有理数的四则混合运算练习(含答案)

合集下载

(完整版)有理数的四则混合运算练习(含答案)

(完整版)有理数的四则混合运算练习(含答案)

有理数的四则混合运算练习◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa=1,则a____0;若||aa=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a<1bB.ab<1 C.ab<1 D.ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.(1)____________ (2)____________ (3)____________-1ob a答案: 课堂测控1.(1)-80 (2)5352.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的.拓展测控12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3(3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.。

七年级有理数四则混合运算题九十道(有答案的)

七年级有理数四则混合运算题九十道(有答案的)

七年级有理数四则混合运算题九十道(有答案的)39+[-23]+0+[-16]= 0[-18]+29+[-52]+60= 19[-3]+[-2]+[-1]+0+1+2= -3[-301]+125+301+[-75]= 50[-1]+[-1/2]+3/4+[-1/4]= -1[-7/2]+5/6+[-0.5]+4/5+19/6= 1.25[-26.54]+[-6.14]+18.54+6.14= -81.125+[-17/5]+[-1/8]+[-0.6]= -3[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)5+21*8/2-6-5968/21-8-11*8+61-2/9-7/9-564.6-(-3/4+1.6-4-3/4)1/2+3+5/6-7/12[2/3-4-1/4*(-0.4)]/1/3+222+(-4)+(-2)+4*3-2*8-8*1/2+8/1/8(2/3+1/2)/(-1/12)*(-12)(-28)/(-6+4)+(-1)2/(-2)+0/7-(-8)*(-2)(1/4-5/6+1/3+2/3)/1/218-6/(-3)*(-2)(5+3/8*8/30/(-2)-3(-84)/2*(-3)/(-6)1/2*(-4/15)/2/3-3x+2y-5x-7y有理数的加减混合运算回答者:370116 - 翰林文圣十八级1-22 10:56我来评论>>您觉得最佳答案好不好? 目前有 5 个人评价60% (3)40% (2)相关内容·初中一年级有理数混合计算题(300道以上)带答案·谁有小学六年级至初一有理数的计算的计算题啊?·关于有理数计算题和答案·谁有初一有理数计算题(我要1000道)·编写一个小学数学辅助教学软件,主要是测试小学低年... 更多关于300道简单的有理数运算的问题>>查看同主题问题:有理数的混合运算其他回答共 1 条1.计算题(1)3.28-4.76+1 - ;(2)2.75-2 -3 +1 ;(3)42÷(-1 )-1 ÷(-0.125); (4)(-48) ÷82-(-25) ÷(-6)2;(5)- +( )×(-2.4).2.计算题:(10′×5=50′)(1)-23÷1 ×(-1 )2÷(1 )2;(2)-14-(2-0.5)××[( )2-( )3]; (3)-1 ×[1-3×(- )2]-( )2×(-2)3÷(- )3 (4)(0.12+0.32) ÷[-22+(-3)2-3 ×];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624. [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-5968/21-8-11*8+61-2/9-7/9-564.6-(-3/4+1.6-4-3/4)1/2+3+5/6-7/12[2/3-4-1/4*(-0.4)]/1/3+222+(-4)+(-2)+4*3-2*8-8*1/2+8/1/8(2/3+1/2)/(-1/12)*(-12)(-28)/(-6+4)+(-1)2/(-2)+0/7-(-8)*(-2)(1/4-5/6+1/3+2/3)/1/218-6/(-3)*(-2)(5+3/8*8/30/(-2)-3(-84)/2*(-3)/(-6)1/2*(-4/15)/2/3-3x+2y-5x-7y75÷〔138÷(100-54)〕85×(95-1440÷24)80400-(4300+870÷15) 240×78÷(154-115)1437×27+27×563 〔75-(12+18)〕÷152160÷〔(83-79)×18〕280+840÷24×5325÷13×(266-250) 85×(95-1440÷24)58870÷(105+20×2) 1437×27+27×56381432÷(13×52+78) [37.85-(7.85+6.4)] ×30156×[(17.7-7.2)÷3] (947-599)+76×6436×(913-276÷23) [192-(54+38)]×67[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕(31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35)0.8×[(10-6.76)÷1.2](136+64)×(65-345÷23)(6.8-6.8×0.55)÷8.50.12×4.8÷0.12×4.8 (58+37)÷(64-9×5)812-700÷(9+31×11)(3.2×1.5+2.5)÷1.685+14×(14+208÷26)120-36×4÷18+35(284+16)×(512-8208÷18)9.72×1.6-18.305÷74/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/1012.78-0÷(13.4+156.6 )37.812-700÷(9+31×11)(136+64)×(65-345÷23)3.2×(1.5+2.5)÷1.685+14×(14+208÷26)(58+37)÷(64-9×5)(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)0.12×4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6120-36×4÷18+35 10.15-10.75×0.4-5.75.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷5232.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.65.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-63.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.65.8×(3.87-0.13)+4.2×3.7433.02-(148.4-90.85)÷2.5(一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)(9)(-17/4)+(-10/3)+(+13/3)+(11/3)(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(11)(+1.3)-(+17/7)(12)(-2)-(+2/3)(13)|(-7.2)-(-6.3)+(1.1)|(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)(15)(-2/199)*(-7/6-3/2+8/3)(16)4a)*(-3b)*(5c)*1/61. 3/7 × 49/9 - 4/32. 8/9 × 15/36 + 1/273. 12× 5/6 – 2/9 ×34. 8× 5/4 + 1/45. 6÷ 3/8 – 3/8 ÷66. 4/7 × 5/9 + 3/7 × 5/97. 5/2 -(3/2 + 4/5 )8. 7/8 + (1/8 + 1/9 )9. 9 × 5/6 + 5/610. 3/4 × 8/9 - 1/30.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.411. 7 × 5/49 + 3/1412. 6 ×(1/2 + 2/3 )13. 8 × 4/5 + 8 × 11/514. 31 × 5/6 – 5/615. 9/7 - (2/7 –10/21 )16. 5/9 × 18 – 14 × 2/717. 4/5 × 25/16 + 2/3 × 3/418. 14 × 8/7 – 5/6 × 12/1519. 17/32 – 3/4 × 9/2420. 3 × 2/9 + 1/321. 5/7 × 3/25 + 3/722. 3/14 ×× 2/3 + 1/623. 1/5 × 2/3 + 5/624. 9/22 + 1/11 ÷ 1/225. 5/3 × 11/5 + 4/326. 45 × 2/3 + 1/3 × 1527. 7/19 + 12/19 × 5/628. 1/4 + 3/4 ÷ 2/329. 8/7 × 21/16 + 1/230. 101 × 1/5 – 1/5 × 2131.50+160÷40 (58+370)÷(64-45)32.120-144÷18+3533.347+45×2-4160÷5234(58+37)÷(64-9×5)35.95÷(64-45)36.178-145÷5×6+42 420+580-64×21÷2837.812-700÷(9+31×11)(136+64)×(65-345÷23)38.85+14×(14+208÷26)39.(284+16)×(512-8208÷18)40.120-36×4÷18+3541.(58+37)÷(64-9×5)42.(6.8-6.8×0.55)÷8.543.0.12× 4.8÷0.12×4.844.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.645.6-1.6÷4= 5.38+7.85-5.37=46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.948.10.15-10.75×0.4-5.749.5.8×(3.87-0.13)+4.2×3.7450.32.52-(6+9.728÷3.2)×2.551.-5+58+13+90+78-(-56)+5052.-7*2-57/(353.(-7)*2/(1/3)+79/(3+6/4)54.123+456+789+98/(-4)55.369/33-(-54-31/15.5)56.39+{3x[42/2x(3x8)]}57.9x8x7/5x(4+6)58.11x22/(4+12/2)59.94+(-60)/101.a^3-2b^3+ab(2a-b)=a^3+2a^2b-2b^3-ab^2=a^2(a+2b)-b^2(2b+a)=(a+2b)(a^2-b^2)=(a+2b)(a+b)(a-b)2.(x^2+y^2)^2-4y(x^2+y^2)+4y^2 =(x^2+y^2-2y)^23.(x^2+2x)^2+3(x^2+2x)+x^2+2x+3 =(x^2+2x)^2+4(x^2+2x)+3=(x^2+2x+3)(x^2+2x+1)=(x^2+2x+3)(x+1)^24.(a+1)(a+2)+(2a+1)(a-2)-12=a^2+3a+2+2a^2-3a-2-12=3a^2-12=3(a+2)(a-2)5.x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2=(xz+yz)^2=z^2(x+y)^26.3(a+2)^2+28(a+2)-20=[3(a+2)-2][(a+2)+10]=(3a+4)(a+12)7.(a+b)^2-(b-c)^2+a^2-c^2=(a+b)^2-c^2+a^2-(b-c)^2=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)=(a+b-c)(a+b+c+a-b+c)=2(a+b-c)(a+c)8.WORD格式编辑整理x(x+1)(x^2+x-1)-2=(x^2+x)(x^2+x-1)-2=(x^2+x)^2-(x^2+x)-2=(x^2+x-2)(x^2+x+1)=(x+2)(x-1)(x^2+x+1)(尽力了!)专业知识分享。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)1.先进行乘方运算,然后进行乘除运算,最后进行加减运算。

