力的合成和分解

合集下载

力的合成和分解

力的合成和分解

二、力的合成与分解。

(一)力的合成、合力与分力1. 合力与分力:如果一个力作用在物体上,产生的效果,与另外几个力同时作用于这个物体上产生的效果相同,原来的一个力就是另外几个力的合力。

另外几个力叫分力。

合力是几个力的等效力,是互换的,不是共存的。

2、共点力:几个力的作用点相同,或几个力的作用线相交于一个点,这样的力叫共点力。

3、力的合成:求几个共点力的合力的过程叫力的合成。

力的合成就是在保证效果相同的前提下,进行力的替代,也就是对力进行化简,使力的作用效果明朗化。

现阶段只对共点(共面)力进行合成。

4. 平行四边形定则(由平行四边形定则推出三角形定则):两个共点力的合力与分力满足关系是:以分力为邻边做平行四边形,以共点顶向另一顶点做对角线,即为合力。

这种关系叫平行四边形定则。

5. 力的合成方法:几何作图法,计算法。

6. 多个力的合成先取两个力求合力,再与第三个力求合力,依次进行下去直到与最后一个分力求得的合力就是多个力的合力。

7. 力是矢量:有大小有方向遵循平行四边形定则。

凡矢量有大小有方向还要遵循平行四边形定则。

(二)力的分解1. 力的分解:由一个已知力求分力的过程叫力的分解。

2. 力的分解中分力与合力仍遵循平行四边形定则,是力的合成的逆运算。

3. 分解一个力时,对分力没有限制,可有无数组分力。

4. 分解力的步骤:(1)根据力作用效果确定分力作用的方向,作出力的作用线。

(2)根据平行四边形定则,作出完整的平行四边形。

(3)根据数学知识计算分力5.一个力分解为二个分力的几种情况:(1)已知合力及两分力方向,求分力大小,有唯一定解。

(2)已知合力及一个分力的大小方向,求另一分力大小方向,有唯一定解。

(3)已知合力及一个分力方向,求另一分力,有无数组解,其中有一组是另一分力最小解。

(4)已知合力和一个分力的方向,另一分力的大小,求解。

如已知合力F,一个分力F1的方向,另一分力F2的大小,且F与F1夹角可能有一组解,可能有两组解,也可能无解。

力的合成与分解

力的合成与分解

力的合成与分解力在物理学中是一个重要的概念,它描述了物体之间相互作用的效果。

而力的合成与分解是力学中的一种基本问题,它帮助我们理解多个力作用在物体上时的结果,以及如何将一个力分解为多个力的合力,或者将一个力的合力分解为多个力。

一、力的合成力的合成是指将多个力作用于物体上时,求出它们的合力。

合力的大小和方向决定了物体受到的合力效果。

当多个力作用于物体上时,可以使用力的几何法进行合成。

力的几何法可以通过在力的作用方向上构成力的向量,并使用矢量相加的方法得到合力。

例如,假设一个物体同时受到水平向右的力F₁和竖直向上的力F₂,我们可以使用力的几何法求出它们的合力F。

首先,将力F₁和F₂分别用箭头表示在一个力的作用方向上。

然后,将F₁的箭头的起点连接到F₂的箭头的终点,得到一个新的力F的箭头。

该箭头的起点是F₁的起点,终点是F₂的终点。

最后,连接F₁的终点和F₂的起点,即得到了合力F的箭头。

根据箭头的直线方向和箭头的长度,我们可以得到合力F的大小和方向。

二、力的分解力的分解是指将一个力拆解成多个分力,使得这些分力的合成恰好等于原来的力。

力的分解可以帮助我们分析复杂情况下的力的作用效果。

当一个力作用在物体上时,有时候我们需要将这个力分解成两个或更多个分力,以便更好地理解和计算物体的运动情况或受力效果。

常见的力的分解方法有平行四边形法和正交分解法。

在平行四边形法中,我们假设一个力F可以被分解为两个分力F₁和F₂。

首先,确定一个合适的力F₄与F形成一个平行四边形。

然后,根据平行四边形法则,连接F₁的起点与F₂的起点,连接F₁的终点与F₄的起点,连接F₂的终点与F₄的终点。

这样,我们得到了两个分力F₁和F₂,它们的合力恰好等于原来的力F。

正交分解法是指将一个力拆解成一个或多个方向上的力分量。

对于任何一个力F,我们可以将它分解成多个垂直于不同方向的力分量。

例如,如果一个力F斜向上,我们可以将它拆解成一个垂直向上的力分量和一个垂直向右的力分量。

力的合成与分解

力的合成与分解
的合力可以为零,故选AB.
4 .如图所示, F1 、 F2 、 F3 恰好构成封闭的直角三 角形,这三个力的合力最大的是( C )
【解析】由矢量合成法则可知A图的合力为2F3,B图的 合力为0,C图的合力为2F2,D图的合力为2F3,因F2为 直角三角形的斜边,故这三个力的合力最大的为C图.
【提升能力】
保持静止,则工件上受到的向 上的压力多大? 【思路点拨】弄清力的实际作用效果,确定两个分力 的方向,再作出力的平行四边形,确定边角关系,最 后由数学知识计算两分力的大小.
【解析】F 作用在 B 物体上,产生了压紧水平面和 推杆两个效果,将 F 向这两个方向分解如图(1),得 F1 和 F2 两个分力.
【解析】该题最容易犯的错误是错选 A,导致这种错 误的原因是对矢量的方向理解不深刻.错误地认为确 定了三条边就能构成一个唯一确定的三角形,即只有 唯一解.这样就把矢量与线段混淆了,从而导致了错 误.已知两个不平行分力的大小 (F1+F2>F).如图所 示,分别以F的始端、末端为圆心,以F1、F2为半径 作圆,两圆有两个交点,所以F分解为 F1、F2有两种 情况.
(2)三角形定则:把两个矢量的 首尾
顺次连结起来,第一
个矢量的首端到第二个矢量的 尾端的 有向线段 为合矢量.如图所示. 4.合力和分力的大小关系 共点的两个力 F1 、 F2 的合力 F 的大小,与它们的夹 越小 ; θ 越小,合 角 θ 有关; θ 越大,合力 力 越大 .F1与F2 同向 时合力最大;F1与F2 反向
③求Fx与Fy的合力即为共点力的合力(如图所示)
1 .如图所示,物体静止于光滑水平面 M 上,力 F 作用 于物体的O点,现要使物体沿着 OO′方向做直线运动 (F 与 OO′ 方向都在 M 平面内 ) ,必须同时再加一个力 F′ , 这个力的最小值是( )C A.Ftanθ B.Fcotθ C.Fsinθ

