近代物理实验(安徽师范大学)
近代物理演示实验报告_0
![近代物理演示实验报告_0](https://img.taocdn.com/s3/m/18506ec6bd64783e08122be4.png)
近代物理演示实验报告篇一:近代物理实验实验报告20xx-20xx学年第一学期近代物理实验实验报告目录液晶电光效应实验 (4)一、实验目的 (4)二、实验原理 (4)三、实验仪器 (7)四、实验步骤 (8)1、液晶电光特性测量 .................................................................. .. (8)2、液晶上升时间、下降时间测量,响应时间 (10)3、液晶屏视角特性测量 .................................................................. .. (13)拓展实验:验证马吕斯定律 .................................................................. (14)五、注意事项 (15)附:《LCD产品介绍及工艺流程》相关资料 ..................................................................15α粒子散射 (20)一、实验目的 (20)二、实验原理 (20)1、瞄准距离与散射角的关系 .................................................................. (20)2、卢瑟福微分散射截面公式 .................................................................. (21)3、对卢瑟福散射公式可以从以下几个方面加以验证。
(23)三、实验仪器 (23)四、实验步骤 (24)五、实验数据及处理 .................................................................. (24)六、思考题 (27)α散射的应用 (27)电子衍射 (29)一、实验目的 (29)二、实验原理 (29)运动电子的波长 .................................................................. . (29)相长干涉 (29)三、实验仪器 (30)四、实验数据及处理 .................................................................. (30)五、实验结论 (31)验证德布罗意假设 .................................................................. (31)普朗克常量的测定 .................................................................. (31)六、电子衍射的应用 .................................................................. (32)塞曼效应 (33)一、实验目的 (33)二、实验原理 (33)谱线在磁场中的能级分裂 .................................................................. (33)法布里—珀罗标准具 .................................................................. ................................... 34 用塞曼效应计算电子荷质比e ................................................................... ................. 37 m三、实验步骤 (37)四、数据处理及计算结果 .................................................................. . (37)五、误差分析 (37)六、思考题 (38)拓展实验 (38)观察磁感应强度与能级分裂强弱的关系 .................................................................. (38)估算铁芯的磁导率 .................................................................. (38)七、塞曼效应在科学技术中的应用 .................................................................. (39)液晶电光效应实验一、实验目的了解液晶的特性和基本工作原理;掌握一些特性的常用测试方法;了解液晶的应用和局限。
近代物理实验教材
![近代物理实验教材](https://img.taocdn.com/s3/m/185cc110cc7931b765ce1523.png)
近代物理实验 Modern Physics Experiment(讲 义)物理实验室 编2010年7月目录实验一、塞曼效应 (1)实验二、小型棱镜读(摄)谱仪测氢原子光谱 (16)实验三、彩色线阵CCD实验 (21)实验四、光电传感器实验 (31)实验五、密立根油滴实验 (37)实验六、小型制冷装置制冷量和制冷系数的测量 (44)实验七、光拍频法测量光速 (51)实验八、光纤光学实验 (56)实验九、傅立叶变换光谱实验 (69)实验十、法拉第效应实验 (75)实验十一、光电效应普朗克常数测定 (79)实验十二、夫兰克-赫兹实验 (83)实验一 塞 曼 效 应z 实验简介1896年塞曼(Zeeman)发现当光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。
后人称此现象为塞曼效应。
早年把那些谱线分裂为三条,而裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位mc eB L π4/=)。
正常塞曼效应用经典理论就能给予解释。
实际上大多数谱线的塞曼分裂不是正常塞曼分裂,分裂的谱线多于三条,谱线的裂距可以大于也可以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。
反常塞曼效应只有用量子理论才能得到满意的解释。