2.同级运算从左到右进行。

3.如果有括号,先进行括号内的运算,按照小括号、中括号、大括号的顺序进行。

1.18 - 6 ÷ 352.-81 ÷ (-2.25) × (-) ÷ 163.11 + (-22) - 3 × (-11)4.(+12) × (-) - 15 × (-1)5.- × [-32 × (-)2 - 2]6.-23 ÷ (-4)3 -7.12 ÷ [(-)2 - ]8.[(-2)2 × (-3)] ×9.[(-0.5) - ] × (-6)10.| - | × (-) ÷11.-22 - (-2)2 - 23 + (-2)312.-62 × (-1)2 - (-3)2 ÷ (-1)3 × (-3)13.-(-1)1997 - (1 - 0.5) × ÷ (-)14.(-1)3 - (-8) × + (-3)3 ÷ [(-2)5 + 5]15.-10 + 8 ÷ (-2)2 - (-4) × (-3)16.-49 + 2 × (-3)2 + (-6) ÷ (-)17.-14 + (1 - 0.5) × × [2 × (-3)2]18.(-2)2 - 2 × [(-)2 - 3 × ] ÷19.5 × (-6) - (-4)2 ÷ (-8)20.(-)2 + (- + 1) ×21.(- + ) × (-12) ÷ 622.(-) × (-4)2 - 0.25 × (-5) × (-4)223.(-)2 + × (- -2)24.-42 × [(-7) ÷ 6] + (-5)3 - 3 ÷ (-2)325.6 - (-12) ÷ (-2)26.(-48) ÷ 8 - (-5) ÷ (-)227.42 × (-) + (-) ÷ 0.2528.-81 ÷ (-3)229.-2 × (-3) - (-3) ÷ 330.(-5) × 6 + (-125) ÷ (-5)31.-(-0.25) × (-5) × 4 × (-1)1、-2×(-2)×1×8 + (-2)/(-2)/3 = 33/42、-12 + (-3)²/2 = -9.53、3/3 = 14、36/2 - 4×(-4)×(-3) = 1045、(3×4)×(-3) + 6 = -66、(-23)/(-2) - 13/(-4) = 5.57、23/2 × [(-2)×0.5 - (-1.6)] - 2 = -9.58、[(-2) - (-4)]/3 = 2/39、无法计算,方括号内为010、16/(-3) - (-5)×(-2)×(-2) - (-4) = -31/311、1、-44、-12、-112、无法计算,分母为013、-15 - [(-0.4)×(-2.5)] = -1414、(-8)×5 - 40 = -8015、(-1.2)/(-2) - (-2) = 1.416、-20/5×(5-3×(-3))/15 = 2/317、-3[-5+(1-0.2)/(-2)] = 1218、-23/1×(-1)²/(1)² - (2-(-4))×(-2.4) = -15/71.答案:(1) 17.(2) 删除。

初中数学:有理数乘除法混合运算计算(含答案)

初中数学:有理数乘除法混合运算计算(含答案)

初中数学:有理数乘除法混合运算计算(含答案)1.1) (-)×(-3)/(-1)/3;2) (-8)/(-1)/(-9).2.1) -0.75×(-0.4)×1;2) 0.6×(-)×(-)×(-2).3.1) -0.75×(-0.4)×1;2) 0.6×(-)×(-)×(-2).4.25×(?missing number?)5.missing number?)6.1) -0.75×(-0.4)×1;2) 0.6×(-)×(-)×(-2).7.1) (-36)/9/(-?missing number?);2) (-)×(-3)/(-1)/3.8.9.missing number?).10.4×(?missing number?)11.1) (-48)×0.125+48×(?missing number?);2) (?)×(-36)+(-3)×(-3)-6×3.12.1) (?missing number?);2) (?missing number?).13.1) (?missing number?);2) (?missing number?).14.36)××(-?missing number?).15.3)/3×(?missing number?).16.1) (-9)×31;2) 99-(-8)×(-31)-(-16)×31;36).17.1) (-48)×0.125+48×+(-48)×(?missing number?);2) (?missing number?)×(-36).18.1) (-3)×(-9)-8×(-5);2) -63/7+45/(-9);3) (-)×1/(-1);4) (1-+)/(-48).19.1) 10×(?missing number?);2) (?)×12;3) 19×(-11)+(?missing number?).20.missing number?).21.1) (-8)×(-12)×(-0.125)×(-)×(-0.001);2) (-1)×/(-)×2/(-)+(-2.5)/(-0.25)×(?missing number?).22.1) 10/(-)×6;2) (?missing number?)×(-6);3) -3/(-)+36/(-).23.1) -3/(-?missing number?);2) (-?missing number?)/(-?missing number?)-(-6). 24.missing number?)×(-72).25.missing number?)×(-72).26.8)×(-8)+(-7)×(-8)-15×8.27.1) (-32)/4×(-8);2) -0.75/(-1)/(-2).28.32×(-)+(-11)×(-)-21×(-).29.54×(-54)+54×(-).30.missing number?)2)(﹣2.5)÷(﹣0.5)÷(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.75×(﹣0.4)×1=0.3;(2)(﹣2.5)÷(﹣0.5)÷(﹣2)=2.5.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.3.计算:1)(﹣7)×(﹣5)÷(﹣4)×(﹣2);2)﹣3×﹣0.5×﹣2.5.分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)(﹣7)×(﹣5)÷(﹣4)×(﹣2)=﹣17.5;(2)﹣3×﹣0.5×﹣2.5=3.75.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.4.计算:1)(﹣)÷(﹣0.5)×(﹣6);2)﹣1.5÷(﹣0.75)×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)(﹣)÷(﹣0.5)×(﹣6)=72;(2)﹣1.5÷(﹣0.75)×(﹣2)=4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.5.计算:1)﹣4.5÷(﹣0.9)×(﹣2);2)(﹣0.8)÷0.2×(﹣)×2.分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣4.5÷(﹣0.9)×(﹣2)=20;(2)(﹣0.8)÷0.2×(﹣)×2=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.6.计算:1)﹣0.4×(﹣)÷(﹣0.2);2)(﹣0.2)÷0.05×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.4×(﹣)÷(﹣0.2)=2;(2)(﹣0.2)÷0.05×(﹣2)=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.7.计算:1)﹣0.6×(﹣)÷(﹣0.3);2)(﹣0.4)÷0.1×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.6×(﹣)÷(﹣0.3)=4;(2)(﹣0.4)÷0.1×(﹣2)=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.8.计算:1)﹣1.2÷(﹣0.3)×(﹣2);2)(﹣0.6)÷0.2×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.2÷(﹣0.3)×(﹣2)=﹣8;(2)(﹣0.6)÷0.2×(﹣3)=﹣9.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.9.计算:1)﹣0.5×(﹣)÷(﹣0.25);2)(﹣0.8)÷0.4×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.5×(﹣)÷(﹣0.25)=4;(2)(﹣0.8)÷0.4×(﹣2)=﹣4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.10.计算:1)﹣1.5÷(﹣0.75)×(﹣2);2)(﹣0.6)÷0.3×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.5÷(﹣0.75)×(﹣2)=4;(2)(﹣0.6)÷0.3×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.11.计算:1)﹣0.8×(﹣)÷(﹣0.4);2)(﹣0.5)÷0.25×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣0.8×(﹣)÷(﹣0.4)=4;(2)(﹣0.5)÷0.25×(﹣2)=﹣4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.12.计算:1)﹣1.6÷(﹣0.4)×(﹣2);2)(﹣0.4)÷0.2×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.6÷(﹣0.4)×(﹣2)=8;(2)(﹣0.4)÷0.2×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.13.计算:1)﹣1.8×(﹣)÷(﹣0.6);2)(﹣0.3)÷0.15×(﹣2).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣1.8×(﹣)÷(﹣0.6)=3;(2)(﹣0.3)÷0.15×(﹣2)=﹣4.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.14.计算:1)﹣2.4÷(﹣0.6)×(﹣2);2)(﹣0.2)÷0.1×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣2.4÷(﹣0.6)×(﹣2)=8;(2)(﹣0.2)÷0.1×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.15.计算:1)﹣3÷(﹣0.6)×(﹣2);2)(﹣0.1)÷0.05×(﹣3).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)﹣3÷(﹣0.6)×(﹣2)=10;(2)(﹣0.1)÷0.05×(﹣3)=﹣6.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.16.计算:1)(﹣8)×2÷(﹣0.4)×(﹣2);2)(﹣0.2)÷0.1×(﹣4).分析】各式利用乘除法则和符号规律进行化简,注意负数的乘除法.【解答】解:(1)(﹣8)×2÷(﹣0.4)×(﹣2)=80;(2)(﹣0.2)÷0.1×(﹣4)=﹣8.点评】此题考查了有理数的乘除法和符号规律,需要注意负数的运算法则和规律.17.计算:1)(﹣)×(﹣2)÷(﹣0.4)×(﹣2);2)(﹣0.1)÷0.05×(﹣5).分8.计算:(-8+9)÷(-1)分析:将除法变为乘法,再根据乘法分配律计算即可求解。