力的合成与分解

力的合成与分解

力的合成与分解在物理学中,力的合成与分解是一种常见的分析力学问题。

力的合成指的是将多个力合并为一个力的过程,而力的分解则是将一个力拆分成多个分力的过程。

通过理解和应用力的合成与分解的原理,我们可以更好地理解并解决各种力学问题。

一、力的合成力的合成是指通过几个力的矢量相加得到一个合力的过程。

合力的大小和方向由各个分力的大小和方向共同决定。

在力的合成中,我们常常使用向量图或使用三角法进行计算。

1. 向量图法向量图法是一种常见且直观的力的合成方法。

首先,我们将各个力按照大小和方向画成箭头,然后将它们的起点置于同一点,根据力的大小与方向,画出各个力的箭头。

最后,将各个箭头首尾相接,最终合力的箭头即为各个力的矢量和。

2. 三角法三角法是力的合成的一种数学计算方法。

对于平面力的合成,我们可以使用三角函数来求解。

假设有两个力F1和F2,它们分别与x轴的夹角为α和β,力的合力F与x轴的夹角为θ。

根据三角法的原理,我们可以使用正弦定理和余弦定理来计算合力的大小和方向。

二、力的分解力的分解是指将一个力分解成多个分力的过程。

分力的大小和方向由原力及分解方式共同决定。

力的分解在解决复杂力学问题时非常有用,可以将一个力分解为多个方向上的简单力,从而简化问题的求解过程。

1. 直角坐标系分解直角坐标系分解是一种常用的力的分解方法,适用于力在水平和竖直方向上的分解。

假设力F的大小为F,与x轴的夹角为α。

我们可以将力F分解为水平方向上的分力Fx和竖直方向上的分力Fy。

根据三角函数的定义,我们可以得到分力Fx的大小为F*cosα,分力Fy的大小为F*sinα。

2. 求直角坐标系分解直角坐标系分解也可以用于求解分力。

假设已知合力F与x轴的夹角为θ,合力F的大小为F,需要求解分力F1和F2的大小。

根据三角函数的定义,我们可以得到分力F1的大小为F*cosθ,分力F2的大小为F*sinθ。

结论力的合成与分解为解决各种力学问题提供了重要的方法。

力的合成与分解

力的合成与分解

7、如图,将一个球放在两块光滑面板AB和AC之间, 两板与水平面的夹角都是60°,现将两板与水平面之 间的夹角以大小相等的角速度同时缓慢地均匀地减小 到30°,则在此过程中,球对两板的压力( B)
A、先增大后减小 B、逐渐减小
C、先减小后增大
D、逐渐增大
B
60°
C
60°
B
G2
FN1
FN2
C
G1
G
三、矢量叠加的法则
平行四边形定则:一切矢量相加遵守平行四 边形定则。 三角形定则:把两个矢量首尾相接与它们的 合矢量组成一个闭合三角形,从而求出合矢量。
四、矢量与标量 矢量:既有大小,又有方向,相加时遵从平行 四边形定则(或三角形定则)的物理量叫做矢 量。 标量:只有大小,没有方向,求和时按照算术 法则相加的物理量叫做标量。
3、共点力:作用于同一点或它们的延长线相交与一 点的几个力。 说明: 1、合力是分力的等效代替,它们的作用效果 相同。 2、合力可以比分力大,也可以比分力小, 还 以等于其中一个分力。
3、大小不变的两个共点力,夹角从0 到180 范围
内变化,合力的变化情况 (1)合力的大小随两力的夹角的增大而减小 (2)合力大小的范围 ︱F1-F2︱≤F≤︱F1+F2︱ 4、平行四边形定则只适用于共点力
3、物体受到两个力F1和F2的作用, F1=3N, F2=9N,则它们的合 力F的数值范围是( B)
A、3N≤F ≤9N B、6N ≤F ≤12N
C、3N ≤F ≤6N
D、3N ≤F ≤12N
4、两个共点力大小都是50N,如果要使这两个力的合力也是50N, 那么这两个力之间的夹角为(D ) A、30° B、45° C、60° D、120° 5、大小不变的两个共点力F1和F2,其合力为F,则下列说法正确 的是( B) A、合力F一定大于任一个分力 B、合力大小既可以等于F1,也可等于F2 C、合力大小等于F1和F2的代数和 D、合力大小随F1、F2之间的夹角(0°≤ θ ≤180°)增大而增 大

