初三数学一模试题(包含答案)

合集下载

2024北京平谷区初三一模数学试题及答案

2024北京平谷区初三一模数学试题及答案

2024北京平谷初三一模数 学一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70 000 000 000用科学记数法表示为( ) A .8710⨯B .9710⨯C .10710⨯D .11710⨯2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 如图,点C 为直线AB 上一点,CD ⊥CE ,若∠1=65°,则∠2的度数是 A.15° B.25° C.35° D.4. 已知1x −<<0,下列四个结论中,错误的是 A. x <1 B. 0x −> C. 1x −> D.x+1>05. 如果正多边形的每个内角都是120°,则它的边数为( ) A. 5B. 6C. 7D.86. 先后两次抛掷同一枚质地均匀的硬币,则两次都是正面向上的概率是( )A. 14B. 13C. 12D. 237.已知两组数据(1)3005,3005,3003,3000,2994;(2)5,5,3,0,-6,设第一组数据的平均值为_1x ,方差为21s ,设第二组数据的平均值为_2x ,方差为22s ,下列结论正确的是:A.__221212,s x x s == B.__221212,s x x s >> C.__221212,s x x s => D.__221212,s x x s >=8. 如图,正方形ABCD 中,点E 、H 、G 、F 分别为AB 、BC 、CD 、AD 边上的点,点K 、M 、N 为对角线BD 上的点,四边形EKNF 和四边形MHCG 均为正方形,它们的面积分别表示为S 1,和S 2,给出下面三个结论:①12S S =;②2DF AF =;③12ABCD 9=S +2S 4S 正方形; A. ② B ①.③C. ②③D. ①②③上述结论中,所有正确结论的序号是( ) 二、填空题(共16分,每题2分)659.x 的取值范围是______. 10. 分解因式:22x a a ax ++=__________________. 11.化简:3113x x x+−−的结果为 . 12.写出一个大于1小于4的无理数: . 13. 如图,反比例函数(0)ky k x=≠经过点A 、点B ,则m=______. 14.若关于x 的一元二次方程220x x k +=+有两个不相等的实数根,则k 的取值范围为_____.15. 如图,△ABC 内接于⊙O ,BC 为⊙O 的直径,D 为⊙O 上一点,连接AD 、DC 若∠D=20°,则ACB ∠的度数为______.16.某工艺坊加工一件艺术品,完成该任务共需A ,B ,C ,D ,E ,F 六道工序,其中A ,B 是前期准备阶段,C ,D ,E 是中期制作阶段,F 为最后的扫尾阶段,三个阶段不能改变顺序,也不能同时进行,但各阶段内的几个工序可以同时进行,完成各道工序所需时间如下表所示:在不考虑其它因素的前提下,加工该件艺术品最少需要_____________分钟;现因情况有变,需将加工时间缩短到30分钟.每道工序加工时间每缩短一分钟需要增加投入费用如上表,则所增加的投入最少是_____________元.三、解答题(共68分,第17—19题,每题5分,第20题,6分,第21题,5分,第22—23题,每题6分,第24—25题,每题5分,第26题6分;第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:112cos3012−⎛⎫︒+− ⎪⎝⎭18.解不等式组:32162x x x x −⎧⎪⎨−+⎪⎩><.19. 已知250,x x +−=求代数式(1)(x 1)x(2)x x +−++的值.20. 我国古代数学著作《九章算术》里记载了这样一个有趣的问题:“今有善行者行100步,不善行者60步.今不善行者先行100步,善行者追之,问几何步追之?”其意思是:走路快的人走100步时,走路慢的人只走了60步,现在走路慢的人先走100步,走路快的人去追他,问走路快的人走多少步能够追上他?请你解决该问题.21.在平面直角坐标系xOy 中,一次函数y =k x +b (k≠0)的图象由函数y x =的图象平移得到,且经过点(0,3).(1)求这个一次函数的解析式;(2)当x >0时,对于x 的每一个值,一次函数12y x n =+的值小于函数y =k x +b (k≠0)的值且大于0,直接写出n 的取值范围.22.如图,Rt △ABC 中,∠ACB=90°,点D 、E 分别是BC 、AB 边的中点,连接DE 并延长,使EF=2DE ,连接AF 、CE.(1)求证:四边形ACEF 是平行四边形; (2)若∠B=30°,求证:四边形ACEF 是菱形.23.如图,△ABC 内接于O ,∠ACB=45°,连接OA ,过B 作O 的切线交AC 的延长线于点D ,. (1)求证:D OAD ∠=∠;(2)若BC =tanD 34=,求O 半径的长.24.光合作用是指在光的照射下,植物将二氧化碳和水转化为有机物,并产生氧气的过程,呼吸作用指的是植物将有机物和氧气分解成二氧化碳和水以维持植物生命所必要的过程,光合作用产氧速率与呼吸作用耗氧速率差距越大越利于有机物的积累,植物生长越快,水果的品质越好.下表是某农科院为了更好的指导果农种植草莓,在0℃至50℃气温,水资源及光照充分的条件下,对温度对光合作用和呼吸作用的影响进行研究的相关数据:(1)通过观察表格数据可以看出,若设温度为x ,光合作用产氧速率、呼吸作用耗氧速率是这个自变量的函数.建立平面直角坐标系,描出表中各组数值所对应的点,下图中已经描出部分点,请补全其余点,并画出函数图象:(2)结合函数图象,解决问题:(结果取整)①最适合草莓生长的温度约为______℃;②当温度约在什么范围内时,呼吸作用耗氧速率大于光合作用产氧速率,呼吸作用成为植物的主要活动,植物生长缓慢.25.4月24日是中国的航天日.为了激发全民尤其是青少年崇尚科学、勇于创新的热情,某学校在七、八年级进行了一次航天知识竞赛,现从七、八年级参加该活动的学生的成绩中各随机抽取20个数据,分别对这20个数据进行整理、描述和分析,下面给出了部分信息.a .七年级参加活动的20名学生成绩的数据的频数分布直方图如下(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤);26.在平面直角坐标系xoy 中,抛物线2y x bx =−. (1)当抛物线过点(2,0)时,求抛物线的解析式;(2)若抛物线上存在两点11(x ,y )A 和22(x ,y )B ,若对于11x 2,≤≤2x 2b =+都有120y y <,求b 的取值范围.27.如图,在△ABC 中,∠BAC=90°,AB =A C ,点D 为BC 边中点,DE ⊥AB 于E ,作∠EDC 的平分线交AC 于点F ,过点E 作DF 的垂线交DF 于点G ,交BC 于点H.(1)依题意补全图形; (2)求证:DH=BE ;(3)判断线段FD 、HC 与BE 之间的数量关系,并证明.28. 平面直角坐标系xOy 中,已知⊙M 和平面上一点P ,若PA 切⊙M 于点A ,PB 切⊙M 于点B ,且90°≤∠APB <180°则称点P 为⊙M 的伴随双切点. (1)如果⊙O 的半径为2① 下列各点1(1)P −,02,(2)P −,23,(3,3)P 4,(1,2)P −− 是⊙O 的伴随双切点的是 ;② 直线y x b =+上存在点P 为⊙O 的伴随双切点,则b 的取值范 围 ;(2)已知:点E (1,2)、F (0,-2),过点F 作y 轴的垂线l ,点C (m ,0)是x 轴上一点,若直线l 上存在以CE 为直径的圆伴随双切点,直接写出m 的取值范围.