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14-1ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba +的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

专题2.6有理数的混合运算专项训练(40题)(北师大版)(原卷版+解析)

专题2.6有理数的混合运算专项训练(40题)(北师大版)(原卷版+解析)

专题2.6 有理数的混合运算专项训练(40题)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对有理数混合运算的理解!1.(2023春·河北唐山·七年级统考期末)计算:(512−59)÷(−536) 2.(2023春·辽宁大连·七年级统考期末)计算:(−10)+3[(−4)2÷(−8)−(1+32)×2].3.(2023春·上海浦东新·六年级上海市民办新竹园中学校考期中)计算:[(−1)2018+(1−12)×13]+(−32+2)4.(2023春·安徽安庆·七年级统考期末)计算:−16−(0.5−13)÷16×[−2−(−3)3]−|23−32|.5.(2023春·河南南阳·七年级统考期中)计算: (12−1)×(13−1)×(13−1)×...×(12022−1) . 6.(2023春·河南南阳·七年级统考期中)计算 (1)(−15)×(18−13)÷(−124); (2)−12020×[4−(−3)2]+3÷|−34|;7.(2023春·黑龙江双鸭山·七年级统考期末)计算: (1)−12×(−16+34−512);(2)−1×[−32×(−23)2−2]×(−32).8.(2023春·云南昭通·七年级统考期末)计算: (1)(−21)÷7+3×(−4)−(−12); (2)−12020+(−2)3×(−12)−|−1−5|.9.(2023春·四川凉山·七年级统考期末)计算 (1)−14+(1−0.5)×13×[3−(−3)2](2)(−13+15−215)×(−60)10.(2023春·上海嘉定·六年级统考期末)计算: (1)3.2−23+35.(2)323×2215+523×1315−2×1315.11.(2023春·七年级课时练习)计算下列各题: (1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587);(2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}.12.(2023春·湖北武汉·七年级统考期末)计算: (1)11+(−7)−12−(−5)(2)−22×5−(−2)3÷4 -22×5-(-2)3÷4 13.(2023春·辽宁葫芦岛·七年级统考期末)计算 (1)(12−56−712)×(−12)(2)−32÷3+(12−23)×12−(−1)202214.(2023春·全国·七年级期末)计算: (1)(−34+156−78)×(−24)(2)−23+|5−8|+24÷(−3)15.(2023春·辽宁大连·七年级统考期末)计算: (1)42×(−23)+(−34)÷(−0.25); (2)2×(−3)3−4×(−3)+15.16.(2023春·湖南湘潭·七年级校联考期中)计算. (1)(−12.5)×(+317)×(−45)×(−0.1); (2)−12−(23−78+112−56)×(−24);(3)482425÷(−48);(4)7777×13879+29÷(−17777)−3859×7777. 17.(2023春·辽宁抚顺·七年级统考期中)计算: (1)(−49)−(+91)−(−5)+(−9); (2)(14+38−712)÷124;(3)(−1)2021×|−112|−(0.5)÷(−13).(4)−23×(−8)−(−12)3×(−16)+49×(−3)218.(2023春·山东菏泽·七年级统考期中)计算: (1)(1−16+34)×(−48)(2)−14+(−2)÷(−13)−|−9| (3)(−1)2÷12×[6−(−2)3]19.(2023春·山东德州·七年级校联考期中)计算 (1)(−0.5)−(−314)+2.75−(+712);(2)(−49)÷75×57÷(−25)(3)−22÷43−[22−(1−12×13)]×12;20.(2023春·甘肃酒泉·七年级统考期中)计算 (1)(−7)+(+15)−(−25)(2)7.54+(−5.72)−(−12.46)−4.28 (3)−24×(−56+38−112)(4)−13×3+6×(−13)(5)−22+3×(−1)4−(−4)×5 (6)(−3)÷34×43×(−15)21.(2023春·重庆万州·七年级重庆市万州新田中学校考期中)计算: (1)8+(−10)+(−2)−(−5) (2)(−0.5+13+16)÷124 (3)53÷[4×(−34)2−1](4)−14−(−3)3÷[(12−23)−|0.52−13|]22.(2023春·河南南阳·七年级统考期中)计算: (1)−32−(+11)+(−9)−(−16); (2)(−45911)÷|−9|(用简便方法计算);(3)(−3)2−(112)3×29−6÷|−23|3;(4)(−12+34)×(−2)3+(−4)2÷2×12.23.(2023春·河南驻马店·七年级统考期中)计算: (1)(1112−76+34−1324)×(−48);(2)−9+5×|−3|−(−2)2÷4;(3)−18+(−4)2÷14−(1−32)×(13−0.5). 24.(2023春·福建漳州·七年级校考期中)计算: (1)−41−28+(−19)+(−22) (2)(−20)×(−115)+4÷(−23)(3)(12+56−712)×(−24)(4)−32−24÷(−4)×12+(−1)202225.(2023春·湖北襄阳·七年级统考期末)计算: (1)(−7)−(+5)+(−4)−(−10) (2)115×(13−12)×311÷54(3)(−10)4+[(−4)2−(3+32)×2].26.(2023春·海南海口·七年级统考期末)计算 (1)5×(−3)+(−12)×(−34)−52 (2)(−48)×(56−1+712−18)(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12)27.(2023春·河北唐山·七年级统考期中)计算: (1)35−3.7−(−25)−1.3 (2)(−34+712−58)÷(−124)(3)−32+1÷4×14−|−114|×(−0.5)228.(2023春·山东滨州·七年级统考期末)计算:(1)(134−78−712)÷(−78); (2)−1100÷(−12)3−17×[2−(−4)2].29.(2023春·山东临沂·七年级统考期末)计算: (1)23−|−5|−(−2)÷12;(2)−14−(1−0.5)×13×[2−(−3)2].30.(2023春·云南昆明·七年级校考期中)计算: (1)13+(−56)+47+(−34) (2)(16−314+23)×(−42)(3)2×(−5)+22−3÷12 (4)−22+|6−10|−3×(−1)202331.(2023·山东潍坊·七年级统考期中)计算下列各题: (1)(﹣12)﹣(﹣65)+(﹣8)﹣710(2)(﹣34+712﹣59)÷(﹣136) (3)﹣3×22﹣(﹣3×2)3(4)﹣32+16÷(﹣2)×12﹣(﹣1)2017(5)(﹣14﹣56+89)×62+(﹣2)2×(﹣14) (6)14÷73+0.25×815﹣27×14+715×0.25 (7)(﹣32)2×23÷|﹣3|+(﹣0.25)÷(12)6(8)(﹣2)3﹣35[3×(﹣23)2﹣14]+8[(12)3﹣(﹣12)2﹣1].32.(2023·山东济宁·七年级校考期中)计算下列各题 (1)−5.53+4.26+(−8.47)−(−2.38) (2)−0.125×(−47)×8×(−7) (3)(1112−76+34−1324)×(−48) (4)−12018+12+(−12)×[−2−(−3)]33.(2023春·山东聊城·七年级统考期中)计算 (1)−449−(+556)+(−559)−(−56)(2)2×(−137)−234×13+(−137)×5+14×(−13)(3)16÷(−2)3−(−12)3×(−4)+2.5(4)(−1)2019+|−22+4|−(12−14+18)×(−24)34.(2023春·七年级课时练习)计算: (1)(−323)−(−2.4)+(−13)−(+425)(2)[−23+(−35)]+[1+(−23)×(−35)] (3)(−1)4−{35−[(13)2+0.4×(−112)÷(−2)2]}(4)[(223+334)(223−334)+(223−334)2]÷(334−223) 35.(2023春·七年级课时练习)计算(1)−33−(12+56−712)×(−24)(2)−212+12÷(−2)×|−83|36.(2023春·七年级课时练习)计算(1)−225−(+3411)+(−35)−(−1311) (2)(-81) ÷214×(−49)÷8+(−2)÷14÷(−12)37.(2023春·七年级课时练习)计算: (1)(−2878+1479)÷7;(2)(−1313)÷5−123÷5+13×15; (3)112×[3×(−23)−1]−13×(−8)−8; (4)−|−13|−|−34×23|−|12−13|;(5)(213−312+718)÷(−116)+(−116)÷(213−312+718). 38.(2023春·七年级课时练习)计算: (1)-(-2.5)+(+2.2)-3.1+(-0.5)-(+1.1) (2) −0.5−314+(−2.75)+712(3) (−34−56+78)×(−24)(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137(5)(-1)9×(-3)3-30 (6)-︱-3︱×(-4)-6÷(-13)239.(2023春·七年级课时练习)计算:6.91÷3+13×9100−0.3·18711+83100−9.42÷137311−7.12+41750.40.(2023春·全国·七年级期末)(1)计算:133+233+232+23;(2)计算:1310+2310+⋯+234+233+232+23; (3)计算:23n +⋯+234+233+232+23.专题2.6 有理数的混合运算专项训练(40题)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对有理数混合运算的理解!1.