塞曼效应的发现,为直接证明空间量子化提供了实验依据,对推动量子理论的发展起了重要作用。
直到今日,塞曼效应仍是研究原子能级结构的重要方法之一。
z 实验目的1. 掌握观测塞曼效应的实验方法。
2. 观察汞原子546.1nm 谱线的分裂现象以及它们偏振状态。
3. 由塞曼裂距计算电子的荷质比。
z 实验原理原子中的电子由于作轨道运动产生轨道磁矩,电子还具有自旋运动产生自旋磁矩,根据量子力学的结果,电子的轨道角动量L P 和轨道磁矩L μ以及自旋角动量S P 和自旋磁矩S μ在数值上有下列关系: L L P mce 2=μ h )1(+=L L P L(1)S S P mce =μ h )1(+=S S P S 式中m e ,分别表示电子电荷和电子质量;S L ,分别表示轨道量子数和自旋量子数。
工科近代物理实验报告
![工科近代物理实验报告](https://img.taocdn.com/s3/m/a16344ff294ac850ad02de80d4d8d15abf230053.png)
一、实验目的1. 理解和掌握近代物理实验的基本原理和方法。
2. 通过实验操作,加深对理论知识的理解,提高实验技能。
3. 培养严谨的科学态度和良好的实验习惯。
二、实验原理本实验涉及近代物理的多个领域,主要包括:1. 光电效应:通过测量不同频率的光照射到金属表面时产生的光电子动能,验证爱因斯坦的光电效应方程。
2. 半导体的PN结:研究PN结的正向和反向特性,了解PN结在电子器件中的应用。
3. 光谱分析:利用光谱仪分析物质的光谱,研究物质的组成和结构。
三、实验仪器1. 光电效应实验装置:包括光源、光电管、微电流放大器、示波器等。
2. PN结测试仪:包括直流电源、万用表、数字存储示波器等。
3. 光谱仪:包括光源、单色仪、探测器等。
四、实验内容1. 光电效应实验:- 设置不同频率的光源,分别照射到光电管上。
- 测量光电子的最大动能和入射光的频率。
- 分析实验数据,验证光电效应方程。
2. PN结实验:- 测量PN结的正向和反向电流。
- 分析实验数据,了解PN结的特性。
3. 光谱分析实验:- 设置不同物质的光谱,利用光谱仪进行分析。
- 研究物质的组成和结构。
五、实验步骤1. 光电效应实验:- 调整光电管与光源的距离,确保入射光垂直照射到光电管上。
- 改变光源的频率,测量光电子的最大动能。
- 记录实验数据,分析结果。
2. PN结实验:- 将PN结接入电路,调整直流电源电压。
- 测量正向和反向电流,记录数据。
- 分析实验数据,了解PN结的特性。
3. 光谱分析实验:- 将不同物质的光谱设置到光谱仪中。
- 利用光谱仪分析光谱,研究物质的组成和结构。
- 记录实验数据,分析结果。
六、实验结果与分析1. 光电效应实验:- 实验结果显示,随着入射光频率的增加,光电子的最大动能也随之增加,符合光电效应方程。
- 通过分析实验数据,验证了爱因斯坦的光电效应方程。
2. PN结实验:- 实验结果显示,PN结的正向电流较大,反向电流较小,符合PN结的特性。
近代物理实验步骤(第一部分)
![近代物理实验步骤(第一部分)](https://img.taocdn.com/s3/m/c20927360912a21614792970.png)
《近代物理实验》实验资料(第一部分)2012.3.6写在实验前的话既然你选择了物理,不管是主动选择还是被动选择,你就应该热爱实验,认真做好实验,尊重实验客观现象。
要摆正实验目的,实验不是简单的为了获得数据,要注重实验过程,实验过程多思考,多问为什么。
当你回避或敷衍应付实验时,你在实验方面将一无所获。
如果你通过学习本课,你深刻理解了每个实验的巧妙的实验思想,当你由此叹服科学家们的奇思妙想,并因此为解决某个问题在脑里产生各种实验设想时,即使这些设想是异想天开的,但我还是我祝贺你,祝贺你爱上了实验,你已经学会了在实验中享受快乐。
在我看来,错过一门实验课的学习要比错过一门理论课的学习损失得多。
因为只要你足够聪明,只要你有时间,只要你愿意,你还是有可能把错过的理论课重新学好,而实验课则不然,因为你不可能自己拥有一个实验室。
也许到目前为止,你可能认为实验报告是很容易写的。
在我看来,与其写一百个没有任何思考的实验报告,不如写一、两个精品实验报告收获更多。
应付式的实验报告只会是浪费时间,就犹如你到了大三还在做加减练习一样毫无意义。
我希望你认真写出经过思考有独立见解的实验报告,如果哪天我准许你免交实验报告时,恭喜你学会了写报告。
从以往批改的实验报告来看,只有少数同学知道怎样去处理实验数据,也只有少数同学愿意花时间来认真学习数据处理方法——虽然这是物理学科学生最必备的知识;只有少数同学知道怎样正确使用万用表和示波器等常用仪器。
我希望通过学习本课,能真正提高你的数据处理能力(广义的实验数据包括数字、现象、图形、特征等),希望你在实验过程中注意知识的积累;希望你对于不理解的问题,能主动与老师交流,或查阅有关文献或网络。
对于考研的同学,我支持,但考研不能成为要求我对你放松的理由;对于学生干部,我支持你的工作,但教学计划外的任何事情都不能影响到教学计划内的教学。
可能你只是考虑到自己的利益,而我要考虑的是对所有同学的公平。
温馨提示:1、请保持资料整洁,不要拿走本资料(本资料的电子版班已发到班长信箱了);2、实验结束后请认真填写实验仪器使用登记表;3、请不要动用与实验无关的仪器设备,不要随意搬动实验仪器、不要随意取用实验室纸张;4、光学类的实验往往需要在全暗或半暗的环境中进行,请不要打开门窗帘;5、请不要带食物到实验室来吃,以免因食物残留气味招来老鼠,严禁在实验室抽烟。
安徽师范大学原子与分子物理研究所
![安徽师范大学原子与分子物理研究所](https://img.taocdn.com/s3/m/2ee1a1bf960590c69ec376cb.png)
研究方向与研究人员
三、激光光谱技术及其在环境监测中的应用
开展激光光谱技术及其在环境监测中的应用研究,利用各种激光光谱 技术(激光等离子体光谱技术、激光诱导荧光技术、吸收光谱技术、喇曼 光谱技术、质谱技术等),从实验上研究海洋环境污染、水资源污染、大 气污染的在线定量检测和冶金过程中各种金属元素成分的自动控制技术, 主要研究人员有: 崔执凤 博士、教授, 屈 军 博士、教授, 姚关心 副教授
一、学术队伍
• 现在该所共有研究人员20名,其中正高7名,副高 9名,中级职称人员5名,博士12人,硕士18人,45岁 以下人员14人。有省跨世纪学术与技术带头人1 名、 省高校学科拔尖人才1名、省高校中青年学科带头人3 名、省高校优秀中青年骨干教师5名、兼职博士生导师 1人、硕士生导师14人、有2人获得安徽省优秀教师, 本学科学术队伍人选我校学术创新团队。另外还聘请 了中国科大、南京大学、中科院化学所等单位的兼职 教授7人、客座研究人员4人。