参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 三、解答题(共68分,第17—19题,每题5分,第20题,6分,第21题,5分,第22—23题,每题6分,第24—25题,每题5分,第26题6分;第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:112cos3012−⎛⎫︒++− ⎪⎝⎭=2212⨯++−−........................................................4 =1.. (5)18.解不等式组:32162x x x x −⎧⎪⎨−+⎪⎩><解①得1x >−........................................................2 解②得4x <.. (4)14x ∴−<< (5)19.先化简,再求值:(1)(x 1)x(2)x x +−++2212x x x =−++........................................................2 2221x x =+−.. (3)22x 50,+x=5x x +−=∴........................................................4 10-19∴==原式.. (5)20. 解:设走路快的人走了x 步追上走路慢的人 (2)31005x x =+························································4 解得:x=250························································5 答:走路快的人250步追上走路慢的人 (6)(方法不唯一,其他方法依步骤给分)21.(1)∵一次函数y =k x +b (k≠0)的图象由函数y x =的图象平移得到∴k=1························································1 ∵经过点(0,3)∴b=3 (2)3y x ∴=+(2) 03n ∴≤≤时结论成立.························································5 22.解:(1)∵点D 、E 分别是BC 、AB 边的中点∴DE ∥AC ,且12DE AC =························································1 ∵EF=2DE∴EF=AC (2)∴四边形ACEF 是平行四边形 (3)(2)Rt △ABC 中,∵∠ACB=90°,E 为AB 中点, ∴12CE AB AE ==························································4 ∵∠B=30° ∴∠BAC=60°∴△AEC 是等边三角形························································5 ∴AC=EC∴四边形ACEF 是菱形 (6)23.(1)证明:连接OB ∵BD 是O 的切线∴∠OBD=90° (1)∵∠ACB=45°∴∠AOB=90°························································2 ∴OA ∥BD∴ADB OAD ∠=∠· (3)(2)过点B 作BH ⊥AD 于点H ∴∠AHB=∠DHB=90°∵∠ACB=45°,BC =∴BH=HC=4 (4)∵∠HBM+∠BMH=90° ∠OAM+∠AMO=90° ∠BMH=∠AMO ∴∠MBH=∠OAM=∠D4tanD 3=∴tan ∠MBH 34=∴MH=3,BM=5························································5 设O 的半径为x ∴OM=x-5∵△AOM ∽△BHM 354x x −∴=解得x=20 (6)24.解(1)补全函数图象 (2)(2)①最适合草莓生长的温度约为___36___℃;(33-37均可)························································3 ②064250x x ≤≤≤≤℃℃或℃℃(答案不唯一)························································5 25.(1)补全a 中频数分布直方图; (1)(2)88.5; 94.························································3 (3)435. (5)26.(1)抛物线的对称轴为x=b (1)∵抛物线过点(0,0)和(2,0)∴b=1 (2)∴抛物线的解析式为22y x x =− (2)∵抛物线的对称轴为x=b ,∴(b+2,0)点一定位于对称轴的右侧························································3 情况1:当原点位于对称轴的左侧时此时,有2222b b b +>⎧⎨<⎩解得12b <<························································4 情况2:当原点位于对称轴的右侧时此时,有220b b <+<解得22b b <⎧⎨<−⎩ 解得2b <− (5)综上, 1∴<b<2或b<-2 (6)27.(1)补全图形 (1)(2) 证明: ∵DF 平分∠EDC∴∠1=∠2∵DF ⊥EH∴∠EGD=∠HGD=90°∵∠1=∠2,DG=DG∴△EDG ≌△HDG (2)∴DE=DH∵∠BAC=90°,AB=AC∴∠B=45°∵ DE ⊥AB∴∠BED=90°∴ ∠B=∠EDB=45°∴DE=BE∴DH=BE (3)(3)222BE HC DF += (4)方法1:作DM ⊥AC 于M (5)∵CD=BD ,∠DMC=∠BED=90°,∠B=∠C=45°∴△BED ≌△CMD ∴DE=DM ,∵∠BAC=90°, DE ⊥AB∴DE ∥AC∴∠1=∠3∵DF 平分∠EDC∴∠1=∠2∴∠2=∠3∴CD=CF (6)∵CM=DM=BE=DH∴CF-CM=CD-DH∴FM=HC在Rt △FDM 中∵222FM DM DF +=∴.222BE HC DF += (7)方法2:在CF 上截取CK=CH ,连接DK 并延长使DM=DK ,连接BM ,EM..........................................5 ∵CD=BD ,DK=DM ,∠KDC=∠BDM∴△KDC ≌△BMD ∴KC=BM ,∠C=∠4∴KC ∥BM∴∠ABM=∠BAC=90°∵∠BAC=90°, DE ⊥AB∴DE ∥AC∴∠1=∠3∵DF 平分∠EDC∴∠1=∠2∴∠2=∠3∴CD=CF (6)∵ CK=CH∴FK=DH∴DE=FK∵ED ∥AC∴∠EDM=∠5∴△EMD ≌△FDK.∴DF=ME∴222BE HC DF +=.........................................7 方法3:连接AD ,在AB 上截取BM=AF ,连接DM. Rt △ABC 中,∠BAC=90°,D 为BC 中点 ∴AD=BD ,∠4=∠B=45°∵AF=BM∴△ADF ≌△BMD.........................................5 ∴DF=DM∵AB=AC ,BM=AF∴AB-BM=AC-AF∴AM=CF∵∠BAC=90°, DE ⊥AB∴DE ∥AC∴∠1=∠3∵DF 平分∠EDC∴∠1=∠2∴∠2=∠3∴CD=CF (6)∴AM=CD∵DE ⊥AB ,∠BAD=45°∴AE=DE∴AE=DH∴ME=HC在Rt △EDM 中∵222EM DE DM +=∴222BE HC DF += (7)28.解:(1)①P 2,P 4; (2)②44b −≤≤ (4)(2)11m ≥+≤或m (7)。