(2023春·河北唐山·七年级统考期末)计算:(512−59)÷(−536)【答案】1【分析】先将除法变成乘法,再去括号运算即可. 【详解】解:(512−59)÷(−536)=(512−59)×(−365)=512×(−365)−59×(−365) =−3+4 =1.【点睛】本题主要考查有理数的混合运算,掌握有理数的混合运算的法则是解题的关键. 2.(2023春·辽宁大连·七年级统考期末)计算:(−10)+3[(−4)2÷(−8)−(1+32)×2]. 【答案】−1022【分析】按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可. 【详解】解:原式=−1000+[16÷(−8)−(1+9)×2]=−1000+(−2−10×2)=−1000−2−20=−1022.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.3.(2023春·上海浦东新·六年级上海市民办新竹园中学校考期中)计算:[(−1)2018+(1−12)×13]+(−32+2) 【答案】−556【分析】先计算有理数的乘方,再计算括号内的减法、有理数的乘法,然后计算有理数的减法即可. 【详解】解:原式=(1+12×13)+(−9+2)=(1+16)−7=116−7=−556【点睛】本题考查了含乘方的有理数混合运算,熟记有理数的运算法则是解题关键.4.(2023春·安徽安庆·七年级统考期末)计算:−16−(0.5−13)÷16×[−2−(−3)3]−|23−32|.【答案】−27【分析】先计算括号内的,并要先计算乘方,再计算乘除,最后计算加减即可. 【详解】解:原式=−1−16×6×[−2−(−27)]−|8−9|=−1−25−1=−27.【点睛】本题考查有理数混合运算,熟练掌握有理数混合运算法则是解题的关键.5.(2023春·河南南阳·七年级统考期中)计算: (12−1)×(13−1)×(13−1)×...×(12022−1) . 【答案】−12022【分析】计算出每个括号内的减法运算,观察相邻两个因数的分子分母,第一项的分母可以与第二项的分子约分,第二项的分母可以与第三项的分子约分,以此类推,化简式子计算出最终结果. 【详解】解:(12−1)×(13−1)×(14−1)×...×(12022−1), =(−12)×(−23)×(−34)×...×(−20212022),=−12022.【点睛】本题考查了有理数的复杂运算,解决此题的关键是观察式子的一般规律子再利用简便运算计算结果. 6.(2023春·河南南阳·七年级统考期中)计算 (1)(−15)×(18−13)÷(−124);(2)−12020×[4−(−3)2]+3÷|−34|; 【答案】(1)−1 (2)9【分析】(1)按照有理数四则混合运算法则计算即可; (2)先算乘方、然后按照有理数四则混合运算法则计算即可. 【详解】(1)解:(−15)×(18−13)÷(−124)=−15×(324−824)×(−24)=−15×(−524)×(−24)=−1.(2)解:−12020×[4−(−3)2]+3÷|−34|=−1×(4−9)+3×43=5+4=9.【点睛】本题主要考查了有理数四则混合运算、含乘方有理数四则混合运算等知识点,灵活运用相关运算法则成为解答本题的关键.7.(2023春·黑龙江双鸭山·七年级统考期末)计算: (1)−12×(−16+34−512);(2)−1×[−32×(−23)2−2]×(−32).【答案】(1)−2 (2)−9【分析】(1)利用乘法分配律求解即可; (2)按照有理数的运算顺序,进行计算即可求解.【详解】(1)解:原式=(−12)×(−16)+(−12)×34+(−12)×(−512)=2+(−9)+5=−2;(2)解:原式=−1×(−9×49−2)×(−32)=−1×(−4−2)×(−32)=−1×(−6)×(−3 2 )=−9.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.8.(2023春·云南昭通·七年级统考期末)计算:(1)(−21)÷7+3×(−4)−(−12);(2)−12020+(−2)3×(−12)−|−1−5|.【答案】(1)−3(2)−3【分析】(1)先算乘除,再算加减;(2)先乘方,去绝对值,再乘除,最后算加减.【详解】(1)解:(−21)÷7+3×(−4)−(−12)=−3−12+12=−3;(2)−12020+(−2)3×(−12)−|−1−5|=−1−8×(−12)−6=−1+4−6=−3.【点睛】本题考查有理数的运算.熟练掌握有理数的运算法则,以及运算顺序,是解题的关键.9.(2023春·四川凉山·七年级统考期末)计算(1)−14+(1−0.5)×13×[3−(−3)2](2)(−13+15−215)×(−60)【答案】(1)−2(2)16【分析】(1)首先进行有理数的乘方计算,然后计算括号里面的数字,最后进行计算乘法和加法即可;(1)利用乘法分配律进行简便计算即可得出答案.【详解】(1)解:原式=−1+12×13×(−6)=−1−1=−2;(2)解:原式=−13×(−60)+15×(−60)−215×(−60)=20−12+8=16.【点睛】本题主要考查了有理数混合运算,熟练掌握相关运算法则和运算律是解题关键.10.(2023春·上海嘉定·六年级统考期末)计算:(1)3.2−23+35.(2)323×2215+523×1315−2×1315.【答案】(1)4715(2)11【分析】(1)首先把小数化为分数,再进行有理数的加减运算,即可求得结果;(2)利用有理数乘法分配律的逆用,进行运算,即可求得结果.【详解】(1)解:3.2−23+35=165−23+35=4815−1015+915=48−10+915=4715;(2)解:323×2215+523×1315−2×1315=323×2215+(523×1315−2×1315)=323×2215+1315×(523−2)=323×2215+1315×323=323×(2215+1315) =323×3 =11.【点睛】本题考查了有理数的混合运算及运算律,熟练掌握和运用有理数的运算律是解决本题的关键.11.(2023春·七年级课时练习)计算下列各题:(1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587);(2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}. 【答案】(1)原式=514;(2)原式=3. 【分析】(1)运用加法的运算律,把小数与小数相加,整数与整数相加,分数与分数相加;(2)把带分数化为假分数,除法转化为乘法,再按有理数的混合运算法则计算.【详解】(1)原式=3.587+5-512+7-314-1.587 =(3.587-1.587)+(5+7)+(-512-314) =2+12-834=514.(2)原式=-1×{[-143÷4+0.5]÷(-19)-9}=-1×[(-23)÷(-19)-9]=-1×(6-9)=-1×(-3)=3.12.(2023春·湖北武汉·七年级统考期末)计算:(1)11+(−7)−12−(−5)(2)−22×5−(−2)3÷4 -22×5-(-2)3÷4【答案】(1)−3;(2)-18【分析】(1)根据有理数的加减运算法则进行计算即可得到答案;(2)先进行乘方运算,再进行有理数乘除运算,最后进行有理数减法运算即可得到答案.【详解】(1)解:11+(−7)−12−(−5)=11−7−12+5=−3;(2)解:−22×5−(−2)3÷4=−4×5−(−8)÷4=−20−(−2)=−18.【点睛】本题考查了有理数的混合运算,乘方运算,熟练掌握相关运算法则是解题关键.13.(2023春·辽宁葫芦岛·七年级统考期末)计算(1)(12−56−712)×(−12)(2)−32÷3+(12−23)×12−(−1)2022【答案】(1)11(2)−6【分析】(1)根据乘法分配律计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用.【详解】(1)(12−56−712)×(−12)=12×(−12)−56×(−12)−712×(−12)=−6+10+7=11(2)−32÷3+(12−23)×12−(−1)2022=−9÷3+12×12−23×12−1=−3+6−8−1=−6【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春·全国·七年级期末)计算:(1)(−34+156−78)×(−24) (2)−23+|5−8|+24÷(−3)【答案】(1)-5(2)-13【详解】试题分析:(1)根据乘法分配律先去括号,然后根据有理数的乘法计算即可;(2)根据乘方、绝对值、和有理数的除法计算即可.试题解析:(1)(1)(−34+156−78)×(−24) =(−34)×(−24)+116×(−24)+(−78)×(−24) =18-44+21=-5 (2)−23+|5−8|+24÷(−3)=-8+3-8=-1315.(2023春·辽宁大连·七年级统考期末)计算:(1)42×(−23)+(−34)÷(−0.25); (2)2×(−3)3−4×(−3)+15.【答案】(1)−25(2)−27【分析】(1)根据有理数四则混合运算法则计算即可.(2)先算乘方,后算乘除,最后算加减.【详解】(1)42×(−23)+(−34)÷(−0.25)=−28+3=−25;(2)2×(−3)3−4×(−3)+15=−54+12+15=−27.【点睛】此题考查了有理数的运算,解题的关键是熟悉有理数四则混合运算法则.16.(2023春·湖南湘潭·七年级校联考期中)计算.(1)(−12.5)×(+317)×(−45)×(−0.1);(2)−12−(23−78+112−56)×(−24);(3)482425÷(−48);(4)7777×13879+29÷(−17777)−3859×7777.【答案】(1)−317(2)−24(3)−1150(4)777700【分析】(1)先根据有理数的乘法法则确定符号,再结合乘法交换律即可计算结果;(2)根据有理数乘方法则,结合乘法分配律即可计算结果;(3)根据有理数乘除运算法则,结合乘法分配律即可计算结果;(4)根据有理数乘除运算法则,逆用乘法分配律即可计算结果.