最新九年级数学期末试题(含答题卡及答案)完整版

合集下载

河北省石家庄市第二十八中学2023-2024学年九年级上学期期末数学试题(含答案)

河北省石家庄市第二十八中学2023-2024学年九年级上学期期末数学试题(含答案)

2023-2024学年度第一学期期末学业质量检测九年级数学试卷(ZX )注意事项:1.答卷前,考生务必将自己的姓名、班级等信息填写在答题卡相应位置上.2.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.答非选择题时,用黑色碳素笔在答题卡上各题的答题区域内作答,在试卷上作答无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(1-6每题3分,7-16每题2分,共16小题,满分38分)1.一元二次方程3x 2+1=6x 的一次项系数为6,二次项系数和常数项分别为( )A .3,1B .-3,-1C .3,-1D .-3x 2,-12.下列函数中不是二次函数的有( )A .y =(x -1)2B .yx 2-1C .y =3x 2+2x -1D .y =(x +1)2-x 23.在平面直角坐标系中,点P (3,2)关于原点的对称点的坐标是( )A .(2,-3)B .(3,-2)C .(-2,3)D .(-3,-2)4.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,∠BAC =38°,则∠BCD 的度数是( )A .38°B .76°C .52°D .60°5.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有40次摸到白球.请你估计这个口袋中有( )个红球.A .2B .3C .6D .86.反比例函数在同一坐标系中的图象如图所示,则的大小关系为( )P '312123,,k k k y y y x x x===123,,k k kA .B .C .D .7.如图,△AOB 和△COD 是位似图形,点O 是位似中心,CD =2AB .若点A 的坐标为(2,1),则点C 的坐标为( )A .(-6,-3)B .(-5,-3)C .(-4,-2)D .(-4,-3)8.如图,点A ,B ,C 都是正方形网格的格点,连接BA ,CA ,则∠BAC 的正弦值为( )A.BCD .29.课堂上丁老师带来一个立体图形的模型,嘉嘉同学从某一角度看到的形状为三角形,则这一立体图形一定不是( )A .圆柱B .圆锥C .棱柱D .棱锥10.一元二次方程2x (x +1)=3(x +1)的解是( )A .x =-1B .x =C .D .无实数解11.若点A (0,y 1),B (1,y 2),C (-2,y 3)是抛物线y =x 2-2x +1上的三点,则( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 212.如图,⊙C 过原点O ,且与两坐标轴分别交于点A 、B ,点A 的坐标为(0,5),点M 是第三象限内上312k k k >>132k k k >>321k k k >>213k k k >>12321231,2x x =-=)OB一点,∠BMO =120°,则⊙C 的半径为( )A .4B .5C .6D .13.如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB 和∠D 都是直角,点C 在AE 上,△ABC 绕着A 点经过逆时针旋转后能够与△ADE 重合,再将图(1)作为“基本图形”绕着A 点经过逆时针旋转得到图(2).两次旋转的角度分别为( )(1)(2)A .45°90°B .90°45°C .60°30°D .30°60°14.如图,一次函数y =ax +b 与反比例函数y=(k >0)的图象交于点A (1,2),B (-2,-1).则关于x 的不等式ax +b >的解集是( )A .x <-2或0<x <1B .x <-1或0<x <2C .-2<x <0或x >1D .-1<x <0或x >215.如图,在正六边形ABCDEF 中,M ,N 是对角线BE 上的两点.添加下列条件中的一个:①BM =EN ;②∠FAN =∠CDM ;③AM =DN ;④∠AMB =∠DNE .能使四边形AMDN 是平行四边形的是( )k x k xA .①②④B .①③④C .①②③④D .①④16.二次函数y =(a -1)x 2-(2a -3)x +a -4的图象与x 轴有两个公共点,a 取满足条件的最小整数,将图象在x 轴上方的部分沿x 轴翻折,其余部分保持不变,得到一个新图象,当直线y =kx -2与新图象恰有三个公共点时,则k 的值不可能是( )A .-1B .-2C .1D .2二、填空题(共3小题,满分10分)17.(2分)如图,抛物线y =ax 2+bx +3(a <0)交x 轴于点A ,B (4,0),交y 轴于点C ,以OC 为边的正方形OCDE 的顶点D 在抛物线上,则点A 的坐标是.18.(4分)如图,A 是⊙O 外一点,AB ,AC 分别与⊙O 相切于点B ,C ,P 是弧BC 上任意一点,过点P 作⊙O 的切线,交AB 于点M ,交AC 于点N .AO =8,BO =6,则△AMN 的周长是,若∠BAC =40°,则∠BPC =.19.(4分)如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 、C 恰好落在双曲线y 上,且点O 在AC 上,AD 交x 轴于点E.①当A点坐标为(1,m)时,D点的坐标为;②当CE平分∠ACD时,正方形ABCD的面积为.三、解答题(共7小题,满分72分)20.(9分)已知m是方程2x2-7x+1=0的一个根,求代数式m(2m-7)+5的值.21.(9分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:∠CDB=∠A;(2)若∠DBC=120°,⊙O的直径AB=8,求BC、CD的长.22.(10分)某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,河旁有一座小山,山高BC=80m,点C、A与河岸E、F在同一水平线上,从山顶B处测得河岸E和对岸F的俯角分别为∠DBE=45°,∠DBF=31°.若在此处建桥,求河宽EF的长(结果精确到1m)[参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60]Y23.(10分)如图,ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H.①求证:AH·CH=DH·GH;②若AG=2,FG=6,求GH的长.24.(本小题满分10分)某学校为丰富课后服务内容,计划开设经典诵读、花样跳绳、电脑编程、国画赏析、民族舞蹈五门兴趣课程.为了解学生对这五门兴趣课程的喜爱情况,随机抽取了部分学生进行问卷调查(要求每位学生只能选择一门课程),并将调查结果绘制成如下两幅不完整的统计图.学生对五门兴趣课程喜爱情况条形统计图学生对五门兴趣课程喜爱情况扇形统计图根据图中信息,完成下列问题:(1)本次调查共抽取了名学生;(2)补全条形统计图;(3)计算扇形统计图中“电脑编程”所对应扇形的圆心角度数;(4)若全校共有1200名学生,请估计选择“民族舞蹈”课程的学生人数;(5)在经典诵读课前展示中,甲同学从标有A《出师表》、B《观沧海》、C《行路难》的三个签中随机抽取一个后放回,乙同学再随机抽取一个,请用列表或画树状图的方法,求甲乙两人至少有一人抽到A《出师表》的概率.25.(本小题满分12分)某学校要修建一个占地面积为64平方米的矩形体育活动场地,四周要建上高为1米的围挡,学校准备了可以修建45米长的围挡材料(可以不用完).设距形地面的边长AB=x米,BC=y米.(1)求y关于x的函数关系式(不写自变量的取值范围);(2)能否建造AB=20米的活动场地?请说明理由;(3)若矩形地面的造价为1千元/平方米,侧面围挡的造价为0.5千元/平方米,建好距形场地的总费用为80.4千元,求出x的值.(总费用=地面费用+围挡费用)26.(12分)如图,抛物线y=ax2+bx-8与x轴交于A(2,0),B(4,0),D为抛物线的顶点.图1图2(1)求抛物线的解析式;(2)如图1,若H为射线DA与y轴的交点,N为射线AB上一点,设N点的横坐标为t,△DHN的面积为S,求S与t的函数关系式;(3)如图2,在(2)的条件下,若N与B重合,G为线段DH上一点,过G作y轴的平行线交抛物线于F,连接AF,且∠AGN=∠FAG,求F点的坐标.2023-2024学年度第一学期期末学业质量检测九年级数学试卷参考答案及评分标准(zx )一.选择题(共16小题,满分38分)1-5BDDCC 6-10CCBAC 11-16DBACAD二.填空题(共3小题,满分10分)17.(-1,0),110°19.(,-1),12三.解答题(共7小题,满分72分)20.解:根据题意得:2m 2-7m +1=0,………………2分∴2m 2-7m=-1, (6)分∴m (2m -7)+5=2m 2-7m +5=-1+5=4……………………9分21.(1)证明:∵AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,∴,∴∠BCD =∠CDB ,∵,∴∠A =∠BCD ,∴∠CDB =∠A ;……………4分(2)解:∵∠DBC =120°,∴∠BCD =∠CDB =(180°-∠DBC )=30°,∠A =∠CDB =30°,∵AB 是⊙O 的直径,且AB =8,∴∠ADB =90°,∴在Rt △ADB 中,BD =AB =4,又∵,∴.BC =BD =4;……………………6分∵AB ⊥CD ,∠BCD =∠CDB =30°,∴在Rt △BCE 中,BE =BC =2,∴CE 又∵AB 是⊙O 的直径,AB ⊥CD ,∴.CD =2CE =……………………9分22.解:在Rt △BCE 中,BC =80m ,∠BEC =∠DBE =45°,∴∠CBE =45°,……………2分∴∠BEC =∠CBE =45°,∴CE =BC =80m .………………4分在Rt △BCF 中,BC =80m ,∠BFC =∠DBF =31°,tan ∠BFC =,……………………6分∴≈0.60,∴CF =133.3∴EF =CF -CE =133.3-80=53.3≈53(m ).……………………9分»»BCBD =»»BDBD =1212»»BCBD =12==BC CF 80CF答:河宽EF 的长约为53m .……………………10分23.(1)证明:∵四边形ABCD 是平行四边形,∴AD //BC ,CD //AB .∴∠D =∠FAD ,∠DCE =∠F ,∵E 是AD 的中点,∴ DE =AE ,∴△CDE ≌△FME (AAS ).∴CE =EF ,∵AE ∥BC,∴,∴AF =AB ;……………………3分(2)①证明:∵AG =2,FG =6,∴AF =FG +AG =6+2=8,∴AB =AF =8,∵四边形ABCD 是平行四边形,∴CD =AB =8,∵∠DCE =∠F ,∠FCG =∠FCD .∴∠F =∠FCG ,∴CG =FG =6,∵CD //AF ,∴△DCH ∽△AGH .∴,∴AH ∙CH =DH ∙GH ;………………7分②解:由①得△DCH ∽△AGH ,∴,即,∴GH =1.2………………10分24.解:(1)300……………………2分(2)……………………4分(3)×360°=120°…………………………6分答:“电脑编程”的圆心角度数为120°.(4)×1200=200(名)……………………8分答:选择“民族舞蹈”课程学生约有200名.(5)列表法如下:AB C AAA BA CA BAB BB CB C AC BC CC1FA FE AB CE==AH GH DH CH=CD CH AG GH =862GH GH-=10030050300由表格可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,其中甲乙两人至少有一人抽到A 的情况有5种.∴P (甲乙两人至有一人抽到A )=…………………………10分25.解:(1)∵xy =64∴y =…………………2分(2)根据题意得x =20时,y ==3.2(20+3.2)×2=46.4(米)∵46.4>45∴不能建造AB =20的活动场地.………………6分(3)64×1+(x +)×2×1×0.5=80.4……………………8分解得x =10或6.4………………………10分当x =10时y =6.4(10+6.4)×2<45;当x =6.4时y =10(6.4+10)×2<45当x =10或6.4时总费用为80.4元………………12分26.解:(1)∵抛物线y =ax 2+bx -8与x 轴交于A (2,0),B (4,0),∴解得∵抛物线解析式为y =-x 2+6x -8;………………4分(2)如图1,连接OD .图1∵抛物线解析式为y =-x 2+6x -8=-(x -3)2+1,∴抛物线顶点D 坐标(3,1),∵A (2,0),设直线AD 的解析式为:y =kx +t ,∴,解得,5964x642064x428016480a b a b +-=⎧⎨+-=⎩16a b =-⎧⎨=⎩2031k t k t +=⎧⎨+=⎩12k t =⎧⎨=-⎩∴直线AD 的解析式为:y =x -2,∴H (0,-2)……………………6分∵,∴S 与t 的函数关系式为;……………………8分(3)如图2中,延长FG 交OB 于M .图2∵A (2,0),H (0,-2),∴OH =OA ,∴∠OAH =∠OHA =45°,∵FM //OH ,∴∠MGA =∠OHA =∠MAG =45°,∴MG =MA ,∵∠FAG =∠NGA ,∴∠MAF =∠MGN ,在△MAF 和△MGN 中,,∴△MAF ≌△MGB (ASA ),∴FM =BM .……………………10分设M (m ,0),则F (m ,-m 2+6m -8),∴-(-m 2+6m -8)=4-m ,解得m =1或4(舍去),∴F (1,-3). (12)分1113122332222OND ONH OHD S S S S t t t =+-=⨯⨯+⨯⨯-⨯⨯=-V V V 33(2)2S t t =->AMF GMB AM MGMAF MGB =⎧⎪=⎨⎪=⎩∠∠∠∠。