2024届上海市崇明区初三一模数学试题及答案

2024届上海市崇明区初三一模数学试题及答案

上海市崇明区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个相似三角形的周长之比为1:4,那么它们对应边之比为().A 1:2;.B 1:4;.C 1:8;.D 1:16.2.在直角坐标平面内有一点 5,12A ,点A 与原点O 的连线与x 轴正半轴的夹角为 ,那么tan 的值为().A 5;12;5;12.3..A 23x .4..A .2a c ,//b c .5.在).A .C 6.).A 7.8.计算:53222a b a b.9.如果点P 是线段AB 的黄金分割点(AP BP ),那么APAB的值是.10.在Rt ABC 中,90C ,8AC ,4sin 5B,那么AB 的长为.11.如果抛物线 21y m x m 经过原点,那么该抛物线的开口方向为.(填“向上”或“向下”)12.已知一条抛物线的对称轴是直线1x ,且在对称轴右侧的部分是上升的,那么该抛物线的表达式可以是.(只要写出一个符合条件的即可)第13题图第14题图13.如图,已知////AD BE CF ,它们与直线1l 、2l 依次交于点A 、B 、C 和点D 、E 、F ,如果35EF DF ,10AB ,那么线段BC 的长是.14.19AEF BFC S S,AD 15.16.,如果3AP ,BP 17.AD 上的点G 18.定义:与 90ACB ,CD 是的余切值为.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:2sin 60cos 45cot 303tan 30.第15题图第20题图如图,已知在ABC 中,18BC ,点D 在边BC 上,//DE AB ,94DE AB .(1)求BD 的长;(2)联结AD ,设AB a ,AC b ,试用a 、b 表示AD.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数2246y x x .(1)用配方法把二次函数2246y x x 化为 2y a x m k 的形式,并指出这个函数图像的对称轴和顶点坐标;(2)如果该函数图像与x 轴负半轴交于点A ,与y 轴交于点C ,顶点为D ,O 为坐标原点,求四边形ADCO 的面积.第21题图第23题图如图,某校九年级兴趣小组在学习了解直角三角形知识后,开展了测量山坡上某棵大树高度的活动.已知小山的斜坡BM的坡度i D 处有一棵树AD (假设树AD 垂直水平线BN ),在坡底B 处测得树梢A 的仰角为45 ,沿坡面BM 方向前行30米到达C 处,测得树梢A 的仰角ACQ 为60 (点B 、C 、D 在一直线上).(1)求A 、C 两点的距离;(2)求树AD 的高度(结果精确到0.11.732 )23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,已知在梯形ABCD 中,//AD BC ,E 是边BC 上一点,AE 与对角线BD 相交于点F ,且2BEEF AE .(1)求证:DAB AFB ∽;(2)联结AC ,与BD 相交于点O ,若AB OB BC AF ,求证:2AF OD BF .第22题图第24题图备用图24.(本题满分12分,第(1)小题4分,第(2)①小题4分,第(2)②小题4分)已知在直角坐标平面xOy 中,抛物线2y ax bx c (0a )经过点 1,0A 、 3,0B 、 0,3C 三点.(1)求该抛物线的表达式;(2)点D 是点C 关于抛物线对称轴对称的点,联结AD 、BD ,将抛物线向下平移m (0m )个单位后,点D 落在点E 处,过B 、E 两点的直线与线段AD 交于点F (F 不与点A 、D 重合).①如果2m ,求tan DBF 的值;②如果BDF 与ABD 相似,求m 的值.第25题图2备用图第25题图125.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知Rt ABC 中,90ACB ,3AC ,5AB ,点D 是AB 边上的一个动点(不与点A 、B 重合),点F 是边BC 上的一点,且满足CDF A ,过点C 作CE CD 交DF 的延长线于E .(1)如图1,当//CE AB 时,求AD 的长;(2)如图2,联结BE ,设AD x ,BE y ,求y 关于x 的函数解析式并写出定义域;(3)过点C 作射线BE 的垂线,垂足为H ,射线CH 与射线DE 交于点Q ,当CQE 是等腰三角形时,求AD 的长.九年级数学共6页第1页崇明区2023学年第一学期期末质量调研九年级数学参考答案及评分标准一、选择题(本大题共6题,每题4分,满分24分)1.B ;2.D 3.C 4.A 5.C6.B二、填空题(本大题共12题,每题4分,满分48分)7.47;8.3a b ;9.12;10.10;11.向下;12.21y x ()(答案不唯一);13.15;14.5;15.16.163;17.;18.三、解答题(本大题共7题,满分78分)19.(本题满分10分)解:原式=2()2………………………………………………………(8分).……………………………………………………………………………(2分)20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵DE AB ∥,94DE AB ∴49DE CD AB BC ……………………………………………………………………(2分)∵18BC ,∴4189CD ,解得:10CD ,……………………………………………………(1分)∴18810BD BC CD .……………………………………………………(2分)(2)∵AB a ,b AC,∴-BC AC AB b a.………………………………………………………………(2分)又∵49CD BC ,DC 与BC 同向,九年级数学共6页第2页∴444999DC BC b a,…………………………………………………………(1分)∴.4445()9999AD AC CD AC DC b b a a b…………………(2分)21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)2246y x x 2226x x ()……………………………………………………………(1分)22218x x ()…………………………………………………………(1分)2218x ()……………………………………………………………(1分)∴对称轴为直线1x ,顶点坐标为1,8 (-).………………………………(2分)(2)由(1)得18D (,).令0y ,则22460x x ,解得:13x ,21x ,∴0A (-3,),则AO=3.……(1分)令0x ,则6y ,∴06C (,),则OC=6.……(1分)联结OD .,则:1122AOD DOC ABDC D D S S S AO y OC x△△四边形………………………………(1分)1138611522…………………………………(2分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)根据题意可知:∠ABN=45°,∠ACQ=60°,BC =30米.∵小山的斜坡BM的坡度tan i MBN ,∴∠MBN=30°=∠MCQ ,………(1分)∴∠ABC=15ABN MBN ∠∠,∠ACM=30ACQ MCQ ∠∠…………………(2分)∵∠ABC +∠BAC=∠ACM ,∴∠BAC=30°-15°=15°=∠ABC …………………………(1分)∴AC=BC=30米,即A 、C 两点的距离为30米.………………………………………(1分)(2)延长AD 交CQ 于点H ,则∠AHC=90°.在t R ACH △中,30AC ,∠ACQ=60°,∴sin 6030AH AC ,1cos6030152CH AC.……………(2分)在Rt DCH △中,9CH ,∠DCH=30°,BN九年级数学共6页第3页∴tan 3015DH CH …………………………………………………(1分)∴17.3AD AH DH (米)………………………………………………(2分)答:A 、C 两点的距离为18米,树AD 的高度约为17.3米.23.(本题满分12分,第(1)小题6分,第(2)小题6分)证明:(1)∵2BE EF AE ,∴BE AE EF BE ,又∵BEF AEB ,∴BEF AEB △∽△,…………………………………………………………(2分)∴EBF BAE .……………………………………………………………(1分)∵AD ∥BC ,∴ADB EBF ,……………………………………………………………(1分)∴BAE ADB ,……………………………………………………………(1分)又∵ABF ABD ,∴DAB AFB △∽△.……………………………………………………………(1分)(2)∵AB OB BC AF ,∴AB AFBC OB,又∵BAF OBC ,∴ABF BCO △∽△,……………………………………………………………(2分)∴AFB BOC =,∴AFO AOF =,∴AF AO .………………………………………………………………………(1分)∵BOC AOD =,∴AFB AOD =,又∵BAF ADO =,∴BAF ADO △∽△,………………………………………………………………(1分)∴AO ODBF AF,即AO AF OD BF ,………………………………………(1分)∵AF AO ,∴2AF OD BF .…………………………………………………(1分)24.(本题满分12分,第(1)小题4分,第(2)小题的①满分4分,第(2)小题的②满分4分)解:(1)∵抛物线2y ax bx c (0a )经过点A (-1,0),3,0B (),0,3C (),九年级数学共6页第4页∴-09303a b c a b c c ,解方程组得:123a b c.………………………………………(3分)∴抛物线的表达式为:223y x x ………………………………………………(1分)(2)由222314y x x x (),得抛物线对称轴为直线1x .∵点D 是点0,3C ()关于抛物线对称轴对称的点,∴2,3D ()…………………………(1分)过点D 作DH x 轴,垂足为点H ,则H (2,0)∴DH=AH=3,BH=1,∴45ADH DAH .当DE=m=2时,EH=1=BH ,∴Rt EBH BE 在中,,45EBH BEH ,∴90DFB FAB FBA ∠…………………………(1分)在t R DEF △中,DE=2,45ADH ∴EF=sin 45DE =DF ,∴BF=EF+BE=在t R DBF △中,1tan 2DF DBF BF .……………………………(2分)(3)如果BDF △与ABD △相似∵ADB 是公共角,1方法一:若DBF DAB ,则DFB DBA△∽△∴DF BD BD AD,则,解得:DF (1分)过点F 作FG DH ,垂足为点G ,则FG AB ∥.∴FG EGBH EH……………………………………(1分)在t R DFG △中,45ADH ,∴53DG FG,∴53EG m ,又3EH m ,∴553313m m,解得:52m .……(1分);方法二:若DBF DAB ,则DFB DBA △∽△,可得∠DBF =∠DAB=45°九年级数学共6页第5页利用上一题结论,可证明1tan 2EBH ………………………(1分),在t R EHB △中,1tan 2EH EBH BH ,得12EH ………………………(1分)解得52m………………………(1分);②若DFB DAB ,此时F 与A 重合,即△BDF 和△ABD 全等,即3m ……(1分).25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)解:在t R ABC △中,3AC ,5AB ,∴4BC ,3cos 5AC A AB .……………(1分)(1)∵CE CD ,∴90DCE .………(1分)∵CE ∥AB ,∴90ADC DCE …(1分)在t R ADC △中,39cos 355AD AC A……(1分)(2)∵90ACB DCE ,∴ACD BCE∵A ACD CDB ,即A ACD CDF FDB ∵CDF A ,∴ACD FDB ,∴FDB BCE ,又∵DFB CFE ,∴△DFB ∽△CFE ,………………………(1分)∴DF BFCF EF,∴DF CFBF EF,又∵CFD EFB ,∴△DFC ∽△BFE ,………………………………………………………………(1分)∴CDF EBF ,∵CDF A ∴A EBF ,∵ACD BCE ,∴△ACD ∽△CBE ,………………………………………………………………(1分)∴AC ADBC BE∵AD=x ,BE=y ,∴34x y,得:43y x.……………………………………………………………………(1分)EABE AB九年级数学共6页第6页定义域:05x .……………………………………………………………(1分)(3)∵A EBF ,∴90A ABC EBF ABC ∠∠,即90DBE ∠.∵CH ⊥BE ,∴∠CHB=90°.在t R CHB △中,4BC ,312cos cos 455BH BC CBE BC A ,165CH.若△CQE 是等腰三角形,①点Q 在线段DE 的延长线上时∵在t R CDE △中,∠CED <90°,∴∠CEQ>90°,∴只有EC=EQ 一种情况.∵CH ⊥BE ,∴165QH CH .∵90DBE CHB ∠∠,∴CQ ∥AB ,∴QH EHBD BE,∴1612555y x y ,即16124553453xx x,解得:x=1或x=9(舍去),∴AD=1………………………………………………(2分)②点Q 在线段DE 上时∵∠CQE>90°,∴只有QC=QE 一种情况.∴∠QCE=∠QEC ,∵在t R CDE △中,90CDE DEC ∠,90ECQ DCQ ∠∴∠QCD=∠QDC ,∴QC=QD ,∴QE=QD ,∵CH ∥AB ,∴EH=BH=125,∴BE =245,即42435x ,解得:185x ,…………………………………………(2分)∴185AD.以上分类讨论的情况正确,有判断过程…………………(1分)综上所述:当△CQE 是等腰三角形时,AD 的长为1或185.。