【详解】(1)解:(−12.5)×(+317)×(−45)×(−0.1)=−504×317×45×110=−(504×45×110)×317=−317;(2)解−12−(23−78+112−56)×(−24)=−1−[23×(−24)−78×(−24)+112×(−24)−56×(−24)]=−1−(−16+21−2+20)=−1+16−21+2−20=−24;(3)解:482425÷(−48)=(48+2425)×(−148) =48×(−148)+2425×(−148) =−1−150 =−1150; (4)解:7777×13879+29÷(−17777)−3859×7777=7777×13879+29×(−7777)−3859×7777 =7777×(13879−29−3859) =7777×100=777700.【点睛】本题考查了有理数的混合运算,乘法运算律,熟练掌握相关运算法则是解题关键.17.(2023春·辽宁抚顺·七年级统考期中)计算:(1)(−49)−(+91)−(−5)+(−9);(2)(14+38−712)÷124; (3)(−1)2021×|−112|−(0.5)÷(−13). (4)−23×(−8)−(−12)3×(−16)+49×(−3)2 【答案】(1)-144(2)1(3)0(4)66【分析】(1)统一成省略加号和括号的和的形式,再结合有理数加法法则解答;(2)先转化为乘法,再利用乘法分配律解答;(3)先乘方,再乘除,最后计算加减;(4)先乘方,再乘除,最后计算加减、注意负号的作用;【详解】(1)(−49)−(+91)−(−5)+(−9)=-49+5-91-9=-44-100=-144(2)(14+38−712)÷124 =14×24+38×24−712×24=6+9-14=1 (3)(−1)2021×|−112|−(0.5)÷(−13)=−1×32−12×(−3) =0(4)−23×(−8)−(−12)3×(−16)+49×(−3)2=64+18×(-16)+4 =64-2+4=66【点睛】本题考查含有乘方的有理数的混合运算,是重要考点,掌握相关知识是解题关键.18.(2023春·山东菏泽·七年级统考期中)计算:(1)(1−16+34)×(−48) (2)−14+(−2)÷(−13)−|−9|(3)(−1)2÷12×[6−(−2)3]【答案】(1)−76(2)−4(3)28【分析】(1)利用乘法分配律进行计算即可得到答案;(2)先分别计算出乘方、绝对值、商,最后再加减即可;(3)按照先乘方,再乘除,有括号的先算括号内的顺序进行计算即可得到答案,计算中注意符号.【详解】(1)(1−16+34)×(−48)=1×(−48)−16×(−48)+34×(−48)=−48+8−36=−76(2)−14+(−2)÷(−13)−|−9|=−1+(−2)×(−3)−9=−1+6−9=−4(3)(−1)2÷12×[6−(−2)3]=1×2×[6−(−8)]=1×2×14= 28【点睛】本题考查有理数的计算,熟练掌握有理数的计算法则和计算顺序,是解题的关键.19.(2023春·山东德州·七年级校联考期中)计算(1)(−0.5)−(−314)+2.75−(+712);(2)(−49)÷75×57÷(−25)(3)−22÷43−[22−(1−12×13)]×12;【答案】(1)−2(2)1(3)−41【分析】(1)根据有理数加减运算法则直接计算即可得到答案;(2)根据有理数乘除运算法则直接计算即可得到答案;(3)先算乘方运算,再按照运算顺序及相关运算法则计算即可得到答案.【详解】(1)解:(−0.5)−(−314)+2.75−(+712)=(−12)−(−314)+234−(+712) =(−12)+314+234−712=(−12−712)+(314+234)=−8+6=−2;(2)解:(−49)÷75×57÷(−25)=(−49)×57×57÷(−25)=(−25)÷(−25)=1;(3)解:−22÷43−[22−(1−12×13)]×12=−4÷43−[4−(1−12×13)]×12=−4×34−[4−(1−16)]×12=−3−(4−56)×12=−3−(246−56)×12=−3−196×12=−3−38=−41.【点睛】本题考查有理数混合运算,涉及乘方运算、有理数加减乘除运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.20.(2023春·甘肃酒泉·七年级统考期中)计算(1)(−7)+(+15)−(−25)(2)7.54+(−5.72)−(−12.46)−4.28(3)−24×(−56+38−112)(4)−13×3+6×(−13)(5)−22+3×(−1)4−(−4)×5(6)(−3)÷34×43×(−15)【答案】(1)33(2)10(3)13(5)19(6)80【分析】(1)根据有理数加减运算法则即可解答;(2)先去括号,然后再利用加法结合律即可解答;(3)直接运用乘法分配律计算即可;(4)根据有理数四则混合运算法则计算即可;(5)先算乘方、然后根据有理数四则混合运算法则计算即可;(6)根据有理数乘除混合运算法则计算即可.【详解】(1)解:(−7)+(+15)−(−25)=−7+15+25=33.(2)解:7.54+(−5.72)−(−12.46)−4.28=7.54+(−5.72)+12.46−4.28=(7.54+12.46)+[(−5.72)−4.28]=20−10=10.(3)解:−24×(−56+38−112)=−56×(−24)+38×(−24)−112×(−24)=20−9+2=13.(4)解:−13×3+6×(−13)=−1−2=−3.(5)解:−22+3×(−1)4−(−4)×5=−4+3×1+20=−4+3+20(6)解:(−3)÷34×43×(−15)=(−3)×43×43×(−15)=(−4)×43×(−15)=−163×(−15)=80.【点睛】本题主要考查了有理数加减运算、有理数乘除运算、有理数乘方运算、有理数运算律等知识点,灵活应用相关运算法则成为解答本题的关键.21.(2023春·重庆万州·七年级重庆市万州新田中学校考期中)计算:(1)8+(−10)+(−2)−(−5)(2)(−0.5+13+16)÷124(3)53÷[4×(−34)2−1](4)−14−(−3)3÷[(12−23)−|0.52−13|]【答案】(1)1(2)0(3)43(4)−109【分析】(1)先将减法化成加法,再按加法法则计算即可;(2)先将除法转化成乘法,然后运用乘法分配律计算即可,最后计算加法;(3)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;(4)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;【详解】(1)解:原式=8+(−10)+(−2)+5=(8+5)+[(−10)+(−2)]=13−12=1;(2)解:原式=(−12+13+16)×24=−12×24+13×24+16×24=−12+8+4=0;(3)解:原式=53÷[4×916−1]=53÷[94−1]=53÷54=43;(4)解:原式=−1+27÷[−16−|14−13|]=−1+27÷[−16−112]=−1+27÷(−312)=−1−108=−109.【点睛】本题考查有理数的混合运算,绝对值,熟练掌握有理数混合运算法则是解题的关键.22.(2023春·河南南阳·七年级统考期中)计算:(1)−32−(+11)+(−9)−(−16);(2)(−45911)÷|−9|(用简便方法计算);(3)(−3)2−(112)3×29−6÷|−23|3;(4)(−12+34)×(−2)3+(−4)2÷2×12.【答案】(1)−36(2)−5111(3)−12(4)2【分析】(1)减法转化为加法,再进一步计算即可;(2)原式变形为(−45−911)×19,再进一步计算即可;(3)先计算乘方、除法转化为乘法,再计算乘法,最后计算减法即可; (4)先计算乘方,再计算乘除,最后计算加法即可. 【详解】(1)原式=−32−11−9+16, =−52+16, =−36;(2)原式=(−45−911)×19,=−45×19−911×19, =−5−111, =−5111; (3)原式=9−278×29−6×278,=9−34−814,=−12;(4)原式=14×(−8)+16÷2×12,=−2+8×12,=−2+4, =2;【点睛】本题主要考查含乘方的有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 23.(2023春·河南驻马店·七年级统考期中)计算: (1)(1112−76+34−1324)×(−48);(2)−9+5×|−3|−(−2)2÷4;(3)−18+(−4)2÷14−(1−32)×(13−0.5).【答案】(1)2 (2)5 (3)6123【分析】(1)根据乘法分配律计算即可; (2)先算乘方,再算乘除法,最后算加减即可;(3)先算乘方和括号内的式子,然后再计算括号外的乘除法,最后算加减法即可. 【详解】(1)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48) =−44+56+(−36)+26=2(2)−9+5×|−3|−(−2)2÷4=−9+5×3−4÷4 =−9+15−1=5(3)−18+(−4)2÷14−(1−32)×(13−0.5)=−1+64−(−8)×(−16)=−1+64−43=6123【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用. 24.(2023春·福建漳州·七年级校考期中)计算: (1)−41−28+(−19)+(−22) (2)(−20)×(−115)+4÷(−23)(3)(12+56−712)×(−24)(4)−32−24÷(−4)×12+(−1)2022 【答案】(1)−110 (2)18 (3)−18 (4)−5【分析】(1)原式利用减法法则变形,计算即可求出值; (2)原式从先乘除后加减计算即可求出值; (3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方,然后乘除法,最后减法即可求出值. 【详解】(1)解:−41−28+(−19)+(−22)=(−41−19)+(−28−22)=−60+(−50)=−110;(2)解:(−20)×(−115)+4÷(−23)=(−20)×(−65)+4×(−32)=24−6=18;(3)解:(12+56−712)×(−24)=12×(−24)+56×(−24)−712×(−24) =−12−20+14 =−32+14=−18;(4)解:−32−24÷(−4)×12+(−1)2022=−9+6×12+1=−8+3=−5.