力的合成和分解

力的合成和分解

力的合成和分解力是物体相互作用的结果,是描述物理现象的重要概念。

力的合成和分解是力学中的基本操作,它们帮助我们理解力的相互作用、分析力的性质以及解决实际问题。

下面将详细介绍力的合成和分解的原理和运用。

一、力的合成力的合成是指将多个力按照一定的规律合成为一个力的过程。

根据力的矢量性质,可以使用矢量图法或合力分解法进行力的合成。

1. 矢量图法矢量图法是一种直观、简单的力合成方法,它基于力的矢量性质,可以用力的箭头表示力的大小和方向。

将要合成的力按照一定比例画在同一起点,然后连接起点和终点,合成力的箭头为连线的箭头。

根据三角法或平行四边形法,可以求得合成力的大小和方向。

2. 合力分解法合力分解法是一种将一个力分解为多个力的方法。

利用三角形法则或平行四边形法则,可以将一个力分解为两个分力,满足力的合成原理。

合力分解法不仅可以帮助我们更好地理解力的性质,还可以方便地计算力的分量。

二、力的分解力的分解是指将一个力按照一定的规律拆分成多个力的过程。

根据力的矢量性质,可以使用正交分解法或平行分解法进行力的分解。

1. 正交分解法正交分解法是一种将一个力分解为与轴垂直的两个分力的方法。

根据合力与两个正交方向的关系,可以使用三角函数求得分力的大小。

通过正交分解法,我们可以将斜向作用的力分解为沿着两个正交方向作用的分力,便于我们进一步分析和计算。

2. 平行分解法平行分解法是一种将一个力分解为平行于坐标轴的两个分力的方法。

通过平行四边形法则或直角三角形法则,可以求得分力的大小和方向。

平行分解法在许多实际问题中有广泛应用,如斜面上的物体受到的重力可以通过平行分解法分解为沿着斜面和垂直斜面的两个分力。

力的合成和分解在物理学和工程学中有重要的应用。

通过合理运用力的合成和分解,我们可以更好地理解力的作用规律,解决实际问题。

例如,在平面力系统中,可以通过力的合成将多个力简化为一个合力,从而方便求解物体的平衡条件;在斜面问题中,可以通过力的分解将斜面上的力分解为两个分力,进一步分析物体的受力情况。

力的合成和分解

力的合成和分解

力的合成和分解力是物体之间相互作用的结果,它在物理学中起着重要的作用。

力的合成和分解是力学中的基本概念,用于描述多个力的综合效果和将力分解为不同方向上的分力。

本文将介绍力的合成和分解的概念、原理和应用。

一、力的合成力的合成是指将多个力按照一定的规则合并为一个合力的过程。

在力的合成中,需要考虑力的大小、方向和作用点。

1. 榆树力的大小合成在力的合成中,力的大小可以通过向量的合成法则进行计算。

向量是用来表示力的数量和方向的,力的大小可以用向量的模表示。

当两个力共同作用于一个物体时,它们的大小可以通过求向量的和来计算。

举例来说,当一个物体受到两个大小分别为F1和F2,方向分别为θ1和θ2的力时,它们的合力可以表示为F=F1+F2,其中F是合力的大小。

合力的方向可以通过计算得到,具体计算方法是通过合力与x轴的夹角θ表示。

2. 力的方向合成力的方向合成是指将多个力按照一定的方法合并为一个力,并确定合力的方向。

在力的方向合成中,需要根据力的方向确定合力的方向,并使用向量图形表示。

举例来说,当一个物体受到两个力F1和F2时,它们的方向可以决定合力的方向。

如果F1和F2的方向相同,则合力的方向与两个力的方向相同。

如果F1和F2的方向相反,则合力的方向与两个力的方向相反。

3. 力的作用点合成力的作用点是指力作用的位置。

在力的合成中,需要确定合力的作用点。

举例来说,当一个物体受到两个力F1和F2作用时,合力的作用点可以通过力的作用点之间的连线的交点来确定。

该交点即为合力的作用点。

二、力的分解力的分解是指将一个力分解为多个在不同方向上的分力的过程。

力的分解可以简化力的分析和计算,能够更好地理解和描述力的作用。

1. 力的水平分解力的水平分解是将一个力分解为水平方向上的分力的过程。

在力的水平分解中,需要将力按照一定的方法分解成水平方向上的分力。

举例来说,当一个物体受到一个斜向上的力F时,可以将这个力分解为水平方向上的分力Fh和竖直方向上的分力Fv。

力的合成与分解知识点总结

力的合成与分解知识点总结

力的合成与分解知识点总结力是物理学中的一个重要概念,力的合成与分解是解决力学问题的基础。

下面我们来详细总结一下力的合成与分解的相关知识点。

一、力的合成1、合力的概念如果一个力作用在物体上产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力。

2、共点力如果几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力就叫做共点力。

3、力的合成法则(1)平行四边形定则两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。

(2)三角形定则将两个分力首尾相接,连接始端与末端的有向线段就表示合力的大小和方向。

4、合力的计算(1)已知两个分力的大小和方向,求合力的大小和方向,直接运用平行四边形定则或三角形定则计算。

(2)已知两个分力的大小和夹角θ,合力的大小可以通过公式:$F =\sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$计算,合力的方向可以通过三角函数关系求得。