2024北京大兴区初三一模数学试卷和答案

2024北京大兴区初三一模数学试卷和答案

2024北京大兴初三一模数 学考生须知:1.本试卷共6页,共28道题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写姓名、准考证号、考场号和座位号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下面几何体中,是圆锥的为( )A. B. C. D.2. 2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为( )A. 643.710⨯B. 74.3710⨯C. 84.3710⨯D. 90.43710⨯3. 五边形的内角和为( )A. 180︒B. 360︒C. 540︒D. 720︒4. 如图,直线AB ,CD 相交于点O ,OE AB ⊥,若30AOC ∠=︒,则EOD ∠的大小为( )A. 30︒B. 60︒C. 120︒D. 150︒5. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 0b c ->B. 0ac >C. 0b c +<D. 1ab <6. 不透明的盒子中装有3个小球,每个小球上面写着一个汉字分别是“向”、“前”、“冲”,这3个小球除汉字外无其他差别,从中随机摸出一个小球,记录其汉字,放回并摇匀,再从中随机摸出一个小球,记录其汉字,则两次都摸到“冲”字的概率是( )A. 23 B. 13 C. 16 D. 197. 若关于x 的一元二次方程220x x m +-=有两个不相等的实数根,则实数m 的取值范围是( )A. 1m >-B. 1m ≥-C. 1m >D. m 1≥8. 如图,在ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,设BD a =,DC b =,AD c =,给出下面三个结论:①2c ab =;②2a b c +≥;③若a b >,则a c >.上述结论中,所有正确结论的序号是( )A.①②B. ①③C. ②③D. ①②③二、填空题(共16分,每题2分)9. 在实数范围内有意义,则实数x 的取值范围是______.10.分解因式:24ab a -=_______.11. 方程1341x x =-的解为______.12. 在平面直角坐标系xOy 中,若点(5,2)A 和(,2)B m -在反比例函数(0)k y k x=≠的图象上,则m 的值为______.13. 如图,AB 是O 的直径,点C ,D 在O 上,若AC BC =,则D ∠的度数为______︒.14. 如图,在矩形ABCD 中,AC 与BD 相交于点O ,OE BC ⊥于点E .若4AC =,30DBC ∠=︒,则OE 的长为______.15. 某年级为了解学生对“足球”“篮球”“排球”“乒乓球”“羽毛球”五类体育项目的喜爱情况,现从中随机抽取了100名学生进行问卷调查,根据数据绘制了如图所示的统计图.若该年级有800名学生,估计该年级喜爱“篮球”项目的学生有______人.16. 某公园门票价格如下表:某学校组织摄影、美术两个社团的学生游览该公园,两社团的人数分别为a 和()b a b >.若两社团分别以各自社团为单位购票,共需1560元;若两社团作为一个团体合在一起购票,共需1170元,那么这两个社团的人数为=a ______,b =______.购票人数1~4041~8080以上门票价格20元/人16元/人13元/人三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:0|3|(2024)2cos 45π-+++-︒18. 解不等式组:4125213x x x x -≥+⎧⎪-⎨<⎪⎩19. 已知2310a a +-=,求代数式2(1)(4)2a a a +++-的值.20. 某学校开展“浸书香校园,品诗词之美”读书活动.现有A ,B 两种诗词书籍整齐地叠放在桌子上,每本A 书籍和每本B 书籍厚度的比为5:6,根据图中所给出的数据信息,求每本A 书籍的厚度.21. 如图,在正方形ABCD 中,点E ,F 分别在BC ,AD 上,BEDF =,连接CF ,射线AE 和线段DC 的延长线交于点G .(1)求证:四边形AECF 是平行四边形;(2)若2tan 3BAE ∠=,9DG =,求线段CE 的长.22. 种子被称作农业的“芯片”,粮安天下,种子为基.农科院计划为某地区选择合适的甜玉米种子,随机抽取20块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t ),并对数据(每公顷产量)进行了整理、描述和分析,下面给出了部分信息:a .20块试验田每公顷产量的频数分布表如下:每公顷产量(t)频数7.407.45x ≤<37.457.50x ≤<27.507.55x ≤<m 7.557.60x ≤<67.607.65x ≤≤5b .试验田每公顷产量在7.557.60x ≤<这一组的是:7.55 7.55 7.57 7.58 7.59 7.59c . 20 块试验田每公顷产量的统计图如下:(1)写出表中m 的值;(2)随机抽取的这20块试验田每公顷产量的中位数为______.(3)下列推断合理的是______(填序号);①20块试验田的每公顷产量数据中,每公顷产量低于7.50t 的试验田数量占试验田总数的25%;②3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第5名.(4)1~10号试验田使用的是甲种种子,11~20号试验田使用的是乙种种子,已知甲、乙两种种子的每公顷产量的平均数分别为7.537t 及7.545t ,若某种种子在各试验田每公顷产量的10个数据的方差越小,则认为这种种子的产量越稳定.据此推断:甲、乙两种种子中,这个地区比较适合种植的种子是______(填“甲”或“乙”).23. 在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,与过点(2,0)-且平行于y 轴的直线交于点C .(1)求该函数的表达式及点C 的坐标;(2)当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,直接写出n 的取值范围.24. 某洒水车为绿化带浇水,图1是洒水车喷水区域的截面图,其上、下边缘都可以看作是抛物线的一部分,下边缘抛物线是由上边缘抛物线向左平移得到的.喷水口H 距地面的竖直高度OH 为1.5m ,喷水区域的上、下边缘与地面交于A ,B 两点,上边缘抛物线的最高点C 恰好在点B 的正上方,已知6m OA =,2m OB =,2m CB =.建立如图2所示的平面直角坐标系.(1)在①21(2)28y x =-++,②21(2)28y x =--+两个表达式中,洒水车喷出水的上边缘抛物线的表达式为______,下边缘抛物线的表达式为______(把表达式的序号填在对应横线上);(2)如图3,洒水车沿着平行于绿化带的公路行驶,绿化带的横截面可以看作矩形DEFG ,水平宽度3m DE =,竖直高度0.5m DG =.如图4,OD 为喷水口距绿化带底部的最近水平距离(单位:m ).若矩形DEFG 在喷水区域内,则称洒水车能浇灌到整个绿化带.①当 2.6m OD =时,判断洒水车能否浇灌到整个绿化带,并说明理由;②若洒水车能浇灌到整个绿化带,则OD 的取值范围是______.25. 如图,过O 外一点A 作O 的切线,切点为点B ,BC 为O 的直径,点D 为O 上一点,且BD BA =,连接CD ,AD ,线段AD 交直径BC 于点E ,交O 于点F ,连接BF .(1)求证:EF BF =;(2)若1sin 3A =,25OE =,求O 半径的长.26. 在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 是抛物线2(0)y ax bx c a =++<上任意两点.设抛物线的对称轴为直线x t =.(1)若22x =,2y c =,求t 的值;(2)若对于112t x t +<<+,245x <<,都有12y y >,求t 的取值范围.27. 在ABC 中,AC BC =,90ACB ∠=︒,点D 是线段AB 上一个动点(不与点A ,B 重合),()045ACD αα∠=<<︒,以D 为中心,将线段DC 顺时针旋转90︒得到线段DE ,连接EB .(1)依题意补全图形;(2)求EDB ∠的大小(用含α的代数式表示);(3)用等式表示线段BE ,BC ,AD 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点(,0)T t ,T e 的半径为1,过T e 外一点P 作两条射线,一条是T e 的切线,另一条经过点T ,若这两条射线的夹角大于或等于45︒,则称点P 为T e 的“伴随点”.(1)当0=t 时,①在1(1,0)P ,2P ,3(1,1)P -,4(1,2)P -中,T e 的“伴随点”是______.②若直线12y x b =+上有且只有一个T e 的“伴随点”,求b 的值;(2)已知正方形EFGH 的对角线的交点(0,)M t ,点11,22E t ⎛⎫-+ ⎪⎝⎭,若正方形上存在T e 的“伴随点”,直接写出t 的取值范围.参考答案一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】D【分析】本题考查了常见几何体的识别,观察所给几何体,可以直接得出答案.【详解】解:A 选项为正方体,不合题意;B 选项为球,不符合题意;C 选项为五棱锥,不合题意;D 选项为圆锥,符合题意.故选:D .2. 【答案】B【分析】本题考查科学记数法,科学记数法的表示形式为 10n a ⨯ 的形式,其中 110a ≤<,n 为整数(确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位).【详解】解:43700000=74.3710⨯,故选:B .3. 【答案】C【分析】本题考查了n 边形内角和公式,熟练记忆公式是解题的关键.代入公式即可求解.【详解】解:五边形的内角和为()52180540-⨯︒=︒,故选:C .4. 【答案】B【分析】本题主要考查的是对顶角的性质和垂线,依据垂线的定义可求得90EOB ∠=︒,然后依据对顶角的性质可求得BOD ∠的度数,最后依据EOD EOB DOB ∠=∠-∠求解即可.【详解】解:∵OE AB ⊥,∴90EOB ∠=︒.∵30DOB AOC ∠=∠=︒,∴903060EOD EOB DOB ∠=∠-∠=︒-︒=︒.故选:B .5. 【答案】C【分析】本题考查了根据点在数轴的位置判断式子的正负.熟练掌握根据点在数轴的位置判断式子的正负是解题的关键.由数轴可知,32101a b c -<<-<<-<<<,则0b c -<,0ac <,0b c +<,1ab >,然后判断作答即可.