1.理解取有限值的离散型随机变量及其分布列的概念与性质.2.会求出某些简单的离散型随机变量的分布列.(重点)3.理解两点分布和超几何分布及其推导过程,并能简单的运用.(难点)[基础·初探]教材整理1离散型随机变量的分布列阅读教材P46~P47例1上面倒数第二行,完成下列问题.1.定义一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X 取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n的概率分布列,简称为的分布列.为了简单起见,也用等式P(X=x i)=p i,i=1,2,…,n表示X的分布列.2.性质(1)p i≥0,i=1,2,…,n;(2)i=1np i=1.1.判断(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数.()(2)离散型随机变量的分布列的每个随机变量取值对应概率都相等.()(3)在离散型随机变量分布列中,所有概率之和为1.()【解析】(1)×因为在离散型随机变量分布列中每一个可能值对应随机事件的概率均在[0,1]范围内.(2)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(3)√由分布列的性质可知,该说法正确.【答案】(1)×(2)×(3)√2.随机变量ξ的分布列为:则ξ【解析】P(ξ为奇数)=P(ξ=1)+P(ξ=3)+P(ξ=5)=215+845+29=2445=815.【答案】8 15教材整理2两个特殊分布阅读教材P47例1上面倒数第一行~P49,完成下列问题.1.两点分布若随机变量X并称p=P(X =1)为成功概率.2.超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{}M,n,且n≤N,M≤N,n,M,N∈N*.PC 0M C n -0N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC n N布.1.判断(正确的打“√”,错误的打“×”) (1)随机变量X 只取两个值的分布是两点分布.( )(2)新生儿的性别、投篮是否命中、买到的商品是否为正品,可用两点分布研究.( )(3)从3本物理书和5本数学书中选出3本,记选出的数学书为X 本,则X 服从超几何分布.( )【解析】 (1)× 只有随机变量取0或1的分布才是两点分布. (2)√ 根据两点分布的概念知,该说法正确.(3)√ X 的可能取值为1,2,3,可求得P (X =k )=C k 5C 3-k3C 38(k =0,1,2,3),是超几何分布.【答案】 (1)× (2)√ (3)√2.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝ ⎛⎭⎪⎫13≤ξ≤53=________.【解析】 设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为7k 2个. ∴分布列为ξ 1 2 3 P472717P ⎝ ⎛⎭⎪⎫13≤ξ≤53=P (ξ=1)=47. 【答案】 473.某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X表示4人中的团员人数,则P(X=3)=________.【导学号:29472048】【解析】P(X=3)=C35C15C410=521.【答案】521[小组合作型]分布列及其性质的应用设随机变量X的分布列为P(X=i)=ia(i=1,2,3,4),求:(1)P(X=1或X=2);(2)P⎝⎛⎭⎪⎫12<X<72.【精彩点拨】先由分布列的性质求a,再根据X=1或X=2,12<X<72的含义,利用分布列求概率.【自主解答】(1)∵∑i=14p i=1a+2a+3a+4a=1,∴a=10,则P(X=1或X=2)=P(X=1)+P(X=2)=110+210=310.(2)由a=10,得P⎝⎛⎭⎪⎫12<X<72=P(X=1)+P(X=2)+P(X=3)=110+210+310=35.利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意i=1np i=1,而且要注意p i≥0,i=1,2,…,n.[再练一题]1.若离散型随机变量X的分布列为:X 0 1P 4a-13a2+a求常数a【解】由分布列的性质可知:3a2+a+4a-1=1,即3a2+5a-2=0,解得a=13或a=-2,又因为4a-1>0,即a>14,故a≠-2.所以a=13,此时4a-1=13,3a2+a=23.所以随机变量X的分布列为:X 0 1P1323求离散型随机变量的分布列口袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X表示取出的最大号码,求X的分布列.【精彩点拨】X的可能取值为3,4,5,6,是离散型随机变量.可以利用组合数公式与古典概型概率公式求各种取值的概率.【自主解答】随机变量X的可能取值为3,4,5,6.从袋中随机取3个球,包含的基本事件总数为C36,事件“X=3”包含的基本事件总数为C33,事件“X=4”包含的基本事件总数为C11C23,事件“X=5”包含的基本事件总数为C11C24,事件“X=6”包含的基本事件总数为C11C25.从而有P(X=3)=C33C36=120,P(X=4)=C11C23C36=320,P(X=5)=C11C24C36=310,P(X=6)=C11C25C36=12,所以随机变量X的分布列为X 345 6P 120320310121.求离散型随机变量的分布列的步骤(1)找出随机变量ξ的所有可能的取值x i(i=1,2,…,n),以及ξ取每个值的意义;(2)求出取每一个值的概率P(ξ=x i)=p i;(3)列出表格.2.求离散型随机变量分布列时应注意的问题(1)确定离散型随机变量ξ的分布列的关键是要搞清ξ取每一个值对应的随机事件,进一步利用排列、组合知识求出ξ取每一个值的概率.(2)在求离散型随机变量ξ的分布列时,要充分利用分布列的性质,这样不但可以减少运算量,还可以验证分布列是否正确.[再练一题]2.将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.【解】将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1,2,3,4,5,6.P(ξ=1)=1 36,ξ=2包含三个基本事件(1,2),(2,1),(2,2)(其中(x,y)表示第一枚骰子点数为x,第二枚骰子点数为y),所以P(ξ=2)=336=112.同理可求得P(ξ=3)=536,P(ξ=4)=736,P(ξ=5)=14,P(ξ=6)=1136,所以ξ的分布列为ξ12345 6P 136112536736141136两点分布与超几何分布探究1利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?【提示】这些问题的共同点是随机试验只有两个可能的结果.定义一个随机变量,使其中一个结果对应于1,另一个结果对应于0,即得到服从两点分布的随机变量.探究2只取两个不同值的随机变量是否一定服从两点分布?【提示】不一定.如随机变量X的分布列由下表给出X 2 5P 0.30.7X探究3在8个大小相同的球中,有2个黑球,6个白球,现从中取3个,求取出的球中白球个数X是否服从超几何分布?超几何分布适合解决什么样的概率问题?【提示】随机变量X服从超几何分布,超几何分布适合解决从一个总体(共有N个个体)内含有两种不同事物A(M个)、B(N—M个),任取n个,其中恰有X 个A的概率分布问题.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列; (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.【精彩点拨】 (1)从10张奖券中抽取1张,其结果有中奖和不中奖两种,故X ~(0,1).(2)从10张奖券中任意抽取2张,其中含有中奖的奖券的张数X (X =1,2)服从超几何分布.【自主解答】 (1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为X 0 1 P3525(2)2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23.②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为Y 010205060P 13251152151151.两点分布的几个特点(1)两点分布中只有两个对应结果,且两个结果是对立的.(2)由对立事件的概率求法可知,已知P(X=0)(或P(X=1)),便可求出P(X=1)(或P(X=0)).2.解决超几何分布问题的两个关键点(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M,N,n,就可以利用公式求出X取不同k的概率P(X=k),从而求出X的分布列.[再练一题]3.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的概率分布;(2)他能及格的概率.【导学号:29472049】【解】(1)设抽到他能背诵的课文的数量为X,则P(X=r)=C r6C3-r4C310(r=0,1,2,3).所以P(X=0)=C06C34C310=130,P(X=1)=C16C24C310=310,P(X=2)=C26C14C310=12,P(X=3)=C36C04C310=16.所以X的概率分布为X 012 3P 1303101216(2)他能及格的概率P (X ≥2)=P (X =2)+P (X =3) =12+16=23.1.设随机变量ξ的分布列为P (ξ=i )=a ⎝ ⎛⎭⎪⎫13i,i =1,2,3,则a 的值为( ) A .1 B.913 C.2713 D.1113【解析】 由分布列的性质可知:a ⎝ ⎛⎭⎪⎫13+19+127=1,解得a =2713. 【答案】 C2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )【导学号:29472050】A .0 B.13 C.12 D.23【解析】 设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23. 故P (ξ=0)=1-p =13. 【答案】 B3.设随机变量ξ的可能取值为5,6,7,…,16这12个值,且取每个值的概率均相同,则P (ξ>8)=________.【解析】 依题意有P (ξ>8)=112×8=23. 【答案】 234.从装有3个红球,2个白球的袋中随机取2个球,设其中有ξ个红球,则随机变量ξ的分布列为________.高中数学-打印版精心校对完整版【解析】 P (ξ=0)=C 03C 22C 25=110,P (ξ=1)=C 13C 12C 25=610=35,P (ξ=2)=C 23C 02C 25=310.【答案】5.从4名男生和2ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率. 【解】 (1)ξ可能取的值为0,1,2,服从超几何分布,P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2.所以,ξ的分布列为(2)由(1)知,“所选3 P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.。