5、合力的范围(1)两个力的合力范围:$|F_1 F_2| \leq F \leq F_1 + F_2$。

(2)三个力的合力范围:先求出其中两个力的合力范围。

再看第三个力在这个范围内的情况,从而确定三个力的合力范围。

二、力的分解1、力的分解的概念求一个已知力的分力,叫做力的分解。

2、力的分解遵循的原则力的分解是力的合成的逆运算,同样遵循平行四边形定则或三角形定则。

3、力的分解的方法(1)按照力的实际作用效果进行分解。

例如,放在斜面上的物体受到的重力可以分解为沿斜面方向向下的分力和垂直斜面方向向下的分力。

(2)正交分解法将一个力沿着互相垂直的两个方向进行分解。

4、力的分解的唯一性(1)已知两个分力的方向,有唯一解。

(2)已知一个分力的大小和方向,有唯一解。

(3)已知两个分力的大小,其解的情况可能有:两力之和大于合力时,有两解。

力的分解与合成

力的分解与合成

力的分解与合成力的分解与合成是力学中的一个基本概念。

在物体受到多个力的作用时,可以将这些力分解为两个或多个力的合成,便于研究物体的运动和受力情况。

本文将介绍力的分解与合成的原理和应用。

一、力的分解力的分解是指将一个力分解为若干个力的合成,使得分解后的多个力共同作用于一个物体上,起到与原始力相同的效果。

力的分解可以用于分析物体在斜面上滑动、物体受到斜向拉力等情况。

1. 分解力的原理分解力的原理可以用几何法或代数法来解释。

几何法是通过构造力的三角形或平行四边形来分解力。

代数法则是利用三角函数和向量的性质进行计算。

以斜面上滑动为例,当物体沿斜面向下滑动时,可以将重力分解为垂直于斜面和平行于斜面的两个力。

垂直分力为物体的重力分量,平行分力为物体受到的摩擦力。

通过分解重力和摩擦力,可以更好地分析物体在斜面上滑动的加速度和受力情况。

2. 分解力的应用力的分解在实际生活和工程中具有广泛的应用。

例如,施工时需要使用斜拉索来吊装物体,通过力的分解可以计算出需要斜拉索的张力大小和方向。

此外,力的分解也可以用于计算倾斜地面上物体的受力情况,如斜坡上车辆的受力分析等。

二、力的合成力的合成是指将两个或多个力合成为一个力的过程。

力的合成可以用于研究物体所受合力产生的效果,如物体的平衡、运动方向等。

1. 合成力的原理合成力的原理可以用几何法或代数法来解释。

几何法是通过构造力的三角形或平行四边形来合成力。

代数法则是利用向量的性质和平行四边形法则进行计算。

以物体的平衡为例,当一个物体受到多个力的作用时,可以将这些力合成为一个合力。

若合力为零,则物体处于平衡状态;若合力不为零,则物体将发生运动。

2. 合成力的应用力的合成在实际生活和工程中也具有广泛的应用。

例如,船只在河流中的行驶,需要通过合成推力和水流对船只的阻力进行分析。

此外,合成力还可以用于计算多个力对一个物体的综合作用,如切向力和法向力对物体的运动产生的影响等。

总结:力的分解与合成是力学中重要的基本概念。

力的合成和分解

力的合成和分解

力的合成和分解力是物体之间相互作用的结果,在物理学中扮演着重要的角色。

而力的合成和分解是研究力的基本性质及其应用的关键概念。

本文将详细讨论力的合成和分解的概念、原理和实际应用。

一、力的合成力的合成是指将两个或多个力的作用效果视为一个总的力的作用效果。

这是因为多个力的合成效果等于这些力的矢量和。

在数学上,力的合成可以看作是矢量的加法。

具体而言,如果有两个力F₁和F₂作用于同一物体上,它们可以通过以下方法合成:1. 图解法:在纸上将力的矢量F₁和F₂按照一定比例画出来,然后将它们首尾相连,形成一个三角形。

通过测量这个三角形的边长,可以得到力的合力的大小和方向。

2. 分解成分向量法:将力F₁沿某个坐标轴分解为两个分量F₁₁和F₁₂,将力F₂沿同一坐标轴分解为两个分量F₂₁和F₂₂。

然后,将这些分量相互相加,得到合力的大小和方向。

二、力的分解力的分解是指将一个力分解为两个或多个互相垂直的力的过程。

通过力的分解,我们可以研究物体在不同方向上受到的力的情况。

在实际应用中,力的分解常常用于解析力的问题以及计算物体的平衡条件。

常见的力的分解方法有:1. 正交分解法:将力按某个坐标系的轴方向进行分解,得到与该轴方向垂直的两个分力。

这样,原来的力可以表示为这两个分力的矢量和。

2. 三角函数分解法:利用三角函数的性质,将力分解为两个互相垂直的力。

通常选择水平和垂直方向为坐标轴,利用正弦和余弦函数得到这两个力的大小和方向。

三、力的合成和分解的应用力的合成和分解在物理学中有着广泛的应用。

以下是其中一些常见的应用领域:1. 静力学:力的合成和分解在静力学中经常使用,可以用来解析力的问题以及计算物体的平衡条件。

例如,可以通过力的合成和分解来计算斜面上物体受到的支持力和分解重力的分量。

2. 动力学:在动力学中,力的合成和分解可以帮助我们计算物体的加速度和运动轨迹。

特别是在斜面上滑动和投射运动中,力的合成和分解是解决问题的关键。

力的合成和力的分解定律

力的合成和力的分解定律

力的合成和力的分解定律力的合成和力的分解定律是物理学中的重要概念,主要涉及力的合成、力的分解和力的平行四边形法则。

一、力的合成力的合成是指多个力共同作用于一个物体时,可以将其看作一个总力的作用。

根据平行四边形法则,多个力的合力等于这些力的矢量和。

即在力的图示中,将各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是多个力的合力。

二、力的分解力的分解是指一个力作用于一个物体时,可以将其分解为多个分力的作用。

根据平行四边形法则,一个力可以被分解为两个分力,这两个分力分别与原力构成两个力的矢量和。

在力的图示中,将原力的箭头分别与两个分力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是原力。

三、力的平行四边形法则力的平行四边形法则是描述力的合成和分解的基本规律。

根据该法则,多个力共同作用于一个物体时,它们的合力等于这些力的矢量和。

同样地,一个力可以被分解为两个分力,这两个分力的合力等于原力。

在力的图示中,力的合成和分解都遵循平行四边形法则,即各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是合力或分力。