河南省平顶山市2023-2024学年九年级上学期期末数学试题(含答案)

河南省平顶山市2023-2024学年九年级上学期期末数学试题(含答案)

2023~2024学年第一学期期末调研试题卷九年级数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.已知a ,b ,c ,d 是成比例线段,且,,,则线段d 的长为( )A. B. C. D.2.左图为某几何体的三种视图,这个几何体可以是()A.B. C. D.3.解方程时,小明进行了相关计算并整理如下:x0.511.525.2513则该方程必有一个根满足()A. B. C. D.4.关于矩形的性质,下列说法不正确的是()A.四个角都是直角B.对角线互相垂直C.对角线相等D.是轴对称图形5.已知反比例函数,下列说法中正确的是()A.该函数的图象位于第一、三象限B.点在该函数图象上C.y 随x 的增大而增大D.该函数图象关于原点成中心对称6.柜子里有两双不同的鞋,如果从中随机取出2只,那么取出的鞋恰好是同一双的概率为()3cm a =2cm b =6cm c =2cm 3cm 4cm 5cm212150x x +-=21215x x +-15-8.75-2-1.52x <<1 1.5x <<0.51x <<00.5x <<6y x=-()2,3A.B. C.D.7.如图,四边形为平行四边形,E ,F 为边的三等分点,连接,,交点为G ,则等于()A. B. C. D.8.某商品原价为100元,连续两次降价后为81元,设平均每次降价的百分率为x ,则下列方程正确的是( )A. B.C. D.9.如图,矩形的四个顶点分别在直线,,,上,若直线且相邻两直线间距离相等.若,,则,之间的距离为()A.5B.C. D.10.如图,一组等腰三角形的底边均在x 轴的正半轴上,两腰的交点在反比例函数的图象上,且它们的底边都相等.若记,,…的面积分别为则的值为()13141516ABCD CD AF BE :EFG BAG S S △△1:91:41:31:2()2811100x +=()2100181x -=()1001281x -=()8112100x +=ABCD 1l 3l 4l 2l 1234l l l l ∥∥∥6AB =4BC =2l 3l 65125245()10y x x=>11OA B △122A A B △233A A B △101110121012A A B △1231012,,S S S S 1012SA.B. C. D.二、填空题:(每小题3分,共15分)11.如果,那么_______.12.已知关于x 的一元二次方程的一个根是1,则_______.13.一个口袋中装有红球和白球共10个,这些球除颜色外都相同,将口袋中的球摇匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现共有70次摸到红球,估计这个口袋中自球的个数为_______.14.如图,菱形中,对角线,相交于点O ,点E 为的中点,连接,若,则菱形的周长为_______.15.如图,已知点E ,F 分别为三角形纸片的边,上的点,将三角形纸片沿所在直线折叠,点B 的对应点恰好落在边上.已知,.若以,F ,C 为顶点的三角形与相似,则的长是______.三、解答题(本大题共8个小题,共75分)16.(10分)解方程:(1)(用因式分解法)(2)(用公式法)17.(9分)如图,一转盘被等分为三个区城,上面分别标有数字1,0,,转动转盘,指针停止后指向哪个区域,就得到该区域上的数字.(指针停在分界线上时,重新转动转盘,直到指向一个区域内部)(1)小明转动转盘一次,得到的数字是非负数的概率为_____;(2)小明和小红分别转动转盘一次,用树状图或列表的方法求两人得到相同数字的概率.1101211013120231202412a b =aa b=+22340x kx -+=k =ABCD AC BD AB OE 3.5OE =ABCD ABC AB BC ABC EF B 'AC 3AB AC ==4BC =B 'ABC △BF ()5454x x x +=+22980x x -+=1-18.(9分)已知点E 是边的中点,连接并延长交的延长线于点F ,连接,,且.(1)求证:四边形为矩形;(2)若,请直接写出的长.19.(9分)已知,关于x 的一元二次方程.(1)试说明:不论m 取何值时,该方程总有实数根;(2)若这个一元二次方程的一根大于2,另一根小于2,求m 的取值范围.20.(9分)如图,白鹭洲国家湿地公园广场有一灯柱,M 为光源.某兴趣小组为了测量灯柱的高度,在灯柱同侧竖立两根长度均为的标杆和.测得的影长等于,且点N ,B ,C 在同一条直线上.(1)请画出标杆的影子;(2)若,求灯柱的高度.21.(9分)据统计,摩托车、电动自行车、小汽车是导致交通事故死亡最多的车辆,摩托车、电动自行车驾乘人员死亡事故中约80%为颅脑损伤致死.为确保安全出行,交警提醒骑车出行必须佩戴头盔.某头盔品牌厂商在各大电商平台共有100个网店,一个网店平均每月销售1000个头盔.现准备多开一些网店以提高销售量,试验发现,每多开1个网店,每个网店头盔月销售量就会减少2个,但随着网店数量增加,运营成本也会增加,如果要使每月总销售量增加15.2%,且尽可能减少运营成本,那么应多开几个网店?22.(10分)已知一次函数与反比例函数的图象交于A ,B 两点,且点A 的坐标为.(1)求m 的值及反比例函数的解析式;(2)连接,,求的面积;(3)观察图象,请直接写出的解集.ABCD AD BE CD BD AF AD BF =ABDF 3CD ED ==BD ()2430x m x m -+++=MN MN 1.6m AB CD AB BC 3m CD CE 4m CE =MN 5y x =-+ky x=()4,m OA OB AOB △5kx x-+>23.(10分)如图1,四边形和四边形均为正方形,点E ,G 分则在,上,,分别为两正方形的对角线.(I )猜想:图1中的值为_______;(2)探究:将正方形绕点A 旋转到图2位置,连接,,判断的值是否保持不变?并说明理由.(3)延伸:若将正方形绕点A 旋转到图3位置,其中G ,E ,B 三点在一条直线上,延长交边于点H ,若,请直接写出正方形与正方形的边长.2023~2024学年第一学期期末调研试题九年级数学参考答案一、选择题(每题3分,共30分)题号12345678910答案CDBBDAABCC二、填空题(每小题3分,共15分)题号1112131415答案2328或2三、解答题(本大题共8个小题,共75分)ABCD AEFG AB AD AC AF FCEBAEFG BE FC FCEBAEFG AF CD BE =FH =AEFG ABCD 1312716.(1)解:原方程可变形为或,.(2)解:这里,,即,17.(9分)解:(1)(2)第一次第二次110共9种等可能的结果,其中两次数字相同的结果有3个,所以二人得到相同数字的概率.18.(9分)(1)证明:四边形是平行四边形,,,点E 为的中点,,又,四边形是平行四边形,又是矩形.()()54540x x x +-+=()()5410x x +-=540x +=10x -=∴145x =-21x =2a =9b =-8c = ()2249428170b ac -=--⨯⨯=>∴x =1x =2x =231-()1,1()0,1()1,1-()1,0()0,0()1,0-1-()1,1-()0,1-()1,1--13ABCD ∴AB DC ∥AB DC =∴EAB EDF∠=∠ AD ∴AE DE = AEB DEF ∠=∠∴()AEB DEF ASA ≌△△∴BE FE= AE DE=∴ABDF BF AD=∴ABDF(2)19.(9分)解:(1)由题可知:,,.即不论m 取何值,原方程有两个实数根.(2)解方程得,因为,,即.所以m 的取值范围是.20.(9分)解:(1)如图所示的影子为;(2)由题意可知,,.即设灯柱的高度为x m ,根据题意,得由,得即代入数据,化简得由,得即BD =1a =()4b m =-+3c m =+()()224443b ac m m -=-+-⨯+⎡⎤⎣⎦()220m =+≥∴()2430x m x m -+++=()422m m x +±+=∴11x =23x m =+12<∴32m +>1m >-1m >-CD CE MN NE ⊥AB NE ⊥CD NE ⊥90MNE ABC DCE ∠=∠=∠=︒MN ABC MNE ∠=∠MCN MCN ∠=∠ABC MNC △∽△AB BCx BC BN=+331.6xBN =-DCE MNE ∠=∠MEN MEN ∠=∠DCE MNE △∽△CD ECx EC BC BN=++代入数据,化简得,(m )答:灯柱的高度为.21.解:设应增加x 个网店,根据题意,得解得,,因为网店越多,运营成本增加越多,为减少运营成本x 取20 答:应增加20个网店.22.(10分)解:(1)点是直线与的交点,把,,代入得.,.(2)设一次函数的图象分别与x 轴,y 轴交于M ,N 两点由得,.由与得B 的坐标为(3)x 的取值范围为或.23.(10分)解:(1);471.6x BN =-∴34371.6 1.6x x -=-∴ 6.4x =MN 6.4m ()()()100021001001000115.2%x x -+=⨯⨯+120x =2380x = ()4,A m 5y x =-+ky x=∴4x =y m =5y x =-+451m =-+=∴414k =⨯=∴1m =4y x=5y x =-+5OM =5ON =5y x =-+4y x=()1,4AOB MON AOM BONS S S S =--△△△△111555151222=⨯⨯-⨯⨯-⨯⨯152=0x <14x <<FCEB=(2)①四边形与四边形是正方形,,即②正方形的边长为3,正方形的边长为.ABCD AEFG ∴45EAF BAC ∠=∠=︒FA ACAE AB==∴EAF CAE BAC CAE∠+∠=∠+∠CAF BAE∠=∠∴CAF BAE △∽△∴FC AC FAEB AB AE===AEFGABCD。

