理论力学期末复习题
理论力学复习题(含答案)
《理论力学》复习题A一、填空题1、二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是 二力平衡是作用在一个物体上,作用效果能抵消、作用力与反作用力是作用在两个物体上,作用效果不能抵消。
2、平面汇交力系平衡的几何条件是顺次将表示各个力Fi 的有向线段首尾相接,可以构成闭合n 边形;平衡的解析条件是 ∑Fxi=0;且∑Fyi=o 。
3、静滑动摩擦系数与摩擦角之间的关系为 tanφ=fs 。
4、点的切向加速度与其速度的 方向 变化率无关,而点的法向加速度与其速度 大小 的变化率无关。
5、点在运动过程中,满足0,0=≠n a a 的条件,则点作 牵连 运动。
6、动点相对于的 定系 运动称为动点的绝对运动;动点相对于 动系 的运动称为动点的相对运动;而 动系 相对于 定系 的运动称为牵连运动。
7、图示机构中,轮A (只滚不滑)作 平面 运动;杆DE 作 定轴转动 运动。
题7图 题8图8、图示均质圆盘,质量为m ,半径为R ,则其对O 轴的动量矩为 。
9、在惯性参考系中,不论初始条件如何变化,只要质点不受力的作用,则该质点应保持 静止或等速直线 运动状态。
10. 任意质点系(包括刚体)的动量可以用 其质心 的动量来表示。
二、选择题1. 在下述公理、规则、原理和定律中,对所有物体都完全适用的有( D )。
A.二力平衡公理B.力的平行四边形规则C.加减平衡力系原理D.力的可传性2. 分析图中画出的5个共面力偶,与图(a )所示的力偶等效的力偶是(B )。
A. 图(b ) B. 图(c ) C.图(d ) D. 图(e )题2图3. 平面力系向点1简化时,主矢0='RF ,主矩01≠M ,如将该力系向另一点2简化,则( D )。
A. 12,0M M F R≠≠' B. 12,0M M F R ≠='C. 12,0M M F R=≠' D. 12,0M M F R ==' 4. 将大小为100N 的力F 沿x 、y 方向分解,若F 在x 轴上的投影为86.6 N ,而沿x 方向的分力的大小为115.47 N ,则F 在y 轴上的投影为( B )。
理论力学期末复习题
1、如图所示结构,求支座反力。
2、组合梁AC和CE用铰链C相连,支承和荷载情况如图所示,已知跨度l=8m,F=5kN,均布荷载q=2.5kN/m,力偶矩M=5kNm。
求各支座的约束反力。
3、如图所示结构,求支座反力。
4、如图所示结构,q=10kN/m,求支座反力1、如图所示机构,杆OC与轮Ⅰ在轮心O处铰接,并以匀速v水平向左平移,起始时点O与点A相距l,AB杆可绕A轴定轴转动,与轮Ⅰ在D点接触,接触处有足够的摩擦使之不打滑,轮Ⅰ的半径为r。
求:θ=30°时,轮Ⅰ的角速度ω1和AB杆的角速度ω。
2、图示半径R=3r的凸轮以匀速v沿水平面向右移动,其中r为顶杆滚轮半径,顶杆O1O2沿铅直导轨滑动,假设滚轮与凸轮接触处无相对滑动,求当θ=30°,且B,O1,O2在同一直线上时,滚轮的角速度以及轮缘边上B点的速度。
3、图示机构,曲柄OA长为r,绕O轴转动,连杆AB=3r 始终与角点D保持接触,在图示位置时,曲柄的角速度为ω0,角加速度为α0,方向如图,求这时AB杆的:(1)角速度ωAB;(2)B点的速度v B。
)4、图示机构中,曲柄OA以匀角速度ω0绕O轴转动,通过齿条AB带动齿轮O1。
已知OA=R,齿轮O1半径r=0.5R,求当θ=60°时,齿条AB的角速度和齿轮O1的角速度。
1、如图所示,半径为r的均质圆盘,在半径为R的圆弧面上只滚不滑。
初瞬时θ=θ0,圆盘由静止开始纯滚动。
求均质圆盘脱离圆弧之前:(1)圆盘的角加速度(表示为θ的函数);(2)圆弧面作用于圆轮上的法向反力和摩擦力(表示为θ的函数)。
2、均质圆盘半径为r,质量为m,在初始角度θ0时静止释放后,在半径为R的圆弧轨道上做纯滚动。
求圆盘在任意位置θ时:(1)圆盘滚动的角加速度;(2)圆弧轨道的法向反力和摩擦力。
3、如图所示,均质杆AB长度为l,放在铅锤平面内,在角φ0时杆由静止状态倒下,墙与地面均光滑。
求(1)杆在脱离墙前之前的任意位置时的角速度和角加速度;(2)杆脱离墙面时与水平面的夹角。
理论力学期末复习题全套
理论力学期末复习题一一、单选题1、F= 100N 方向如图示,若将F 沿图示x ,y 方向分解,则x 向分力大小为( )。
A) 86.6 N ; B) 70.7 N ; C) 136.6 N ; D) 25.9 N 。
2、某平面任意力系F1 =4KN ,F2=3 KN ,如图所示,若向A 点简化,则得到( )A .F ’=3 KN ,M=0.2KNmB .F ’=4KN ,M=0.3KNmC .F ’=5 KN ,M=0.2KNmD .F ’=6 KN ,M=0.3 KNm第1题图 第2题图3、实验测定摩擦系数的方法,把物体放在斜面上,逐渐从零起增大斜面的倾角φ直到物体刚开始下滑为止,这时的φ就是对应的摩擦角φf ,求得摩擦系数为( )4、直角杆自重不计,其上作用一力偶矩为M 的力偶,图(a )与图(b )相比,B 点约束反力的关系为( )。
A 、大于B 、小于C 、相等D 、不能确定图(a ) 图(b )5、圆轮绕固定轴O 转动,某瞬时轮缘上一点的速度为v ,加速度为a ,如图所示。
试问哪些情况是不可能的?( )A 、(a)、(b)B 、(b)、(c)C 、(c)、(d)D 、(a)、(d)6、杆AB 的两端可分别沿水平、铅直滑道运动,已知B 端的速度为vB ,则图示瞬时B 点相对于A 点的速度为____________________。
A) B v sinθ; B) B v cosθ; C) B v ⁄ sinθ; D) B v ⁄ cosθ.第6题图 第7题图二、填空题7、图示物块重G=100N ,用水平力P 将它压在铅垂墙上,P=400N ,物块与墙间静摩擦系数fs=0.3,物块与墙间的摩擦力为F= 。
8、鼓轮半径R=0.5m ,物体的运动方程为x=52t (t 以s 计,x 以m 计),则鼓轮的角速度ω= ,角加速度α= 。
第8题图 第9题图 9、平面图形上任意两点的加速度A a 、B a 与A 、B 连线垂直,且A a ≠ B a ,则该瞬时,平面图形的角速度ω= 和角加速度α应为 。
理论力学期末复习题
1、圆柱O 重G=1000N 放在斜面上用撑架支承如图;不计架重,求铰链A 、B 、C 处反力?解:(1) 研究圆柱,受力分析,画受力图:由力三角形得:(2) 研究AB 杆,受力分析(注意BC 为二力杆),画受力图:(3) 列平衡方程(4) 解方程组:2、求下图所示桁架中杆HI 、EG 、AC 的内力?FHC A E答:F F F F HI AC EG -===003、重物悬挂如图,已知G=1.8kN ,其他重量不计;求铰链A 的约束反力和杆BC 所受的力?解:(1) 研究整体,受力分析(BC 是二力杆),画受力图:(2)列平衡方程:(3)解方程组:X A =2.4KN; Y A =1.2KN; S=0,848KN4、三铰门式刚架受集中荷载F P 作用,不计架重,求支座A 、B 的约束力。
答:F A =F B =0。
707F P5、求梁的支座约束力,长度单位为m 。