• 三、教学、科研成果
近三年年以来在国内外学术刊物上发表论文200余 篇,其中在J.Chem.Phys. 、Phys.Rev.、Biophys.Chem.、 Chem.Phys.Lett.、 Phys.Lett.、 Appl.Phys.B、 Europ.J.Phys.、Spectrosc. Lett.、Chem.Phys.、中国科学、 物理学报等国内外被SCI期刊源学术刊物上发表论文70余 篇。 近5年以来获安徽省高校教学成果二等奖1项,安徽省 省自然科学二等奖1项,安徽省自然科学三等奖5项,安徽 省高校科技进步奖5项,出版教材、专著4本。
• 为表彰陆同兴教授在激光光解-时间分辨ESR研究方面所 作出的突出贡献,中国物理学会授予第六届胡刚复物理 奖。
近代物理实验教程的实验报告
![近代物理实验教程的实验报告](https://img.taocdn.com/s3/m/67d73884d5d8d15abe23482fb4daa58da0111c8b.png)
近代物理实验教程的实验报告时间过得真快啊!我以为自己还有许多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的高校物理试验就要画上一个圆满的句号了,本学期从其次周开设了近代物理试验课程,在三个多月的试验中我明白了近代物理试验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉非常的充实,通过亲自动手,使我进一步了解了物理试验的基本过程和基本方法,为我今后的学习和工作奠定了良好的试验基础。
我们所做的试验基本上都是在物理学进展过程中起到打算性作用的闻名试验,以及体现科学试验中不行缺少的现代试验技术的试验。
它们是我受到了闻名物理学家的物理思想和探究精神的熏陶,激发了我的探究和创新精神。
同时近代物理试验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理试验课程也是我们物理系的专业必修课程。
我们原来每个人要做共八个试验,后来由于时间关系做了七个试验,我做的七个试验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个试验及心得体会做些简洁介绍:一、光纤通讯:本试验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础学问。
探究相位调制型温度传感器的干涉条纹随温度的变化的移动状况,模拟语电话光通信,了解光纤语音通信的基本原理和系统构成。
老师讲的也很清晰,本试验在操作上并不是很困难,很易于实现,易于胜利。
二、光学多道与氢氘:本试验利用光学多道分析仪,从巴尔末公式动身讨论氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次试验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。
个人觉得这个试验有点太智能化,建议熬炼操作的部分能有所加强。
近代综合实验报告
![近代综合实验报告](https://img.taocdn.com/s3/m/457d737d580102020740be1e650e52ea5418ce4f.png)
实验名称:近代物理实验实验日期:2023年10月15日实验地点:物理实验室实验指导教师:张老师一、实验目的1. 通过近代物理实验,加深对物理学基本理论的理解和掌握。
2. 培养实验操作技能,提高实验数据分析能力。
3. 培养科学思维和创新能力,提高解决实际问题的能力。
二、实验内容本实验共分为四个部分,分别为:1. 光纤通讯实验2. 光学多道与氢氘实验3. 法拉第效应实验4. 液晶物性实验三、实验原理1. 光纤通讯实验:光纤是一种传输信息的介质,具有低损耗、高带宽、抗干扰等优点。
本实验主要研究光纤的传输特性,包括光纤耦合效率、光纤数值孔径等。
2. 光学多道与氢氘实验:光学多道探测器是一种高灵敏度的粒子探测器,广泛应用于核物理、粒子物理等领域。
本实验通过测量氢氘核的衰变,研究其能谱和寿命。
3. 法拉第效应实验:法拉第效应是指当线偏振光通过某些介质时,其偏振面会发生变化。
本实验通过测量法拉第效应,研究其与磁场、介质等因素的关系。
4. 液晶物性实验:液晶是一种介于液体和固体之间的物质,具有各向异性的特点。
本实验通过测量液晶的折射率、粘度等物理量,研究其物性。
四、实验步骤1. 光纤通讯实验:(1)搭建实验装置,包括光纤、光源、探测器等。
(2)调整实验参数,如光纤长度、耦合效率等。
(3)测量光纤的传输特性,如衰减、带宽等。
2. 光学多道与氢氘实验:(1)搭建实验装置,包括光学多道探测器、放射性源等。
(2)调整实验参数,如探测器灵敏度、计数时间等。
(3)测量氢氘核的衰变能谱和寿命。
3. 法拉第效应实验:(1)搭建实验装置,包括法拉第盒、光源、探测器等。
(2)调整实验参数,如磁场强度、光束入射角度等。
(3)测量法拉第效应的偏振面变化。
4. 液晶物性实验:(1)搭建实验装置,包括液晶样品、光源、探测器等。
(2)调整实验参数,如液晶温度、光束入射角度等。
(3)测量液晶的折射率、粘度等物理量。
五、实验结果与分析1. 光纤通讯实验:实验结果显示,光纤的传输损耗随着长度的增加而增加,且在一定范围内趋于稳定。
近代物理实验-黑体实验
![近代物理实验-黑体实验](https://img.taocdn.com/s3/m/73193a4ce518964bcf847cf9.png)
三、数据处理1、电流为1.4A 时,色温为2380K ,数据如下: (1)普朗克辐射定律:%9.8%1005.9755.9758.888%100E E E 975.5W/mmE W/mm8.888)1()1144(107418.3)1(E 2380,1144T T T 3T 323801144104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm%8.3%1004.8074.8078.776%100E E E 807.4W/mmE W/mm8.776)1()1648(107418.3)1(E 2380,1648T T T 3T 323801648104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:理论值:λλλλλλγλλK nm Knm TC e nm cmW eC K T nm%1.12%1001.6991.6996.614%100E E E 699.1W/mmE W/mm 