【详解】解:由数轴可知,32101a b c -<<-<<-<<<,∴0b c -<,0ac <,0b c +<,1ab >,∴A 、B 、D 错误,故不符合要求;C 正确,故符合要求;故选:C .6. 【答案】D【分析】本题考查的是列表法或画树状图求解概率,根据题意列出表格即可求解.【详解】解:根据题意列表如下:向前冲向向,向前,向冲,向前向,前前,前前,冲冲向,冲前,冲冲,冲共有9种等可能得情况,其中两次都摸到“冲”字的情况有1种,则两次都摸到“冲”字的概率是:19,故选:D .7. 【答案】A【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()22410m ∆=-⨯⨯->,然后求出不等式的解集即可.【详解】解:根据题意得()22410m ∆=-⨯⨯->,解得1m >-.故选:A .8. 【答案】D【分析】由90BAC ∠=︒,AD BC ⊥,得到ABD CAD ∽△△,BD AD AD DC =,将BD a =,DC b =,AD c =代入,即可判断①正确,由()2222a b a b ab -=+-,()2222a b a b ab +=++,将2c ab =代入,整理后即可判断②正确,将2c b a=,代入a b >,即可判断③正确,本题考查了,相似三角形的性质与判定,完全平方公式的应用,解不等式,解题的关键是:熟练掌握完全平方公式的变形及应用.【详解】解:∵90BAC ∠=︒,AD BC ⊥,∴90BAD CAD ∠+∠=︒,90BAD ABD ∠+∠=︒,90BAD ADC ∠=∠=︒,∴CAD ABD ∠=∠,∴ABD CAD ∽△△,∴BD AD AD DC=即:a c c b =,整理得:2c ab =,故①正确,∵()2222a b a b ab -=+-,即:()2222a b a b ab +=-+, ∴()()()222222244a b a b ab a b ab a b c +=++=-+=-+,∵()20a b -≥,∴()224a b c +≥,∵0a >、0b >、0c >,∴2a b c +≥,故②正确,∵a b >,2c b a=,∴2c a a>,∵0a >,∴22a c >,∴a c >,故③正确,综上所述,①②③正确,故选:D .二、填空题(共16分,每题2分)9. 【答案】3x ≥【分析】此题主要考查了分式有意义及二次根式有意义的条件,正确掌握相关定义是解题关键.由分式有意义及二次根式有意义的条件,进而得出x 的取值范围.【详解】由二次根式的概念,可知30x -≥,解得3x ≥.故答案为:3x ≥10. 【答案】()()22a b b +-.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a 后继续应用平方差公式分解即可【详解】解:()()()224422a a a a b b b b -=-=+-,故答案为:()()22a b b +-.11. 【答案】1x =【分析】本题考查了解分式方程,先将分式方程化为一元一次方程,再解一元一次方程,最后检验即可求解,注意分式的方程需要检验是解题的关键.【详解】解:1341x x =-∴413x x -=,解得:1x =,经检验,1x =是原分式方程的解,∴1x =,故答案为:1x =.12. 【答案】5-【分析】本题考查了反比例函数图象上点的坐标特征,先把(5,2)A 代入(0)k y k x=≠求出10,k =再把(,2)B m -代入10y x=,求出5m =-.【详解】解:把(5,2)A 代入(0)k y k x =≠得:25k =,解得,10,k =∴反比例函数解析式为10y x =,把(,2)B m -代入10y x =,得:102m-=,解得,5m =-,故答案为:5-13. 【答案】45【分析】本题主要考查了圆周角定理,先由直径所对的圆周角为90︒,可得90ACB ∠=︒,然后由AC BC =得:45CAB CBA ∠=∠=︒,然后根据同弧所对的圆周角相等,即可求出D ∠的度数.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵AC BC =,∴45CAB CBA ∠=∠=︒,∴45D CAB ∠=∠=︒.故答案为:4514. 【答案】1【分析】本题考查矩形的性质,等腰三角形的判定和性质,解直角三角形,根据矩形的性质,得到OB OC =,根据三线合一结合30度角的直角三角形的性质,求解即可.【详解】解:∵矩形ABCD ,∴OB OC =,90BCD ∠=︒,4BD AC ==,∵30DBC ∠=︒,∴122CD BD ==,∴BC =,∵OB OC =,OE BC ⊥,∴12BE BC ==,∴tan 301OE BE =⋅︒==;故答案为:1.15. 【答案】240【分析】本题主要考查了样本估计总体.用800乘以喜爱“篮球”项目所占的百分比,即可.【详解】解:30800240100⨯=人,即该年级喜爱“篮球”项目的学生有240人.故答案为:24016. 【答案】 ①. 60 ②. 30【分析】本题考查了二元一次方程组的应用,由两次门票费用,列出方程组,可求解.【详解】解:∵1170不能整除16,∴两个部门的人数81a b +≥,又1560不能整除16,∴每个部门的人数不可能同时在41~80之间,由于a b >,所以,当140,4180b a ≤≤≤≤,则有:()20161560131170b a a b +=⎧⎨+=⎩解得,6030a b =⎧⎨=⎩故答案为:60,30.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】4+【分析】本题考查了实数的混合运算,掌握相关运算法则是解题关键.先计算绝对值、零指数幂、二次根式、特殊角的三角函数值,再计算加减法即可.【详解】解:0|3|(2024)2cos 45π-+++-︒312=++-⨯31=++-4=.18. 【答案】3x ≥【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:4125213x x x x -≥+⎧⎪⎨-<⎪⎩①②解不等式①,得3x ≥.解不等式②,得1x >-.∴不等式组的解集为3x ≥.19. 【答案】1【分析】本题考查整式的混合运算、代数式求值,熟练掌握运算法则是解答的关键.先根据整式的混合运算法则结合完全平方公式化简原式,再将已知化为2262a a +=代入求解即可.【详解】解:2(1)(4)2a a a +++-222142a a a a =++++-2261a a =+-.2310a a +-= ,231a a ∴+=.2262a a ∴+=.∴原式2261a a =+-21=-1=.20. 【答案】每本A 书籍厚度为1cm【分析】本题主要考查了二元一次方程的应用,设每本A 书籍厚度为cm x ,桌子高度为cm y ,根据等量关系,列出方程组,解方程组即可.【详解】解:设每本A 书籍厚度为cm x ,桌子高度为cm y ,由题意可得:37965825x y x y +=⎧⎪⎨⨯+=⎪⎩,解得176x y =⎧⎨=⎩,答:每本A 书籍厚度为1cm .21. 【答案】(1)见解析 (2)2CE =【分析】本题考查了平行四边形的判定,正方形的性质,正切的定义;(1)根据正方形的性质得出AD BC ∥,AD BC =.根据题意得出AF CE =,即可得证;(2)根据正方形的性质得出2tan tan 3BAE G ∠==,在Rt ADG 中,得出6CD =则3CG =,根据2tan 3CEG CG ==,即可求解.【小问1详解】证明: 四边形ABCD 是正方形,∴AD BC ∥,AD BC =.BE FD =,∴AD FD BC BE -=-.即AF CE =.又 AF CE ∥,∴四边形AECF 是平行四边形.【小问2详解】解: 四边形ABCD 是正方形,∴AD BC ∥,90BCD D ∠=∠=︒,AD CD =.∴BAE G ∠=∠,90ECG ∠=︒,∴2tan tan 3BAE G ∠==.在Rt ADG 中, 2tan 3ADG DG ==,9DG =,∴6AD =.∴6CD =.∴3CG =.在Rt ECG 中, 2tan 3CEG CG ==,∴2CE =.22. 【答案】(1)4 (2)7.55(3)① (4)乙【分析】本题考查了频数分布表,求中位数,根据方差判断稳定性:(1)运用频数总数减去已知频数即可得出m ;(2)根据中位数的定义可求解;(3)从统计图中可得每公顷产量低于7.50t 的试验田数量有5块,可判断①;3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第4名可判断②.(4)根据图象判断稳定性即可得出结果.【小问1详解】解:2032654m =----=【小问2详解】解:随机抽取的这20块试验田每公顷产量的中位数是7.557.60x ≤<这一组的第1个和第2个数据,即:7.55和7.55,故中位数为:7.557.557.552+=,故答案为:7.55;【小问3详解】解:20块试验田的每公顷产量数据中,每公顷产量低于7.50t 的试验田数量有5块,所以,占试验田总数的百分数为510025%20⨯=,故①正确;3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第4名,故②错误,故答案为:①【小问4详解】解:从20 块试验田每公顷产量的统计图中可看出甲种种子每公顷产量波动大,乙种种子每公顷产量波动小,据此推断:甲、乙两种种子中,这个地区比较适合种植的种子是乙;故答案为:乙23. 【答案】(1)21y x =+;(2,3)--(2)312n ≤≤【分析】本题考查待定系数法求一次函数解析式,一次函数图象及性质,用数形结合思想考虑本题是解答本题的关键.(1)将两点代入函数解析式中即可求得函数解析式,再将2x =-代入解析式即可求出点C 坐标;(2)根据题意将(2,2)--代入(0)y nx n =≠求出n 的最小值,再根据题意将C 代入求出n 的最大值,即为本题答案.【小问1详解】解:∵函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,∴将点(1,3)A 和(1,1)B --代入(0)y kx b k =+≠中,31k b k b +=⎧⎨-+=-⎩,解得:21k b =⎧⎨=⎩,∴该函数的表达式为:21y x =+,∵与过点(2,0)-且平行于y 轴的直线交于点C ,∴将2x =-代入21y x =+中,得=3y -,∴(2,3)C --;【小问2详解】解:∵当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,,通过图象可知,当(0)y nx n =≠的函数值小于2-时,即将(2,2)--H 代入(0)y nx n =≠中,1n =,当(0)y nx n =≠的函数值大于函数(0)y kx b k =+≠的值将(2,3)C --代入(0)y nx n =≠中,32n =,∴n 的取值范围为:312n ≤≤.24. 