力的合成和力的分解定律在实际生活中有广泛的应用,如物理学中的力学问题、工程设计、体育竞技等。

通过力的合成和分解,可以简化复杂力的计算,便于分析和解决问题。

综上所述,力的合成和力的分解定律是物理学中的重要概念,掌握这些知识有助于更好地理解和解决力学问题。

习题及方法:1.习题:两个力F1和F2,F1 = 5N,F2 = 10N,它们之间的夹角为60度,求这两个力的合力。

解题方法:根据力的合成,将两个力的矢量和画在一个坐标系中,将F1和F2按照夹角60度画出矢量图,然后用平行四边形法则求出合力。

答案:合力F = √(F1² + F2² + 2F1F2cos60°) = √(5² + 10² + 2510*0.5) = 15N。

力的合成与分解

力的合成与分解

力的合成与分解力是物体相互作用的结果,是物体之间相互施加的推或拉的作用。

在物理学中,力可以通过合成与分解的方法进行研究和分析。

力的合成是指将多个力合成为一个力的过程,力的分解是指将一个力分解为多个力的过程。

力的合成与分解是力学中常用的解题方法,通过这种方法可以更好地理解和处理与力相关的问题。

一、力的合成力的合成是指将多个力合成为一个力的过程。

合成力的大小和方向可以通过力的几何法或三角法进行计算。

1. 几何法几何法是一种直观且易于理解的力合成方法。

根据几何法,我们可以将力按照一定的比例进行图示,然后利用力的平行四边形法则进行合成。

例如,假设有两个力F1和F2作用于一个物体,它们的大小分别为10N和15N,方向分别为东方和北方。

我们可以在纸上画一个比例合适的箭头来表示这两个力,箭头的长度代表力的大小,箭头的方向代表力的方向。

然后,将这两个箭头的起点放在一起,根据力的平行四边形法则,连接两个箭头的终点,得到合成力F。

最后,用尺寸测量这个合成力F的大小和方向。

2. 三角法三角法是一种计算力合成的精确方法。

它基于三角函数的概念,通过数学计算来得到合成力的大小和方向。

假设有两个力F1和F2,我们可以将它们的大小和方向表示为矢量的形式(F1和F2)。

然后,将这两个矢量相加,得到一个合成矢量F。

利用三角函数,可以计算出合成矢量F的大小和方向。

二、力的分解力的分解是指将一个力分解为多个力的过程。

分解力的大小和方向可以通过正弦、余弦或其他相关的三角函数进行计算。

力的分解可以分为水平方向和垂直方向分解。

对于水平方向的分解,我们可以利用正弦函数计算分解力的大小和方向。

对于垂直方向的分解,我们可以利用余弦函数计算分解力的大小和方向。

例如,假设一个力F作用于一个物体,我们可以将这个力分解为水平方向的力F1和垂直方向的力F2。

利用三角函数,可以计算出F1和F2的大小和方向。

三、力的合成与分解的应用力的合成与分解在力学中有广泛的应用。

力的合成和分解

力的合成和分解

二、力的合成
1、同一直线上两个力的合成
F1=4N
0
F2=3N F = F1+F2= 7N 两力同向相加
大小F =F1+F2,方向与两力方向相同
二、力的合成
1、同一直线上两个力的合成
F2=3N
0
F = F1-F2= 1N
F1=4N
两力反向相减 大小F =|F1-F2|,方向与较大力的方向相同
二、力的合成
分析:已知合力F及其一个分力F1的大小和方向 时,先连接F和F1的矢端,再过O点作射线OA 与之平行,然后过合力F的矢端作分力F1的 平行线与OA相交,即得到另一个分力F2,
平行于斜面使物体向下滑的分力F1 和垂直于斜面使 物体向下压的分力F2 的大小分别如上右图所示。 如果已知重力G和斜面的倾角α ,则 F1 G sin F2 G cos
2、计算法求合力
【例题】力F1=45N,方向水平向右。 力F2=60N,方向竖直向上。求这两个 力的合力F的大小和方向。
根据平行四边形定则作出下图:
F2
F合
由直角三角形可得
F合 F F 75 N
2 1 2 2
θ
方向:与F1成 F1 tanθ=4/3斜向右上方
练习:F1=6N, F2=6N, 它们互成1200夹角,求出 合力F的大小和方向.
(用作图法和计算法)
讨论
1、F1、F2大小一定,夹角增 大,合力如何变化? 合力什么时候最大,什么时 候最小?合力的范围如何? 动画演示1 动画演示2
合力与分力的大小关系
1、在两个分力F1、F2大小不变的情况下,两个分力 的夹角越大,合力越小。 (1)当两个分力方向相同时(夹角为00) 合力最大,F=F1 + F2 合力与分力同向; (2)当两个分力方向相反时(夹角为1800) 合力最小,F=︱F1 - F2︱ 合力与分力F1 、F2中较大的同向。 (3)合力大小范围 (4)合力可能大于、等于、小于任一分力.

力的合成与分解

力的合成与分解

力的合成与分解一、精讲释疑1、力的合成方法(1)平行四边形定则求两个互成角度的共点力F1、F2的合力时,可以把表示F1、F2这两个力的形状作为邻边,画平行四边形,这两个邻边所夹的对角线即表示合力的大小和方向。

①当两个力在同一直线上时,求合力时,如果两力同向,直接相加,反向相减。

②如果求两个以上的共点力的合力时,先把其中任意两力做一平行四边形,把这两力的合力求出来,然后再把这两力的合力和第三个力再合成,得出这三个力的合力,依此类推,直到把所有力都合成进去,最后得到的合力就是这些力的合力。