6.614)1()1826(107418.3)1(E 2380,1826T T T 3T 323801826104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:理论值:λλλλλλγλλKnm Knm TC enm cmW eC KT nm%2.6%1002.6682.6686.626%100E E E 668.2W/mmE W/mm 6.626)1()1878(107418.3)1(E 2380,1878T T T 3T 323801878104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:理论值:λλλλλλγλλKnm K nm TC enm cmW eC K T nm%5.4%1007.5617.5618.586%100E E E W/mm8.586E W/mm 7.615E 2070T T T 3T 3T ≈⨯-=⨯-=∴===理论理论理论相对误差:;实测值:;理论值:λλλλλγλnm(2)斯忒藩-玻耳兹曼定律:%6.3%1005.6705.6705.3103%100-)K mmW/10670.5)K mmW/103103.5K102085.3W/mm 7038.1,W/mm7038.1 ,K 102085.30K 238421442144132424134≈⨯-=⨯=∴⋅⨯=⋅⨯≈⨯==∴=⨯=⇒=--理论理论理论相对误差:(理论值:(波尔兹曼常数:又δδδγδδTE E T T T T(3)维恩位移定律%38.0%1002.896896.2885.2%100A A A Kmm 896.2A K2.885mm2380K m 1212T A TA 1212,0K 238max max max ≈⨯-=⨯-=∴⋅=⋅≈⨯=⋅=⇒=∴==理论理论理论相对误差:理论值:由维恩位移定律:γλλλn nm T2、电流为1.5A 时,色温为2420K ,数据如下: (1)普朗克辐射定律:%2.7%1001.10151.10158.941%100E E E W/mm1.0151E W/mm8.941)1()1036(107418.3)1(E 2420,1036T T T 3T 324201036104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm%2.2%1003.10703.10704.1047%100E E E W/mm3.1070E W/mm4.1047)1()1200(107418.3)1(E 2420,1200T T T 3T 324201200104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm%9.2%1007.8417.8419.816%100E E E W/mm7.841E W/mm9.816)1()1674(107418.3)1(E 2420,1674T T T 3T 324201674104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm%9.3%1003.7823.7820.752%100E E E W/mm3.782E W/mm0.752)1()1762(107418.3)1(E 2420,1762T T T 3T 324201762104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm%5.3%1008.6468.6467.669%100E E E W/mm8.646E W/mm7.669)1()1974(107418.3)1(E 2420,1974T T T 3T 324201974104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm(2)斯忒藩-玻耳兹曼定律:%4.3%1005.6705.6705.4237%100-)K mmW/10670.5)K mmW/104237.5K104297.3W/mm 8602.1,W/mm8602.1 ,K 104297.3K 2420421442144132424134≈⨯-=⨯=∴⋅⨯=⋅⨯≈⨯==∴=⨯=⇒=--理论理论理论相对误差:(理论值:(波尔兹曼常数:又δδδγδδTE E T T T T(3)维恩位移定律%3.1%1002.896896.2933.2%100A A A Kmm 896.2A K2.933mm2420K m 1212T A TA 1212,K 2420max max max ≈⨯-=⨯-=∴⋅=⋅≈⨯=⋅=⇒=∴==理论理论理论相对误差:理论值:由维恩位移定律:γλλλn nm T3、电流为1.6A 时,色温为2470K ,数据如下: (1)普朗克辐射定律:%2.6%1007.11377.11375.1067%100E E E W/mm7.1137E W/mm 5.1067)1()1032(107418.3)1(E 2470,1032T T T 3T 324701032104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλKnm Knm T C enm cmW e C K T nm%0.2%1001.11841.11843.1160%100E E E W/mm1.1184E W/mm3.1160)1()1200(107418.3)1(E 2470,1200T T T 3T 324701200104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm%1003.9263.9263.926%100E E E W/mm3.926E W/mm 3.926)1()1648(107418.3)1(E 2470,1648T T T 3T 324701648104388.1521251T 72=⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλKnm Knm T C enm cmW e C K T nm%2.6%1000.7910.7918.741%100E E E W/mm0.791E W/mm8.741)1()1828(107418.3)1(E 2470,1828T T T 3T 324701828104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm%8.5%1006.7016.7014.742%100E E E W/mm6.701E W/mm 4.742)1()1956(107418.3)1(E 