解:∑M A(F)=0 F B×4-2×Sin450×6-1.5=O∑M B(F)=0 -F AY×4-2×Sin450×2-1.5=O∑F X=0 F AX+2×coS450=O解得: F AX=-1.41KN,F AY=-1.1KN,F B=2.50KN6、求刚架的支座约束力。
解得:F AX=0 F AY=17KN F B=33KN。
M7、四连杆机构OABO1在图示位置平衡,已知OA=40㎝,O1B=60㎝,作用在曲柄OA上的力偶矩大小为M1=1N.m,求力偶矩M2的大小及连杆AB所受的力(各杆的重量不计)?解:(1)先取0A杆为研究对象,∑M=0 F AB×OAsin300-M1=0解得:F AB=5N(2)取O1B杆研究。
F′AB= F AB=5N∑M=0 M2- F′AB×O1B=0解得:M2= F′AB×O1B=3N.m飞轮加速转动时,其轮缘上一点M的运动规律为s=0.02 t3(单位为m、s),飞轮的半径R=0.4m。
《理论力学》期末考试试题及答案
理论力学部分第一章静力学基础一、是非题(每题3分,30分)1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()9. 力偶只能使刚体发生转动,不能使刚体移动。
()10.固定铰链的约束反力是一个力和一个力偶。
()二、选择题(每题4分,24分)1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
6.关于约束的说法正确的是 。
① 柔体约束,沿柔体轴线背离物体。
② 光滑接触面约束,约束反力沿接触面公法线,指向物体。
理论力学期末复习题
理论力学期末复习题一、选择题(每题3分,共30分)1. 质点系的动量守恒条件是:A. 外力为零B. 外力的矢量和为零C. 外力的矢量和为常数D. 外力的矢量和与质点系的动量变化率相等2. 在平面运动中,质点的加速度可以分解为:A. 切向加速度和法向加速度B. 切向加速度和径向加速度C. 切向加速度和角加速度D. 径向加速度和角加速度3. 牛顿第二定律的数学表达式是:A. \( F = ma \)B. \( F = m\frac{dv}{dt} \)C. \( F = m\frac{d^2x}{dt^2} \)D. \( F = m\frac{d^2r}{dt^2} \)4. 刚体的转动惯量与哪些因素有关?A. 质量分布B. 质量大小C. 形状D. 所有上述因素5. 角动量守恒的条件是:A. 外力矩为零B. 外力矩的矢量和为零C. 外力矩的矢量和为常数D. 外力矩的矢量和与角动量变化率相等6. 弹性体的弹性势能与下列哪项无关?A. 弹性体的形变B. 弹性体的材料C. 弹性体的体积D. 弹性体的温度7. 简谐振动的周期与下列哪项无关?A. 振动系统的固有频率B. 振动系统的振幅C. 振动系统的阻尼D. 振动系统的驱动力8. 达朗贝尔原理的实质是:A. 动量守恒B. 能量守恒C. 动量与力的平衡D. 能量与功的平衡9. 刚体的平动与转动的合成运动是:A. 直线运动B. 曲线运动C. 螺旋运动D. 任意运动10. 根据虚功原理,一个平衡系统在外力作用下:A. 虚功为零B. 虚功不为零C. 虚功的总和为零D. 虚功的总和不为零二、填空题(每题2分,共20分)1. 在牛顿第三定律中,作用力和反作用力大小________,方向________,作用在________物体上。
2. 质点系的角动量守恒的条件是________。
3. 刚体绕固定轴转动时,其角速度与角加速度的关系是________。
4. 一个物体在水平面上做匀速直线运动时,其摩擦力________。
完整版理论力学期末考试试题题库带答案
理论力学期末测试试题1-1、自重为P=100kN的T字形钢架ABD,置于铅垂面内,载荷如下列图.其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m.试求固定端A的约束力.解:取T型刚架为受力对象,画受力图其中耳一;q •次-3(ikN工已二“产看十骂—F£m6<r = 0工弓=0 ^-?-Fcos600 = 0一.一^ A必-W-Fi/十外必60F + F疝g= 0i^ = 3164kN 为二SOQkNMi= - IlSSkNm1-2如下列图,飞机机翼上安装一台发动机,作用在机翼OA上的气动力按梯形分布:解:q i=60kN/m, q2 =40kN/m ,机翼重P i=45kN ,发动机重P2 =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m .求机翼处于平衡状态时,机翼根部固定端.所受的力.幅研究机翼.把梯形教荷分解为一三角形载荷与一轮修救荷,其合力分利为Fja = y(^)- q2) , 9 = 90 kN,F k2= 9 * = 36° kN分别作用在矩赛.点3m与4.5 m处,如下列图,由= 口,F山=01Y = 0, F% - K - P# 1 中k=0SM0(F1 = Q t Mo - 3.6P| — 4.2尸工一M + 3F RI + 4.$F R1 = 0解得For = 0T F Q,=- 3S5 k\, M0 二-1 626 kN * m1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,q=10kN/m , F=50kN , M=6kN.m ,各尺寸如图.求固定端A处及支座C的约束力.6 m 1 i m } I m !M 先研究构架EBD如图(b),由WX= 0, F小-F sin30' = 0E Y = 0.F HJ + F3 - F mfi30 = 02A什⑺=0T F2 T - M + 2F = 0 解得= 25 kN. = 87.3 kN. F/ =-44 kN 再研究AB梁如图(a).由解:XX = 04 -如* 6 sinJO* * F旭一Fn, = 0XV - 0,为-1 6 (xx3tf . F* 二UEM八F) - 0, - 2 * -j * & * fl coeJO -白产皿"0懈得F〞 = 40 kN. F A I= 113 3 kN. M A= 575,S kN - m it愿也可先研究EBD,求得F*之后.再研究整体,求a处反力।这样祈减少平街方程数■但计算鼠并未明髭减少,1-4:如下列图结构, a, M=Fa, F1 F2 F,求:A, D处约束力.以上修为明究时聚.受力如下列图.广%-0 加-:'=. T工… 4・%七.二工9口 : 0 A<P -I %'二昌1'二小l nF吗一:F /=F1-5、平面桁架受力如下列图. ABC为等边三角形,且AD=DB .求杆CD的内力.H 翌体受力如图Q).由工M A(F)=0,方,/\ *F\B"4B - F - 1■心・sinbU- - Q 6蹲得Fw 一§F⑸.反将桁架微升.研究右边局部,如图化)所 \ __________________示,由人汽J^*Wf)= g Fft* ■ DB * sinfiO f+ F.nc , flH - F , £)P - sinGO,= 0 %⑻解樗Ffp = -|F/再研究节点匚,如图(cl由尔工K =①(Ftr- F在加曲,=0 代〞的EV = 0, -(F CF +F C¥)m&S0,- F QJ = Q *3 57ffl解得Fm =一与F t) 866F(压)本剧晟筒单的解法是.菖先断定QE杆为零杆,再觎取&BDF来研兆,只由一个方覆LM a(f> =.,即可健出R* ,读者不妨一试.1-6、如下列图的平面桁架,A端采用钱链约束,B端采用滚动支座约束, 各杆件长度为1m.