四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)

四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)

2023~2024学年度上期期末考试试题九年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。

2.考生使用答题卡作答。

3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡规定的地方。

考试结束,监考人员只将答题卡收回。

4.选择题部分请使用2B铅笔填涂;非选择题部分请使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。

5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡清洁,不得折叠、污染、破损等。

A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.某几何体的三视图如图所示,则这个几何体是()A.圆锥B.正方体C.圆柱D.球2.若方程是关于的一元二次方程,则“□”中可以是()A.B.C.D.3.已知四条线段成比例,则下列结论正确的是()A.B.C.D.4.若表示平行四边形,表示矩形,表示菱形,表示正方形,它们之间的关系用下列图形来表示,正确的是()A.B.C.D.5.若关于的方程有实数根,则的取值范围是()A.B.C.D.6.如图,在平面直角坐标系中,矩形的顶点坐标分别是,.已知矩形与矩形位似,位似中心是原点,且矩形的面积等于矩形的面积的,则点的坐标是()A.B.C.或D.或7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是()A.关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B.关于“50个同学中,有2个同学生日相同”的试验C.关于“抛一枚质地均匀的硬币,正面朝上”的试验D.关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数的图象如图所示,关于下列说法:①常数;②的值随值的增大而减小;③若点为轴上一点,点为反比例函数图象上一点,则;④若点在反比例函数的图象上,则点也在该反比例函数的图象上.其中说法正确的是()A.①②③B.③④C.①④D.②③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.将方程化成一元二次方程的一般形式为_________.10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是_________.11.如图,小强自制了一个小孔成像的纸筒装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛应放在水平距离纸筒点处_________的地方.12.在平面直角坐标系中,一次函数的图象与反比例函数的图象如图所示,则当时,自变量的取值范围是_________.13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是_________.三、解答题(本大题共5个小题,共48分)14.解方程(本小题满分12分,每题6分)(1);(2).15.(本小题满分8分)如图,在正方形中,延长至点,使得,连接交于点.(1)试探究的形状;(2)求的度数.16.(本小题满分8分)2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

河南省商丘市2023-2024学年九年级上学期期末数学试题(含答案)

河南省商丘市2023-2024学年九年级上学期期末数学试题(含答案)

永城2023—2024学年上学期期末学业评价卷九年级数学(人教版)注意事项:1.本试卷共4页.三个大题.满分120分.考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效一、选择题(每小题3分,共30分)下列各小题均有四个选项,中只有一个是正确的.1.下列关系式中,是x 的反比剑函数的是()A .B .C .D .2.下面是4个有关航天领域的图标.中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.在一个不透明的袋子里装有红球.黄球共20个,其中红球有2个.这些球除颜色外其他都相同,随机摸出1个球.摸出的是红球的概率是()A.B .C .D .4.下列四条线段中.能与,,这三条线段组成比例线段的是()A .B .C .D .5.下列图象中.有可能是函数的图象的是()A .B .C .D .6.“绿色电力.与你同行”",我国新能源汽车销售量逐年增加,据统计,2022年新能源汽车年销售量为690万辆.预计2024年新能源汽车手销售量将达到1166万辆,设这两年新能源汽车销售量年平均增长率为x ,则所列方程正确的是()A .B .C .D .7.若关于x 的一元二次方程有实数根,则实数k 的取值范围是()A .B .C .D .1y x =-3y x =-35y x =22y x =-12151101202a =3b =c =11d =2d =36d =4d =2)0(y ax a a =+≠()269011166x +=()211661690x -=()269069011166x ++=()116612690x -=2420x x k -+=2k >2k ≥2k <2k ≤8.对于反比例函数,下列结论中错误的是( )A .图象位于第二,四象限B .图象关于y 轴对称C .当时,y 随x 的增大而增大D .若点在图象上,则点也一定在图象上9.如图,一个隧道的横截面是以O 为圆心的圆的一部分,点D 是中弦AB 的中点,CD 经过圆心O 交于点C ,若路面AB =6m ,此圆的半径OA 的长为5m ,则净高CD 的长为( )A .5mB .6m C.m D .9m10.如图,在△ABC 中,AC =BC ,AB =12,把△ABC 绕点A 逆时针旋转60°得到△ADE ,连接CD ,当时,AC 的长为( )A .B .10C .D 二、填空题(每小题3分,共15分)11.“海日生残夜,江春入旧年”.如图所记录的日出美景中,太阳与海天交界处可看成圆与直线,它们的位置关系是______.12.图1是装满了液体的高脚杯(数据如图),用去部分液体后,放在水平的桌面上如图2所示,此时液体AB =______.13.抛物线的部分图象如图所示,当时,x 的取值范围是______.()0k y k x=≤0x >(),a b (),a b --O O 133CD =2y ax bx c =++5y >14.小诚和爸爸搭乘长途汽车回老家过年,在小程序上购票时,系统自动将两人分配到同一排(如图是长途汽车座位示意图),则小诚和爸爸分配的座位恰好是邻座(过道两侧也视为邻座)的概率是______.15.如图,已知反比例函数,.点A 在y 轴的正半轴上,过点A 作直线轴,且分别与两反比例函数的图象交于点C 和点B ,连接OC ,OB .若△BOC 的面积为9,AC :AB =4:5,则______.三、解答题(本大题共8个小题,共75分)16.(10分)用适当的方法解下列一元二次方程:(1);(2).17.(8分)如图.在平面直角坐标系中,△ABC 的顶点均在正方形网络的格点上,已知点C 的坐标为.(1)以点O 为位似中心,在给出的网格内曲使与位似,并且点的坐标为;(2)与的相似比是______.18.(9分)如图.文文应用所学的三角形相关知识测量河南广播电视塔的高度,她站在距离塔底A 点120m 处的D 点.测得自己的影长DE 为0.4m ,此时该塔的影子为AC ,她测得点D 与点C 的距离为23m ,已知文文的身高DF 为1.6m .求河南广播电视塔AB 的高.(图中各点都在同一平面内.点A ,C ,D .E 在同一直线上)111(0)k y k x =≥222(0)k y k x=<BC x ∥12k k =()419x x x -=-26160x x --=()4,1-111A B C △111A B C △ABC △1C ()8,2-ABC △111A B C △19.(9分)如图,在平面直角坐标系中,直线与反比例函数在第一象限内的图象交于点.(1)求反比例函数的表达式;(2)直接写出当时,关于x的不等式的解集.20.(9分)掷实心球是2024年郑州巿高中阶段学校招生体育考试的抽考项目,如图1是一名男生投实心球,实心球的行进路线是—条抛物线,行进高度y (m )与水平距离x (m )之间的函数关系如图2所示,掷出时起点处高度为m ,当水平距离为5m 时,实心球行进至最高点4m 处.(1)求y 关于x 的函数表达式(不写x 的取值范围);(2)根据郑州市高中阶段学校招生体育考试评分标准(男生).在投掷过程中.实心球从起点到落地点的水平距离大于等于11.4m 时,此项考试得分为满分10分.请判断该男生在此项考试中是否能得满分,并说明理由.21.(10分)如图,AB 是的直径,点C ,D 是上位于直线AB 异侧的两点,,交CB 的延长线于点E .且BD 评分.(1)求证:DE 为的切线;213y x =-()0k y k x=≠()6,A a 0x >213k x x >-9649O O DE BC ⊥ABE ∠O(2)若,,①求DE 的长;②图中阴影部分的面积为______.22.(10分)如图,抛物线交x 轴于,两点,与y 轴交干点C .(1)求此抛物线的解析式;(2)已知P 为抛物线上一点(不与点B 重合),若点P 关于x 轴对称的点恰好在直线BC 上,求点P 的坐标.23.(10分)已知△ABC 与△DEC 都为等腰三角形,AB =AC ,DE =DC ,.(1)当n =60°时,①如图1,当点D 在AC 上时,BE 与AD 的数量关系是______;②如图2,当点D 不在AC 上时,BE 与AD 的数量关系是______.(2)如图3(点B 位于△CDE 的内部).当n =90°时,①探究线段BE 与AD 的数量关系,并说明理由;②当,时.请直接写出CE 的长.永城2023—2024学年上学期期未学业评价卷九年级数学(人教版)参考答案一、选择题(每小题3分,共30分)1.B 2.C 3.C 4.D 5.A 6.A 7.D 8.B 9.D 10.C二、填空题(每小题3分,共15分)11.相交12.4cm 13. 14. 15.-80三、解答题(本大题共8个小题,共75分)16.解:(1).60ABC ∠=︒4AB =2c y x bx =-++()1,0A -()2,0B 2y x b c =-++P 'BAC EDC n ∠=∠=AD BC ∥AB =7AD =04x <<12249x x x -=-,.,.(2).,.由此可得,,.17.解:(1)如图所示.(2)1:2.18.解:太阳光是平行光线,因此.由题意得,.,.m ,m ,(m ).m ,m ,,m .河南广播电视塔的高度为388m .19.解:(1)∵点在直线上,.249x =294x =132x =-232x =2616x x -=269169x x -+=+()2325x -=35x -=±18x =22x =-111A B C △BCA FED ∠=∠AB AC ⊥DF AC ⊥ABC DFE ∴△△∽AB DF AC DE∴=120AD = 23CD =97AC AD CD ∴=-=0.4DE = 1.6DF =1.6970.4AB ∴=388AB ∴=∴()6,A a 213y x =-26133a ∴=⨯-=即点A 的坐标为.点A 在反比例函数的图象上,.反比例函数的表达式为.(2)当时,关于x 的不等式的解集为.20.解:(1)设y 关于x 的函数表达式为.把代入表达式,得,解得..(2)该男生在此项考试中能得满分.理由:令,即,解得,(舍去).,该男生在此项考试中能得满分.21.(1)证明:连接OD .∵BD 平分,.,...,.∵点D 在上,DE 为的切线.(2)解:①如图,过点O 作,垂足为F .()6,3k y x=6318k =⨯=∴∴18y x=0x >213k x x >-06x <<()254y a x =-+960,49⎛⎫ ⎪⎝⎭()29605449a =-+449a =-24(5)449y x ∴=--+0y =()2454049x --+=112x =22x =-1211.4> ∴ABE ∠ABD DBE ∴∠=∠OD OB = ODB ABD ∴∠=∠ODB DBE ∴∠=∠OD BC ∴∥DE BC ⊥ OD DE ∴⊥O ∴O OF BC ⊥,.,..在Rt △OBF 中,由(1)得,,.四边形OFED 为矩形..②.22.解:(1)将,代入,得解得lc =2.抛物线的解析式为.(2)设直线BC 的解析式为.由(1)中得,点C 的坐标为.将,代入,得,解得,直线BC 的解析式为.设点的坐标为,∵点P 与点关于x 轴对称,点P 的坐标为.∵点P 在抛物线上,.解得,.又∵点P 不与点B 重合,..点P 的坐标为.4AB = 122B OB A ==∴60ABC ∠=︒ 30BOF ∴∠=︒112BF OB ∴==OF ===OD DE ∥DE BC ⊥90ODE E OFE ∴∠=∠=∠=︒∴DE OF ∴==2π3()1,0A -()2,0B 2y x bx c =-++10,420.b c b c --+=⎧⎨-++=⎩12b c =⎧⎨=⎩∴22y x x =-++y kx m =+22y x x =-++()0,2()2,0B ()0,2C y kx m =+202h m m +=⎧⎨=⎩12k m =-⎧⎨=⎩∴2y x =-+P '(),2a a -+P '∴(),2a a -222a a a -=-++∴12a =22a =-2a ∴=-2224a ∴-=--=-∴()2,4--23.解:(1)①,②(2)①.理由如下:当时,,∵,.△ABC 与△DEC 为等腰直角三角形..则,.,,....②CE 的长为.BE AD =BE AD=BE =90n =︒90BAC EDC ∠=∠=︒AB AC =DE DC =∴45ACB ABC DCE DEC ∴∠=∠=∠=∠=︒BC ==EC ==DC AC EC BC ∴==45DCE DCB ECB ∠=∠+∠=︒45ACB ACD DCB ∠=∠+∠=︒DCA ECB ∴∠=∠DCA ECB ∴△△∽AD DC BE EC ∴==BE ∴=。