2470,1956T T T 3T 324701956104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλKnm K nm T C enm cmW e C K T nm(2)斯忒藩-玻耳兹曼定律:%8.2%1005.6705.6705.5137%100-)K mmW/10670.5)K mmW/105137.5K107221.3.0523W/mm 2,W/mm0523.2 ,K 107221.3K 2470421442144132424134≈⨯-=⨯=∴⋅⨯=⋅⨯≈⨯==∴=⨯=⇒=--理论理论理论相对误差:(理论值:(波尔兹曼常数:又δδδγδδTE E T T T T(3) 维恩位移定律%4.3%1002.896896.2994.2%100A A A Kmm 896.2A K2.994mm2470K m 1212T A TA 1212,K 2470max max max ≈⨯-=⨯-=∴⋅=⋅≈⨯=⋅=⇒=∴==理论理论理论相对误差:理论值:由维恩位移定律:γλλλn nm T4、电流为1.7A 时,色温为2500K ,数据如下: (1)普朗克辐射定律:%2.6%1000.12190.12199.1143%100E E E W/mm0.1219E W/mm9.1143)1()1034(107418.3)1(E 2500,1034T T T 3T 325001034104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm%2.4%1007.12217.12218.1169%100E E E W/mm7.1221E W/mm 8.1169)1()1038(107418.3)1(E 2500,1038T T T 3T 325001038104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλKnm Knm T C enm cmW e C K T nm%6.5%1008.8718.8712.823%100E E E W/mm8.871E W/mm2.823)1()1766(107418.3)1(E 2500,1766T T T 3T 325001766104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm%1008.7778.7778.777%100E E E W/mm8.777E W/mm 8.777)1()1888(107418.3)1(E 2500,1888T T T 3T 325001888104388.1521251T 72=⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλKnm K nm T C enm cmW e C K T nm%8.5%1004.7104.7105.751%100E E E W/mm4.710E W/mm5.751)1()1982(107418.3)1(E 2500,1982T T T 3T 325001982104388.1521251T 72≈⨯-=⨯-=∴=≈-⨯⋅⨯=-=∴==⨯⋅⨯-理论理论理论相对误差:;理论值:;λλλλλλγλλK nm Knm T C e nm cmW e C K T nm(2)斯忒藩-玻耳兹曼定律:%6.1%1005.6705.6705.5820%100-)K mmW/10670.5)K mmW/105820.5K109063.3.0523W/mm 2,W/mm1808.2 ,K 109063.3K 2500421442144132424134≈⨯-=⨯=∴⋅⨯=⋅⨯≈⨯==∴=⨯=⇒=--理论理论理论相对误差:(理论值:(波尔兹曼常数:又δδδγδδTE E T T T T(3) 维恩位移定律%6.4%1002.896896.2030.3%100A A A Kmm 896.2A Kmm 030.32500K m 1212T A TA 1212,K 2500max max max ≈⨯-=⨯-=∴⋅=⋅≈⨯=⋅=⇒=∴==理论理论理论相对误差:理论值:由维恩位移定律:γλλλn nm T误差分析: 本次实验本不需要对仪器进行调整,只需按照步骤来操作软件。
近代物理实验 (II)
![近代物理实验 (II)](https://img.taocdn.com/s3/m/0f8cee9d915f804d2a16c101.png)
纳米科技中的探针成像技术及应用
超高真空扫描隧道显微镜的学习和掺硼硅表面的研究
约瑟夫森效应实验的建设和研究
薄膜场效应管和氧化物薄膜制备
有机电致发光器件的制备和物性研究
非极性GaN 的物性和离子束改性研究
稀土离子掺杂ZnO: 晶格位置,光学磁学性质研究
教师讲授、学生在教师的指导下自主实验、师生交流讨论和报告考察
近代物理实验课程内容包含原子与分子物理、核探测技术及应用、激光与近代光学、真空技术与薄膜制备,X射线电子衍射和结构分析、磁共振、微波、低温与超导、半导体物理、非线性物理等领域的几十个独立实验项目和研究型前沿物理大实验课题。近代物理实验I主要在春季学期开课。学生在一学期内完成安排好的7个不同领域的独立实验项目。近代物理实验II主要在秋季学期开课。学生可以根据专业和兴趣选做近代物理实验I中没做过的凝聚态物理实验模块、激光实验模块、核与粒子物理实验模块或其它领域的7个独立实验。
开课院系
物理学院
通选课领域
是否属于艺术与美育
否
平台课性质
平台课类型
授课语言
中文
教材
近代物理实验(第四版),吴思诚 荀坤 主编,高等教育出版社,2015,4,978-7-04-041830-9;
Experiments in Modern Physics, 2nd Edition,Adrian C. Melissinos, Jim Napolitano,Academic Press,2003,近代物理实验技术(I、II),吕斯骅,高等教育出版社,1992,Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics,Wolfgang Demtroder,Springer,2013,
近代物理实验报告
![近代物理实验报告](https://img.taocdn.com/s3/m/5f082b63dc36a32d7375a417866fb84ae45cc3ab.png)
近代物理实验报告一、实验目的:本次实验旨在通过实际操作,了解近代物理中的一些基本实验现象和实验方法,加深对近代物理理论的理解和认识。
二、实验原理:1.光电效应实验光电效应是指当光照射到金属表面时,如果光的能量大于金属的束缚能,就会有电子从金属表面逸出。