高二数学选修2_3第二章随机变量和分布

高二数学选修2_3第二章随机变量和分布

§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。

2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。

3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。

所有基本事件构成的集合称为,常用大写希腊字母表示。

2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。

互斥事件的概率加法公式。

3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。

6.几何概型中的概率定义:P(A)= 。

三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。

常用表示。

2.如果随机变量X的所有可能的取值,则称X为。

四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。

(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。

(3)抛掷两枚骰子得到的点数之和。

(4)某项试验的成功率为0.001,在n次试验中成功的次数。

(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。

变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。

例3△ABC中,D,E分别为AB,AC的中点,向△ABC部随意投入一个小球,求小球落在△ADE 中的概率。

五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。

离散型随机变量的分布列选修2-3

离散型随机变量的分布列选修2-3

(3)将 随 机 变 量 的 值 和 对 应 的 概 率 用 表 格 表 示 出 来
试一试:
盒子中装有2个白球和2个黑球,现从盒中任取2个 球,若X表示从盒中取出的2个球中包含的黑球数, 求X的分布列.
解:X的可能取值有: 0,1,2
当 X 0时 , 表 示 取 到 的 2个 小 球 中 有 0个 黑 球 即 : P(X=0)=
C2 C4
2
2

1
1 6
1
; 4 6 2 3
当 X 1 时 , 表 示 取 到 的 2 个 小 球 中 有 1 个 黑 球 即 : P ( X 1) 1
C 2C 2 C4
2


;
同 理 P( X = 2 ) =
;
6 X的分布列为:
X P
0
1 6
1
2 3
2
1 6
3.分布列的性质 ●观察思考 观察例1和变式练习的分布列中随机变量对应的概率之 和有何特点? ●归纳概括 由上面几个例子的观察,你由此得出一般随机变量分 布列的性质?
(3 ) 分 布 列 随 机 变 量 的 取 值 可 以 一 一 列 举
(2)分布列与我们已学习的函数有何关系?
分布列就是由随机变量到概率的函数关系
2. 分布列的表示法 ●类比猜想 类比函数的几种表示法,你能猜想得出随机变量分布列 有几种表示法?请把它写在下面: ( (1) 解 析 法 ( 形 式 简 单 , 能 精 确 取 值 ) 抽 象 且 不 直 观 ) ( 简 单 , 且 直 观 )( 不 适 用 随 机 变 量 取 值 较 多 ) (2) 列 表 法 (3) 图 象 法 (直观) (不精确)
P(A)=
m n