2023-2024学年北京市九年级数学第一学期期末达标测试试题(含解析)

2023-2024学年北京市九年级数学第一学期期末达标测试试题(含解析)

2023-2024学年北京市九年级数学第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.如图,已知抛物线和直线.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个2.教育局组织学生篮球赛,有x 支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )A.B .C .D .3.下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。

B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。

C .某彩票中奖率为,说明买100张彩票,有36张中奖。

D .打开电视,中央一套正在播放新闻联播。

4.如图是我们学过的反比例函数图象,它的表达式可能是( )21y x 4x =-+2y 2x =()11452x x -=()11452x x +=()145x x -=()145x x +=36%A .B .C .D .5.下列图案中,是中心对称图形的是( )A .B .C .D .6.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为()A .1 cmB .7cmC .3 cm 或4 cmD .1cm 或7cm 7.已知关于的一元二次方程有两个相等的实数根,则锐角等于( )A .B .C .D .8.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A.B .C .D .9.下列关系式中,y 是x 的反比例函数的是( )A .y =4xB .=3C .y =﹣D .y =x 2﹣110.如图,⊙O 的直径长10,弦AB=8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM≤5B .4≤OM≤5C .3<OM <5D .4<OM <511.如图所示的工件的主视图是( )22y x =4y x =3y x =-3y x=-x 2cos 0x α+=α15 30 45 601325122542512y x 1xA .B .C .D .12.若△ABC ~△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为( )A .2:1B .1:2C .4:1D .1:4二、填空题(每题4分,共24分)13.若弧长为4π的扇形的圆心角为直角,则该扇形的半径为 .14.因式分解:_______;15.如图,在平面直角坐标系中,已知经过点,且点O 为坐标原点,点C 在y 轴上,点E 在x 轴上,A (-3,2),则__________.16.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.17.已知关于的方程的一个根为-2,则方程另一个根为__________.18.在中,,,在外有一点,且,则的度数是__________.三、解答题(共78分)19.(8分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.20.(8分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.()()2a b b a ---=A E B O C 、、、tan OBC ∠=x 230x mx m ++=ABC ∆AC BC =90C ∠=︒ABC ∆M MA MB ⊥AMC ∠AB B BC AB 25AB(1)如图①,在Rt △ABC 中,∠C =90°,AC >BC ,若Rt △ABC 是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC :AC :AB 的值.(2)如图②,△ABC 是⊙O 的内接三角形,AB >AC ,∠BAC =45°,S △ABC =,将△ABC 绕点A 逆时针旋转45°得到△ADE ,点B 的对应点为D ,AD 与⊙O 交于点M ,若△ACD 是“匀称三角形”,求CD 的长,并判断CM 是否为△ACD的“匀称中线”.21.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a 的值为 ;(2)求C 等级对应扇形的圆心角的度数;(3)获得A 等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.22.(10分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.ABC 90C ∠=︒10AB =8AC =AB A 90︒AD EFG ABC CB EF D(1)求的大小;(2)求的长.23.(10分)如图,把Rt △ABC 绕点A .逆时针旋转40°,得到在Rt △ABʹCʹ,点Cʹ恰好落在边AB 上,连接BBʹ,求∠BBʹCʹ的度数.24.(10分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+ 1.(1)若从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7, 11, 19, 23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,25.(12分)(1)计算: (2)化简:26.已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵当y 1=y 2时,即时,解得:x=0或x=2,1∠AE 201224((18--+-⨯--2291(1)693x x x x -⋅+-++2x 4x 2x -+=∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -直线的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,,解得.∴使得M=2的x 值是1或.∴④错误.综上所述,正确的有②③2个.故选B .2、A 【分析】先列出x 支篮球队,每两队之间都比赛一场,共可以比赛x (x-1)场,再根据题意列出方程为.【详解】解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为,故选:A .本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3、B【解析】A 、掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B 、从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C 、某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时,趋近的一个数并不能说买100张该种彩票就一定能中36张奖,故此选项错误;D 、中央一套电视节目有很多,打开电视有可能正在播放中央新闻也有可能播放其它节目,故本选项错误.故选B .4、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A 、为二次函数表达式,故A 选项错误;B 、为反比例函数表达式,且,经过第一三象限,符合图象,故B 选项正确;21y x 4x =-+2y 2x =()221y x 4x x 24=-+=--+2x 4x 2-+=12x 2x 2=+=-2+()11452x x -=()11452x x -=12120k >22y x =4y x=0k >C 、为反比例函数表达式,且,经过第二四象限,不符合图象,故C 选项错误;D 、为一次函数表达式,故D 选项错误.故答案为B .本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.5、C【解析】根据中心对称图形的概念即可得出答案.【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.6、D【分析】分AB 、CD 在圆心的同侧和异侧两种情况求得AB 与CD 的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF-OE=1cm ;当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,∵AB ∥CD,3y x=-0k <3y x =-∴OF ⊥CD ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF+OE=7cm .故选D .本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.7、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D .本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.8、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A .cos αx 2cos 0x α-+=2(41cos 0α-⨯⨯=1cos 2α=α60 1325本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.9、C【分析】根据反比例函数的定义逐一判断即可.【详解】A 、y =4x 是正比例函数;B 、=3,可以化为y =3x ,是正比例函数;C 、y =﹣是反比例函数;D 、y =x 2﹣1是二次函数;故选:C .本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.10、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A .本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.11、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B .12、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B .此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据扇形的弧长公式计算即可,【详解】∵扇形的圆心角为90°,弧长为4π,∴,即4π=,则扇形的半径r=1.y x1x O OM AB ⊥OM 3OM =OM OA OM 5OM =OM 35OM ≤≤ABC A B C '''V ABC A B C '''V r l 180n π=90•180r π故答案为1考点:弧长的计算.14、(a-b )(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a -b )2+(a -b )=(a -b )(a -b +1),故答案为:(a -b )(a -b +1)此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、【解析】分别过A 点作x 轴和y 轴的垂线,连接EC ,由∠COE =90°,根据圆周角定理可得:EC 是⊙A 的直径、,由A 点坐标及垂径定理可求出OE 和OC ,解直角三角形即可求得.【详解】解:如图,过A 作AM ⊥x 轴于M ,AN ⊥y 轴于N ,连接EC ,∵∠COE =90°,∴EC 是⊙A 的直径,∵A (−3,2),∴OM =3,ON =2,∵AM ⊥x 轴,AN ⊥y 轴,∴M 为OE 中点,N 为OC 中点,∴OE =2OM =6,OC =2ON =4,∴=.本题主要考查了同弧所对的圆周角相等、垂径定理和锐角三角函数定义,熟练掌握定理是解本题的关键.16、3或1.2【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,23∠=∠OBC CEO tan OBC ∠tan OBC ∠42tan 63∠===OC CEO OE∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为1.2或3.本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.17、1【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24120x x --=122,6x x =-=18、、【分析】由,可知A 、C 、B 、M 四点共圆,AB 为圆的直径,则是弦AC 所对的圆周角,此时需要对M 点的位置进行分类讨论,点M 分别在直线AC 的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果.【详解】解:∵在中,,,∴∠BAC =∠ACB =45°,∵点在外,且,即∠AMB =90°∵∴A 、C 、B 、M 四点共圆,①如图,当点M 在直线AC 的左侧时,,∴;②如图,当点M 在直线AC 的右侧时,∵,∴,故答案为:135°或45°.本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A 、C 、B 、M 四点共圆.三、解答题(共78分)19、米【分析】根据坡度的定义可得,求出AB ,再根据勾股定理求135︒45︒90C ∠=︒MA MB ⊥AMC ∠ABC ∆AC BC =90C ∠=︒M ABC ∆MA MB ⊥180∠+∠=︒AMB C 180∠+∠=︒AMC ABC 180********∠=︒-∠=︒-︒=︒AMC ABC AC AC =45∠=∠=︒AMC ABC 25BC AC =AB =【详解】∵坡顶离地面的高度为20米,坡面的坡度为即, ∴米由勾股定理得答:坡面的长度为米.考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.20、(1)① “匀称中线”是BE ,它是AC 边上的中线,②BC :AC :AB;(2)CDa ,CM 不是△ACD 的“匀称中线”.理由见解析.【分析】(1)①先作出Rt △ABC 的三条中线AD 、BE 、CF ,然后利用匀称中线的定义分别验证即可得出答案;②设AC =2a ,利用勾股定理分别把BC,AB 的长度求出来即可得出答案.(2)由②知:AC :AD :CD ,设AC ,则AD =2a ,CD ,过点C 作CH ⊥AB ,垂足为H,利用的面积建立一个关于a 的方程,解方程即可求出CD 的长度;假设CM 是△ACD 的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC 的三条中线AD、BE 、CF ,∵∠ACB =90°,∴CF =,即CF 不是“匀称中线”.又在Rt △ACD 中,AD >AC >BC ,即AD 不是“匀称中线”.∴“匀称中线”是BE ,它是AC 边上的中线,②设AC =2a ,则CE =a ,BE =2a ,在Rt △BCE 中∠BCE =90°,∴BC ,在Rt △ABC 中,AB ,∴BC :AC :AB (2)由旋转可知,∠DAE =∠BAC =45°.AD =AB >AC ,B BC AB 2525BC AC =2025AC =50AC =AB ==AB :2:7:2ABC 12AB AB ≠==:2:2a =∴∠DAC =∠DAE +∠BAC =90°,AD >AC ,∵Rt △ACD 是“匀称三角形”.由②知:AC :AD :CD设AC,则AD =2a ,CD ,如图②,过点C 作CH⊥AB ,垂足为H ,则∠AHC =90°,∵∠BAC =45°,∴ ∵解得a =2,a =﹣2(舍去),∴判断:CM 不是△ACD 的“匀称中线”.理由:假设CM 是△ACD 的“匀称中线”.则CM =AD =2AM =4,AM =2,∴又在Rt △CBH 中,∠CHB =90°,CH ,BH =4,∴即这与∠AMC =∠B相矛盾,∴假设不成立,2CH AH ===11222ABC S AB CH a ==⨯= CD ==tan AC AMC AM ∠===tan tan CH B AMC BH ===≠∠B AMC∠≠∠∴CM 不是△ACD 的“匀称中线”.本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.21、(1)8 ;(2);(3)【分析】(1)根据D 等级的人数除以其百分比得到班级总人数,再乘以B 等级的百分比即可得a 的值;(2)用C 等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为 人,B 等级的人数为 人,故a 的值为8;(2)∴C 等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P (一男一女) 答:恰好选中一男一女参加比赛的概率为.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 的结果数目m ,然后利用概率公式计算事件A的概率为.也考查了统计图.22、(1);(2)【分析】(1)根据旋转的性质可求得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)根据平移的性质及同角的余角相等证得∠DAE=∠CAB ,进而证得△ADE ∽△ACB ,利用相似的性质求出AE 即可.【详解】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB ,∴∠ABD=∠ADB=45°,∵△EFG 是由△ABC 沿CB 方向平移得到,∴AB ∥EF ,∴∠1=∠ABD=45°;(2)由平移的性质得,AE ∥CG ,∴∠EAC=180°-∠C=90°,144︒121230%40÷=4020%8⨯=16360144 40⨯︒=︒ 144︒61122==12m n45︒12.5AE =∴∠EAB+∠BAC=90°,由(1)知∠DAB=90°,∴∠DAE+∠EAB=90°,∴∠DAE=∠CAB ,又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,∴∠ADE=∠ACB ,∴△ADE ∽△ACB ,∴,∵AC=8,AB=AD=10,∴AE=12.5.本题为平移的性质,旋转的性质,相似三角形的判定与性质的综合考查,熟练掌握基础的性质与判定是解题的关键.23、20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB .∴∠ABBʹ==70°.∴∠BBʹCʹ=90°-70°=20°.本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.24、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解: (1) 因为7, 11, 19, 23共有4个数,其中素数7只有1个,所以从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是,故答案为. (2)由题意画树状图如下:AD AE AC AB=00180402-14231414由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.25、(1)1;(2)【分析】(1)根据实数的混合运算法则计算即可;(2)根据分式的运算法则计算即可.【详解】解:(1)原式=2+ =1; (2).本题考查了实数的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.26、y =1(x ﹣1)1+1.【分析】根据题意设抛物线解析式为y =a (x ﹣1)1+1,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y =a (x ﹣1)1+1,把(3,10)代入得a (3﹣1)1+1=10,解得a =1,所以抛物线解析式为y =1(x ﹣1)1+1.本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.82123P ==43x x +-201222()(18--++⨯--11--1442291(1)693x x x x -⋅+-++()()()2334•33x x x x x +-+=+-43x x +=-。