实验中,我们将使用光电效应实验装置,包括光源、金属样品和电子倍增器等,通过调整光源的强度和波长,可以观察到光电流的变化,从而了解光电效应的一些基本特性。
2.康普顿散射实验康普顿散射是指入射光子与静止的自由电子相互碰撞后发生能量和动量的转移。
在实验中,我们将使用康普顿散射实验装置,包括光源、散射靶和探测器等,通过测量探测器中散射光的能量和角度,可以利用康普顿散射公式计算出入射光子的能量和散射角度,从而验证康普顿散射的基本规律。
三、实验步骤:1.光电效应实验①将光电效应实验装置搭建起来,并调整光源的位置和强度。
②将电子倍增器接入实验电路,调节放大器的放大倍数。
③将金属样品放置在实验台上,并遮挡住一部分金属表面。
④调节光源的强度和波长,观察电子倍增器的电流变化情况。
2.康普顿散射实验①将康普顿散射实验装置搭建起来,并调整光源的位置和强度。
②将探测器放置在合适的位置,并调整其与散射靶的距离。
③调节光源的波长和散射角度,观察探测器中散射光的能量变化情况。
④根据康普顿散射公式计算入射光子的能量和散射角度。
四、实验结果与分析:1.光电效应实验实验中,我们观察到了光电流随着光源强度的增加而增加的现象,这符合光电效应的基本规律。
同时,我们发现在不同波长的光照射下,光电流的变化也不同,这与光电效应中的电子能量与波长之间的关系是一致的。
2.康普顿散射实验通过测量不同散射角度下的散射光能量,我们得到了散射光的能谱曲线。
根据康普顿散射公式,我们计算出了入射光子的能量和散射角度,并与理论值进行比较。
实验结果与理论值吻合较好,验证了康普顿散射的基本规律。
五、实验总结:通过本次实验,我们加深了对近代物理中光电效应和康普顿散射的理解。
近代物理实验步骤总结_2
![近代物理实验步骤总结_2](https://img.taocdn.com/s3/m/58d309a76394dd88d0d233d4b14e852458fb391d.png)
CT实验1、打开实验仪器的总电源,然后依次打开计算机电源和CT的电源。
2、将所测的铜质孔卡放在CT仪的载物平台的中间位置,用双面胶固定,并打开计算机上的相应软件,在扫描实验的界面上填写包括实验员姓名、班级、院系与专业等基本信息。
除此之外,在扫描实验一栏中选择CT扫描1,视场直径选择40mm(略大于孔卡的直径35mm,保证孔卡能够全部被扫描到),起始角度为0。
3、这些基本参数填写完毕后,开始对实验设备进行运动检查(注意在扫描过程中不能够进行运动检查),并在系统诊断中,让载物平台实现正向平移、反向平移、正向旋转、反向旋转等操作,观察光线射到孔卡的位置,调节载物平台的高度,使射线能照到孔卡顶端三分之一处。
4、确定采样时间和图像的尺寸,为了得到相对比较清晰地实验扫描图像,我们在实验中选择了128*128,所谓采样时间就是采集一次数据所需要的时间,在一开始我们先选择了0.1,在得到了相对不是特别清楚、但能够扫描到图像的基础下,我们第二次选择了0.5,而0.5所需要的等待的时间是0.5*128*128s。
5、在扫描完成后,就需要进行图像的重建与处理,那么我们就需要点击窗口左侧进入图像处理界面。
点击文件中的重建选项,选择刚扫描的数据进行重建并保存,完成之后,点击打开,可以找到扫描后的图像。
6、然后对图像进行处理。
首先我们要改变图像的灰度,在左侧把原来的0改为40,在右侧把原来的255改为200,这样可以使所得到的图像明暗更加清晰;其次,我们在滤波选项中选择自定义滤波中的低通2,以降低仪器的噪声干扰;最后,就是进入对比度与亮度修改界面,适当的调节图像的亮度和对比度,令图像更加的清晰与明暗分明。
光学多道测量光谱(1)根据实验装置图连好实验仪器,使光源聚集在多色仪的缝上,适当调节狭缝的宽度,但是必须使缝宽在0.2~2mm的范围内,以免损坏仪器。
(2)打开CCD的电源,再打开计算机及计算机上相应的光学多道分析软件。
考虑到背景光线的影响,选择背景记忆,那么计算机会将实际采集的谱线与背景相减,获取真实的谱线。
近代物理创新实验报告(3篇)
![近代物理创新实验报告(3篇)](https://img.taocdn.com/s3/m/7f10e716a517866fb84ae45c3b3567ec102ddcf0.png)
第1篇一、实验背景随着科技的不断发展,物理学领域的研究也在不断深入。
近代物理实验作为物理学研究的重要手段,对于培养科学精神和创新意识具有重要意义。
为了进一步提高实验教学质量,激发学生的学习兴趣,我们设计了一项近代物理创新实验,旨在探究光子与电子的相互作用,为光电子学领域的研究提供新的思路。
二、实验目的1. 了解光子与电子相互作用的原理和实验方法;2. 通过实验验证康普顿效应,探究光子与电子的散射过程;3. 分析实验数据,总结实验规律,为光电子学领域的研究提供参考。
三、实验原理康普顿效应是指当高能光子(如X射线)与物质中的自由电子发生碰撞时,光子会被散射,同时其波长发生变化的现象。
康普顿效应揭示了光子与电子的相互作用规律,为量子力学的发展奠定了基础。
实验原理如下:1. 当入射光子与电子发生碰撞时,光子将部分能量传递给电子,使其获得动能;2. 由于能量守恒和动量守恒,光子波长发生变化,即发生散射;3. 通过测量散射光子的波长,可以验证康普顿效应,并探究光子与电子的相互作用。
四、实验仪器与材料1. 激光器:用于产生高能光子;2. 电子靶:由自由电子组成的靶材料;3. 检测器:用于测量散射光子的波长;4. 光谱仪:用于分析散射光子的波长;5. 计算机软件:用于数据处理和分析。
五、实验步骤1. 将激光器、电子靶和检测器依次连接,搭建实验装置;2. 设置激光器的参数,调整电子靶与检测器之间的距离;3. 启动激光器,使光子与电子靶中的自由电子发生碰撞;4. 检测器接收散射光子,通过光谱仪分析散射光子的波长;5. 记录散射光子的波长数据,并进行数据处理和分析。
六、实验结果与分析1. 实验结果显示,散射光子的波长与入射光子的波长之间存在差异,符合康普顿效应的规律;2. 通过对实验数据进行拟合,可以得到散射光子波长的变化量与入射光子能量的关系;3. 分析实验结果,可以得出以下结论:(1)光子与电子的相互作用符合康普顿效应的规律;(2)散射光子的波长变化量与入射光子能量之间存在线性关系;(3)实验结果与理论预期相符,验证了康普顿效应的正确性。
大学近代物理实验总结(特全)word资料13页
![大学近代物理实验总结(特全)word资料13页](https://img.taocdn.com/s3/m/0166f05f915f804d2a16c119.png)