在节点E和G上分别作用载荷F E=10kN, F G=7 kN.试计算杆1、2和3的内力.解:取圣体.求支庄为束力.工…小口口小0%+品一3%A取= 9kN / = SLN用盘面法,取疗架上边局部,s城■ g一月1 y〔峪3.“ 一/.」二9▽5=.&+鸟/疝16.“ 一鸟二0 E氏=0 F{\H 十巴83600 —.^ = l04kN(aj ^=l.l?kN 但弓।牛iilkNlji】2-1图示空间力系由6根桁架构成.在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角.A EAK= A FBM.等腰三角形EAK , FBM和NDB在顶点A, B和D处均为直角,又EC=CK=FD=DM .假设F=10kN ,求各杆的内力.解节点受力分别如图所开:,对节点八,由工X —0, F1 sin45 - % sin45 = 0+ F sin45' = 0£Y " F3= 0, —F] C3s45 —F± COH45-F cos45 - 0解得Fi = F:= -5kN〔压〕, F3=一7.07 kN〔压〕再对节点B,由SX ~ 0, F$ stn45* - F< sin45, ; 0EV = 0. Fi sin45 - F3 = 0三2 士0, 一居a>s45 - F? crt?45" - F6 co^45' = 0 解得F4 = 5 kN〔拉〕,R=5卜^1〔拉〕,5& =- 10 kN〔压〕2-2杆系由钱链连接, 位于正方形的边和对角线上,如下列图.在节点D沿对角线LD方向作用力F D.在节点C沿CH边铅直向下作用力F.如钱链B, L和H是固定的,杆重不计, 求各杆的内力.求解TY = 0,SZ = 0,求二 0,F| 4M5* + Fj + F. sn45 = 0 厕 4,30 图解得 Fi = F D (1C),F $ =F J =二 Ji F 虱电然后研究节点c ,由SX = 0, - Fj - F*W cut45' - 0v3 £Y = ar -Fj - Fi — sin45 = 0心SZ = 0h - F, - F - F4言=0得 Fj = 7年户口,匕=-/5匹口. Fs M- (F + \2F D )2-3 重为R=980 N,半径为r =100mm 的滚子A 与重为P 2 = 490 N 的板B 由通过定滑轮 C 的柔绳相连.板与斜面的静滑动摩擦因数f s =0.1 o 滚子A 与板B 间的滚阻系数为8C 为光滑的.求各杆的内力. 先研究节点D,由- F)cts?45 + F 口 au45 - 0=0.5mm,斜面倾角a =30o,柔绳与斜面平行,柔绳与滑轮自重不计,钱链 拉动板B 且平行于斜面的力 F 的大小.〔l i 设闻拄口有向下漆动慧等.取国校DFsu 话出—凡-H-3=0EFf =❶ /一 Fcosfl = 0一% /Vine 7- co*?i 算豉圄杜.有向匕浪动越势.虢S ]社“ 三H 』二UJ£ 一%】R l J 'O U _EF F - 0 及-Fai%一.又Mn>« =的&- /J(siii 口 \ — u.凶 81J JI ,13.jp."系怩平衍叶F4五河n 日一)co* 6}工A4 尸I 五m n 8一 3 cow R'\-3/c - 0 1氏-A& =0 工尸j 二.尸M -FCQ博.二.只浪不滑3t.应点 门“用=¥斗型8那么上之£ y K 同理一圆柱.有向上填动趋势时得二二三 K 间柱匀速蛇淳时. f一 R2-4两个均质杆AB 和BC 分别重P i 和P 2 ,其端点A 和C 用球较固定在水平面, 另一端B 由 球镀链相连接,靠在光滑的铅直墙上,墙面与 AC 平行,如下列图.如 AB 与水平线的交角 为45o, / BAC=90.,求A 和C 的支座约束力以及墙上点B 所受的压力.解先研究AB 杆,受力如图(b),由। n 投阅柱.有向下滚动越舜O题4.27-SMjF)三0, 一几,QA = 0 得1 0 再取AB、CD两杆为一体来研究,受力如图(月海茉:由EM AC(F)= 0t(P[ + Pj) <WG45_F N* AB 热in45 —0XX = 0,九十 % = 0工My(F)= 0, Fc - AC - pj • AC = 0 LNZ 〞开工+如一2】一丹=0(F) —0, -(F AT+ FQ • OA - Fc y *- AC= 0工M塞2 K = 0, % + % + Fn = 0解得Fx = y(Pi + Pj)»Fer =.产值=2^P:t町=Pi +yp2>F o= 0,%=-2(P[ + 尸口3-1:如下列图平面机构中,曲柄OA=r,以匀角速度°转动.套筒A沿BC杆滑动.BC=DE ,且BD=CE=l.求图示位置时,杆BD的角速度和角加速度.解:].动点:滑块T 动系:贰广杆绝对运动:国周运动〔.点〕相对运动:直线运动〔£「二)j|iij V V V&加速度4_ 3/十&*)疝13伊_ J5诏r(/+r)耳cos30Q ST?收属/(/ + r)cz w= 1—1=----- 不 ------w BD 3 户3-2 图示钱链四边形机构中, O i A = O2B =100mm ,又QO2 = AB,杆O〔A以等角速度=2rad/s绕轴01转动.杆AB上有一套筒C,此套筒与杆CD相较接.机构的各部件都在同一铅直面内.求当①二60o时杆CD的速度和加速度.〔15分〕解取CD杆上的点C为动点,AB杆为动系,时动点作速度分析和加速度分析,如图S〕、〔b〕所示,图中式中口月=〔八一4 •田二0一2 ir〕/s5 - 0iA • J = 0*4 m/s2 解出杆CD的速度.加速度为G =-UA coep = 0. I mA&3 = since;= 0,3464 m/s2«1aAM1Al1V!4-1:如下列图凸轮机构中,凸轮以匀角速度3绕水平.轴转动,带动直杆AB沿铅直线上、下运动,且O, A, B共线.凸轮上与点A接触的点为A',图示瞬时凸轮轮缘线上' '点A的曲率半径为 A ,点A的法线与OA夹角为e , OA=l.求该瞬时AB的速度及加速度.〔15 分〕绝对运动: 相对运动: 奉连道处:2.速度大小 方向 1, 二、Ja 】iH=「WkmH I丫3,加速度 比=凡."'+ %r 门 大小9炉『『、;"2 方向 / /4-2:如下列图,在外啮合行星齿轮机构中,系杆以匀角速度 定,行星轮半径为r,在大轮上只滚不滑.设 A 和B 是行星轮缘 上的两点,点 A 在O 1O 的延长线上,而点 B 在垂直于o 1o 的半径上.求:点 A 和B 的加速度.解:2.选基点为〔〕亓*二后.*疗;口 +疗;. 大小0 *忒0 1时 方向“ J JJi7A ~ a ? +^C?I .轮I 作平面运动,瞬心为「沿"轴投勉乙8々4 * ■献i 1+ .1绕O i 转动.大齿轮固S 二「" 直线运动 曲线运动 定购林动 功系:凸轮. C 凸轮外边瘴〕〔.轴〕大小,方向?% ="g =仃口+ "什=fuclaii——=闺.㈢11 -4-3: 动.摇杆OC铅直,〔科氏加速度〕如下列图平面机构, AB长为1,滑块A可沿摇杆OC的长槽滑OC以匀角速度3绕轴O转动,滑块B以匀速v 1沿水平导轨滑动.图示瞬时AB与水平线OB夹角为300.求:此瞬时AB杆的角速度及角加速度.〔20分〕* *沿】:方向投彩大小方句V4B COS30J LD F福:速度分析1-杆.