求两个以上的共点力的合力,用正交分解。

(2)三角形定则把要合成的两个力F1、F2首尾相接的画出来,再把F1、F2的另外两端也连接起来,这种连线就表示合力的大小和方向。

例1如果两个共点力F1、F2的合力为F,则A、合力F一定大于任何一个分力FF1F2这句话的意思,三角形的一条边一定大于其他两条边,显然错误。

B 、 合力F 的大小可能等于F 1,也可能等于F 2等腰三角形,其中一腰为合力,正确。

C 、 合力F 有可能小于任何一个分力正确。

D 、 合力F 的大小随F 1、F 2间夹角的增大而减小。

正确。

随平行四边形邻边的夹角增大,所夹对角线减小。

两个力夹角为0时,合力最大,为两个分力之和。

两个力夹角增大,合力减小。

两个力夹角为180°时,合力最小,为二力之差。

2、力的分解方法力的合成的逆运算。

同样遵守平行四边形定则。

两个确定的分力,它的合力是唯一的。

如果把一个力分解,可以分解为方向、大小都不同的分力,不是唯一的。

F F 1F 2 FF 1F 2 FF(1)根据力的实际效果进行分解 三个基本步骤:①根据力的实际效果确定两个分力的方向。

如斜面上物体的重力分解,重力有两个效果。

压斜面的效果,沿斜面往下冲的效果。

②根据已知的力(要分解的力)和这两个分力的方向做四边形。

③由四边形确定分力的大小。

例1有一个三角形支架,一端用轻绳悬挂一个物体,把物体对绳的拉力进行分解。

力的分解与合成

力的分解与合成

力的分解与合成力的分解和合成是力学中的重要概念,它们帮助我们理解和解决各种力的问题。

本文将介绍力的分解和合成的基本原理、应用场景以及相关公式。

一、力的分解力的分解是指将一个力分解为两个或多个分力的过程。

根据物理学中的原理,任何一个力都可以被分解为两个相互垂直的分力,分别称为水平分力和垂直分力。

这种分解可以帮助我们更好地理解和计算力的作用。

举个例子,假设有一个力F作用在一个物体上,我们可以将这个力分解为水平分力Fx和垂直分力Fy。

水平分力是指力在水平方向上的分量,垂直分力是指力在垂直方向上的分量。

力的分解可以用以下公式表示:Fx = F * cosθFy = F * sinθ其中,F是原始力的大小,θ是原始力与水平方向的夹角。

力的分解在物理学中有广泛的应用。

例如,在斜面上有一个物体,我们可以将重力分解为平行于斜面的分力和垂直于斜面的分力,以便更好地理解物体在斜面上的运动特性。

同时,力的分解也有助于解决平面静力学中的力平衡问题。

二、力的合成力的合成是指将两个或多个力合成为一个合力的过程。

对于位于同一点的力,它们可以通过力的合成得到一个和力的效果相等的合力。

合力的大小和方向可以通过力的合成公式计算得到。

假设有两个力F1和F2作用于同一个物体上,力的合成公式可以表示为:F = √(F1² + F2² + 2F1F2cosθ)其中,F1和F2是两个力的大小,θ是两个力之间的夹角。

力的合成在实际生活中有许多应用。

例如,在力学悬挂系统中,悬挂物体所受的合力决定了系统的平衡状态。

通过合理地合成悬挂物体所受的力,我们可以实现平衡的目标。

三、力的分解与合成的实例下面以一个实际的例子来说明力的分解与合成的应用。

假设有一个物体斜靠在一面墙上,墙壁对物体的支持力可以分解为水平方向的分力和垂直方向的分力。

水平方向的分力将物体推向墙壁,垂直方向的分力支撑住物体的重量。

同时,物体对墙壁也施加了一个作用力。

这个作用力可以分解为施加在墙面上和施加在地面上的两个分力。

力的合成和分解

力的合成和分解

力的合成和分解力是物体相互作用的一种表现形式,它可以使物体发生运动或者改变其形状。

力的合成和分解是力学中常用的分析和计算方法,能够帮助我们更好地理解和解决物体受力情况下的运动问题。

一、力的合成力的合成是指将多个力作用在同一个物体上时,将多个力的作用效果用一个力来代替的过程。

根据力的合成原理,我们可以采用图示法或者矢量相加法进行力的合成。

1. 图示法图示法是通过在一张力的作用图上,按照力的大小、方向和作用点进行绘制,从而直观地表示力的合成效果。

以力的合成为例,假设有两个力F1和F2作用在一个物体上,可以通过以下步骤进行合成:步骤一:在一张纸上绘制一条直线OAB,表示力F1。

步骤二:从点A起,按照力的大小和方向绘制一条线段AC,表示力F2。

步骤三:连接点O和C,得到线段OC,它表示合力F。

步骤四:通过测量线段OC的长度和方向,可以求得合力F的大小和方向。

2. 矢量相加法矢量相加法是一种数学方法,通过将力的大小和方向表示成矢量,在数轴上进行向量相加,从而计算出合力的大小和方向。

以力的合成为例,假设有两个力F1和F2,可以通过以下步骤进行合成:步骤一:将力F1和F2分别表示成大小和方向已知的矢量。

步骤二:将矢量F1和F2放置在同一起点,按照两个力的大小和方向,绘制两个矢量。

步骤三:通过平行四边形法则或三角形法则将两个力的矢量相加,得到合力F的大小和方向。

二、力的分解力的分解是指将一个力分解成两个或多个分力,使其共同作用可以等效于原始力的作用效果。

根据力的分解原理,我们可以采用图示法或者矢量相减法进行力的分解。

1. 图示法图示法是通过在一张力的作用图上,按照力的大小、方向和作用点进行绘制,从而直观地表示力的分解效果。

以力的分解为例,假设有一个力F作用在一个物体上,可以通过以下步骤进行分解:步骤一:绘制一张力的作用图,表示力F的大小、方向和作用点。

步骤二:从作用点开始,按照物体所处的具体情况,绘制一个力F1与力F垂直的分力。

力的分解和合成

力的分解和合成

力的分解和合成力是物体之间相互作用的结果,而力的分解和合成则是对多个力进行分解或者合成得到新的力的过程。

力的分解可以将一个力分解成多个分力,力的合成则是将多个分力合成为一力。

力的分解和合成在物理学中具有重要的意义,可以帮助我们更好地理解力的性质和作用。

一、力的分解力的分解指的是将一个力分解成多个分力,这些分力在不同的方向上产生作用。

通过力的分解,我们可以研究物体在不同方向上受到的力的影响,从而更好地理解物体的运动和平衡状态。

1.1 水平和竖直方向的力的分解对于一个施加在物体上的力,我们可以将其分解为两个方向上的分力:水平方向的力和竖直方向的力。

水平方向的力通常会导致物体在水平方向上运动,竖直方向的力则会影响物体在竖直方向上的运动。

1.2 斜面上的力的分解当物体处于斜面上时,斜面对物体会产生一个垂直于斜面的分力和一个平行于斜面的分力。

垂直方向的分力通常是物体受到的重力分力,而平行方向的分力则会影响物体在斜面上的运动。

二、力的合成力的合成指的是将多个分力合成为一个力,这个力可以代替原来的多个力产生相同的作用效果。

通过力的合成,我们可以简化对力的研究和计算,便于对物体的运动和平衡进行分析。

2.1 平行力的合成当多个力的方向相同时,可以将这些力合成为一个力,等效地产生相同的作用效果。

平行力的合成可以通过将这些力的大小相加得到合力的大小,方向与原力的方向一致。

2.2 不平行力的合成当多个力的方向不同时,可以通过几何图形的方法将这些力合成为一个力。

首先,我们需要根据力的大小和方向在图纸上画出相应的力向量,然后将这些力向量按照顺序相连,形成一个闭合的几边形,合力的大小和方向可以由该几边形的对角线得到。

三、实例应用力的分解和合成在现实生活和科学研究中有着广泛的应用。

3.1 物体平衡和稳定通过分解物体所受的力,我们可以判断物体是否处于平衡状态。

如果物体受到的分力平衡,则物体在平衡;如果有不平衡的分力存在,则物体可能会发生运动或者倾倒。

力的合成与分解

力的合成与分解

复习内容一、力的合成与分解1.合力与分力如果一个力产生的效果和其他几个力产生的效果相同,这个力就叫那几个力的合力,那几个力就叫这个力的分力。

2.力的合成:求几个力的合力叫做力的合成。

(1)平行四边形定则:如果一个力单独的作用效果与其它几个力共同的作用效果相同,这个力就是那几个力的“等效力”(合力)。

力的平行四边形定则是运用“等效”观点。

(2)共点的两个力合力的大小范围:|F 1-F 2| ≤ F 合≤ F 1+F 2(3)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。