高中数学选修2-3:第五讲离散型随机变量及其分布列 含解析 精品

高中数学选修2-3:第五讲离散型随机变量及其分布列 含解析 精品

第五讲 离散型随机变量及其分布列【教材扫描】1.随机变量(1)定义:在一个对应关系下,随着试验结果变化而变化的变量称为随机变量. (2)表示:随机变量常用字母X ,Y ,ξ,η等表示. 2.离散型随机变量如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. 3.随机变量和函数的关系随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数,函数把实数映射为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域. 4.离散型随机变量的分布列(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n, X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表:为离散型随机变量X 的概率分布列, 简称为X 的分布列.用等式可表示为P (X =x i )=pi ,i =1,2,…,n, 也可以用图象来表示X 的分布列. (2)根据概率的性质,离散型随机变量的分布列具有如下性质: (1)0i p ≥,1,2,,i n =;(2)1nii p==∑1.5.两个特殊分布 (1)两点分布随机变量X 的分布列是:则称离散型随机变量X 服从两点分布,称p =P (X =1)为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率P (X =k )=C k M C n -kN -M C n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,称分布列服从超几何分布.[点睛] (1)超几何分布的模型是不放回抽样.(2)超几何分布中的参数是M,N,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.【知识运用】题型一随机变量的理解【例1】(1)抛掷一枚均匀硬币一次,随机变量为( )A.抛掷硬币的次数B.出现正面的次数C.出现正面或反面的次数D.出现正面和反面的次数之和(2)6件产品中有2件次品,4件正品,从中任取1件,则可以作为随机变量的是( )A.取到的产品个数B.取到的正品个数C.取到正品的概率 D.取到次品的概率[解] (1)抛掷一枚硬币一次,可能出现的结果是正面向上或反面向上.以某一个为标准,如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1,故选B.而A项中抛掷次数就是1,不是随机变量;C项中标准不明;D项中,出现正面和反面的次数之和为必然事件,试验前便知是必然出现的结果,也不是随机变量.(2)由随机变量的定义知,随机变量是随机试验的结果,排除C、D项,又取到的产品个数是一个确定值,排除A项.故选B项.[答案] (1)B (2)B【变式】指出下列哪些是随机变量,哪些不是随机变量,并说明理由:(1)某人射击一次命中的环数;(2)掷一枚质地均匀的骰子,出现的点数;(3)某个人的属相随年龄的变化.(4)北京国际机场候机厅中2013年5月1日的旅客数量;(5)2013年5月1日到10月1日期间所查酒驾的人数;(6)2013年6月1日济南到北京的某次动车到北京站的时间;(7体积为1 000 cm3的球的半径长.解:(1)某人射击一次,可能命中的所有环数是0,1,…,10,而且出现哪一个结果是随机的,因此命中的环数是随机变量.(2)掷一枚骰子,出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪一个结果是随机的,因此出现的点数是随机变量.(3)一个人的属相在他出生时就确定了,不随年龄的变化而变化,因此属相不是随机变量.(4)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(5)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(6)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(7)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.题型二离散型随机变量的判定【例2】指出下列随机变量是否是离散型随机变量,并说明理由.(1)某座大桥一天经过的车辆数X;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.【变式】判断下列变量是否为离散型随机变量:(1)下节课外语老师提问学生的次数η;(2)同时掷两枚硬币得到硬币反面向上的个数X;(3)汽车的使用寿命Y;(4)小麦的单位面积产量X.【解】(1)(2)中的随机变量的取值均能一一列出,故为离散型随机变量.(3)(4)中的随机变量取值不能一一列出,故不是离散型随机变量.题型三:用随机变量表示试验的结果【例3】写出下列随机变量可能取的值,并说明这些值所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,取后不放回,直到取出的球是白球为止,所需要的取球次数.(2)从标有数字1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.[解] (1)设所需的取球次数为X, 则X=1,2,3,4,...,10,11,X=i表示前(i-1)次取到的均是红球,第i 次取到白球,这里i=1,2,3,4, (11)(2)设所取卡片上的数字之和为X, 则X=3,4,5, (11)X=3, 表示“取出标有1,2的两张卡片”;X=4, 表示“取出标有1,3的两张卡片”;X=5, 表示“取出标有2,3或1,4的两张卡片”;X=6, 表示“取出标有2,4或1,5的两张卡片”;X=7, 表示“取出标有3,4或2,5或1,6的两张卡片”;X=8, 表示“取出标有2,6或3,5的两张卡片”;X=9, 表示“取出标有3,6或4,5的两张卡片”;X=10, 表示“取出标有4,6的两张卡片”;X=11, 表示“取出标有5,6的两张卡片”.[一题多变]1.[变条件]若本例(2)中条件不变,所取卡片上的数字之差的绝对值为随机变量ξ,请问ξ有哪些取值?其中ξ=4表示什么含义?解:ξ的所有可能取值有:1,2,3,4,5.ξ=4表示“取出标有1,5或2,6的两张卡片”.2.