〞作平面运动,族点为瓦V A = V S - y AP2.动点:滑块.心动系:〞抨沿£方向强彩以一=1■沿吃方向表恁% ; gin 30" -4?os 对15-1如下列图均质圆盘,质量为m 、半径为R,沿地面纯滚动,角加速为3.求圆盘对图中A,C 和P 三点的动量矩. 平行轴定理:4二=一十/嫉 一或点P 为睡心 3hL ? = ^^R-\ L e =mP 2it 〕\ 1相?\"= -15-2 〔动量矩定理〕:如下列图均质圆环半径为 r,质量为m,其上焊接刚杆 OA,杆加生度介册 0f Ai = = 3VJtv 2AB点「为眉心上匚二J屯+ 1师;-G长为r,质量也为m.用手扶住圆环使其在OA水平位置静止.设圆环与地面间为纯滚动.独汰庵一方「.斗管力加玛所示建丸平为走动微分方程2f -月—+Y2由朱加R先K熹法瑞拽彩到水平强错乱两个才向20 r3"悟105-3 11-23 〔动量矩定理〕均质圆柱体的质量为m,半径为r,放在倾角为60o的斜面上, 一细绳绕在圆柱体上,其一端固定在A点,此绳和A点相连局部与斜面平行,如下列图.如圆柱体与斜面间的东摩擦因数为f=1/3,求圆柱体的加速度.〔15〕(15)解:解IW柱受力与运动分析如图.平而运动徽分方程为nta〔;= mg sin60* 一尸一Fj,.=F\ —fiig CQt^ff』社- 〔F=—广〕『式中F = /Fv» ac - fQ解得口c=O.355q5-4 11-28 〔动量矩定理〕均质圆柱体A和B的质量均为m,半径均为r, 一细绳缠在绕固定轴.转动的圆柱A上,绳的另一端绕在圆柱B上,直线绳段铅垂,如下列图.不计摩擦.求:〔1〕圆柱体B下落时质心的加速度;〔2〕假设在圆柱体A上作用一逆时针转向力偶矩M,试问在什么条彳^下圆柱体B的质心加速度将向上.〔15分〕解:解“〕两轮的受力与运动分析分别如用w.1 2 ET™r=近]对E轮,有以轮与直樊和切点为基点,明轮心B的加速度〃工,M t s4解得5g〔2〕再分别对两卷作受力与运动分析如图〔b〕对内轮,有fflaa =ntg -Ppj~2 tfrr~afj —rFj2依然存运动学关系dj}二皿用+的日J但Q.i中也B〕令< 0,可解得31柱体B的质心加速度向上的条件:M〉217UJT6-1:轮O的半径为R1 ,质量为ml,质量分布在轮缘上;均质轮C的半径为R2 , 质量为m2 ,与斜面纯滚动,初始静止.斜面倾角为.,轮.受到常力偶M驱动. 求: 轮心C走过路程s时的速度和加速度.〔15分〕韩:轮C1月轮0扶同作为一个质点系九一a『w 一阁7j = o石—,血人"吊斗!岫甘&岫对网」言必二% =9 1V :3/聚TH得J弘口日=-^―〔+3JJL〕旭〕中二二¥ =:羡居迎日一式G〕是函数关系式.两端计『求导,得-〔Jffij + 访看网收=M -Kin H - 鸟2 例U 尸―- :〔加1+.%啊〕局6-2均质杆 OB=AB=l,质量均为 m,在铅垂面内运动,AB 杆上作用一不变的力偶矩M,系统初始静止,不计摩擦.求当端点 A 运动到与端点 .重合时的速度. 〔15分〕解:由于A 京不离并地面,那么,EAO= /BOA.牝=可=H嫌同:是否可以利用求寻求此蜓时的商和速段? 〔H 与行没 有必然联系,角度不是时间的函数.〕6-3:重物m,以v 匀速下降,钢索刚度系数为 k .求轮D 突然卡住时,钢索的最大张 力.〔15分〕1J 上口『9-"将『〔1-E 穹 2/ V itt由「二心〞;有6-4均质杆 AB 的质量m=4kg,长l=600mm,均匀圆盘B 的质量为6kg,半径为r=600mm, 作纯滚动.弹簧刚度为 k=2N/mm,不计套筒A 及弹簧的质量.连杆在与水平面成 30o 角时无 初速释放.求〔1〕当AB 杆达水平位置而接触弹簧时,圆盘与连杆的角速度;〔2〕弹簧的最大压缩量 max o 〔 15分〕彝:卡住前E 二些 s* kF - kS SJ - mg - 2.45kN卡隹后取点物平街位苜1为更力加弹性力的 搴势T ; 一"解U〕该系统初始静tL.动能为杆达水平位置时.B 点是33杆的速度瞬心,网盅的角速度3H = 0,设杆的角速度为那么业,山幼能近理,得\ * ;配%品-0 = mg * ~ 5in341,解得连杆的角速度号〞:4;殳巴丝⑵AB杆达水平位置接触赢亚,统的动能为“,弹簧达到最大压缩量bz.的瞬时,系魂再次鄢止.动能丁;:= 0.由72 - 7】二五得0 _ [■闻]品=-J 6ra«二+ mJ片0 W *■解得1AM= 87.1 mm。
期末理论力学试题及答案
期末理论力学试题及答案期末理论力学试题及答案解析试题一:1. 一个物体以初速度v0自由下落,垂直下拉力下滑同一个垂直塔壁的高度为h,又该物体以速度v1向右飞出塔壁。
已知物体的质量为m,请问下列哪个式子成立?A) mv0^2 = mv1^2 - 2mg | B) mv0^2 = mv1^2 | C) m(v0^2 - v1^2) =2mg | D) mv0^2 = 2mg - mv1^2答案:A解析:根据题意,物体在塔壁处获得了向右的动量,所以向右的动量等于离开之前的动能减去重力做的功。
由动能定理可得A 选项成立。
2. 一个质量为m的物体以速度v做圆周运动,其半径为r。
已知圆周运动的角频率为ω,那么任意时间t物体的加速度大小是多少?A) ω^2r | B) ωv | C) ω^2r^2 | D) ωr答案:A解析:加速度是速度对时间的导数,而速度的大小是v = ωr,所以加速度的大小为a = ωv = ω(ωr) = ω^2r。
因此 A 选项成立。
3. 力学中,牛顿第一定律描述了物体的运动状态。
请问以下哪个选项是牛顿第一定律的陈述?A) 作用力等于物体的质量乘以加速度 | B) 物体的加速度等于作用力除以质量 | C) 物体的运动状态保持不变除非受到外力作用 | D) 物体间作用的力总是相互作用答案:C解析:牛顿第一定律又称为惯性定律,它表明物体的运动状态在没有外力作用时保持不变,也就是物体静止或匀速直线运动。
因此 C 选项是牛顿第一定律的陈述。
4. 一物体质量为m1,速度为v1,另一物体质量为m2,速度为v2。
两物体之间发生弹性碰撞后,物体1速度变为v1',物体2速度变为v2'。
已知碰撞前后两物体的动量相等且碰撞前两物体相向而行,请问以下哪个选项是正确的?A) m1v1 + m2v2 = m1v1' + m2v2' | B) m1v1 = m2v2' | C) v1 + v2 = v1' + v2' | D) m1v1' + m2v2' = 0答案:A解析:根据动量守恒定律,碰撞前后系统动量的总和保持不变。
《理论力学》期末复习考试试题(附答案详解)
《理论力学》期末复习考试试题(附答案详解)一、判断题(正确打√,错误打×,每题2分)1.受两个力作用的而处于平衡状态的构件称为二力杆. (√)2.平面汇交力系的力多边形封闭,其合力一定为零. (√)3.力偶能与一个力等效,也能与一个力平衡. (×)4.力矩是度量力对物体转动效应的物理量. (√)5.空间力系的合力对某一轴的矩等于力系中所有各力对同一轴的矩的代数和. (√)6.绕定轴转动的刚体内加速度的大小与转动半径无关. (×)7.只要点作匀速运动,其加速度一定等于零. (×)8.若在作平面运动的刚体上选择不同的点作为基点时,则刚体绕不同基点转动的角速度是不同的. (×)9.平移刚体上各点的轨迹形状不一定相同. (×)10.绝对速度一定大于牵连速度. (×)11.平面任意力系若平衡,力系对任一轴的投影的代数和一定为零。