河北省保定市竞秀区2023-2024学年九年级上学期期末数学试题(含解析)

河北省保定市竞秀区2023-2024学年九年级上学期期末数学试题(含解析)

2023—2024学年第一学期期末教学质量检测九年级数学试题注意事项:1.本试卷共6页,总分120分,考试时间120分钟.2.答卷前将密封线左侧的项目填写清楚.3.答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,将答案写在答题卡上,写在本试卷上无效.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示的几何体的俯视图是( )A .B .C .D .2.二次函数的图象向左平移1个单位,再向上平移1个单位,则得到的新的抛物线的顶点坐标为( )A .B .C .D .3.如图,滑雪场有一坡角的滑雪道,滑雪道长为200米,则滑雪道的坡顶到坡底的竖直高度的长为( )米.()2212y x =---()0,0()0,1-()1,2-()2,1-20︒AC ABA .B .4.一元二次方程(x +3)(x +6)=A .有两个不相等的实数根A .200cos 20︒0abc >A .甲B .乙11.如图,两张宽为3的长方形纸条叠放在一起,已知( )A .B .12.对于二次函数时,y 随x 的增大而增大;A .①②③④B .9222y x =1x >-1....23.在文化公园矗立着一尊药王邳彤铜像,测量药王铜像的高度.离为,从无人机.已知底座平台的高度24.如图,在平行四边形ABCD 中,DE 交BC 于F ,交CE 37.5m 63.4︒(1)求一次函数和反比例函数的表达式;(2)求的面积;(3)请根据图象直接写出不等式26.某商场经销一种儿童玩具,该种玩具的进价是每个该种玩具每天的销售量(1)求y 关于x 的函数关系式,并求出当某天的销售量为(2)每天的销售量不低于价是多少?最大利润是多少?(3)根据物价部门规定,这种玩具的售价每个不能高于具就捐款n 元()而增大,求n 的取值范围.AOB V 1817n ≤≤【详解】解:俯视图就是从上面看该几何体所得到的图形,比较符合题当和时,的值相等.当时,.当时,,选项D 错误.故选:C .【点睛】本题考查了二次函数图象与二次函数系数之间的关系,二次函数图象与性质,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换是解题的关键.10.A【分析】本题考查了反比例函数的应用,结合实际含义理解图象上点的坐标含义是解题的关键.根据题意可知的值即为该气体的质量,再根据图象即可确定丙气体的质量最多,甲气体的质量人数最少,乙、丁两气体的质量相同.【详解】解:根据题意,的值即为该气体的质量,∵描述乙、丁两该气体的质量的点恰好在同一个反比例函数的图象上,∴乙、丁两该气体的质量相同,∵点丙在反比例函数图象上面,点甲在反比例函数图象下面,∴丙该气体的质量值最大,甲气体的质量的值最小.故选:A .11.D【分析】首先过点作于点E ,于点,由题意可得四边形是平行四边形,继而求得的长,判定四边形是菱形,则可求得答案.【详解】过点作于点E ,于点,根据题意得:,,,∴四边形是平行四边形,∵,∴,∴2x =-0x =y 0x =0y <∴2x =-420y a b c =-+<2a b V ρV ρB BE AD ⊥BF CD ⊥F ABCD AB BC =ABCD B BE AD ⊥BF CD ⊥F AD BC ∥AB CD ∥3BE BF ==ABCD 60ABC ADC ∠=∠=︒30ABE CBF ∠=∠=︒==,小颖参加比赛的概率为:;=,=.(2)解:点为直线..C 3OC ∴=AOB AOC BOCS S S ∴=+V V V 11||||22A B OC x OC x =⋅⋅+⋅⋅11323422=⨯⨯+⨯⨯9=【分析】(1)设,由题意知,图象过,两点,待定系数法求得解析式为,当时,,解得,根据利润为:,计算求解即可;(2)由题意得,,即,设每天的销售利润为W (元),依题意得, ,然后根据二次函数的图象与性质求解作答即可;(3)设捐款后每天所获得的利润为Q (元),依题意得,,则抛物线的对称轴为直线,由,可知当时,Q 随x 的增大而增大.由物价部门规定这种玩具的售价每个不能高于元,可得,计算求解然后作答即可.【详解】(1)解:设,由题意知,图象过,两点,∴,解得,∴,当时,,解得,利润为:(元),∴当某天的销售量为个时,该玩具的销售利润元;(2)解:由题意得,,解得,设每天的销售利润为W (元),依题意得, ,∵,∴当时,W 取最大值,最大值为,y kx b =+()30,120()45,753210y x =-+78y =321078x -+=44x =()784415⨯-321018x -+≥64x ≤()()215321032553150W x x x x =--+=-+-()2342.52268.75x =--+()()()2153210325533150210Q x n x x n x n =---+=-++--42.50.5x n =+30-<42.50.5x n ≤+4542.50.545n +≥y kx b =+()30,120()45,75120307545k b k b=+⎧⎨=+⎩3210k b =-⎧⎨=⎩3210y x =-+78y =321078x -+=44x =()7844152262⨯-=782262321018x -+≥64x ≤()()215321032553150W x x x x =--+=-+-()2342.52268.75x =--+30-<42.5x =2268.75∴要每天获得的销售利润最大,该玩具每个的售价是元,最大利润为元;(3)解:设捐款后每天所获得的利润为Q (元),依题意得,,∵抛物线的对称轴为直线,,∴当时,Q 随x 的增大而增大.∵物价部门规定这种玩具的售价每个不能高于元,∴,解得,又∵,∴.【点睛】本题考查了一次函数的应用,一次函数解析式,有理数混合运算的应用,一元一次不等式的应用,二次函数的应用,二次函数的图象与性质,二次函数的最值等知识.熟练掌握一次函数的应用,一元一次不等式的应用,二次函数的应用,二次函数的图象与性质,二次函数的最值是解题的关键.42.52268.75()()()2153210325533150210Q x n x x n x n =---+=-++--42.50.5x n =+30-<42.50.5x n ≤+4542.50.545n +≥5n ≥17n ≤≤57n ≤≤。

江苏省盐城市盐都区2023-2024学年九年级上学期期末数学试题(含答案)

江苏省盐城市盐都区2023-2024学年九年级上学期期末数学试题(含答案)

2023/2024学年度第一学期期末学业质量检测九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分。

3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程属于一元二次方程的是()A. B. C. D.2.二次函数的顶点坐标是( )A. B. C. D.3.已知的半径为4,点到圆心的距离为4.5,则点与的位置关系是( )A.在圆内B.在圆上C.在圆外D.无法确定4.学校组织才艺表演比赛,前5名获奖.有11位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这11名同学成绩的统计量中只需知道一个量,它是( )A.众数B.方差C.中位数D.平均数5.已知与分别为方程的两根,则的值等于( )A. B.2C.D.6.如图,点、、在上,,则的度数是( )A. B. C. D.7.如图,下列条件中不能判定的是()A.B. C. D.321x x+=210x x +-=30x -=140x x+-=2(2)3y x =+-(2,3)-(2,3)--(2,3)(2,3)-O P O P O P P P 1x 2x 2230x x +-=12x x +2-32-32A B C O 30ACB ︒∠=AOB ∠30︒40︒60︒65︒ACD ABC △∽△AB ADBC CD=ADC ACB ∠=∠ACD B ∠=∠2AC AD AB=⋅8.设,,是抛物线上的三点,,,的大小关系为( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.在比例尺为的扬州旅游地图上,某条道路的长为,则这条道路实际长________.10.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.11.如图,四边形是的内接四边形,的半径为2,,则的长为________.12.如图,在中,中线、相交于点,,则的长为________.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是,则蝴蝶身体的长度为________(结果保留根号)。