【答案】(1)②,① (2)①不能;理由见解析;②21OD ≤≤-【分析】本题考查了二次函数的实际应用,(1)由题意可知:顶点坐标()2,2C ,()0,1.5H ,利用待定系数法即可求出函数解析式为:()21228y x =--+,利用()0,1.5H 关于对称轴2x =的对称点为:()4,1.5,可知下边缘抛物线是由上边缘抛物线向左平移4个单位得到,求出下边缘抛物线为:()21228=-++y x ;(2)①根据 2.6m OD =,将 5.6x =代入上边缘抛物线的函数解析式得出0.380.5y =<,即可求解;②当点B 和点D 重合时,d 有最小值,此时2d =;当上边缘抛物线过点F 时,d 有最大值,231=+-=-d ;所以21d ≤≤-.【小问1详解】解:由题意可知:()2,2C ,故设上边缘抛物线的函数解析式为:()222y a x =-+,∵()0,1.5H ,将其代入()222y a x =-+可得:()21.5022=-+a ,解得:18a =-,∴上边缘抛物线的函数解析式为:()21228y x =--+,解:∵()0,1.5H 关于对称轴2x =的对称点为:()4,1.5,∴下边缘抛物线是由上边缘抛物线向左平移4个单位得到,∴下边缘抛物线为:()21228=-++y x ,故答案为:②,①.【小问2详解】①不能,理由如下,依题意, 2.63 5.6OE =+=将 5.6x =代入上边缘抛物线的函数解析式()21228y x =--+得()215.6220.380.58y =--+=<∴绿化带不全在喷头口的喷水区域内,∴洒水车不能浇灌到整个绿化带;②解:设灌溉车到绿化带的距离OD 为d ,要使灌溉车行驶时喷出的水能浇灌到整个绿化带,则当点B 和点D 重合时,d 有最小值,此时2d =;当上边缘抛物线过点F 时,d 有最大值,3m DE =,0.5m EF =.∴令()21220.58=--+=y x ,解得:2x =+2x =-,结合图像可知:()2+Fd ∴的最大值为:231=+-=-d ;∴21d ≤≤-.故答案为:21OD ≤≤-.25. 【答案】(1)证明见解析(2)92【分析】(1)由切线的定义可得出90A AEB ∠+∠=︒,由直径所对的圆周角等于90︒得出90CDE BDE ∠+∠=︒,由等边对等角得出BDA A ∠=∠,等量代换得出CDE AEB ∠=∠,由同弧所对的圆周角相等得出C D E C B F ∠=∠, 进而可得出AEB CBF ∠=∠ ,由等角对等边得出EF BF =.(2)连接CF ,先证明==AF BF EF ,设BF EF AF x ===,则2AE x =,解直角三角形Rt ABE 得出23BE x =,再证明BCF A ∠=∠,得出1sin sin 3A BCF =∠=,进一步得出22()BC OB OE BE ==+,即523223x x ⎛⎫=+ ⎪⎝⎭,解出x 即可求解.【小问1详解】证明: AB 为O 的切线,∴90OBA ∠=︒.∴90A AEB ∠+∠=︒.BC 为O 的直径,∴90CDB ∠=︒.∴90CDE BDE ∠+∠=︒.BD BA =,∴BDA A ∠=∠.∴CDE AEB ∠=∠.又CDE CBF ∠=∠ ,AEB CBF ∴∠=∠.EF BF ∴=.【小问2详解】连接CF .AB 为O 的切线,∴90OBA ∠=︒.∴90AEB A ∠+∠=︒,90EBF FBA ∠+∠=︒.AEB CBF ∠=∠,∴FBA A ∠=∠.∴AF BF =.∴==AF BF EF .设BF EF AF x ===,则2AE x =.在Rt ABE 中, 1sin 3A =,2AE x =,∴23BE x =.BC 为直径,∴90CFB ∠=︒.BCF BDA ∠=∠,BDA A ∠=∠,∴BCF A ∠=∠.∴1sin sin 3A BCF =∠=.在Rt BFC △中,BF x =,∴3BC x =.22()BC OB OE BE ==+,∴523223x x ⎛⎫=+⎪⎝⎭.解得3x =.∴92OB =.∴O 半径的长为92.【点睛】本题主要考查了切线的定义,直径所对的圆周角等于90︒,同弧所对的圆周角相等,解直角三角形的相关计算,等角对等边等知识,掌握这些性质是解题的关键.26. 【答案】(1)1t =(2)2t ≤或7t ≥【分析】本题主要考查了二次函数的图象和性质等知识,(1)将22x =,2y c =代入解析式,得出2b a =-即可得解;(2)分①当点N 在对称轴上或对称轴右侧时,②当点N 在对称轴上或对称轴左侧时两种情况讨论组成不等式组即可得解;解题的关键是理解题意,灵活运用所学知识解决问题.【小问1详解】22x =,2y c =,42a b c c ∴++=,2b a ∴=-,12bt a ∴=-=,【小问2详解】2(0)y ax bx c a =++<,∴抛物线开口向下,抛物线的对称轴为x t =,112t x t +<<+,∴点M 在对称轴的右侧,①当点N 在对称轴上或对称轴右侧时,抛物线开口向下,∴在对称轴右侧,y 随x 的增大而减小.由12y y >,∴12x x <,∴4,24t t ≤⎧⎨+≤⎩,解得42t t ≤⎧⎨≤⎩,∴2t ≤,②当点N 在对称轴上或对称轴左侧时,设抛物线上的点()22,N x y 关于x t =的对称点为()2,N d y ',2t x d t ∴-=-,解得22d t x =-,∴()222,N t x y '-,245x <<,∴225224t t x t -<-<-,在对称轴右侧,y 随x 的增大而减小,由12y y >,∴122x t x <-,∴5225t t t ≥⎧⎨+≤-⎩,解得57t t ≥⎧⎨≥⎩,∴7t ≥,综上所述,t 的取值范围是2t ≤或7t ≥.27. 【答案】(1)补全图形见解析(2)45α︒-(3)BC BE =+;证明见解析【分析】本题主要考查旋转的性质,全等三角形的性质与判定,三角形外角的性质,勾股定理等:(1)根据题目叙述作图即可;(2)由三角形外角性质得45CDB A ACD α∠=∠+∠=︒+,根据90CDE ∠=︒可得结论; (3)过点D 作DM AB ⊥,交AC 于点F ,交BC 的延长线于点M .证明DCM DEB △≌△,得出CM BE =,再证明CF CM =,CF BE =,在Rt FAD △中,由勾股定理得出AF =,得出AC FC =+,由CF BE =,BC AC =可得出结论【小问1详解】补全图形如下:【小问2详解】解: AC BC =,90ACB ∠=︒,∴45A ABC ∠=∠=︒.∴45CDB A ACD α∠=∠+∠=︒+.90CDE ∠=︒,∴45EDB CDE CDB α∠=∠-∠=︒-.【小问3详解】解:用等式表示线段BE ,BC ,AD 之间的数量关系是BC BE =+.证明:过点D 作DM AB ⊥,交AC 于点F ,交BC 的延长线于点M .90MDB CDE ∠=∠=︒,∴CDM EDB ∠=∠.45MBD ∠=︒,∴45M MBD ∠=∠=︒.∴DM DB =.又 DC DE =,∴DCM DEB △≌△.∴CM BE =.45M ∠=︒,90ACB ∠=︒,∴45CFM M ∠=∠=︒.∴CF CM =.∴CF BE =.在Rt FAD △中,45A ∠=︒,∴45AFD A ∠=∠=︒,∴,AD FD =AF ∴==.AC AF FC =+ ,AC FC ∴=+.CF BE = ,BC AC =,BC BE ∴=+.28. 【答案】(1)①2P ,3P ;②b =(232t <≤或32t -≤<【分析】(1)①设射线PM 与T e 相切于点M ,连接TM ,根据题目中的定义得出1PT <≤,分别求出四个点与()0,0T 间的距离,然后进行判断即可;②根据直线12y x b =+上有且只有一个T e 的“伴随点”,得出直线12y x b =+与以()0,0T为半径的圆相切,设直线12y x b =+与x 轴,y 轴分别交于点A 、B ,与以()0,0T 为半径的圆相切于点C ,连接TC ,求出BT ===,得出b =,即可求出结果;(2)分两种情况进行讨论:当0t >时,当0t <时,分别画出图形,列出不等式组,解不等式组即可.【小问1详解】解:①如图1,设射线PM 与T e 相切于点M ,连接TM ,∴TM PM ⊥,当45P ∠=︒时,PTM △为等腰直角三角形,∴1PM TM ==,PT ===,∴当点P 在T e 外,45P ≥︒∠时,1PT <≤,当0=t 时,点()0,0T ,∵11PT =,2PT =,3PT ==4PT ==>∴在1(1,0)P ,2P ,3(1,1)P -,4(1,2)P -中,T e 的“伴随点”是2P ,3P ;故答案为:2P ,3P②∵当点P 在T e 外,45P ≥︒∠时,1PT <≤∴点P 在以T 为半径的圆上或圆内且在以1为半径的圆外,如图2:∵直线12y x b =+上有且只有一个T e 的“伴随点”,∴直线12y x b =+与以()0,0T 为圆心,为半径的圆相切,∴0b ≠,设直线12y x b =+与x 轴,y 轴分别交于点A 、B ,与以()0,0T 为半径的圆相切于点C ,连接TC ,∴TC AB ⊥,令0x =,y b =,令0y =,2x b =-,∴()2,0A b -,()0,B b ,∴2AT b =-,BT b =,在Rt ATB △中,1tan 122bBTAT b ∠===-,1290∠+∠=︒,∵TC AB ⊥,∴2390∠+∠=︒,∴13∠=∠,∴1312tan tan ==∠∠,在Rt TCB 中132tan BC CT ===∠,∴BC =∴BT ===,∴b =∴b =;【小问2详解】解:∵正方形EFGH 的对角线的交点(0,)M t ,点11,22E t ⎛⎫-+ ⎪⎝⎭,∴点11,22G t ⎛⎫- ⎪⎝⎭,11,22F t ⎛⎫+ ⎪⎝⎭,11,22H t ⎛⎫-- ⎪⎝⎭,当0t >时,如图所示:此时正方形EFGH 上的点到圆心T 的最大距离为ET ,最小距离为GT ,∵正方形上存在T e 的“伴随点”,且点P 在以T为圆心,以为半径的圆上或圆内且在以1为半径的圆外,∴1ET >,GT ≤,∵12ET t ⎫==+⎪⎭,12GT ==-,∴11212t ⎫+>⎪⎭-≤,32t <≤;当0t <时,如图所示:此时正方形EFGH 上的点到圆心T 的最大距离为GT ,最小距离为ET ,∵正方形上存在T e 的“伴随点”,且点P 在以T为圆心,以为半径的圆上或圆内且在以1为半径的圆外,∴ET ≤,1GT >,∵12ET ==+,12GT t ⎫==-⎪⎭,∴12112t +≤⎫->⎪⎭,解得:32t -≤<;综上分析可知:t 32t <≤或32t -≤<.【点睛】本题主要考查了切线的性质,解直角三角形,勾股定理,两点间距离公式,等腰直角三角形的性质,解不等式组,解题的关键是数形结合,注意进行分类讨论.。