[变条件,变问法]甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”,用X表示需要比赛的局数,写出X所有可能的取值,并写出表示的试验结果.解:根据题意可知X的可能取值为4,5,6,7.X=4表示共打了4局,甲、乙两人有1人连胜4局.X=5表示在前4局中有1人输了一局,最后一局此人胜出.X=6表示在前5局中有1人输了2局,最后一局此人胜出.X=7表示在前6局中,两人打平,后一局有1人胜出.题型四求离散型随机变量的分布列【例4】(1)同时掷两枚质地均匀的骰子,观察朝上一面出现的点数,求两枚骰子中出现的点数之差的绝对值X 的分布列;(2)袋中装有编号分别为1,2,3,4,5,6的同样大小的6个白球,现从袋中随机取3个球,设η表示取出的3个球中的最小号码,求η的分布列.【解析】(1)易知掷两枚质地均匀的骰子朝上一面出现的点数有36种等可能的情况,X的可能取值为0,1,2,3,4,5,如下表码,写出随机变量ξ的分布列.[解] 随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大号码为3,则其他两只球的编号只能是1,2,故有P (ξ=3)=C 22C 35=110;当ξ=4时,即取出的三只球中最大号码为4,则其他两只球只能在编号为1,2,3的3只球中取2只, 故有P (ξ=4)=C 23C 35=310;当ξ=5时,即取出的三只球中最大号码为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P (ξ=5)=C 24C 35=610=35.因此,ξ的分布列为ξ3 4 5 P110310352某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人.现从中抽1人,其血型为随机变量X ,求X 的分布列.解:将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,则X 的可能取值为1,2,3,4. P (X =1)=C 110C 145=29, P (X =2)=C 112C 145=415,P (X =3)=C 18C 145=845, P (X =4)=C 115C 145=13.故其分布列为X 1 2 3 4 P2941584513题型五 离散型随机变量分布列性质的应用【例5】(1)设随机变量ξ的分布列为()6k P mk ξ==,1,2,3,4,5,6k =,求常数m 及1()2P ξ≥; (2)已知X 是离散型随机变量,其分布列如下,求n 的值及(0)P X >.X 1-1 2P1313n 2n49【解析】(1)随机变量ξ的分布列为ξ16 13 12 23 561Pm 2m 3m 4m 5m 6m由234561m m m m m m +++++=,解得121m =. 故11256()()()()(1)1822367P P P P P m ξξξξξ≥==+=+=+===.【变式】已知随机变量X 的分布列如下表:则x 的值为________,P (23<X <92)=________.【解析】 根据分布列的性质 115+215+x +415+13=1,解得,x =15. 当23<X <92时,X =1,2,3,4.∴P (23<X <92)=1-P (X =5)=1-13=23. 【答案】 15 23题型六 两点分布的应用【例6】(1)不透明的袋中装有大小、形状完全相同的5个白球和4个红球,从中随机摸出两个球,记X =0,1,⎧⎨⎩两球颜色相同两球颜色不同,求随机变量X 的分布列; (2)已知一批200件的待出厂产品中有1件次品,现从中任意抽取2件进行检查,若用随机变量Y 表示抽取的2件产品中的次品数,求Y 的分布列.【变式】袋内有10个白球,5个红球,从中摸出2个球,记X =⎩⎪⎨⎪⎧0,两球全红;1,两球非全红.求X 的分布列.【自主解答】 由题设可知X 服从两点分布 P (X =0)=C 25C 215=221,P (X =1)=1-P (X =0)=1921.∴X 的分布列为题型七:超几何分布的应用【例7】生产方提供的某批产品共50箱,其中有2箱不合格品,采购方接收该批产品的准则是:从该批产品中任取5箱产品进行检测,若至多有1箱不合格品,便接收该批产品.问该批产品被接收的概率是多少?【思路分析】将50箱产品看作50件“产品”,2箱不合格品看作2件“次品”,任取5箱中不合格品的箱数可以看作是任取5件“产品”中所含的次品数,根据公式可求概率. 【解析】从中随机抽取5箱,用X 表示“5箱中不合格品的箱数”, 则X 服从参数为50N =,2M =,5n =的超几何分布.该批产品被接收的条件是5箱中没有不合格品或只有1箱不合格品, 所以被接收的概率为(1)P X ≤,【变式】袋中有8个球,其中5个黑球,3个红球,从袋中任取3个球,求取出的红球数X 的分布列,并求至少有一个红球的概率.【自主解答】 X =0,1,2,3,X =0表示取出的3个球全是黑球,P (X =0)=C 35C 38=1056=528,同理P (X =1)=C 13·C 25C 38=3056=1528,P (X =2)=C 23·C 15C 38=1556,P (X =3)=C 33C 38=156.∴X 的分布列为至少有一个红球的概率为:P (X ≥1)=1-28=28.【强化练习】1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ的所有可能取值的个数是 A .5B .9C .10D .25B 【解析】号码之和可能为2,3,4,5,6,7,8,9,10,共9个.故选B .2.已知随机变量X 的分布列为()15k P X k ==,1,2,3,4,5k =A .215B .25C .115D .15D511521)2()1(=+==+=x P x P ,故选D .3.已知X 是一个离散型随机变量,其分布列为则常数q 等于A .1B CD C C .4.一盒子中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则(4)P X ==A .2201B.5527 C .22027D .2521 C 【解析】从盒中任取3个球来用,用完后装回盒中,当盒中旧球的个数为4X =时,相当于旧球的个数在原来3个的基础上增加了一个,所以取出的3个球中只有一个新球,即取出的3个球中有2个旧球、1个新球,所以C .5如图所示,A ,B 两点由5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P (ξ≥8)=____. 【答案】错误!未找到引用源。