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。

12. 若一个数的立方根是它自己的相反数,则这个数是______。

13. 若一个数的绝对值等于它的立方,则这个数是______。

14. 若一个数的绝对值等于它的平方,则这个数是______。

15. 若一个数的平方等于它本身,则这个数是______。

16. 若一个数的立方等于它本身,则这个数是______。

17. 若一个数的平方根是它自己的倒数,则这个数是______。

18. 若一个数的立方根是它自己的相反数,则这个数是______。

19. 若一个数的绝对值等于它的立方,则这个数是______。

20. 若一个数的绝对值等于它的平方,则这个数是______。

辽宁省沈阳市皇姑区2023-2024学年九年级上学期期末数学试题(含解析)

辽宁省沈阳市皇姑区2023-2024学年九年级上学期期末数学试题(含解析)

....A .2B .45.若x =﹣1是方程x 2+x +m =A .﹣1B .06.如图,反比例函数的图象经过A .120mm B .30mmC .75k y x=A .C .9.如图,正方形ABCD 的对角线作ON ⊥OM ,交CD 于点N A .C .2150216x ⨯=2150150216x +=0c <<0a b c -+12.如图,E是正方形ABCD的边BCABCD AD AB,:三、解答题(本题共8小题,共过程)16.计算(1)计算:0(3)2cos30π--︒(1)请在图中画出路灯灯泡出画法);(2)经测量米,度的长.20.数学活动小组欲测量山坡上一棵大树得大树底端C 的仰角为,测得山坡坡角2OB =BF OP 53︒CBM ∠(1)设点的坐标为,求反比例函数的解析式;(2)若,求直线的解析式.22.问题情境数学活动课上,学习小组进行探究活动,老师给出如下问题:在中,,垂足为,且,点是边上一动点(点不与点连接,过点作交线段于点.各小组在探究过程中提出了以下问题:(1)“智慧小组”提出问题:M (),m n 92AN =MN ABC V CD AB ⊥D AD BD >E AC E DE C CF DE ⊥AD F四边形是正方形,是射线上的动点,点在线段的延长线上,且,连接,将线段绕点顺时针旋转得到,连接,设,四边形的面积为(可等于0).(1)如图①,当点由点运动到点过程中,发现是关于的二次函数,并绘制成如图②所示的图象,抛物线经过原点且顶点为,请根据图象信息,回答下列问题:①正方形的边长为___________(直接填空);②求关于的函数关系式;(2)如图③,当点在线段的延长线上运动时,求关于的函数关系式;(3)若在射线上从下至上依次存在不同位置的两个点,对应的四边形的面积与四边形的面积相等,当时,求四边形的面积.参考答案与解析1.B 【分析】根据左视图是从左边得到的图形进行解答即可.【详解】从左边看,为一个长方形,中间有两条横线,如下图所示:,故选B .【点睛】本题考查了三视图的知识,左视图是从左边看到的视图,要注意长方形被横向分成ABCD E AB F DA AF AE =ED ED E 90︒EG EF BF BG 、、AE x =EFBG y x y ,E A B y x ()24,ABCD y x E AB y x AB 12E E ,1E FBG 2E FBG 122BE BE -=1E FBG【详解】∴,DF AD =∵,,,,,,()4,2A -2AE ∴=4OE =AE CF ∥ AOE COF ∴∽△△C AE OE O CF OF OA ∴==42由折叠与对应易知:∵∴,即又∵x=时,可获得利润最大A A '90EAO AEO ∠+∠=AEO AGD ∠=∠ADG FHE ∠=∠=当∠MDE=90°时,如图2,∴,∵∠DBC=∠C=∠E ,∠BMF=∠∴∠BFM=∠MDE=90°,【点睛】本题考查了勾股定理、直角三角形的性质、折叠的性质、三角形的内角和定理以及155544BM =-=(2)∵∴,∴,∴,MO OE AB OE ⊥⊥AB OP ∥POF ABF V V ∽13AB BF BF OP OF BF OB ===+由(1)知;,,,DCE FBC △∽△∴BF CF CD DE=BF CF = 2CD DE ∴==此时,,,,,,EF CD ∥3BD = 4CD =CD AB ⊥225BC BD CD ∴=+=90B BCD ACD ∠=︒-∠=∠ BDC ∠,,,,,,CF DE ⊥ CD AB ⊥90CDG GDF DFG ∴∠=︒-∠=∠EFG DFG ∴∠=∠90DGF EGF ∠=︒=∠ GF GF =,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=90DEA EDA ∠+∠= EDA GEH ∴∠=∠EG ED = DAE ∠=,,,,,,设,则,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=︒90DEA EDA ∠+∠=︒ EDA GEH ∴∠=∠EG ED = DAE GHE ∠=∠=()AAS DAE GEH ∴V V ≌1AE m =14BE m =-122BE BE -= 22BE m ∴=-设,则,,,,在中,令得:在中,令得:1AE n =14BE n =-122BE BE -= 22BE n ∴=-224(2)6AE AB BE n n ∴=+=+-=-24(04)y x x x =-+≤≤x n =y 四边形24(4)y x x x =->6x n =-y 四边形。

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。

7. 下列选项中,哪个不是等腰三角形的性质?________。

8. 若一个正方形的边长为5cm,则其对角线的长度为________。

9. 下列哪个选项是二次函数的一般形式?________。

10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。

答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。

解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。

根据题目,首项a1 = 2,公差d = 5 2 = 3。

所以,该数列的通项公式为an = 2 + (n 1)×3。

12. 一个正方形的边长为5cm,求其对角线的长度。

解答:正方形的对角线长度可以通过勾股定理来求解。

设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。

2. 一个正方形的边长是8厘米,它的面积是______平方厘米。

3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。

4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。

5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。

6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。

7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。

8. 一个正方形的边长是7厘米,它的周长是______厘米。

9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。

10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。

A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。

A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。

A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。

A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。

A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。

()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。

()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。

()4. 两个平行线上的任意一点,到这两条平行线的距离相等。

()5. 一个数的立方根和它的平方根是同一个数。

()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。

()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。

()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。

()4. 下列函数中,是一次函数的是y = 3x + 2。

()5. 一个数的立方根和它的平方根是同一个数。

()四、简答题(每题2分,共10分)1. 简述一次函数的定义。

2. 简述相似三角形的性质。

3. 简述等差数列的定义。

4. 简述平行线的性质。

5. 简述立方根和平方根的区别。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

重庆市巴蜀中学2023-2024学年九年级上学期期末数学试题(含答案)

重庆市巴蜀中学2023-2024学年九年级上学期期末数学试题(含答案)