2024届上海市金山区初三一模数学试卷(含答案)

2024届上海市金山区初三一模数学试卷(含答案)

2024届上海市金山区初三一模数学试卷(满分 150 分,考试时间 100 分钟)(2024.1)考生注意:1.本试卷含三个大题,共25题;2.务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.把抛物线22y x =向左平移1个单位后得到的新抛物线的表达式是(▲)(A )221y x =-;(B )221y x =+;(C )()221y x =-;(D )()221y x =+.2.已知点E 是平行四边形ABCD 的边AD 上一点,联结CE 和BD 相交于点F ,如果AE ∶ED =1∶2,那么DF ∶FB 为(▲)(A )1∶2;(B )1∶3;(C )2∶3;(D )2∶5.3.在直角坐标平面的第一象限内有一点A (a ,b ),如果射线OA 与x 轴正半轴的夹角为α,那么下列各式正确的是(▲)(A )b=a ·tan α;(B )b=a ·cot α;(C )b=a ·sin α;(D )b=a ·cos α.4.抛物线2y ax bx c =++的图像如图所示,下列判断中不正确的是(▲)(A )a <0;(B )b <0;(C )c >0;(D )a +b +c <0.5.将一张矩形纸片沿较长边的中点对折,如果得到的两个矩形都和原来的矩形相似,那么原来矩形较长边和较短边的比是(▲)(A )2∶1;(B1;(C )3∶1;(D∶1.6.如图在4×1的方格中,每一个小正方形的顶点叫做格点,以其中三个格点为顶点的三角形称为格点三角形,△ABC 就是一个格点三角形,现从△ABC 的三个顶点中选取两个格点,再从余下的格点中选取一个格点联结成格点三角形,其中与△ABC 相似的有(▲)(A )1个;(B )2个;(C )3个;(D )4个.二、填空题:(本大题共12题,每题4分,满分48分)7.如果053a b b =≠(),那么a b b-=▲.8.化简:2(3)6a b b -+-=▲.9.已知两个相似三角形的相似比为2︰3,那么这两个三角形的周长比为▲.10.点P 是线段AB 的黄金分割点(AP >BP ),AB =2,那么线段AP 的长是▲.yxO 1(第4题图)ABC(第6题图)11.抛物线2233y x =-的顶点坐标是▲.12.如果点A (2,a )、B (3,b )在二次函数23y x x =-的图像上,那么a ▲b (填“>”“<”或“=”).13.如果α是直角三角形的一个锐角,sin α=45,那么tan α=▲.14.如图,已知D 、E 、F 分别是△ABC 的边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,△ADE 、△EFC 的面积分别为1、4,四边形BFED 的面积为▲.15.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是4米,斜坡的坡度i =1∶2,那么相邻两树间的坡面距离为▲米.16.如图,为了绕开岛礁区,一艘船从A 处向北偏东60°的方向行驶8海里到B 处,再从B 处向南偏东45°方向行驶到发点A 正东方向上的C 处,此时这艘船距离出发点A 处▲海里.17.把矩形ABCD 绕点C 按顺时针旋转90°得到矩形A ´B ´CD ´,其中点A 的对应点A ´在BD 的延长线上,如果AB=1,那么BC=▲.18.在△ABC 中,AC=6,P 是AB 边上的一点,Q 为AC 边上一点,直线PQ 把△ABC 分成面积相等的两部分,且△APQ 和△ABC 相似,如果这样的直线PQ 有两条,那么边AB 长度的取值范围是▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:2sin 451cot 60cos30tan 45︒-+︒⋅︒︒.20.(本题满分10分)某学校有一喷水池,如果以喷水口(点A )所在的铅垂线为y 轴,相应的地面水平线为x 轴,1米为单位长度建立直角坐标系xOy,喷出的抛物线形水柱在最高处(点P )距离y 轴1米,水柱落地处(点B )距离y 轴4米,喷水口距离地面为2米,求抛物线形水柱的最高处距离地面的高度.1y xO2B4P1A A BC DEF(第14题图)(第15题图)(第16题图)21.(本题共2小题,第(1)小题6分,第(2)小题4分,满分10分)已知:如图,AM 是△ABC 的中线,点G 是重心,点D 、E 分别在边AB 和BC 上,四边形BEGD 是平行四边形.(1)求证DE ∥AC ;(2)设BA a = ,BC b = ,用向量a 、b表示DE =22.(本题满分10分)随着人民生活水平的日益提高,许多农村的房屋普遍进行了改造,小明家改造时在门前安装了一个遮阳棚,如图,在侧面示意图中,遮阳篷AB 长为4米,与墙面AD 的夹角∠BAD=75.5°,靠墙端A 离地高AD 为3米,当太阳光线BC 与地面DE 的夹角为45°时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin75.5°≈0.97,cos75.5°≈0.25,tan75.5°≈3.87)23.(本题共2小题,每小题6分,满分12分)已知:如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,∠BAC =∠BDC .(1)求证:△AOD ∽△BOC ;(2)过点A 作AE ∥CD ,AE 交BD 与点E ,求证:AB AD AE BC ⋅=⋅.ABCDOABC DE24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy 中,抛物线2y ax bx c =++经过点A (-1,0)、B (3,0)、C (0,-3).(1)求抛物线的表达式和顶点P 的坐标;(2)点D 在抛物线对称轴上,∠PAD=90°,求点D 的坐标;(3)抛物线的对称轴和x 轴相交于点M ,把抛物线平移,得到新抛物线的顶点为点Q ,QB=QM ,QO 的延长线交原抛物线为E ,QO=OE ,求新抛物线的表达式.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:如图,在△ABC 中,AB=AC ,∠CAD=∠ABC ,DC ⊥AC ,AD 与边BC 相交于点P .(1)求证:212AB AD BC =⋅;(2)如果sin ∠ABC=45,求BP ∶PC 的值;(3)如果△BCD 是直角三角形,求∠ABC 的正切值.O11yxABCDP参考答案一、选择题(本大题6 小题,每小题4 分,满分24 分)1.D ;2.C ;3.A ;4.D ;5.B ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.23;8.2a - ;9.2∶3;101-;11.(0,-3);12.<;13.43;14.4;15.16.4;17.152;18.62623≠≤≤AB AB 且.三、解答题:(本大题共7题,满分78分)19.解:原式=22121⎛⎫- ⎪⎝⎭,-----------------------------------------------------------(8分)=0.----------------------------------------------------------------------------------------(2分)20.解:设抛物线的解析式为()20y ax bx c a =++≠-------------------------------------(1分)由题意得,抛物线经过A (0,2)、B (4,0),顶点P 的横坐标为1,∴2164012c a b c ba ⎛=++= -=⎝-----------------------------------------------------------------------------(3分)解得:11,,242a b c =-==,.-------------------------------------------------------------(2分)∴抛物线的解析式是211242y x x =-++,顶点P 坐标为(1,2.25).---------(2分)∴抛物线形水柱的最高处距离地面的高度是2.25米.-----------------------------------(2分)21.(1)证明:∵AM 是△ABC 的中线,点G 是重心,∴AG=2GM ,---------------------(1分)∵四边形BEGD 是平行四边形,∴DG ∥BE ,EG ∥BD ,∴13BD MG BA MA ==,23BE AG BM MA ==-------------------------------------------------------(2分)∵BM=MC ,∴13BE BC =--------------------------------------------------------------------------(1分)∴BE BDBC BA=--------------------------------------------------------------------------------------(1分)∴DE ∥AC ------------------------------------------------------------------------------------------(1分)(2)1133DE b a =------------------------------------------------------------------------------------(4分)22.解:作BM ⊥ED ,BN ⊥AD ,垂足分别为M 、N ,-----------------------------------------(1分)在△ABN 中,∠ANB =90°,∴AN=AB ·cos ∠BAD =4×0.25=1,-----------------------------------------------------------(2分)BN=AB ·sin ∠BAD =4×0.97=3.88,--------------------------------------------------------(2分)∴ND=2,-------------------------------------------------------------------------------------------(1分)在四边形BMDN 中,∠BMD=∠MDA=∠DNB=90°,∴在四边形BMDN 是矩形,∴BM=ND =2,BN=MD=3.88,---------------------------(1分)在△ABN 中,∠ANB =90°,∠BCM =45°,∴BM=MC=2,------------------------------------------------------------------------------------(1分)∴CD=MD -MC=1.88≈1.9(米).-------------------------------------------------------------(1分)答:阴影CD 的长是1.9米.-------------------------------------------------------------------(1分)23.证明:(1)∵∠BAC =∠BDC ,∠AOB =∠DOC ,∴△AOB ∽△DOC ,-----------(2分)∴AO DO BO CO=,-----------------------------------------------------------------------------------(1分)∵∠AOD =∠BOC ,------------------------------------------------------------------------------(1分)∴△AOD ∽△BOC .------------------------------------------------------------------------------(2分)(2)∵△AOB ∽△DOC ,∠BAO =∠CDO ,∵AE ∥CD ,∴∠AED =∠CDO ,-------------------------------------------------------------(1分)∴∠AED =∠BAC ,--------------------------------------------------------------------------------(1分)∵△AOD ∽△BOC ,∴∠ADE =∠BCA ,-----------------------------------------------------(1分)∴△AED ∽△BAC ,------------------------------------------------------------------------------(1分)∴AE AD BA BC=,∴AB AD AE BC ⋅=⋅.--------------------------------------------------------(2分)24.解:(1)由题意得:09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:a =1,b =1,c =4,∴抛物线的表达式为223y x x =--.-------------------------(2分)∵()222314y x x x =--=--,∴顶点P 的坐标是(1,-4).----------------------(2分)(2)抛物线的对称轴为直线1=x ,--------------------------------------------------------------(1分)设点D 的坐标为(1,m ),∵∠PAD=90°,∴222PA AD PD +=,∴222+=,-----------(1分)解得,1m =,点D 的坐标为(1,1)-----------------------------------------------------(2分)(3)由题意,点M 坐标是(1,0),作MH ⊥x 轴,垂足为点H ,∵QB=QM ,∴MH=HB ,∴点H 的坐标为(2,0),点Q 的横坐标为2,---------(1分)设点Q 的坐标是(2,t ),∵QO=OE ,∴点Q 和点E 关于原点O 对称,∴点E 的坐标为(-2,-t ),--------(1分)∴()()22223t --⨯--=-,解得5t =-,点Q 的坐标是(2,-5),-------------------(1分)∴新抛物线的表达式是()225y x =--,即241y x x =--.-------------------------------(1分)25.(1)证明:∵∠CAD=∠ACB ,∠ACP=∠BCA ,∴△ACP ∽△BCA ,∴AC CP BC AC =,∴2AC CP BC =⋅.----------------------------------------------------------------(1分)∵AB=AC ,∴∠ABC=∠ACB ,∵∠CAD=∠ABC ,∴∠CAD=∠ACB ,∴P A=PC ,--------------------------------------(1分)∵DC ⊥AC ,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∠ACB+∠PCD=90°,∴∠ADC=∠PCD ,∴PD=PC ,∴12AP PD PC AD ===,-------------------------------(1分)∴212AB AD BC =⋅-------------------------------------------------------------------------------(1分)(2)作AH ⊥BC ,垂足为点H ,在Rt △ABH 中,∠AHB=90°,sin ∠ABC 45AH AB ==,设AH=4k ,AB=5k ,则BH=3k .---------------------------------------------------------------(1分)∵AB=AC ,∴BH=HC=3k ,∴BC=6k ,∵2AB CP BC =⋅,∴256CP k =,-------------------------------------------------------------(1分)∴116BP k =,∴BP ∶PC=1125.-----------------------------------------------------------------(2分)(3)显然∠BCD ≠90°,如果∠CBD =90°,∵∠AHB =90°,∴AH ∥BD ,∴PH AP BP PD=,∵AP=PD ,∴PH=BP ,设PH=BP=m ,∴BH=CH=2m ,CP=3m ,BC=4m ,----------------------------------------------------------(1分)∵2AB CP BC =⋅,∴AB =,-----------------------------------------------------------(1分)在Rt △ABH 中,∠AHB=90°,∴AH =,∴tan ∠ABC AHBH==,即∠ABC .-------------------------------------(1分)如果∠CDB =90°,∵∠ACD =90°,∴AC ∥BD ,∴BP PD CP AP=,∵AP=PD ,∴BP=PC ,-------------------------------------------------------(1分)∵AB=AC ,∴四边形ABDC 是正方形,----------------------------------------------------(1分)∴∠ABC=45°,∠ABC 的正切值为1.---------------------------------------------------------(1分)综上所述,如果△BCD 是直角三角形,∠ABC 或1.。