【点睛】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则及运算律是解本题的关键. 25.(2023春·湖北襄阳·七年级统考期末)计算: (1)(−7)−(+5)+(−4)−(−10) (2)115×(13−12)×311÷54(3)(−10)4+[(−4)2−(3+32)×2].【答案】(1)−6; (2)−225;(3)9992.【分析】(1)根据有理数的加减混合运算进行计算即可得到答案; (2)先计算括号内,再进行有理数乘除计算即可得到答案; (3)先计算乘方和括号内,再去括号进行加减计算即可得到答案. 【详解】(1)解:(−7)−(+5)+(−4)−(−10)=−7−5−4+10=−6; (2)解:115×(13−12)×311÷54=115×(−16)×311×45 =−115×16×311×45=−225;(3)解:(−10)4+[(−4)2−(3+32)×2]=10000+(16−12×2) =10000+16−24=9992.【点睛】本题考查了有理数的四则运算,乘方运算,熟练掌握相关运算法则是解题关键. 26.(2023春·海南海口·七年级统考期末)计算 (1)5×(−3)+(−12)×(−34)−52(2)(−48)×(56−1+712−18)(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12) 【答案】(1)−8.5 (2)−14 (3)75【详解】(1)解:5×(−3)+(−12)×(−34)−52=−15+9−52=−8.5;(2)(−48)×(56−1+712−18)=56×(−48)−1×(−48)+712×(−48)−18×(−48) =−40+48−28+6=−14;(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12) =[−1+9×(−16)]×310÷(−0.01)=(−1−32)×310÷(−0.01)=(−52)×310÷(−0.01)=75.【点睛】此题考查了有理数的混合运算,正确掌握有理数的乘方运算法则,乘法分配律,及四则混合运算的计算法则是解题的关键.27.(2023春·河北唐山·七年级统考期中)计算: (1)35−3.7−(−25)−1.3 (2)(−34+712−58)÷(−124)(3)−32+1÷4×14−|−114|×(−0.5)2【答案】(1)−4 (2)19 (3)−914【分析】(1)减法转化为加法,再利用加法交换律和结合律计算即可; (2)将除法转化为乘法,再利用乘法分配律计算即可;(3)根据有理数的混合运算顺序和运算法则计算即可. 【详解】(1)解:35−3.7−(−25)−1.3=35−3.7+25−1.3 =(35+25)+(−3.7−1.3)=1+(−5)=−4;(2)(−34+712−58)÷(−124)=(−34+712−58)×(−24)=−34×(−24)+712×(−24)−58×(−24)=18−14+15=19;(3)−32+1÷4×14−|−114|×(−0.5)2=−9+1×14×14−54×14=−9+116−516 =−9+(116−516) =−9+(−14)=−914.【点睛】本题考查有理数的混合运算.解题的关键是掌握有理数混合运算顺序和运算法则. 28.(2023春·山东滨州·七年级统考期末)计算: (1)(134−78−712)÷(−78); (2)−1100÷(−12)3−17×[2−(−4)2].【答案】(1)−13 (2)10【分析】(1)根据除以一个数等于乘以这个数的倒数和乘法分配律计算即可. (2)先算乘方,再算括号里面的,再计算乘除,最后算加减. 【详解】(1)解:原式=(74−78−712)×(−87) =74×(−87)−78×(−87)−712×(−87) =−2+1+23=−13(2)解:原式=(−1)÷(−18)−17×(2−16)=8−17×(−14)=8+2 =10【点睛】本题考查了含乘方的有理数混合运算,熟练掌握运算法则是解题的关键. 29.(2023春·山东临沂·七年级统考期末)计算: (1)23−|−5|−(−2)÷12;(2)−14−(1−0.5)×13×[2−(−3)2].【答案】(1)22 (2)16【分析】(1)根据绝对值性质,有理数四则混合运算法则直接运算即可得到答案; (2)先算乘方,再算乘除,最后算加减即可得到答案; 【详解】(1)解:原式=23−5−(−4)=18+4=22;(2)解:原式=−1−12×13×(2−9)=−1−16×(−7)=−1+76=16.【点睛】本题考查含乘方有理数混合运算,解题的关键是注意符号选取及去绝对值.30.(2023春·云南昆明·七年级校考期中)计算:(1)13+(−56)+47+(−34)(2)(16−314+23)×(−42)(3)2×(−5)+22−3÷12(4)−22+|6−10|−3×(−1)2023【答案】(1)−30(2)−26(3)−12(4)3【分析】(1)根据有理数的加减法即可得到答案;(2)根据乘法分配和有理数的加减法即可得到答案;(3)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;(4)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;【详解】(1)解:原式=13+47+(−56)+(−34)=60+(−90)=−30;(2)解:原式=16×(−42)−314×(−42)+23×(−42)=−7−(−9)+(−28)=−35+9=−26;(3)解:原式=−10+4−6=−12;(4)解:原式=−4+4−3×(−1) =−4+4+3=3.【点睛】本题主要考查有理数的混合运算,掌握有理数的运算性质是解题的关键.31.(2023·山东潍坊·七年级统考期中)计算下列各题:(1)(﹣12)﹣(﹣65)+(﹣8)﹣710(2)(﹣34+712﹣59)÷(﹣136)(3)﹣3×22﹣(﹣3×2)3(4)﹣32+16÷(﹣2)×12﹣(﹣1)2017(5)(﹣14﹣56+89)×62+(﹣2)2×(﹣14)(6)14÷73+0.25×815﹣27×14+715×0.25 (7)(﹣32)2×23÷|﹣3|+(﹣0.25)÷(12)6(8)(﹣2)3﹣35[3×(﹣23)2﹣14]+8[(12)3﹣(﹣12)2﹣1].【答案】(1)﹣1912(2)26(3)204(4)﹣12(5)﹣63(6)214(7)﹣1512(8)﹣1715 【详解】试题分析:(1)直接利用有理数加减运算法则计算得出答案;(2)利用乘法分配律,用括号里的每一项分别乘以﹣36,再进行加减运算即可;(3)直接利用有理数混合运算法则计算得出答案;(4)直接利用有理数混合运算法则计算得出答案;(5)利用乘法分配律,用括号里的每一项分别乘以36,再进行混合运算即可;(6)直接利用有理数混合运算法则计算得出答案;(7)直接利用有理数混合运算法则计算得出答案;(8)直接利用有理数混合运算法则计算括号里面,进而得出答案.试题解析:(1)(﹣12)﹣(﹣)+(﹣8)﹣=﹣12+﹣8﹣=﹣20+=﹣19;(2)(﹣+﹣)÷(﹣)=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=27﹣21+20=26;(3)﹣3×22﹣(﹣3×2)3=﹣3×4+216=204;(4)﹣32+16÷(﹣2)×﹣(﹣1)2017=﹣9﹣4+1=﹣12;(5)(﹣﹣+)×62+(﹣2)2×(﹣14)=﹣×36﹣×36+×36﹣4×14=﹣9﹣30+32﹣56=﹣63;(6)14÷+0.25×﹣×14+×0.25=6+0.25×(+)﹣4=2+=2;(7)(﹣)2×÷|﹣3|+(﹣0.25)÷()6=××﹣×64=﹣16=﹣15;(8)(﹣2)3﹣[3×(﹣)2﹣14]+8[()3﹣(﹣)2﹣1] =﹣8﹣×(﹣1)+8×(﹣﹣1)=﹣8﹣+1﹣2﹣8=﹣17.点睛:此题主要考查了有理数的混合运算,关键是掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.32.(2023·山东济宁·七年级校考期中)计算下列各题(1)−5.53+4.26+(−8.47)−(−2.38)(2)−0.125×(−47)×8×(−7)(3)(1112−76+34−1324)×(−48)(4)−12018+12+(−12)×[−2−(−3)]【答案】(1)-7.36;(2)-4;(3)2;(4)-1.【分析】分别根据有理数的加、减、乘、除法进行计算,有乘方的先算乘方,再算乘除,最后算加减法.【详解】(1)−5.53+4.26+(−8.47)−(−2.38)=−5.53+4.26−8.47+2.38=−5.53−8.47+4.26+2.38=−14+6.64=−7.36;(2)−0.125×(−47)×8×(−7)=−18×47×8×7=-4;(3)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48)=−44+56−36+26=2;(4)−12018+12+(−12)×[−2−(−3)]=−1+12+(−12)×(−2+3)=−1+12−12=-1.【点睛】此题考查有理数的加、减、乘、除、乘方运算,掌握正确的计算顺序是解题的关键.33.(2023春·山东聊城·七年级统考期中)计算(1)−449−(+556)+(−559)−(−56) (2)2×(−137)−234×13+(−137)×5+14×(−13)(3)16÷(−2)3−(−12)3×(−4)+2.5(4)(−1)2019+|−22+4|−(12−14+18)×(−24)【答案】(1)−15,(2)-49,(3)0,(4)8【分析】(1)利用减法法则把加减法统一成加法,相加即可得到结果;(2)运用加法交换律和结合律,把含有相同因数的两个式子相加;再用乘法分配律的逆运算,进行简便运算即可;(3)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)按照乘方、绝对值、乘法分配律进行运算即可.【详解】(1)−449−(+556)+(−559)−(−56) =−449−556−559+56 =(−449−559)+(−556+56) =−10−5=−15(2)2×(−137)−234×13+(−137)×5+14×(−13)=[2 ×(−137)+(−137)×5]+[− 234×13+14×(−13 )] =(−137)×(5+2)+13×(−234−14)=-10-39=-49(3)16÷(−2)3−(−12)3×(−4)+2.5=16÷(−8)−(−18)×(−4)+2.5。