F 1 F 2F O3.力的分解:求一个力的分力叫力的分解。

(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。

(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应按照力实际产生的效果来分解。

4.力的合成与分解体现了用等效的方法研究物理问题。

合成与分解是为了研究问题的方便而引入的一种方法。

用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力而不能同时考虑合力。

5、几个特殊的夹角0 60 90 120 1805、共点力、平衡状态、平衡条件(二)☆考点点拨用正交分解法求解力的合成与分解问题正交分解法:把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。

力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力)。

三、考点落实训练1如图所示.有五个力作用于一点P,构成一个正六边形的两个邻边和三条对角线,设F3=10N,则这五个力的合力大小为()A.10(2+2)N B.20NC.30N D.02.关于二个共点力的合成.下列说法正确的是()A.合力必大于每一个力B.合力必大于两个力的大小之和C.合力的大小随两个力的夹角的增大而减小D.合力可以和其中一个力相等,但小于另一个力牛顿运动三定理一、牛顿第一定理1.伽利略的研究方法——理想实验研究法⎧⎪⎨⎪⎩内容:一切物体总保持匀速直线运动状态或2、牛顿第一运动定律(惯性定律)静止状态,直到有外力迫使它改变这种状态为止。

力的合成和分解

力的合成和分解

第十四讲 力的合成和分解考点一 力的合成核心内容1.合力与分力一个力如果它产生的效果跟几个力产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力。

2.共点力几个力作用在物体的同一点上,或它们的作用线相交于同一点,这几个力叫做共点力。

3.力的合成(1)求几个力的合力叫力的合成。

(2)运算法则:①平行四边形定则:将两分力共点,以两分力为邻边作平行四边形,由公共起点向对角作对角线即为合力。

对角线的长为合力的大小,对角线的指向为合力的方向②三角形法则:将两分力首尾相连,由第一个分力的起点起,向第二个分力的末端作连线,连线的长即为合力的大小,连线的指向即为合力的方向。

【考题l 】力F 1=4N ,方向向东,力F 2=3N ,方向向北.求这两个力合力的大小和方向 分别作出F 1、F 2的示意图,如图14—3所示,并作出平行四边形及对角线.在直角三角形中:N F F F 52221=+=,合力F 与F 2的夹角为α,则34tan 21==F F α 查表得:α=530 作图法是物理学中的常用方法,简单、直观,但不够精确.作图时要注意:1.合力、分力要共点,虚线、实线要分清.2.合力和分力标度要相同,作图要准确.3.对角线要找准,切忌漏求合力的方向.【变式1-1】如图l4—4所示,重物的质量为m ,轻细线A0和B0的A 、B 端是固定的.平衡时A0是水平的,BO 与水平面的夹角为θ.A0的拉力F 1和B0的拉力F 2的大小是( ).A .θcos 1mg F =B .θcot 1mg F = C. θsin 2mg F = D. θsin 2mg F =考点二 合力与分力的关系核心内容1.两个大小恒定的分力F 1、F 2的合力大小,随两个分力间的夹角而变化,夹角越大,合力越小,两力F 1、F 2的合力的大小变化范围为:2121F F F F F +≤≤-①当两力夹角为00时,F 合=F 1+F 2,为最大;②当两力夹角为900时,2221F F F +=合; ③当两力夹角为1200,且两力相等时,F 合=F 1=F 2; ④当两力夹角为1800时,合力大小F 合=F 1-F 2的绝对值,方向与较大的力的方向相同;(5)夹角为θ ,大小相等的两个力的合力__________2.当两分力间夹角θ分为两种情况:①当θ小于或等于900,合力F ②当θ大于900而小于或等于1800时,合力随另一分力由零起的增大而先减小后增大。

力的合成与分解

力的合成与分解

力的合成与分解力是物体相互作用的结果,它可以描述物体的运动状态以及受力的效果。

在物理学中,我们经常需要研究多个力对物体的综合作用,这就需要运用力的合成与分解的方法。

力的合成是指将多个力合并成一个等效的力,而力的分解则是将一个力分解为多个分力的过程。

一、力的合成力的合成是指将多个力合并成一个等效的力,常用的方法有矢量图解法以及三角函数法。

1. 矢量图解法矢量图解法是通过在力的作用点上按比例绘制各个力的矢量,然后将它们首尾相连,形成合力的合成矢量。

具体步骤如下:步骤一:在力的作用点处画出各个力的矢量,矢量的长度代表力的大小,矢量的方向代表力的方向。

步骤二:将各个力的矢量首尾相连,形成一个多边形。

步骤三:连接多边形的起点和终点,得到合力的合成矢量。

2. 三角函数法三角函数法是利用三角函数的性质计算合力的大小和方向。

具体步骤如下:步骤一:将各个力按照坐标轴方向分解成水平方向和垂直方向的分力。

步骤二:计算各个分力的代数和,得到水平方向和垂直方向的合力。

步骤三:利用三角函数求解合力的大小和方向。

二、力的分解力的分解是指将一个力分解为多个分力的过程,常用的方法有正余弦分解法、平行四边形法等。

1. 正余弦分解法正余弦分解法是将一个力分解为水平方向和垂直方向的分力。

具体步骤如下:步骤一:在力的作用点处,假设一个与力方向垂直的坐标轴。

步骤二:根据角度的定义,利用正弦函数和余弦函数求解力在水平方向和垂直方向上的分力。

2. 平行四边形法平行四边形法是将一个力分解为两个互相垂直的力。

具体步骤如下:步骤一:在力的作用点处,通过画一个平行四边形将力进行分解。

步骤二:根据平行四边形的性质,可以得到两个互相垂直的力。

三、实例应用力的合成与分解在物理学中有广泛的应用。

例如,在斜坡上有一个物体受到重力和斜坡面的支持力,我们可以通过合成这两个力来求解物体在斜坡上的运动情况。

又比如,当一个船要靠岸时,需要考虑风力和潮流对船的影响,我们可以将风力和潮流的力合成为一个等效力,以便进行船只的控制和导航。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F 1
F 2 力的合成和分解
一、标量和矢量
1.将物理量区分为矢量和标量体现了用分类方法研究物理问题的思想。