近代物理实验总结论文班级:电科11-2班姓名:仝帅学号:201920906046指导老师:丁昌江近代物理实验总结论文班级:电科11-2班姓名:仝帅学号:201920906046前言 (2)二、光电效应实验 (3)三、电光效应实验 (3)四、密立根油滴测电子电荷 (4)五、微机夫兰克—赫兹实验 (5)六、迈克尔逊干涉仪 (6)七、微波迈克尔逊干涉实验 (6)八、微波布拉格晶体衍射实验 (7)九、椭圆偏振仪测量薄膜厚度实验 (8)十、光泵磁共振实验 (8)十一、核磁共振实验 (9)十二、微波顺磁共振实验 (9)十三、光栅光谱实验 (9)十四、学习中的困难 (10)1、实验仪器的不熟悉和仪器存在缺点 (10)2、实验原理弄不清楚 (10)3、依赖性 (11)4、专业知识的不牢靠 (11)十五、实验的改进和反思 (11)十六、学习中的收获和快乐 (11)前言本学期,根据课程的安排我首次接触了近代物理实验,包括微波迈克尔逊干涉实验、微波布拉格晶体衍射实验、椭圆偏振仪测量薄膜厚度实验、光泵磁共振实验、核磁共振实验、微波顺磁共振实验、光栅光谱实验等等。
虽然实验课不算多,但我从中学到了很多,也是自己在大学实验学习形式的一次飞跃,从大一的听老师讲解和指导、大二的依赖到大三近代物理实验的独立探究。
物理学离不开实验,我感觉物理系给我最深的印象便是实验,尤其是近代物理实验更是一门综合性和技术性很强的课程,其实在物理实验中,影响实验现象的因素很多,产生的物理实验现象有时候也很复杂。
要感谢老师们通过精心设计实验方案,严格控制实验条件等多种途径,以最佳的实验方式呈现物理问题,使我们能够达到预想的实验效果,也考验了我们的实际动手能力和分析解决问题的综合能力,物理实验课程的学习让我受益匪浅。
首先,我通过做实验了解了许多实验的基本原理和实验方法,加深了对理论课知识的理解,还学会了基本物理量的测量和数据处理分析的方法、基本实验仪器的使用等;其次,锻炼了我的实验操作动手能力,并且我也深深感受到做实验要具备科学认真的态度和创造性的思维。
近代物理实验内容及思考题
![近代物理实验内容及思考题](https://img.taocdn.com/s3/m/04411417ef06eff9aef8941ea76e58fafab045f6.png)
近代物理实验内容及思考题近代物理实验内容及思考题第一轮实验项目:一、夫兰克—赫兹实验实验内容:1、仪器的安装调试。
2、逐点手动测量激发电位:在同一张坐标纸上作出I p ~V G2曲线,由曲线确定出各极值电位值。
求出氩原子第一激发态电位和测量误差。
3、自动测量激发电位:在示波器上调出I p ~V G2曲线,直接读出氩原子第一激发态电位值。
4、示波器观察分别改变减速电压V p 和灯丝电压V f 曲线I p -V G2应有何变化。
课后思考题:1、解释曲线I p -V G2形成的原因。
2、实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么?3、实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么?二、塞曼效应实验内容:1、调整光路,从测量望远镜中可观察到清晰明亮的一组同心干涉圆环。
2、接通电磁铁稳流电源,缓慢地增大磁场B ,从测量望远镜中可观察到细锐的干涉圆环逐渐变粗,然后发生分裂。
旋转偏振片为00、450、900各不同位置时,观察偏振性质不同的π成分和σ成分。
3、选定干涉级K 和K-1的位置,测量干涉圆环直径,用特斯拉计测出磁场B ,根据下式求出电子的比荷(e/m )值。
(标准值m e /=1.76?1011C/kg ) dB c D D D D m e K K a b π422122?--=-(式中d=5mm )4、观察沿磁场方向的塞曼分裂,将电磁铁旋转900,并抽出铁芯,放上1/4波片与偏振片,以区分左旋和右旋偏振光。
课后思考题:1、什么叫塞曼效应,磁场为何可使谱线分裂?2、叙述各光学器件在实验中各起什么作用?3、如何判断F-P 标准具已调好?4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?如何观察和分辨σ成分中的左旋和右旋偏振光?三、核磁共振实验内容:1、观察氢核1H 的NMR 现象(1)分别改变不同实验条件(射频场强度、扫场电压、样品在磁极间的位置)观察吸收信号的变化;(2)比较掺入顺磁物质浓度不同的水样品,观察吸收信号的差别。
近代物理实验报告
![近代物理实验报告](https://img.taocdn.com/s3/m/7ab2ac78590216fc700abb68a98271fe910eaf27.png)
近代物理实验报告近代物理实验报告一、引言近代物理实验是物理学研究的重要手段之一,通过实验可以验证理论,揭示自然界的规律。
本次实验旨在探究几个与近代物理相关的实验,包括光电效应、康普顿散射和量子力学的基础实验。
二、光电效应实验光电效应是指当光照射到金属表面时,金属会发射出电子的现象。
为了验证光电效应的基本规律,我们设计了以下实验步骤:1. 准备材料:光电效应实验装置、金属样品、光源、电流计等。
2. 实验步骤:a. 将金属样品安装在实验装置上,并连接好电路。
b. 调节光源的强度和波长,使其分别达到不同的数值。
c. 测量不同波长下金属样品发射的电流强度。
3. 实验结果与分析:根据实验结果,我们发现金属样品发射的电流强度与光源波长呈反比关系。
这符合光电效应的基本规律,即光的能量与波长成反比。
三、康普顿散射实验康普顿散射是指入射光子与物质中自由电子发生碰撞后,光子的能量和方向发生改变的现象。
为了验证康普顿散射的基本规律,我们进行了以下实验:1. 准备材料:康普顿散射实验装置、散射体、探测器等。
2. 实验步骤:a. 将散射体和探测器安装在实验装置上,并连接好电路。
b. 调节入射光子的能量和散射体的角度,记录下散射后的光子能量和方向。
c. 重复实验多次,得到一系列数据。
3. 实验结果与分析:根据实验结果,我们发现入射光子的能量和散射后的光子能量呈正比关系,而散射角度与散射后的光子方向呈正相关关系。
这符合康普顿散射的基本规律,即光子与自由电子碰撞后,能量和动量守恒。
四、量子力学基础实验量子力学是描述微观粒子行为的理论,为了验证量子力学的基本原理,我们进行了以下实验:1. 准备材料:双缝干涉实验装置、光源、屏幕等。
2. 实验步骤:a. 将双缝干涉实验装置搭建起来,并调节好光源的强度和波长。
b. 观察在屏幕上形成的干涉条纹,并记录下实验数据。
c. 改变光源的强度和波长,再次观察并记录数据。
3. 实验结果与分析:根据实验结果,我们发现在屏幕上形成的干涉条纹符合波粒二象性的原理。
近代物理实验教程的实验报告