(√)12.合力偶矩等于各分力偶矩的代数和。
(√)13.平面图形速度瞬心的速度为零。
(√)14.平面任意力系简化后,其主矩与简化中心无关。
(×)15.刚体的平移一定不是刚体的平面运动。
(×)16.绝对速度一定大于牵连速度。
(×)17.同一平面内的两个力偶,只要它们的力偶矩相等,它们一定等效. (√)18.绕定轴转动刚体上的点,其速度方向垂直于转动半径。
(√)19.平面图形上任意两点的速度在这两点连线上的投影相等(√)20.平面图形上任一点的速度等于该点随图形绕速度瞬心转动的速度(√)二、计算填空题(请将正确答案填写在括号内。
每空5分)1.如图所示刚架的点B作用一水平力F,刚架自重忽略不计,则支座D的约束力为(0.5F)2. 求图示梁支座A的约束力,梁的自重不计,其中力的单位为kN,力偶矩的单位为kN m•,分布载荷集度的单位为kN/m,尺寸单位为m。
(16;6A AF kN M kN m==•)3.悬臂刚架如图所示,已知载荷F1=12kN,F2=6kN,试求F1和F2合力FR对A的矩。
大学理论力学期末考试题库及答案
大学理论力学期末考试题库及答案一、选择题(每题2分,共20分)1. 质点系的质心位置取决于()。
A. 质点系的总质量B. 质点系中各质点的质量C. 质点系中各质点的位置D. 质点系中各质点的速度答案:C2. 刚体的转动惯量与()有关。
A. 质量B. 质量分布C. 质量分布和形状D. 形状3. 两个质点组成的系统,若两质点间的作用力大小相等,方向相反,则这两个力()。
A. 是一对平衡力B. 是一对作用力和反作用力C. 是一对内力D. 不能确定答案:B4. 质点沿直线做匀加速运动,加速度为a,初速度为v0,则经过时间t后的速度v为()。
A. v = v0 + atB. v = v0 - atC. v = v0 + 1/2atD. v = v0 - 1/2at5. 两个质点组成的系统,若两质点间的作用力大小相等,方向相反,则这两个力()。
A. 是一对平衡力B. 是一对作用力和反作用力C. 是一对内力D. 不能确定答案:B6. 刚体绕固定轴转动时,其转动惯量与()有关。
A. 质量B. 质量分布C. 质量分布和形状D. 形状答案:C7. 质点沿直线做匀加速运动,加速度为a,初速度为v0,则经过时间t后的位移s为()。
A. s = v0t + 1/2at^2B. s = v0t - 1/2at^2C. s = v0t + at^2D. s = v0t - at^2答案:A8. 刚体绕固定轴转动时,其角加速度与()有关。
A. 质量B. 质量分布C. 质量分布和形状D. 形状答案:B9. 质点沿直线做匀加速运动,加速度为a,初速度为v0,则经过时间t后的位移s为()。
A. s = v0t + 1/2at^2B. s = v0t - 1/2at^2C. s = v0t + at^2D. s = v0t - at^2答案:A10. 两个质点组成的系统,若两质点间的作用力大小相等,方向相反,则这两个力()。
A. 是一对平衡力B. 是一对作用力和反作用力C. 是一对内力D. 不能确定答案:B二、填空题(每题2分,共20分)1. 质点系的质心位置取决于质点系中各质点的________和________。
《理论力学》——期末考试答案
《理论力学》——期末考试答案一、单选题1.力对点之矩决定于( )。
A.力的大小B.力臂的长短C.力的大小和力臂的长短D.无法确定正确答案:C2.动点相对于动坐标系的运动称为( )的运动。
A.牵连运动B.相对运动C.绝对运动D.圆周运动正确答案:B3.动点的牵连速度是指该瞬时牵连点的速度,它相对的坐标系是( )。
A.动坐标系B.不必确定的C.静坐标系D.静系或动系都可以正确答案:C4.在质点系动能定理中,应注意外力或内力做的功之和不等于合外力或( )做的功。
A.重力B.浮力C.合内力D.牵引力正确答案:C5.将平面力系向平面内任意两点进行简化,所得主矢量和主矩都相等,且主矩不为零,则该力系简化的最后结果为( )。
A.合力偶B.合力C.平衡力系D.无法进一步合成正确答案:A6.超静定结构的超静定次数等于结构中( )。
A.约束的数目B.多余约束的数目C.结点数D.杆件数正确答案:B7.静不定系统中,多余约束力达到3个,则该系统静不定次数为( )A.3次B.6次C.1次D.不能确定正确答案:A8.关于平面力偶系、平面汇交力系、平面一般力系,最多能够得到的相互独立的平衡方程的个数依次是( )。
A.2、1、3B.2、2、3C.1、2、2D.1、2、3正确答案:D9.平面任意力系向一点简化,应用的是( )。
A.力的平移定理B.力的平衡方程C.杠杆原理D.投影原理正确答案:A10.对于平面力系,一个平衡方程可解( )未知量。
A.1个B.2个C.3个D.不一定正确答案:A11.一平面力系由两组平面平行力系组成(这两组平面平行力系之间互不平行),若力系向某A点简化结果为一合力,下述说法正确的是( )。
A.这两组平面平行力系必然都各自向A点简化为一合力B.这两组平面平行力系可能都各自简化为一力偶C.可能一组平面平行力系向A点简化得到一个力和一个力偶,而另一组平面平行力系向A点简化得到一合力D.可能这两组平面平行力系都各自向A点简化得到一个力和一个力偶正确答案:D12.在任何情况下,在几何可变体系上增加一个二元体后构成的体系是几何( )体系。
理论力学期末复习题
《理论力学》复习题一、判断体:1.运动是绝对的,而运动的描述是相对的。
(√)2.相对一个惯性系运动的参照系一定不是惯性系。
(×)3.相对一个惯性系作匀速直线运动的参照系也是一个惯性系。
(√)4.表述为时间函数的位置变量称为运动学方程。
(√)5.质点的轨道方程可以由运动学方程消去时间变量得到。
(√)6.速度矢量的变化率定义为加速度。
(√)7.速率对时间的一阶导数定义为加速度。
(×)8.速率对时间的一阶导数定义为切向加速度。
(√)9.若质点的加速度为常矢量则其必作直线运动。
(×)10.极坐标系中的径向加速度就是向心加速度。
(×)11.若质点作圆周运动,则其加速度恒指向圆心。
(×)12.两半径不等的摩擦轮外接触传动,如果不出现打滑现象,两轮接触点的速度相等,切向加速度也相等。
(√)13.牛顿第二定律只适用于惯性系。
(√)14.质点组内力对任意点力矩的矢量和与内力有关。
(×)15.内力不能改变系统的机械能。
(×)16.内力可以改变系统的机械能。
(√)17.内力不改变系统的动量。
(√)18.内力可以改变系统的动量。
(×)19.质点组内力的总功可以不等于零。
(√)20.质点系动量守恒时动量矩不一定守恒。
(√)21.质点系内力对任意点力矩的矢量和必为零。
(√)22.质点系的质心位置与质点系各质点的质量和位置有关。
(√)23.质点的动量守恒时对任意定点的动量矩也守恒。
(×)24.质点系的动量守恒时对任意定点的动量矩也守恒。
(×)25.质点系对某点的动量矩守恒则其动量必定守恒。
(×)26.刚体是一种理想模型。
(√)27.刚体的内力做的总功为零。
(√)28.刚体平衡的充要条件是所受外力的矢量和为零。
(×)29.刚体处于平衡状态的充要条件是所受外力的主矢和主矩均为零。
(√)30.对刚体的一系列平行转轴,以对过质心的轴的转动惯量最小。