数学一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.若数a 的平方等于16,那么数a 可能是()A .2B .-4C .D .2.如图,该几何体由5个大小相同的正方体组成,从正面看到该几何体的形状图是()A .B .C .D .3.下列运算正确的是()A .B .C .D .4.已知一次函数,y 随着x 的增大而减小,且,则在直角坐标系内它的图象大致是()A .B .C .D .5.如图,反比例函数的图象经过矩形OABC 的对角线AC 的中点D ,若矩形OABC 的面积为12,则k 的值为()(5题图)A .2B .3C .4D .66.如图,在中,,若,,则为()4±8±325x x x +=32x x x-=326x x x ⋅=32x x x÷=y kx b =+0kb <()0,0ky k x x=≠>ABC △DE BC ∥:1:2ADE BDE S S =△△3ADE S =△ABC S △(6题图)A .9B .12C .24D .277.平面直角坐标系中,A 、B 、C 三点坐标分别为,,,以这三点为平行四边形的三个顶点,则第四个顶点不可能在()A .第一象限B .第二象限C .第三象限D .第四象限8.如图,过上一点P 的切线与直径AB 的延长线交于点C ,点D 是圆上一点,且,则的度数为()(8题图)A .32°B .33°C .34°D .35°9.菱形ABCD ,,E ,F 分别是CB ,CD 上两点,连接AE ,AF ,EF ,且,如果,则下列说法错误的是()(9题图)A .B .C .D .10.对于以下式子:,,,,下列说法正确的有()(1)如果,则无论y 取何常数,A ,B ,C ,D 调整顺序后可组成一列数,这列数后项减去前项的差均相等;(2)代数式一定是非负数;(3)如果A 为第1项,B 为第2项,C 为第3项,第1项与第2项的和减去第3项的结果为第4项,第2项()0,0()0,4-()3,3-O e 29BDP ∠=︒C∠60B ∠=︒60EAF ∠=︒BAE α∠=CEF α∠=60FAD α∠=︒-60EFC α∠=︒-90AFD α∠=︒-A x y =+B x y =-2C x y =-D xy =0x =222A B C D ⋅--与第3项的和减去第4项的结果为第5项,……,依此类推,则第2024项为.A .0个B .1个C .2个D .3个二、填空题(本大题共8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11______.12.一个正多边形的内角和是1080°,则这个正多边形有______条边.13.已知当时,整式的值等于10,则当时,则的值为______.14.某次车展活动设计了一种有奖竞猜游戏,游戏规则如下:在5个相同商标牌中,有3个商标牌的背面贴有一个笑脸,其余2张商标牌的背面贴一张哭脸,每个人每次翻两张牌,只有两张都是笑脸才得奖,则观众每次获奖的概率是______.15.如图,已知,,,B 、D 、E 在同一直线上,则的度数为______.(15题图)16.如图,扇形AOB ,点O 为圆心,半径OB 长为2,,再以点B 为圆心,OB 为半径作弧,交弧AB 于点C ,则阴影部分的面积是______.(16题图)17.若整数a 使关于x 的不等式组无解,且使关于y 的分式方程有非负整数解,则满足条件的a 的值之和为______.18.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定等于M 的前两位数所组成的数字与后两位数所组成的数字之和,等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果,那么M 各数位上的数字之和为3032x y +0122⎛⎫--= ⎪⎝⎭2x =35bx cx +-2x =-37bx cx ++AB AC =AD AE =52BAC DAE ∠=∠=︒BEC ∠90AOB ∠=︒232x a x a ->⎧⎨-<-⎩5355ay y y -=---()F M ()G M ()60F M =______;有一个四位正整数(,,,且为整数)是一个“共进退数”,且是一个平方数,是一个整数,则满足条件的数N 是______.三.解答题(本大题共8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(本小题满分8分)计算:(1)(2)20.(本小题满分10分)如图:正方形ABCD 中,直线经过点D ,与AB 交于点E ,(1)用直尺和圆规作图:过点C 作DE 的垂线,垂足为G ,交AD 于点F ,(请保留作图痕迹,不要求写作图过程)(2)同学们作图完成后,通过测量发现,并且推理论证了该结论,请你根据他们的推理论证过程完成以下证明:如图:已知正方形ABCD 中,DE 、CF 分别是直线,直线被一组对边截得的线段,当时,求证:.证明:∵正方形ABCD ,∴,∴,∴,∵,∴,∴ ② ,∴,在和中,1101100010N x y z =+++08x ≤≤09y ≤≤08z ≤≤()F N ()7G N ()()()212141a a a a -+--211121xx x x ⎛⎫-÷ ⎪+++⎝⎭1l 2l DE CF =1l 2l DE CF ⊥DE CF =AD DC =90EAD CDF ∠=∠=︒90+∠=︒AED ①DE CF ⊥90FGD ∠=︒AED DFG ∠=∠DAE △CDF △,∴,∴.同学们进一步研究发现,一条直线被正方形的一组对边所截得的线段与另一条直线被正方形的另一组对边所截得的线段垂直时均具备此特征,请你依据题目中的相关描述,完成下列命题:两条直线分别被正方形的一组对边所截,若所截得的线段④.21.(本小题满分10分)为了激发同学们对古诗词学习的兴趣,2023年9月我市某中学开展了“课外古诗词赏析比赛”.为了解学生课外古诗词的学习情况,现从该校七、八年级中各随机抽取10名学生的比赛成绩(成绩为百分制,学生得分均为整数且用x 表示,)进行整理、描述和分析,并将其共分成四组:A :,B :,C :,D :)下面给出了部分信息:七年级10名学生的比赛成绩是:84,85,86,88,89,95,96,99,99,99.八年级10名学生的比赛成绩在C 组中的数据是:90,94,94.七、八年级抽取的学生比赛成绩统计表年级七年级八年级平均数9292中位数92b 众数c100根据以上信息,解答下列问题:(1)______,______,______;(2)根据以上数据,你认为该校七、八年级中哪个年级学生古诗词掌握得较好?请说明理由(一条理由即可);(3)该校七年级有1420名学生、八年级有1300名学生参加了此次“课外古诗词赏析比赛”,请估计参加此次比赛成绩不低于90分的学生人数是多少?22.列方程解应用题(本小题满分10分)中国最重要的传统节日之一春节,除了有热烈的庆祝活动和丰盛的美食外,长辈发压岁钱给晚辈表达美好的祝福也是春节习俗的重要组成部分.为迎接2024年龙年春节的到来,某工厂计划安排甲车间生产16000个龙年布艺红包袋.根据现有设备和工艺,甲车间每天可生产360个布艺红包袋,甲车间单独先工作4天后,工厂安排乙车间加入一起赶工,且乙车间每天可生产680个布艺红包袋,EAD CDF AED DFG⎧∠=∠⎪⎨⎪∠=∠⎩③DAE CDF △≌△DE CF =85x <8590x ≤<9095x ≤<95100x ≤≤a =b =c =(1)从开始加工到完成这批布艺红包袋一共需要多少天?(2)由于市场需求增大,甲车间按原生产效率单独生产4天后,工厂改进了两个车间的生产工艺,并将剩下的生产任务平均分给了甲、乙两车间.改进后甲、乙两车间每天生产的布艺红包袋数量之比为,且改进工艺后两个车间完成剩下生产任务的天数之和为10天,问改进工艺后甲车间每天生产多少个布艺红包袋?23.(本小题满分10分)如图,平行四边形ABCD 中,,,连接AC ,,动点P 以每秒1个单位的速度从点C 出发沿折线运动,设点P 运动时间为x 秒,的面积为,(1)请直接写出关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)的函数图象如图所示,当时请直接写出x 的取值范围.(结果保留一位小数,误差小于0.2)24.(本小题满分10分)今年10月“愉悦创造营”的同学们积极参加劳动实践,在校园“耕读园”里播种了近百粒萝卜种子.某周日下午返校时涵涵和静静约好一起去“耕读园”看看萝卜的生长情况.如图,已知“耕读园”在点A 处,涵涵家位于点A 正南方一条东西走向的街道BD 上,且在耕读园西南方向800米的C 处;静静家位于点D 正北方米且位于“耕读园”南偏西60°方向上的点E 处,图中点A 、B 、C 、D 、E 在同一平面内,(1)求静静家离耕读园的距离是多少?(结果保留根号)7:133AB =5BC =90BAC ∠=︒C A D →→ABP △1y 1y 24y x=12y y ≥(2)涵涵周日下午5:40出门,先以80米/分钟的速度从C 出发,往正西方向走到点D 处后再向正北方向到静静家楼下两人碰面,然后两人以此速度一起前往“耕读园”,请问她们能在5:55前到达耕读园吗?(参考数据:,结果精确到十分位)25.(本小题满分10分)如图1:平面直角坐标系中,抛物线与x 轴交于点和点B ,与y轴交于点C ,点是抛物线上一点,图1图2 图3(1)求抛物线表达式;(2)如图2:点是y 轴上一点,连接AD ,点P 是直线AD 上方抛物线上一个动点,过点P 作轴交直线AD 于点E ,在射线ED 上取一点F ,使得,求周长的最大值及此时点P 的坐标.(3)如图3:将原抛物线沿射线AD 方向平移4个单位长度,平移后抛物线的对称轴与x 轴交于点N ,射线AD 上有一点G ,连接GN ,过点G 作GN 的垂线与抛物线交于点M ,连接MN ,若,请直接写出点M 的坐标.26.(本小题10分)已知,中,,,交BC 于点D ,.图1 图2 图3(1)如图1,将BD 绕点B 逆时针旋转得线段BE ,且点E 在DA 的延长线上,求BE 的长.(2)如图2,在(1)的条件下,连接CE ,F 为AB 上一点,且满足:,作于点G ,求证:.(3)如图3,在(1)的条件下,P 、Q 分别为线段BA 、EB 上的两个动点,且满足,当1.414≈ 2.449≈292y ax bx =++()A -()()0,3D PE y ∥PE PF =PEF △292y ax bx =++1y 1y 30GMN ∠=︒ABC △AB AC =120BAC ∠=︒AD AB ⊥6AD =BEF AFG ∠=∠FG CE ⊥CG =BP EQ =PD QD+最小时,M 为平面内一动点,将沿EM 翻折得,请直接写出的最大值.BEM △B EM '△PB '参考答案一、选择题(每题4分,共48分)1-5:CADAB6-10:DAADB二、填空题(每题4分,共32分)19.计算:(1)解:原式.(2)解:原式.20.①②③④互相垂直,那么这两条线段相等21.(1)40,94,99;(2)解:八年级学生的古诗词掌握得较好.从平均数看,七年级平均分92分=八年级平均分92分,从中位数看,七年级92分<八年级中位数94分,所以八年级学生的古诗词掌握得较好.(3)(人)答:估计参加本次比赛成绩不低于90分的学生约为1620人.22.解:(1)设从开始加工到完成这批布艺红包袋一共需要x 天.答:从开始加工到完成这批布艺红包袋.一共需要18天.()()()212141a a a a -+--224141a a a a =--+=-211121xx x x ⎛⎫-÷ ⎪+++⎝⎭2(1)11x x x x x+=⨯=++ADE ∠90ADE DFG ∠+∠=︒AD CD =571420130016201010⨯+⨯=()()3603603204160003604x ++-=-⨯⎡⎤⎣⎦18x =(2)设甲车间每天生产7m 个,乙车间每天生产13m 个布艺红包袋.(个)经检验:是原分式方程的解,且符合题意.∴改进后甲每天产量:(个).答:改进工艺后,甲车间每天生产1120个布艺红包袋.23.(1)(2)当时,随x 增大而减小,当时,随x 增大而增大.(3)或(结果保留一位小数,误差不超过0.2).24.解:(1)过E 作于H ,,,∵中,,,∴,∴,∴,∴∵,EDBH 为矩形.∴,,∵,,,∴(米),答:静静家离耕读园距离为米.(2)∵,,∴∵矩形EDBH ,,∴,16000360472802-⨯=7280728010713m m+=160m =160m =16071120⨯=()()360426244955x x y x x ⎧-+≤<⎪⎪=⎨⎪-<≤⎪⎩04x <<1y 49x <<1y 0.8 3.2x ≤≤ 4.79.0x ≤≤EH AB ⊥90EHA BHE ∠==︒800AC =ABC △90B ∠=︒45BAC ∠=︒9045ACB BAC BAC ∠=︒-∠=︒=∠BA BC =222AC AB BC =+AB BC ==90D B BHE ∠=∠=∠=︒ED =HE BD =ED HB ==90AHE ∠=︒60EAH ∠=︒AH =cos AH AE EAH ===∠90AHE ∠=︒60EAH ∠=︒AE =sin EH AE EAH =⋅∠==BD EH ==CD BD BC =-=-∴总用时:(分),∵5:50-5:40=15(分),∴,∴她们能在5:55前到达耕读园.25.解:(1),代入,,∴.(2)过P 作于点H ,则,设,,,∴,,∴,∴,∴PE最大时,最大,直线AD :,,,,开口向下,对称轴直线,,∴时,,.14.4814.580CD DE EA ++=≈≈14.515<()A -()927029362a a ⎧-+=⎪⎪⎨⎪-+=⎪⎩12a b ⎧=-⎪⎨⎪=⎩21922y x =-+PH EF ⊥90PHE ∠=︒219,22P p p ⎛⎫-+ ⎪⎝⎭∠=∠PHE DOA EPH DAO ∠=∠EPH DAO △∽△PH AO PE AD ==PH PE =()(22PEF C PE PH PE =+=+△PEF C △3y x =+3E p p ⎛⎫+ ⎪ ⎪⎝⎭212526PE p ⎛=-++ ⎝102-<x =0p -<<x =PEF C △356P ⎛⎫ ⎪ ⎪⎝⎭(3),,.26.解:(1).(2)延长EF 至M ,使得,连接BM 、CM 、CF ,,∴,∴,,∴,,,∴,,∴,,,∴,∴,∴,∴,,∴(3)1223M ⎫⎪⎪⎭)2M ()316M --12BE =EM CM =BEF AFG ∠=∠AFE EBF BEF EFG AFG ∠=∠+∠=∠+∠30EBF EFG ∠=∠=︒FG CE ⊥60FEG ∠=︒EM CM BEM DEC EB EC =⎧⎪∠=∠⎨⎪=⎩()SAS BEM DEC △≌△BM CD =120EAM EDC ∠=∠=︒180EBM AEB ∠+∠=︒BM AE ∥CD AD AE ==BM AE =()ASA AEF BMF △≌△FE FM =CF EM ⊥30FCG ∠=︒CG =()max 12PB '=+-。