高中数学选修2-3-离散型随机变量及其分布列

高中数学选修2-3-离散型随机变量及其分布列

离散型随机变量及其分布列知识集结知识元离散型随机变量及其分布列知识讲解1.离散型随机变量及其分布列【考点归纳】1、相关概念;(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.2、离散型随机变量(1)随机变量:在随机试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验结果的不同而变化的,这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,…表示,也可以用希腊字母ξ,η,…表示.(2)离散型随机变量:如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3、离散型随机变量的分布列.(1)定义:一般地,设离散型随机变量X的所有可能值为x1,x2,…,x n;X取每一个对应值的概率分别为p1,p2,…,p n,则得下表:X x1x2…x i…x nP p1p2…p i…p n该表为随机变量X的概率分布,或称为离散型随机变量X的分布列.(2)性质:①p i≥0,i=1,2,3,…,n;②p1+p2+…+p n=1.例题精讲离散型随机变量及其分布列例1.'袋中有2个白球,3个红球,5个黄球,这10个小球除颜色外完全相同.(1)从袋中任取3个球,求恰好取到2个黄球的概率;(2)从袋中任取2个球,记取到红球的个数为ξ,求ξ的分布列、期望E(ξ)和方差D(ξ).'例2.'甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为p,甲投篮3次均未命中的概率为,乙每次投篮命中的概率均为q,乙投篮2次恰好命中1次的概率为,甲、乙每次投篮是否命中相互之间没有影响.(1)若乙投篮3次,求至少命中2次的概率;(2)若甲、乙各投篮2次,设两人命中的总次数为X,求X的分布列和数学期望.'例3.'抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x,y.记[]表示的整数部分,如:[]=1,设ξ为随机变量,ξ=[].(Ⅰ)求概率P(ξ=1);(Ⅱ)求ξ的分布列,并求其数学期望E(ξ).'当堂练习解答题练习1.'玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”的命中率为,“三步上篮”的命中率为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.(1)求小华同学两项测试均合格的概率;(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.'练习2.'某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动,(1)若规定选出的至少有一名女老师,则共有18种不同的需安排方案,试求该支教队男、女老师的人数;(2)在(1)的条件下,记X为选出的2位老师中女老师的人数,写出X的分布列.'练习3.'装有除颜色外完全相同的6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.'练习4.'将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:(1)求取出3个小球中红球个数ξ的分布列;(2)求取出3个小球中红球个数多于白球个数的概率.'练习5.'新高考改革后,假设某命题省份只统一考试数学和语文,英语学科改为参加等级考试,每年考两次,分别放在每个学年的上下学期,其余六科政治,历史,地理,物理,化学,生物则以该省的省会考成绩为准.考生从中选择三科成绩,参加大学相关院校的录取.(Ⅰ)若英语等级考试有一次为优,即可达到某“双一流”院校的录取要求.假设某考生参加每次英语等级考试事件是相互独立的,且该生英语等级考试成绩为优的概率为,求该考生直到高二下期英语等级考试才为优的概率(Ⅱ)据预测,要想报考某“双一流”院校,省会考的六科成绩都在95分以上,才有可能被该校录取假设某考生在省会考六科的成绩都考到95分以上的概率都是,设该考生在省会考时考到95以上的科目数为X求X的分布列及数学期望.'练习6.'某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.(Ⅰ)设M为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件M发生的概率;(Ⅱ)设X表示参加文明宣传工作的女志愿者人数,求随机变量X的分布列与数学期望.'练习7.'今年学雷锋日,乌鲁木齐市某中学计划从高中三个年级选派4名教师和若干名学生去当学雷锋文明交通宣传志愿者,用分层抽样法从高中三个年级的相关人员中抽取若干人组成文明交通宣传小组,学生的选派情况如下:(Ⅰ)求x,y的值;(Ⅱ)若从选派的高一、高二、高三年级学生中抽取3人参加文明交通宣传,求他们中恰好有1人是高三年级学生的概率;(Ⅲ)若4名教师可去A、B、C三个学雷锋文明交通宣传点进行文明交通宣传,其中每名教师去A、B、C三个文明交通宣传点是等可能的,且各位教师的选择相互独立.记到文明交通宣传点A的人数为X,求随机变量X的分布列和数学期望。