理论力学期末试题和答案
一、填空题(共15分.共 5题.每题3 分)1. 如图所示的悬臂梁结构.在图中受力情况下.固定端A处的约束反力为:M A = ;F Ax = ;F Ay = 。
2. 已知正方形板ABCD作定轴转动.转轴垂直于板面.A点的速度v A=10cm/s.加速度a A=2.方向如图所示。
则正方形板的角加速度的大小为。
AA BD题1图题2图3. 图示滚压机构中.曲柄OA = r.以匀角速度绕垂直于图面的O轴转动.半径为R的轮子沿水平面作纯滚动.轮子中心B与O轴位于同一水平线上。
则有ωAB = .ωB = 。
4. 如图所示.已知圆环的半径为R.弹簧的刚度系数为k.弹簧的原长为R。
弹簧的一端与圆环上的O 点铰接.当弹簧从A端移动到B端时弹簧所做的功为;当弹簧从A端移动到C端时弹簧所做的功为。
o BC题3图题4图5. 质点的达朗贝尔原理是指:作用在质点上的、和在形式上组成平衡力系。
二、选择题(共20分.共 5 题.每题4 分) 1. 图示机构中.已知均质杆AB 的质量为m .且O 1A =O 2B =r .O 1O 2=AB =l .O 1O =OO 2=l /2.若曲柄转动的角速度为ω.则杆对O 轴的动量矩L O 的大小为( )。
A. L O = mr 2ω B. L O = 2mr 2ωC. L O = 12mr 2ω D. L O = 02. 质点系动量守恒的条件是:( )A. 作用于质点系上外力冲量和恒为零B. 作用于质点系的内力矢量和为零C. 作用于质点系上外力的矢量和为零D. 作用于质点系内力冲量和为零3. 将质量为m 的质点.以速度 v 铅直上抛.试计算质点从开始上抛至再回到原处的过程中质点动量的改变量:( ) A. 质点动量没有改变B. 质点动量的改变量大小为 2m v .方向铅垂向上C. 质点动量的改变量大小为 2m v .方向铅垂向下D. 质点动量的改变量大小为 m v .方向铅垂向下4. 图示的桁架结构.铰链D 处作用一外力F .下列哪组杆的内力均为零? ( ) A. 杆CG 与杆GF B. 杆BC 与杆BG C. 杆BG 与杆BF D. 杆EF 与杆AF5. 如图所示.已知均质光球重为Q .由无重杆支撑.靠在重为P 的物块M 上。
大学理论力学期末考试题库及答案
大学理论力学期末考试题库及答案一、单项选择题(每题2分,共20分)1. 牛顿第一定律描述的是:A. 物体在没有外力作用下的运动状态B. 物体在受到平衡力作用下的运动状态C. 物体在受到非平衡力作用下的运动状态D. 物体在受到任何力作用下的运动状态答案:A2. 动量守恒定律适用于:A. 只有当系统所受合外力为零时B. 只有当系统所受合外力不为零时C. 任何情况下D. 只有当系统所受合外力为零时,以及系统内部力远大于外部力时答案:A3. 角动量守恒的条件是:A. 系统不受外力矩作用B. 系统受外力矩作用C. 系统受外力矩作用,但外力矩为零D. 系统不受外力作用答案:A4. 刚体定轴转动的转动惯量I与物体的质量m和半径r的关系是:A. I = kr^2B. I = krC. I = 2mrD. I = mr^2答案:A5. 简谐运动的周期与振幅无关,与:A. 质量有关B. 弹簧劲度系数有关C. 质量与弹簧劲度系数都有关D. 质量与弹簧劲度系数都无关答案:B6. 两质点组成的系统,若质点间距离不变,则系统的质心:A. 位置不变B. 速度不变C. 加速度不变D. 位置、速度、加速度均不变答案:A7. 某物体沿直线运动,其位移随时间的变化关系为s = 3t^2 + 4t + 5,该物体在t = 2s时的速度为:A. 10 m/sB. 14 m/sC. 16 m/sD. 20 m/s答案:C8. 一物体做匀加速直线运动,初速度为2 m/s,加速度为3 m/s^2,则物体在第3秒内的位移为:A. 9 mB. 12 mC. 15 mD. 18 m答案:B9. 两物体A和B,质量分别为m和2m,它们通过一轻质弹簧相连,置于光滑水平面上。
若对A施加一水平向右的力F,系统从静止开始运动,则A和B的加速度之比为:A. 1:2B. 1:1C. 2:1D. 3:1答案:A10. 一物体从静止开始自由下落,下落时间为t,则物体下落过程中的平均速度为:A. gt/2B. gtC. 2gtD. 3gt/2答案:A二、填空题(每题2分,共20分)11. 牛顿第二定律的数学表达式为:________。
理论力学期末复习题(附答案)
理论力学期末复习题(附答案)理论力学基础期末复习题一、填空题1. 在介质中上抛一质量为m 的小球,已知小球所受阻力v k R-=,若选择坐标轴x 铅直向上,则小球的运动微分方程为_____________________。
2. 质点在运动过程中,在下列条件下,各作何种运动?①0=t a ,0=n a (答):;②0≠t a ,0=n a (答):;③0=t a ,0≠n a (答):;④0≠t a ,0≠n a (答):。
3. 质量为kg 10的质点,受水平力F的作用,在光滑水平面上运动,设t F 43+=(t 以s 计,F 以N 计),初瞬间(0=t )质点位于坐标原点,且其初速度为零。
则s t 3=时,质点的位移等于_______________,速度等于_______________。
4. 在平面极坐标系中,质点的径向加速度为__________;横向加速度为_______。
5. 哈密顿正则方程用泊松括号表示为,。
6. 质量kg m 2=的重物M ,挂在长m l 5.0=的细绳下端,重物受到水平冲击后获得了速度105-?=s m v ,则此时绳子的拉力等于。
7. 平面自然坐标系中的切向加速度为,法向加速度为。
8. 如果V F -?=,则力所作的功与无关,只与的位置有关。
9. 在南半球地面附近自南向北的气流有朝的偏向;而北半球的河流岸冲刷较为严重。
10. 已知力的表达式为axy F x =,2az F y -=,2ax F z -=。
则该力做功与路径_ (填“有关”或“无关”),该力_ 保守力(填“是”或“不是”)。
11. 一质量组由质量分别为0m 、20m 、30m 的三个质点组成,某时刻它们的位矢和速度分别为j i r +=1、i v21=、k j r +=2、i v =2、k r =3、k j i v++=3。
则该时刻质点组相对于坐标原点的动量等于,相对于坐标原点的动量矩等于_ 。
12. 一光滑水平直管中有一质量为m 的小球,直管以恒定角速度ω绕通过管子一端的竖直轴转动,若某一时刻,小球到达距O 点的距离为a 的P 点,取x 轴沿管,y 轴竖直向上,并垂直于管,z 轴水平向前,并于管面垂直,如图所示,此时小球相对于管子的速度为v,则惯性离心力大小为,方向为,科里奥利力大小为,方向为。
理论力学复习.doc
《理论力学》复习题一、是非题1.合力不一定比分力大。
-------------------------------------------------- ()2.平动刚体上的点的运动轨迹也可能是空间曲线。
----------------------------- ()3.某平面力系向一点简化的结果与简化中心无关,则该力系一定平衡。
----------- ()4.约束反力的方向一定与被约束体所限制的运动方向相反。
---------------------- ()5.如果作用在刚体上的三个力共面且汇交于一点,则刚体一定平衡。