有理数的混合运算练习题含答案共17套

有理数的混合运算练习题含答案共17套

有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14-1ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数的混合运算练习题及答案

有理数的混合运算练习题及答案

有理数的混合运算练习题及答案有理数的混合运算练习题及答案有理数是数学中的一个重要概念,它包括整数和分数。

有理数的运算是数学中的基础知识,掌握有理数的混合运算对于学习数学是至关重要的。

在本文中,我将为大家提供一些有理数的混合运算练习题及答案,希望能帮助大家巩固对有理数运算的理解。

题目一:计算下列各题的结果。

1. (-3) + 5 - (-2) - 42. 2/3 × (-1/4) ÷ 2/53. 1/2 + (-3/4) - (-1/3)4. (-5) × 2/3 ÷ (-1/4)5. (-2/3) + (-1/2) - (-5/6)答案一:1. (-3) + 5 - (-2) - 4 = -3 + 5 + 2 - 4 = 02. 2/3 × (-1/4) ÷ 2/5 = -1/6 ÷ 2/5 = -5/123. 1/2 + (-3/4) - (-1/3) = 1/2 - 3/4 + 1/3 = -1/124. (-5) × 2/3 ÷ (-1/4) = -5 × 2/3 ÷ (-1/4) = 405. (-2/3) + (-1/2) - (-5/6) = -2/3 - 1/2 + 5/6 = 1/6题目二:将下列各题转化为带分数的形式。