[选修2-3]·[离散型随机变量及分布列] · [基础] · [知识点+典型例题]·[教师版]

[选修2-3]·[离散型随机变量及分布列] · [基础] · [知识点+典型例题]·[教师版]

离散型随机变量及分布列知识讲解一、离散型随机变量及其分布列1.离散型随机变量定义:如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量.2.离散型随机变量的分布列定义:将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =列表表示:X 的分布列.二、几类典型的随机分布1.两点分布如果随机变量X 的分布列为其中01p <<,1q p =-p 的两点分布.两点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足点分布.两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.2.超几何分布定义:一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.3.二项分布1)独立重复试验定义:如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)k k n k n n P k p p -=-(0,1,2,,)k n =.2)二项分布定义:若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n knP X k p q -==,其中0,1,2,,k n =.于是得到X 的分布列由式001110()C C C C n n n kk n k nn n n n n q p p q p q p q p q --+=++++各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.4.正态分布1)概率密度曲线定义:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.注:曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2)正态分布定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.正太变量:服从正态分布的随机变量叫做正态随机变量,简称正态变量. 各元素含义:正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ.正态曲线:正态变量的概率密度函数的图象叫做正态曲线.标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. 重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.补充:若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()x F x P x f t dt ξ-∞==⎰≤为概率分布函数注意:2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数.()()x P x μξφσ-<=. 标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.典型例题一.选择题(共14小题)1.(2018•温州二模)随机变量X的分布列如表所示,若E(X)=,则D(3X﹣2)=()A.9 B.7 C.5 D.3【解答】解:∵E(X)=,∴由随机变量X的分布列得:,解得a=,b=,∴D(X)=(﹣1﹣)2×+(0﹣)2×+(1﹣)2×=.∴D(3X﹣2)=9D(X)=9×=5.故选:C.2.(2018春•兴庆区校级期末)设离散型随机变量X的概率分布列如下表:则p等于()A.B.C.D.【解答】解:由离散型随机变量X的概率分布列,知:,解得p=.故选:D.3.(2018春•海淀区校级期中)如表是离散型随机变量X的分布列,则常数a的值为()A.B.C.D.【解答】解:由离散型随机变量X的分布列,得:a+=1,解得a=.故选:A.4.(2018春•路南区校级期中)设随机变量X的分布列为,,,,则P(X<3)=()A.B.C.D.【解答】解:∵设随机变量X的分布列为,,,,∴=1,解得a=5,P(X<3)=P(X=1)+P(X=2)==.故选:C.5.(2017•天心区校级学业考试)随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为()A.B.C.D.【解答】解:∵P(X=n)=(n=1,2,3,4),∴+++=1,∴a=,∵P(<X<)=P(X=1)+P(X=2)=×+×=.故选:D.6.(2017•绍兴一模)已知p>0,q>0,随机变量ξ的分布列如下:若E(ξ)=.则p2+q2=()A.B.C.D.1【解答】解:∵p>0,q>0,E(ξ)=.∴由随机变量ξ的分布列的性质得:,∴p2+q2=(q+p)2﹣2pq=1﹣=.故选:C.7.(2017•温州模拟)设离散型随机变量X的分布列为则EX=2的充要条件是()A.P1=P2B.P2=P3C.P1=P3D.P1=P2=P3【解答】解:由离散型随机变量X的分布列知:当EX=2时,,解得P1=P3,当P1=P3时,P1+P2+P3=2P1+P2=1.EX=P1+2P2+3P3=4P1+2P2=2.∴EX=2的充要条件是P1=P3.故选:C.8.(2016秋•孝感期末)抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()A.一颗是3点,一颗是1点B.两颗都是2点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点【解答】解:对A、B中表示的随机试验的结果,随机变量均取值4,而D是ξ=4代表的所有试验结果.故选:D.9.(2017春•钦州期末)已知随机变量ξ 的分布列为P(ξ=k)=(k=1,2,…),则P(2<x≤4)为()A.B.C.D.【解答】解:∵P(X=k)=,k=1,2,…,∴P(2<X≤4)=P(X=3)+P(X=4)=+=.故选:A.10.(2017春•咸阳期末)设X是一个离散型随机变量,则下列不能成为X的概率分布列的一组数据是()A.0,,0,0,B.0.1,0.2,0.3,0.4C.p,1﹣p(0≤p≤1)D.,,…,【解答】解:根据离散型随机变量的概率分布列中,概率和为1,对于A,0++0+0+=1,满足题意;对于B,0.1+0.2+0.3+0.4=1,满足题意;对于C,p+(1﹣p)=1,满足题意;对于D,++…+=1﹣+﹣+…+﹣=1﹣=≠1,不满足条件.故选:D.11.(2017秋•扶余县校级期末)随机变量X的分布列为P(X=k)=a()k(k=1,2,3),则a的值为()A.1 B.C.D.【解答】解:∵随机变量X的分布列为P(X=k)=a()k(k=1,2,3),∴a[]=1,∴a=.故选:B.12.(2018春•静宁县校级期末)若随机变量X的分布列为:已知随机变量Y=aX+b(a,b∈R,a>0),且E(Y)=10,D(Y)=4,则a与b 的值为()A.a=10,b=3 B.a=3,b=10 C.a=5,b=6 D.a=6,b=5【解答】解:由随机变量X的分布列得:m=1﹣0.2=0.8,∴E(X)=0×0.2+1×0.8=0.8,D(X)=(0﹣0.8)2×0.2+(1﹣0.8)2×0.8=0.16,∵随机变量Y=aX+b(a,b∈R,a>0),且E(Y)=10,D(Y)=4,∴,解得a=5,b=6.故选:C.13.(2017春•金台区期末)已知随机变量的分布列为:,,,,则P(2<X≤4)=()A.B.C.D.【解答】解:∵随机变量的分布列为:,,,,∴P(2<X≤4)=P(X=3)+P(X=4)==.故选:C.14.(2017春•故城县校级期末)已知随机变量X的分布列为,k=1,2,…,则P(3≤X<5)等于()A.B.C. D.【解答】解:随机变量X的分布列为,k=1,2,…,则P(3≤X<5)=P(X=3)+P(X=4)=+=.故选:D.二.填空题(共5小题)15.(2018春•商丘期末)设随机变量ξ的概率分布列为:P(ξ=k)=,k=0,1,2,3,则P(ξ=2)=.【解答】解:因为所有事件发生的概率之和为1,即P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1,所以,所以c=.所以P(ξ=k)=,所以P(ξ=2)=.故答案为:.16.(2018春•新吴区校级期中)若随机变量X的分布列为P(X=k)=(k=1,2,3,4),则P(<X<)=0.5.【解答】解:∵随机变量X的分布列为P(X=k)=(k=1,2,3,4),∴=1,解得a=10,∴P(<X<)=P(X=2)+P(X=3)==0.5.故答案为:0.5.17.(2017春•城中区校级期中)随机变量ξ的分布列为P(ξ=k)=,k=1,2,3,4,其中c为常数,则P(ξ≥2)等于.【解答】解:∵随机变量ξ的分布列为P(ξ=k)=,k=1,2,3,4,其中c为常数,∴=1,解得c=,∴P(ξ≥2)=1﹣P(ξ=1)=1﹣=.故答案为:.18.(2017春•张家港市校级期中)设随机变量X的分布列为P(X=i)=,i=1,2,3,则P(X=2)=.【解答】解:∵随机变量X的分布列为P(X=i)=,i=1,2,3,∴=1,解得a=3,∴P(X=2)==.故答案为:.19.(2017春•涵江区校级期中)一盒中有12个乒乓球,其中9个新的,3个旧的(至少使用过一次),从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(x),则P(X=4)=.【解答】解:若X=4,则此前取出的三个球有1个新球,2个旧球,∴P(X=4)==,故答案为:.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散型随机变量及其分布
知识点一:离散型随机变量的相关概念;
随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示
离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。