-------------- ()6.力偶可以用一个合力来平衡。
---------------------------------------------- ()7.若点的法向加速度为零,则该点轨迹的曲率必为零。
-------------------------- ()8.经过的时间越长,变力的冲量也一定越大。
---------------------------------- ()9. 在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。
()10.牛顿第一定律适用于任何参照系。
------------------------------------------ ()二、选择题1.已知F1、F2、F3、F4为作用于刚体上的平面汇交力系,其力多边形如图所示,由此可知()A:力系的合力为零,力系平衡;B:力系可合成为一个力;C:力系可简化为一个力和一个力偶;D:力系可合成一个力偶。
2.如图所示,物块 A 重P=200N,放在与水平面成30 的粗糙斜面上,物块 A 与斜面间的静摩擦系数为f=1,则摩擦力的大小为()A:0 B:86.6N C:150N D:100N3.平面一般力系的二力矩式平衡方程的附加使用条件是( )。
A:二个矩心的连线和投影轴不能垂直B:二个矩心的连线和投影轴可以垂直C:没有什么条件限制4.既限制物体任何方向移动,但不限制物体转动的支座称()支座。
理论力学试题期末试卷及答案
理论力学试题一、是非题(每题2分)1、作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
( )2、在有摩擦的情况下,全约束力与法向约束力之间的夹角称为摩擦角。
( )3、加速度d d v t 的大小为d d v t。
( ) 4、已知质点的质量和作用于质点的力,质点的运动规律就完全确定。
( ) 5、质点系中各质点都处于静止时,质点系的动量为零。
于是可知如果质点系的动量为零,则质点系中各质点必都静止。
( )二、水平梁AB 的A 端固定,B 端与直角弯杆BEDC 用铰链相连,定滑轮半径R = 20cm ,CD = DE = 100cm ,AC = BE = 75cm ,不计各构件自重,重物重P =10kN ,求C ,A 处的约束力。
(20分)三、在图示平面机构中,已知:O 1A 杆的角速度 ω= 2rad/s ,α= 0,O 1A = O 2B = R = 25cm ,EF = 4R ,O 1A 与O 2B 始终平行。
当 = 60°时,FG 水平,EF 铅直,且滑块D 在EF 的中点。
轮的半径为R ,沿水平面做纯滚动,轮心为G 。
求该瞬时,轮心的速度G v 与加速度G a 。
轮的角速度G ω与角加速度G α。
(20分)四、图示系统,均质轮C 质量为m 1,半径为R 1,沿水平面作纯滚动,均质轮O 的质量为m 2,半径为R 2,绕轴O 作定轴转动。
物块B 的质量为m 3,绳AE 段水平。
系统初始静止。
求:(1)轮心C 的加速度C a 、物块B 的加速度B a ;(2)两段绳中的拉力。
(20分)五、图示三棱柱体ABC 的质量为m 1,放在光滑的水平面上,可以无摩擦的滑动。
质量为m 2的均质圆柱体O 沿三棱柱体的斜面AB 向下作纯滚动,斜面倾角为θ。
以x 和s 为广义坐标,用拉格朗日方程建立系统的运动微分方程,并求出三棱柱体的加速度(用其他方法做不给分)。
理论力学期末复习题
一、是非题1、若有B A F F-=的两个力,作用在同一刚体上,则此二力是作用力与反作用力,或是一对平衡力。
( )2、若点的法向加速度为零,则该点轨迹的曲率必为零。
( )3、质点运动的方向一定是合外力的方向。
( )4、作用在同一刚体上的两个力 →1F 、 →2F ,若有→1F = - →2F ,则该二力是一对平衡的力,或者组成一个力偶。
( )5、一动点如果在某瞬时的法向加速度等于零,而其切向加速度不等于零,则该点一定作直线运动。
( )6、当质点处于相对平衡(即相对运动为匀速直线运动)时,作用在质点上的主动力、 约束力和牵连惯性力组成平衡力系。
( )二、选择题1、图示两个作用在三角形板上的平面汇交力系(图(a )汇交于三角形板中心,图(b )汇交于三角形板底边中点)。
如果各力大小均不等于零,则图(a )所示力系______________________; 图(b )所示力系______________________。
①可能平衡; ②一定不平衡; ③一定平衡; ④不能确定。
2、绳子的一端绕在滑轮上,另一端与置于水平面上的物块B 相连,若物块B 的运动方程为X =k t 2,其中k 为常数,轮子半径为R 。
则轮缘上A 点的加速度的大小为_____________。
① 2 k ;② (4 k 2 t 2 / R)1/2;③ (4 k 2+16 k 4 t 4 / R 2 )1/2; ④ 2 k +4 k 2 t 2 / R 。
3、船A 重P ,以速度v航行。
重Q 的物体B 以相对于船的速度ū空投到船上,设ū与水平面成600角,且与v在同一铅直平面内。
若不计水的阻力,则二者共同的水平速度为_________。
① ( Pv +0.5Qu ) / ( P +Q ); ② ( Pv +Qu ) / ( P +Q );③ ( ( P +Q ) v +Qu ) / ( P +Q)。
4、设力→F 在X 轴上的投影为F ,则该力在与X 轴共面的任一轴上的投影____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、圆柱O重G=1000N放在斜面上用撑架支承如图;不计架重,求铰链A、B、C处反力解:(1) 研究圆柱,受力分析,画受力图:由力三角形得:(2) 研究AB杆,受力分析(注意BC为二力杆),画受力图:(3) 列平衡方程(4) 解方程组:2、求下图所示桁架中杆HI、EG、AC的内力答:F F F F HI AC EG -===003、重物悬挂如图,已知G=,其他重量不计;求铰链A 的约束反力和杆BC 所受的力解:(1) 研究整体,受力分析(BC 是二力杆),画受力图:(2)列平衡方程:(3)解方程组:X A =; Y A =; S=0,848KN4、三铰门式刚架受集中荷载F P 作用,不计架重,求支座A 、B 的约束力。
答:F A =F B =0。
707F P5、求梁的支座约束力,长度单位为m。
解:∑M A(F)=0 F B×4-2×Sin450×=O∑M B(F)=0 -F AY×4-2×Sin450×=O∑F X=0 F AX+2×coS450=O解得: F AX=,F AY=,F B=6、求刚架的支座约束力。
解得:F AX=0 F AY=17KN F B=33KN。
M7、四连杆机构OABO1在图示位置平衡,已知OA=40㎝,O1B=60㎝,作用在曲柄OA上的力偶矩大小为M1=,求力偶矩M2的大小及连杆AB所受的力(各杆的重量不计)解:(1)先取0A杆为研究对象,∑M=0 F AB×OAsin300-M1=0解得:F AB=5N(2)取O1B杆研究。
F′AB= F AB=5N∑M=0 M2- F′AB×O1B=0解得:M2= F′AB×O1B=飞轮加速转动时,其轮缘上一点M的运动规律为s= t3(单位为m、s),飞轮的半径R=0.4m。
求该点的速8、度达到v=6m/s时,它的切向及法向加速度。