1. (-15) ÷ (-4)2. 17 ÷ (-3)3. (-21) ÷ 54. 25 ÷ (-8)答案二:1. (-15) ÷ (-4) = 3 3/42. 17 ÷ (-3) = -5 2/33. (-21) ÷ 5 = -4 1/54. 25 ÷ (-8) = -3 1/8题目三:计算下列各题的绝对值。

1. |-6|2. |-2/3|3. |4 - 7|4. |(-5) × (-3)|答案三:1. |-6| = 62. |-2/3| = 2/33. |4 - 7| = 34. |(-5) × (-3)| = 15题目四:计算下列各题的相反数。

有理数混合运算习题(含答案)300道

有理数混合运算习题(含答案)300道

有理数的混合运算(一)填空4.23-17-(+23)=______.5.-7-9+(-13)=______.6.-11+|12-(39-8)|=______.7.-9-|5-(9-45)|=______.8.-5.6+4.7-|-3.8-3.8|=______.9.-|-0.2|+[0.6-(0.8-5.4)]=______.12.9.53-8-(2-|-11.64+1.53-1.36|)=______.13.73.17-(812.03-|219.83+518|)=______.36.38×(-7)+5[(-2)3(-32)-(-22)]-38×339÷(-3)38=______.48.(-2)×{(-3)×[(-5)+2×(0.3-0.3)÷83-3]+4}=______.112.413-74-(-5+26).116.-84-(16-3)+7.118.-0.182+3.105-(0.318-6.065).119.-2.9+[1.7-(7+3.7-2.1)].121.34.23-[194.6-(5.77-5.4)].125.23.6+[3.9-(17.8-4.8+15.4)].134.(-3)2÷2.5.135.(-2.52)×(-4).136.(-32)÷(-2)2.173.(-1)2×5+(-1)×52-12×5+(-1×5)2.174.(-2)(-3)(-36)+(-1)20×63.178.(-32)÷(3×2)×(-3-2).180.3×(-2)2+(-2×3)2+(-2+3)2.188.2+42×(-8)×16÷32.190.[5.78+3.51-(0.7)2]÷(0.2)3×11.191.(1.25)4÷(0.125)4×0.0036-(0.6)2.194.(-42×26+132×2)÷(-3)7×(-3)5.195.(3-9)4×23×(-0.125)2.201.741×[(-30)2-(-402)]3÷(1250)2.211.[(-5)3+3.4×2-2×4+53]2.213.(24-5.1×3-3×5+33)2.234.(-5)×(-3)×(-4)2+(-2)3×(-8)×(-3)-(-12)×3÷24.240.-18-23×[(-4)3÷(-43)+0.2×8+(-3)2÷(-32)].(四)用符号“>”,“<”,“≥”,“≤”,“=”之一填空241.当两个数和的绝对值______这两个数差的绝对值时,这两个数同号.242.一个正数与一个负数差的绝对值______这两个数绝对值的和.243.一个正数与一个负数和的绝对值______这两个数绝对值的差.244.一个正数与一个负数差的绝对值______这两个数绝对值的差.245.一个正数与一个负数和的绝对值______这两个数绝对值的和.246.当两个数和的绝对值______这两个数差的绝对值时,这两个数异号.247.当两数和的绝对值______这两个数差的绝对值时,这两个数至少有一个是零.248.当两数和的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.249.当两数差的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.250.当两个数和的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.251.当两个数差的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.252.欲使两个数的绝对值的和等于这两个数的和的绝对值,这两个数必须是怎样的数?253.欲使两个数和的绝对值不小于这两个数的差的绝对值,这两个数必须是怎样的数?254.欲使两数和的绝对值不大于这两数差的绝对值,这两个数必须是怎样的数?255.欲使两数和的绝对值不小于这两个数的绝对值的和,这两个数必须是怎样的数?256.一个盛有水的圆柱形水桶,其底面半径为1.6分米①.现将一个半径为1.2分米的铁球沉没在桶内水面下,问桶内水面升高多少分米?(列综合算式计算,球的体积公式为,其中V表示体积,R表示球的半径)257.一个盛有水的长方体状容器,它的底面是边长为2.4分米的正方形,现将一个半径是1.2分米的铁球放在容器内,正好铁球体积的1/3在水面下,问放入铁球后,水面升高了多少分米?(列综合算式计算,球的体积公式为V表示体积,R表示球的半径,π取3.14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的四则混合运算练习◆warmup
知识点有理数的混合运算(一)
1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-1
3
)-(-2)=______.
2.计算:(1)-4÷4×1
4
=_____;(2)-2
1
2
÷1
1
4
×(-4)=______.
3.当||a
a
=1,则a____0;若
||
a
a
=-1,则a______0.
4.(教材变式题)若a<b<0,那么下列式子成立的是()
A.1
a
<
1
b
B.ab<1 C.
a
b
<1 D.
a
b
>1
5.下列各数互为倒数的是()
A.-0.13和-13
100
B.-5
2
5
和-
27
5
C.-
1
11
和-11 D.-4
1
4

4
11
6.(体验探究题)完成下列计算过程:
(-2
5
)÷1
1
3
-(-1
1
2
+
1
5

解:原式=(-2
5
)÷
4
3
-(-1-
1
2
+
1
5

=(-2
5
)×()+1+
1
2
-
1
5
=____+1+52 10 -
=_______.◆Exersising
7.(1)若-1<a<0,则a______
1
a
;(2)当a>1,则a_______
1
a

(3)若0<a≤1,则a______
1
a

8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则
||
4
a b
m
+
+2m2-3cd值是() A.1 B.5 C.11 D.与a,b,c,d值无关
9.下列运算正确的个数为()
(1)(+
3
4
)+(-4
3
4
)+(-6)=-10 (2)(-
5
6
)+1+(-
1
6
)=0 (3)0.25+(-0.75)+(-3
1
4
)+
3
4
=-3
(4)1+(-3)+5+(-7)+9+(-1)=4
A.3个 B.4个 C.2个 D.1个
10.a,b为有理数,在数轴上的位置如右上图所示,则()
A.
1
a
>
1
b
>1 B.
1
a
>1>-
1
b
C.1>-
1
a
>
1
b
D.1>
1
a
>
1
b 11.计算:
(1)-20÷5×
1
4
+5×(-3)÷15 (2)-3[-5+(1-0.2÷
3
5
)÷(-2)] (3)[
1
24
÷(-1
1
4
)]×(-
5
6
)÷(-3
1
6
)-0.25÷
1
4
o
b a
1 / 2
◆Updating
12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.(1)____________ (2)____________ (3)____________
答案:
课堂测控
1.(1)-80 (2)53
5
2.(1)-
1
4
(2)8
3.>,< 4.D 5.C 6.3
4
,-
3
10
,1
[总结反思]先乘除,后加减,有括号先算括号内的.课后测控
7.(1)> (2)> (3)≤ 8.B 9.B 10.B
11.解:(1)原式=-20×1
5
×
1
4
+5×(-3)×
1
15
=-1-1=-2
(2)原式=1
24
×(-
4
5
)×(-
5
6
)×(-
6
19
)-
1
4
÷
1
4
=1
24
×(-
4
19
)-1=-
1
114
-1=-1
1
114
(3)原式=-3[-5+(1-1
5
×
5
3
)÷(-2)]
=-3[-5+2
3
×(-
1
2
)]
=-3[-5-1
3
]
=15+1=16
[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的.
拓展测控
12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)
[解题思路]运用加,减,乘除四种运算拼凑得24点.
2 / 2。

相关文档
最新文档