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣53.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m=2+1.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、B5、A6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x (x ﹣1)(x ﹣2).3、x 1≥-且x 0≠4、10.5、x ≤1.6、三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)4.95、(1)30;(2)①补图见解析;②120;③70人.6、(1)35元/盒;(2)20%.。

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。

()2. 一个正方形的对角线互相垂直且平分。

()3. 一个圆的半径是直径的一半。

()4. 一个长方体的对角线互相垂直。

()5. 一个等腰三角形的底角等于顶角。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。

2. 一个正方形的对角线长是边长的______倍。

3. 一个圆的周长是直径的______倍。

4. 一个长方体的体积是长、宽、高的______。

5. 一个等腰三角形的底边长是腰长的______倍。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 简述正方形的性质。

3. 简述圆的性质。

4. 简述长方体的性质。

5. 简述等腰三角形的性质。

五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。

2. 一个正方形的边长为8cm,求其对角线长。

3. 一个圆的直径为14cm,求其周长。

4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。

5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。

2024年人教版初三数学上册期末考试卷(附答案)

2024年人教版初三数学上册期末考试卷(附答案)

2024年人教版初三数学上册期末考试卷一、选择题(每题1分,共5分)1. 已知一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是()cm。

A. 18B. 20C. 22D. 242. 下列哪个数不是有理数?()A. 3/4B. 0C. √2D. 2/33. 一个正方形的周长是36cm,那么它的面积是()cm²。

A. 36B. 81C. 144D. 1964. 如果一个圆的半径是4cm,那么它的面积是()cm²。

A. 16πB. 32πC. 64πD. 128π5. 下列哪个图形是中心对称图形?()A. 矩形B. 梯形C. 圆D. 三角形二、判断题(每题1分,共5分)1. 一个数的平方根是唯一的。

()2. 两个全等的三角形一定是相似的。

()3. 一个等腰三角形的底角一定是锐角。

()4. 一个圆的周长等于它的直径的π倍。

()5. 一个平行四边形的对角线互相垂直。

()三、填空题(每题1分,共5分)1. 一个数的立方根是它自己的数叫做______数。

2. 一个等腰三角形的两个底角是______角。

3. 一个圆的半径是5cm,那么它的周长是______cm。

4. 一个正方形的边长是6cm,那么它的周长是______cm。

5. 一个等腰梯形的两个底角是______角。

四、简答题(每题2分,共10分)1. 简述有理数的概念。

2. 简述等腰三角形的性质。

3. 简述圆的性质。

4. 简述平行四边形的性质。

5. 简述等腰梯形的性质。

五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为10cm,腰长为8cm,求这个三角形的周长。

2. 已知一个正方形的周长为36cm,求它的面积。

3. 已知一个圆的半径为5cm,求它的面积。

4. 已知一个平行四边形的底边长为8cm,高为6cm,求它的面积。

5. 已知一个等腰梯形的上底长为8cm,下底长为12cm,高为5cm,求它的面积。

六、分析题(每题5分,共10分)1. 分析有理数和无理数的区别。

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)

2024年最新人教版初三数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 下列哪个图形是正方体?A. 长方体B. 正方体C. 球体D. 圆柱体4. 下列哪个命题是假命题?A. 对顶角相等B. 两直线平行,同旁内角相等C. 两直线平行,内错角相等D. 两直线平行,同旁内角互补5. 下列哪个数是无理数?A. 1/2B. √9C. πD. 0.333二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 任何两个实数的积都是实数。

()3. 0是正数。

()4. 1是质数。

()5. 2是偶数。

()三、填空题5道(每题1分,共5分)1. 两个角的和为180°,这两个角互为__________。

2. 两个角的和为90°,这两个角互为__________。

3. 两个角的和为360°,这两个角互为__________。

4. 两个角的和为270°,这两个角互为__________。

5. 两个角的和为__________°,这两个角互为补角。

四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。

2. 请简要说明无理数的定义。

3. 请简要说明实数的定义。

4. 请简要说明函数的定义。

5. 请简要说明奇函数的定义。

五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:(3/4 + 1/3) ÷ (5/6 1/2)2. 计算下列表达式的值:(2/3)^2 × (3/4)^33. 计算下列表达式的值:√(27) + √(48) √(75)4. 计算下列表达式的值:log2(64) + log2(16) log2(8)5. 计算下列表达式的值:sin(45°) + cos(45°) tan(45°)六、分析题:2道(每题5分,共10分)1. 请分析并解释勾股定理及其应用。

2022—2023年人教版九年级数学下册期末考试及参考答案

2022—2023年人教版九年级数学下册期末考试及参考答案

2022—2023年人教版九年级数学下册期末考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2的相反数是( )A .12-B .12C .2D .2-2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 4.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .155.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+26.若3x >﹣3y ,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<7.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33 9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .33C .6D .6310.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根为__________.2.分解因式:32x 2x x -+=_________.3.函数2y x =-x 的取值范围是__________.4.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为________.5.如图所示的网格由边长为1个单位长度的小正方形组成,点A 、B 、C 、在直角坐标系中的坐标分别为()3,6,()3,3-,()7,2-,则ABC 内心的坐标为__________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x =+--2.若二次函数y=ax 2+bx+c 的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.3.如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=若存在,求点Q 的坐标;若不存在,请说明理由.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.在四张背面完全相同的纸牌A 、B 、C 、D ,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A 、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、C5、D6、A7、A8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、32、()2x x 1-.3、2x ≥4、5、(2,3)6、25 三、解答题(本大题共6小题,共72分)1、x=3.2、231211y x x =-+-3、(1)抛物线的解析式21722y x x =-++;(2)PD PA +;(3)点Q 的坐标:1(0,2Q 、2(0,2Q .4、(1)略;(2)略.5、(1)详见解析;(2)14.6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。

人教版初三上册《数学》期末考试卷及答案【可打印】

人教版初三上册《数学》期末考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。

A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。

A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。

A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。

A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。

A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。

()2. 两条平行线上的任意两个点之间的距离相等。

()3. 当两个数的和为0时,它们互为相反数。

()4. 函数y=2x+1的图像是一条直线。

()5. 正比例函数的图像经过原点。

()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。

2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。

3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。

4. 若一组数据的平均数为5,则这组数据的总和是______。

5. 若两个等腰三角形的底边长度相等,则它们一定全等。

()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。

2. 简述等腰三角形的性质。

3. 简述函数图像平移的规律。

4. 简述求解二元一次方程组的方法。

5. 简述众数、中位数、平均数的定义及区别。

五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。

若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新九年级数学期末试题一.选择题(共6小题,每小题三分,共18分)2.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的一个根,则这个三角形3.一个正方体切去拐角后得到形状如图的几何体,其俯视图是( )...4.(2014•黔东南州)如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列4个结论:①abc <0;②b<a+c ;③4a+2b+c >0;④b 2﹣4ac >0 其中正确结论的有( ) A .①②③ B . ①②④ C .①③④ D .②③④5.如图,已知AB 、CD 分别表示两幢相距30米的大楼,小明在大楼底部点B 处观察,当仰角增大到30度时,恰好能通过大楼CD 的玻璃幕墙看到大楼AB 的顶部点A 的像,那么大楼AB 的高度为( )A .B . 20米C . 30D . 60米6.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N .下列结论: ①△APE ≌△AME ; ②PM+PN=AC ;③PE 2+PF 2=PO 2; ④△POF ∽△BNF ; ⑤当△PMN ∽△AMP 时,点P 是AB 的中点. 其中正确的结论有( )A . 5个B . 4个C . 3个D . 2个二.填空题(共8小题,每小题3分,共24分)7.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是_________.8.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_________.9.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=3,则k的值是_________.10.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是_________.11.如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.12.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为_________.13.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是_________.14、抛物线y=x2+2x+a-1与x轴只有两个交点,则a的值为三.解答题(共10小题)15.(6分)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.16.(4分)计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°17.(7分)有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D 表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.18.(7分)如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.19.(8分)某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)20.(8分)某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)21.(9分)如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A 开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?22.(9分)我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为_________元,这批蘑菇的销售量是_________千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?23.(10分)操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是_________;结论2:DM、MN的位置关系是_________;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.24.(10分)如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.答题卷一、选择题:(每题3分,共18分)二、填空题:(每小题3分,共24分)7、8、9、10、11、12、13、14、三、解答题15、(6分)16、(4分)17、(7分)19、(8分)20、(8分)22、(9分)23.(10分)24、(10分)答案一、选择题:(每题3分,共18分)二、填空题:(每小题3分,共24分)7、8、﹣1<x<3 9、3 10、11、312、(﹣1,0)或(5,﹣2)13、3 14、1或2三、解答题15、(6分)解答:解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,MN处于视点的盲区.16、(4分)解:原式=1×1+9﹣2+=8+2.17、(7分)解:(1)树状图:(2)由图可知:只有卡片B、D才是中心对称图形.所有可能的结果有16种,其中满足摸出的两张卡片图形都是中心对称图形(记为事件A)有4种,即:(B,B)(B,D)(D,B)(D,D).∴P(A)=.∴∴∴x+619、(8分)解:(1)过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),∴BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m;(2)该车大灯的设计不能满足最小安全距离的要求.理由如下:∵以60 km/h的速度驾驶,∴速度还可以化为:m/s,最小安全距离为:×0.2+=8(m),大灯能照到的最远距离是BD=7m,∴该车大灯的设计不能满足最小安全距离的要求.)由题意,得,,x+6=,t=(秒)=,t=(秒)秒或秒时,BAO==,•﹣AP t tt+4t=的面积为个平方单位为(10+0.1x)元;因为均每天有10千克的蘑菇损坏,所以x天后这批蘑菇的销售量是(6000﹣10x)千克;故答案为:(10+0.1x),(6000﹣10x).(2)由题意得:(10+0.1x)(6000﹣10x)=100000,整理得:x2﹣500x+40000=0,解方程得:x1=100,x2=400(不合题意,舍去)所以胡经理将这批蘑菇存放100天后,一次性出售所得的销售总金额为100000元;((3)设利润为w,由题意得w=(10+0.1x)(6000﹣10x)﹣240x﹣6000×10,=﹣x2+260x=﹣(x﹣130)2+16900,∵a=﹣1<0,∴抛物线开口方向向下,∴x=110时,w最大=16500,∴存放110天后出售这批香菇可获得最大利润16500元.MN= DM=24、解:(1)∵抛物线的解析式为y=ax2+bx+c,由题意知点A(0,﹣12),所以c=﹣12,又18a+c=0,,∵AB∥OC,且AB=6cm,∴抛物线的对称轴是,∴b=﹣4,所以抛物线的解析式为;(2)①,(0<t<6)②当t=3时,S取最大值为9(cm2),这时点P的坐标(3,﹣12),点Q坐标(6,﹣6)若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18),(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.综上所述,点R坐标为(3,﹣18).。

相关文档
最新文档