解:M点做圆周运动,则V=ds/dt=3× t2= t2将v=6m/s代入上式,解得 t=10sa t=dv/dt=2×=1.2m/s2a n= v2/R=90 m/s29、已知点的运动方程:x=50t,y=500-5t2,(x、y单位为m、t单位为s)。
求当t=0时,点的切向加速度、法向加速度及轨迹的曲率半径。
解:a n=v2/ρ=(1/ρ)×[(X′)2+(X′)2]a t=dv/dt =X′X″+ Y′Y″/[(X′)2+(X′)2]1/2a2=( X″)2+( Y″)2X′=50,X″=OY′=-10t,Y″=-10将t=0代入,得a t=0a n=10m/s2ρ=v2/ a n=250m10、图示铰接平行四杆机构中O1A=O2B=1O㎝,O1O2=AB,杆O1A以匀角速度ω=2rad/s绕O1轴转动。
AB杆上有一套筒C与CD杆铰接,机构各部分均在同一平面内,求φ=600时,杆CD的速度和加速度解:取CD杆上的C为动点,AB为动系,对动点作速度分析和加速度分析:11、图示物块重G=200N ,物块与接触面之间的静滑动摩擦因数为33tan ==m s f ϕ,求拉动物体所需的最小力F答:N G F m 100sin min ==ϕ12、半圆形凸轮以匀速V 0水平向右运动,推动杆AB 沿铅垂方向运动。
如凸轮半径为R ,求当Φ为300时AB 杆的速度及加速度解:(1)(2)V AB =V A =Vetan300= V 0 tan300= V 013、如图所示,偏心凸轮半径为R ,绕O 轴转动,转角φ=ωt (ω为常量),偏心距OC=e ,凸轮带动顶杆AB 沿铅垂直线作往复运动。
求:(1)顶杆的运动方程(2)顶杆的速度解:点A 可代表AB 的运动,运动方程和速度为:14.图示曲柄滑杆机构中,滑杆上有一圆弧形滑道,其半径R =100㎜,圆心O 1在导杆BC 上。
曲柄长OA =100㎜,以等角速度ω=4rad/s 绕O 轴转动。
求导杆BC 的运动规律及当曲柄与水平线间的交角φ=300时,导杆BC 的速度和加速度解:BC杆为平动,用点O1代表之,其运动方程、速度和加速度为:15、图示摇杆滑道机构中的滑块M同时在固定的圆弧槽BC和摇杆OA的滑道中滑动。
如弧BC的半径为R,摇杆OA的轴O在弧BC的圆周上。
摇杆绕O轴以等角速度ω转动,当运动开始时,摇杆在水平位置。
试给出点M的运动方程,并求其速度和加速度(直角坐标法、自然法均可)解:16、如图所求,已知0A=1.5m,AB=0.8m。
机构从φ=0开始匀速转动,运动中AB杆始终铅垂,B端速度v B=0.05m/s。
求:(1)运动过程中角φ与时间的关系(2)点B的轨迹解:AB杆平动,v A=v B=0.05m/s;17、摇筛机构如图所示,已知O1A=O2B=40㎝,O1O2=AB,杆O1A按Φ=(1/2)Sin(Л/4)t rad的规律摆动,求当t=2s时,筛面中点M的速度和加速度。
答:v M=0,a Mt=-12。
34㎝/s2,a Mn=018、已知OA的转速n=40r/min,OA= r=0.3m。
求图示瞬时,筛子BC的速度解筛子BC作平移,与CBO夹角为30°,与AB夹角为60°。
且由速度投影定理得19、图示四连杆机构中,OA=O1B=r,AB=2r,曲柄OA以匀角速度ω绕轴O逆时针转动,O与O1两点的连线水平。
在图示位置时,OA⊥001,且曲柄01B也位于水平位置。
求此瞬时:(1)连杆AB的角速度ωAB(2)曲柄O1B的角速度ωO1B解:20、如图所示的平面机构中,曲柄OA 长100mm ,以角速度ω=2rad/s 转动。
连杆AB 带动摇杆CD ,并拖动轮E 沿水平面纯滚动。
已知:CD=3CB ,图示位置时A ,B ,E 三点恰在一水平线上,且CD ⊥ED 。
求:此瞬时点E 的速度解: (1) AB 作平面运动(2)CD 作定轴转动,转动轴:C(3)DE 作平面运动()B A ABAB v v =()OAv B ⋅=ω 30cos m 2309.030cos =⋅=OAv B ω30.6928m s BD B v v CD v CB=⋅==()cos300.8m scos30E D DE DE E D DE v v v v v v ====()21、图示机构中,O 1A=10cm ,O 1O 2铅垂。
在图示瞬时,杆O 2B 角速度ω=1rad/s ,O 1A 水平,φ=30º。
求该瞬时O 1A 的角速度和科氏加速度 解: 动点:套筒A动系:固连在O 2B 上 作速度平行四边形r e a V V V += s cm V a /40=s rad A O /41=ωs cm V r /320= 2/340s cm a C =22、图示机构中,曲柄以匀角速度ω=20rad /s 绕0轴转动,OA =40㎝,AC =CB =20(37)1/2㎝。
当Φ=0时,求气阀推杆DE 的速度解:Φ=0时,ABC 杆的瞬心为B ,CD 杆瞬时平动,可得:23、图示机构中,曲柄以匀角速度ω=20rad /s 绕0轴转动,OA =40㎝,AC =CB =20(37)1/2㎝。
当Φ=1800时,求气阀推杆DE 的速度解:Φ=0时,ABC杆的瞬心为B,CD杆瞬时平动,可得:524、如图所示,滑轮重W、半径为R,对转轴O的回转半径为ρ;一绳绕在滑轮上,另一端系一重为P的物体A;滑轮上作用一不变转矩M,忽略绳的质量,求重物A上升的加速度和绳的拉力解:(1)取滑轮为研究对象,由定轴转动微分方程得Wρ2α/g=M-FR(2)取物体A为研究对象,由动力学基本方程知Pa/g=F-P由于a=Rα(3)解得:a=(M-PR/PR2+Wρ2)Rg; F =P(MR+Wρ2/PR2+Wρ2)。
25、重物A的质量为m1,系在绳子上,绳子跨过一不计质量的固定滑轮D,并绕在鼓轮B上,如图所示。
由于重物下降,带动了轮C,使它沿水平轨道滚动而不滑动。
设鼓轮半径为r,轮C的半径为R,两者固连在一起,总质量为m2,对于其水平轴O回转半径为ρ。
求重物A的加速度26、圆锥摆,如图所示。
质量m=0.1kg的小球系于长l=0.3m 的绳上,绳的另一端系在固定点O,并与铅直线成角。
如小球在水平面内作匀速圆周运动,求小球的速度v与绳的张力解:研究小球:解得:27、质量为m1的平板放在质量均为m2的两个轮子上,平板的速度为V,各接触处没有相对滑动,计算质点系的动量。
答:P=(m1+ m2)V28、一单摆质量为m,绳长为L,开始时绳与铅垂线的夹角为α,摆从A点由静止开60=θN96.1cos==θmgFsm1.2sin2==mFlvθ始运动,当到达铅垂位置B时与一弹簧相碰,弹簧的刚度为K,略去绳的质量,求弹簧的最大压缩量。
解:单摆由A至B,速度由0至v则:(1/2)×mv2=mgL×(1- coSα)由B直至弹簧压缩的极限位置,速度由v到0故有:0-(1/2)×mv2=(1/2)×K×(0-δ2mas)mgL×(1- coSα)=(1/2)×K×δ2mas所以,δmas=[2 mgL×(1- coSα)/K]1/229、椭圆规机构中,OC=AC=CB=l;滑块A和B的质量均为 m,曲柄OC和连杆AB的质量忽略不计;曲柄以等角速度绕O轴旋转。
图示位置时,角度 t 为任意值。
求:图示位置时系统的总动量解:质点系的质心在C处,其速度矢量垂直于OC,数值为:v C= l系统的总质量m C= m A+ m B=2m系统的总动量大小:P= m c v c=2mlω方向沿 v C 方向。