若 是随机变量, a b ,其中a 、b 是常数,则 也
是随机变量
连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量
离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出
离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2,
的概率为P( X ) p ,贝U 称表
为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质;
任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为
1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2,
; (2) RP.L 1
特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的
概率的和即P(
知识点二:两点分布: 若随机变量X 的分布列:
特别提醒:(1)
若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功
率•
(2) 两点分布又称为0-1分布或伯努利分布
⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正
品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究• 知识点三:超几何分布:
一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则
C k C n k
X k ) P(
X k ) P(
X k 1) L
则称X 的分布列为两点分布列
P(X k) M N M ,k 0,1, m,m min{M ,n},其中,n N,M N.称超几何分布列.
N
知识点四:离散型随机变量的二项分布;
在一次随机试验中,某事件可能发生也可能不发生,在
n 次独立重复试验中这个事
件发生的次数 是一个随机变量.如果在一次试验中某事件发生的概率是 p ,那么在n 次
独立重复试验中这个事件恰好发生 k 次的概率是
P n (
k)
C : p k q n k ,( k 0,123,…,q 1 p )
由于Cnp k q nk
恰好是二项式展开式:
(p q)n C ;p 0q n C n p 1q n 1 L C : p k q n k L C :p n q °中的各项的值,所以称这样的随 机变量 服从二项分布,记作:B(n, p),其中n ,p 为参数,并记C k p k q n k b(k, n, p)L 知识点五:离散型随机变量的几何分布:
在独立重复试验中,某事件第一次发生时,所作试验的次数 也是一个正整数的离
散型随机变量.“
k ”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验
时事件A 发生记为A k 、事件A 不发生记为A
:, p(A k
) p
, p(AJ q, (q 1 p),那么 P( k)
P(AA 2A 3L 石人)P(A 1)P(A ;)P(A)L Pd)P(A k ) q k1p (k 0,1,2,… q 1 p)
于是得到随机变量的概率分布如下:
称这样的随机变量服从几何分布, 记作 g(k, p) q k 1p,其中 k 0,1,2,L ,q 1 p. 知识点六:求离散型随机变量分布列的步骤;
(1) 要确定随机变量 的可能取值有哪些.明确取每个值所表示的意义; (2) 分清概率类型,计算
取得每一个值时的概率(取球、抽取产品等问题还要注意是
放回抽样还是不放回抽样;
(3) 列表对应,给出分布列,并用分布列的性质验证 .
几种常见的分布列的求法:
(1)
取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算 •所用方法主要有划
归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还 是不放回抽样•
(2) 射击问题:若是一人连续射击,且限制在n 次射击中发生k 次,则往往与二项分布联 系起
来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题, 一般利用相互独立事件同时发生的概率进行计算 •
⑶对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审 题,明确题
中的含义,恰当地选取随机变量,构造模型,进行求解 •
知识点六:期望
数学期望
一般地,若离散型随机变量的概率分布为
则称E X i P i X 2P 2…X n P n …为的数学期望,简称期望
数学期望的意义:数学期望离散型随机变量的一个特征数, 它反映了离散型随机变量取值 的平均
水平。