2.矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。

矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)。

平行四边形定则实质上是一种等效替换的方法。

一个矢量(合矢量)的作用效果和另外几个矢量(分矢量)共同作用的效果相同,就可以用这一个矢量代替那几个矢量,也可以用那几个矢量代替这一个矢量,而不改变原来的作用效果。

3.同一直线上矢量的合成可转为代数法,即规定某一方向为正方向。

与正方向相同的物理量用正号代入.相反的用负号代入,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样.但不能认为是矢量,最后结果的正负也不表示方向如:功、重力势能、电势能、电势等。

二、力的合成与分解
力的合成与分解体现了用等效的方法研究物理问题。

合成与分解是为了研究问题的方便而引人的一种方法.用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力而不能同时考虑合力。

1.力的合成
(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力
的作用,这个力就是那几个力的“等效力”(合力)。

力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。

(2)平行四边形定则可简化成三角形定则。

由三角形定则还可以得到一个有用的推论:
如果n 个力首尾相接组成一个封
闭多边形,则这n 个力的合力为
零。

(3)共点的两个力合力的大小范围是
|F 1-F 2| ≤ F 合≤ F 1+F 2
(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。

【例1】物体受到互相垂直的两个力F 1、F 2的作用,若两力大小分别为53N 、5 N ,
求这两个力的合力.
解析:根据平行四边形定则作出平行四边形,如图所示,由于F 1、F 2相互垂直,所以作出的平行四边形为矩形,对角线分成的两个三角形为直角三角形,由勾股定理得:
222
2215)35(+=+=F F F N=10 N
合力的方向与F 1的夹角θ为: 3
335512===F F tg θ θ=30° 点评:今后我们遇到的求合力的问题,多数都用计算法,即根据平行四边形定则作出平行四边形后,通过解其中的三角形求合力.在这种情况下作的是示意图,不需要很严格,但要规范,明确哪些该画实线,哪些该画虚线,箭头应标在什么位置等.
【例2】如图甲所示,物体受到大小相等的两个拉力的作用,每个拉力均为200 N ,两力之间的夹角为60°,求这两个拉力的合力.
解析:根据平行四边形定则,作出示意图乙,它是一个菱形,我们可以利用其对角线垂直平分,通过解其中的直角三角形求合力.
320030cos 21== F F N=346 N
合力与F 1、F 2的夹角均为30°.
点评:
(1)求矢量时要注意不仅要求出其大小,
还要求出其方向,其方向通常用它与已知矢量的夹角表示.
(2)要学好物理,除掌握物理概念和规律外,还要注意提高自己应用数学知识解决物理问题的能力.
2.力的分解
(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。

(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。

【例3】将放在斜面上质量为m 的物体的重力mg 分解为下滑力F 1和对斜面的压力F 2,这种说法正确吗?
解析:将mg分解为下滑力F1这种说法是正确的,但是mg的另一个分力F2不是物体对斜面的压力,而是使物体压紧斜面的力,从力的性质上看,F2是属于重力的分力,而物
体对斜面的压力属于弹力,所以这种说法不正确。

【例4】将一个力分解为两个互相垂直的力,有几种分法?
解析:有无数种分法,只要在表示这个力的有向线段的一段任意画一条直
线,在有向线段的另一端向这条直线做垂线,就是一种方法。

如图所示。

(3
①已知两个分力的方向,求两个分力的大小时,有唯一解。

②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。

③已知两个分力的大小,求两个分力的方向时,其分解不惟一。

④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。

(4)用力的矢量三角形定则分析力最小值的规律:
①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。

如图所示,F2的最小值为:F2min=F sinα
②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件
是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα
③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|
(5
把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。

用正交分解法求合力的步骤:
①首先建立平面直角坐标系,并确定正方向
②把各个力向x 轴、y 轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向
③求在x 轴上的各分力的代数和F x 合和在y 轴上的各分力的代数和F y 合
④求合力的大小 22)()(合合y x F F F +=
合力的方向:tan α=合合
x y F F (α为合力F 与x 轴的夹角)
点评:力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力)。

【例5】质量为m 的木块在推力F 作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为µ,那么木块受到的滑动摩擦力为下列各值的哪个?
A .µmg B.µ(mg+Fsin θ)
C.µ(mg+Fsin θ) D.F cos θ
解析:木块匀速运动时受到四个力的作用:重力mg 、推力F 、支持力F N 、摩擦力F µ.沿水平方向建立x 轴,将F 进行正交分解如图(这样建立坐标系只需分解F ),由于木块做匀速直线运动,所以,在x 轴上,向左的力等于向右的力(水平方向二力平衡);在y 轴上向上的力等于向下的力(竖直方向二力平衡).即
F cos θ=F µ ①
F N =mg+Fsin θ ②
又由于F µ=µF N ③
∴F µ=µ(mg+Fsin θ) 故B、D答案是正确的.
小结:(1)在分析同一个问题时,合矢量和分矢量不能同时使用。

也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量。

(2)矢量的合成分解,一定要认真作图。

在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线。

(3)各个矢量的大小和方向一定要画得合理。

(4)在应用正交分解时,两个分矢量和合矢量的夹角一定要分清哪个是大锐角,哪个是小锐角,不可随意画成45°。

(当题目规定为45°时除外)。

相关文档
最新文档