![近代物理实验教程的实验报告](https://img.taocdn.com/s3/m/8f56e154f08583d049649b6648d7c1c708a10bf7.png)
近代物理实验教程的实验报告实验报告:近代物理实验教程实验名称:测量光速实验目的:通过实验测量光的速度,并了解光的本质和光速度的重要性。
实验器材:- 激光器- 两个距离固定的反射镜- 一个光电探测器- 一个计时器实验步骤:1. 将激光器放置在适当的位置,并使其光束直射向一个固定的反射镜。
2. 另一块反射镜放在距离第一个反射镜一定距离的位置上,使激光束反射到光电探测器上。
3. 打开激光器,使其发出光束。
4. 使用计时器,记录激光束从激光器到第一个反射镜的时间间隔。
5. 同时,使用光电探测器测量光从第一个反射镜反射到第二个反射镜再反射到光电探测器的时间间隔。
6. 计算光从第一个反射镜到第二个反射镜的距离,并根据测得的时间间隔计算光的速度。
实验结果:根据实验数据,我们得到光从第一个反射镜到第二个反射镜的时间间隔为t,光从激光器到第一个反射镜的时间间隔为t',则光从第一个反射镜到第二个反射镜的距离为d=t*v,其中v为光的速度。
根据测量得到的数据,我们可以计算出光的速度v=d/t。
讨论与结论:通过实验测量,我们得到了光的速度,并发现光速度非常接近299,792,458m/s,这个值是一个常数,通常用c表示。
这个实验结果进一步验证了光速度是一个常数,并说明光在真空中传播时的速度是恒定的,不受其他因素的影响。
光速度的稳定性和恒定性是现代物理的一项重要发现,不仅证明了光的波粒二象性,也为相对论的发展提供了基础。
实验中可能存在的误差:1. 仪器精度问题:实验中所使用的仪器可能存在一定的误差,如计时器的精度、光电探测器的灵敏度等。
2. 实验操作问题:实验过程中的不准确操作也可能引入误差,如指向不准确、记录时间时的误差等。
3. 实验环境问题:实验环境的温度、湿度等因素可能对实验数据产生一定的影响。
改进方案:为了提高实验的准确性和精度,可以考虑以下方面的改进:1. 使用更精密的实验仪器,如高精度计时器和高灵敏度的光电探测器,以减小仪器误差。
《近代物理实验》课件
![《近代物理实验》课件](https://img.taocdn.com/s3/m/4c39b33300f69e3143323968011ca300a6c3f6d0.png)
分析实验数据,解释观察到的光谱线和原子的能级结构。
六、总结与展望
1 实验总结和心得
总结各个实验的目的、原理、实验结果和分析,并分享个人的实验心得。
2 近代物理实验的意义和应用前景
探讨近代物理实验对科学研究和技术应用的重要性,并展望其未来的发展方向。
七、参考文献
注:本PPT课件仅供学习参考,不得用于商业用途。
《近代物理实验》PPT课 件
近代物理实验 PPT 课件是一份引人入胜的演示文稿,旨在介绍近代物理实验 的重要性以及各个实验的目的、原理、步骤和结果分析,帮助学习者更好地 理解和掌握其中的知识。
一、引言
1 实验目的和重要性
2 实验器材和原理
介绍近代物理实验的目的,以及实验所具 有的重要性和应用价值。
2
介绍进行光电效应实验所需要的器材
和相应的操作方法。
3
实验目的和原理
研究光电效应的基本原理,并探索光 电效应与粒子性质之间的关系。
实验结果和分析
分析实验数据,解释光电效应的现象, 以及实验中的观测和测量结果。
四、康普顿散射实验
1
实验器材和方法
2
介绍进行康普顿散射实验所需的器材
和相应的实验方法。
3
实验目的和原理
介绍实验所使用的器材和所涉及的物理原 理。
二、黑体辐射实验
1
实验流程和步骤
2
详细介绍进行黑体辐射实验所需的操
作步骤和流程。
3
实验目的和原理
探究黑体辐射的特性和规律,理解黑 体辐射定律和普朗克公式。
实验结果和分析
分析实验数据,探讨黑体辐射的规律, 并给出相关的图表和结论。
三、光电效应实验
1
ห้องสมุดไป่ตู้
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、磁共振的扫描方法有_______,_________。 7、各种光抽运信号。 8、试验中为了减小误差,采用__________方法来抵消________和__________的影响。 十、微波技术 1、微波的特点。 2、负载对波导中工作状态的影响。 3、谐振腔的功能。 4、谐振曲线的认识和又在品质因素的计算。 5、波导元件的功能。 6、实验中的装置连接图。 十一、微弱信号检测 1、锁相放大器的核心是_______。 2、锁相放大器的基本组成和功能。 3、锁相放大器的实验框图。 十二、扫描隧穿显微镜 1、扫描隧穿显微镜的设计基础是________。 2、探针的选择标准。 3、主要的扫描模式和原理。 4、扫描隧穿显微镜是如何给出样品的三维形貌的? 十三、光拍频法测光速 1、如何得到光拍频? 2、光的叠加公式是? 3、实验求光速的公式和字母的意义。 4、斩波器的作用。
八、核磁共振 1、什么是磁现象?共振条件是什么? 2、实验装备图各仪器名称。 3、核磁共振仪的按钮名称及其功能。 4、会计算旋磁比和 g 因子。 九、光磁共振 1、光磁共振是采用_______的方法,再通过_______,最后用________的方法研究原子精细 结构的一种实验技术。 2、共振条件。 3、什么是光抽运现象? 4、会画实验装置图。 5、试验中照射在样品上的 光的作用是________,_________。
安徽师范大学近代物理实验考试题 引言:以下是被折磨的记忆,并不完善,但涵盖大部分知识点,也希望有兴趣的朋友继续补 充,预祝各位学弟学妹考试顺利! 一、原子光谱 1、量子缺形成的原因________。 2、原子的能量与角动量的状态有关, n 越小, l 越小,量子缺越_________。式:________。 5、实验装置图。 二、激光喇曼光谱光谱 1、喇曼光谱有哪几种形式?各有什么特点? 2、试用量子模型解释喇曼效应。 3、喇曼移频量由谁决定?反应了什么? 4、喇曼光谱仪由哪几部分组成?作用如何? 三、弗兰克-赫兹实验 1、加热炉的温度对 I P 曲线产生哪些影响?为什么? 2、为什么实验结束后要先降温,后关机? 四、塞曼效应 1、试验中选择定则是?各种光是什么特点?如何观察? 2、画出汞绿线的塞曼分裂图。 五、密立根油滴实验 1、测定油滴电量的三种方法。 2、了解“倒过来验证法” 。 3、如何选择适当的油滴? 4、油滴的几种状态下的受力分析。 六、多晶单晶 1、如何分辨出射口、入射口的的弧线? 2、晶面指数的计算。 3、两晶面间夹角的测量步骤。 七、激光 1、激光形成的条件。 2、激光器由_______、_______、_______三部分组成。 3、扫描干涉仪的调谐步骤。 4、激光器模谱分析。