平均数与均值:一般地,在有限取值离散型随机变量
E 的概率分布中,令P i P 2…
P n ,则有 P 1
P 2 …P n 1n ,E (% X 2…
-X n ) 1n ,所以
的数学期望又称为
平均数、均值。

期望的一个性质:若 a
b ,则 E(a b) aE
b
知识点七:方差;
方差:对于离散型随机变量
,如果它所有可能取的值是X 1,
X 2,

•,X n ,…,且取
这些值的概率分别是
P 1, P 2,…,P n ,… …,那么,
2
D = (X 1
E ) p 1
2
+ (X 2 E ) P 2 + …+
(X n E )2
p n
+
…称为随机变量
的均方差,简称为方差,式中的E 是随机变量 的期望.
标准差:D 的算术平方根.D 叫做随机变量E 的标准差,记作 方差的性质:①D (a b) a 2D 二②D E 2 (E )2 . 方差的意义:
(1) 随机变量 的方差的定义与一组数据的方差的定义式是相同的; (2) 随机变量 的方差、标准差也是随机变量
的特征数,它们都反映了随机变量取值的
稳定与波动、集中与离散的程度;
(3) 标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛
几何分布的期望和方差: 若 g k, p
q k1p ,其中 k 0,1,2,…,q 1 p .则 E
二项分布的期望与方差:若 B n, p ,则 E np , D np 1 p
知识点八:正态分布;
(1) 频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或
数据组)的频数和样本容量的比,就是该数据的频率•所有数据(或数据组)的频率的分 布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直 方图来表示. (2) 总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为 n
的样本,就是进行了 n 次试验,试验连同所出现的结果叫随机事件,所有这些事件的概 率分布规律称为总体分布.
(3) 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各 组取值的概率•设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就 会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.
它反映了总体在各个范围内 取值的概率•根据这条曲线,可 求出总体在区间 a, b 内取值的
(4) 总体分布密度密度曲线函数y f (x)的两条基本性质:
① f(x) > 0 (x R);②由曲线y f(x)与x 轴围成面积为1. (5) 解决总体分布估计问题的一般程序如下:
① 先确定分组的组数(最大数据与最小数据之差除以组距得组数) ;
② 分别计算各组的频数及频率(频率 频数);
总数
③ 画出频率分布直方图,并作出相应的估计
(6) 条形图是用其高度表示取各值的频率;直方图是用图形面积的大小表示在各区间内取 值的频
率;累积频率分布图是一条折线,利用任意两端值的累积频率之差表示样本 数据在这两点值之间的频率.
其中 是圆周率;e 是自然对数的底;x 是随机变量的取值; 为正态分布的均值;
是正态分布的标准差.正态分布一般记为N( , 2)。

即若:N , 2,则E ,
D 2
(8) 正态分布N( , 2)是由均值 和标准差 唯一决定的分布
通过固定其中一个值,讨论均值与标准差对于正态曲线的影响
(7) 正态分布密度函数:简称正态曲
线
1
函数 ,(x)
° e
随机变量X 满足:P(a X b) (x )2
),(式中的实数、(0)是参数),
(x)d x ,则称X 的分布为正态分布
严/组距
总体密度曲线
概率等于该区间上总体密度曲线 与x 轴、直线x a 、x b 所围 成曲边梯形的面积.。

相关文档
最新文档