海淀区2024届初三一模数学试题及答案

海淀区2024届初三一模数学试题及答案

海淀区九年级第二学期期中练习数 学2024.04学校________姓名__________准考证号________考生须知 1.本试卷共7页,共两部分,28道题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色自己签字笔作答。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、迭择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体放置在水平面上,其中俯视图是圆的几何体为2.据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17 500 000用科学记数法表示应为 (A)175×105(B)1.75×106(C)1.75×107 (D)0.175×1083.如图,AB ⊥BC ,AD ∥BE ,若∠BAD=28°,则∠CBE 的大小为 (A)66° (B)64° (C)62°(D)60°4.实数a 在数轴上的对应点的位置如图所示,下列结论中正确的是(A)a ≥-2(B)a<-3(C)-a>2(D)-a ≥35.每一个外角都是40°的正多边形是 (A )正四边形(B)正六边形(C )正七边形(D )正九边形6.若关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则实数m 的值为 (A)1(B)-1(C)4(D)-47.现有三张背面完全一样的扑克牌,它们的正而花色分别为◆,,,若将这三张扑克牌背面朝上,洗匀后从中碗机抽取两张,则抽取的两张牌花色相同的概率为 (A)16(B)13(C)12(D)238.如图.AB 经过圆心O ,CD 是⊙O 的一条弦,CD ⊥AB ,BC 是⊙O 的切线.再从条件①,条件②,条件③中选择一个作为已知,便得AD=BC. 条件①:CD 平分AB 条你②3OA 条件③:AD 2=AO ·AB 则所有可以添加的条件序号是 (A) ①(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.1x −x 的取值范围是_______. 10.分解因式:a 3-4a=_______. 11.方程1231x x =− 的解为_______. 12.在平面直角坐标系xOy 中,若函数(0)ky kx=≠的图象经过点A (a ,2)和B (b ,-2).则a +b 的值为_______.13.如图,在△ABC 中,∠ACB=90°,AB=5,AC=3.点D 在射线BC 上运动(不与点B 重合).当BD 的长为______时, AB=AD.14.某实验基地为全面掌握“无絮杨”树苗的生长规律,定期对2000棵该品种树苗进行抽测.近期从中随机抽测了100棵树苗,获得了它们的高度x (单位:cm).数据经过整理后绘制的频数分布直方图如右图所示.若高度不低于300cm 的树苗为长势良好,则估计此时该基地培育的2000棵“无絮杨”树苗中长势良好的有_________棵.15.如图,在正方形ABCD 中.点E ,F ,G 分别在边CD ,AD ,BC 上,FD<CG.若FG=AE ,∠1=a ,则∠2的度数为_____(用含a 的式子表示).16.2019年11月,联合国教科文组织将每年的3月14日定为“国际数学日”,也被许多人称为“π节”.某校今年“π节”策划了五个活动,规则见下图:小云参与了所有活动.(1)若小云只挑战成功一个,则挑战成功的活动名称为__________;(2取值为______.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:112sin 601()122−︒+−+−18.解不等式组:435,212.3x x x −<⎧⎪+⎨>−⎪⎩19.已知240b a −=,求代数式241(1)2a b b+−+的值. 20.如图,在ABCD 中,O 为AC 的中点,点E ,F 分別在BC ,AD 上,EF 经过点O ,AE=AF.(1)求证:四边形AECF 为菱形;(2)若E 为BC 的中点,AE=3,AC=4.求AB 的长.21.下图是某房屋的平面示意图.房主准备将客厅和卧室地面铺设木地板,厨房和卫生间地面铺设瓷砖.将房间地面全部铺设完预计需要花费10 000元,其中包含安装费1270元.若每平方米木地板的瓷砖的价格之比是5:3,求每平方米木地板和瓷砖的价格.22.在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象经过点A(1,2)和B(0,1). (1)求该函数的解析式;(2)当x <l 时.对于x 的每一个值,函数y =mx -1(m ≠0)的值小于函数y =kx +b (k ≠0)的值,直接写出m 的取值范围.23.商品成本影响售价,为避免因成本波动导致售价剧烈波动,需要控制售价的涨跌幅.下面给出了商品售价和成本(单位:元)的相关公式和部分信息: a.计算商品售价和成本涨跌幅的公式分别为:100%100%−−=⨯⨯当周售价前周售价当周成本前周成本售价涨跌幅,成本涨跌幅=;前周售价前周成本b.规定当周售价涨跌幅为当周成本涨跌幅的一半;c.甲、乙两种商品成本与售价信息如下: 第一周 第二周第三周第四周 第五周 成本25 50 25 40 20 售价40m45np根据以上信息,回答下列问题:(1)甲商品这五周成本的平均数为___________,中位数为___________;(2)表中m 的值为____________,从第三周到第五周,甲商品第_______周的售价最高;(3)记乙商品这40周售价的方差为 21S ,若将规定“当周售价涨跌福为当周成本涨跌福的一半”更改为“当周售价涨跌幅为当周成本涨跌辐的四分之一”,重新计算每周售价,记这40周新售价的方差为22S ,则21S ____22S ;(填“>”“=”或“<”).24.如图.AB 、CD 均为⊙O 的直径.点E 在BD ̂上,连接AE ,交CD 于点F,连DE ,∠EDB+∠EAD=45°,点G 在BD 的延长线上,AB=AG. (I)求证:AG 与⊙O 相切; (2)若BG=51tan 3EDB ∠=,求EF 的长.25.某校为培养学生的阅读习惯,发起“阅读悦听”活动,现有两种打卡奖励方式: 方式一:每天打卡可领取60min 听书时长;方式二:第一天打卡可领取5min 听书时长,之后每天打卡领取的听书时长是前一天的2倍. (1)根据上述两种打卡奖励方式补全表二:表一 每天领取听书时长天数 1 2 3 4 ··· n 方式一 60 60 60 60 ··· 60 方式二55×25×45×8···5×2n -1天数 1 2 3 4 ··· n 方式一 60 120 180 240 ··· 方式二5×2-55×4-55×8-55×16-5···(2达了变化趋势.其中表示方式二变化趋势的虚线是________(填a 或b ),从第_______天完成打卡时开始,选择方式二累计领取的听书时长超过方式一;(3)现有一本时长不超过60min 的有声读物,小云希望通过打卡领取该有声读物.若选择方式二比选择方式一所需的打卡天数多两天,则这本有声读物的时长t (单位:min )的取值范围是______.26.在平面坐标系xOy 中,点(m ,n )在抛物线2(0)y ax bx a =+>上,其中m ≠0. (1)当m =4,n =0时.求抛物线的对称轴; (2)已知当0<m <4时,总有n <0. ①求证:4a +b ≤0;②点12(,),(3,)P k y Q k y 在该抛物线上,是否存在a ,b ,使得当1<k <2时,都有12y y <?若存在,求出a 与b 之间的数量关系;若不存任,说明理由.27.在△ABC 中.∠ACB=90°,∠ABC=30°,将线段AC 绕点A 顺时针旋转α((0°<α≤60°)得到线段AD.点D 关于直线BC 的对称点为E.连接AE ,DE.(1)如图1,当α=60°时,用等式表示线段AE 与BD 的数量关系,并证明;(2)连接BD,依题意补全图2.若AE=BD,求α的大小.28.在平面直角坐标系xOy中,对于图形M与图形N给出如下定义:P为图形N上任意一点,将图形M绕点P顺时针旋转90°得到M’,将所有M’组成的图形记作M’,称M’是图形M关于图形N的“关联图形”.(1)已知A(-2,0),B(2,0),C(2,t),其中t≠0.①若t=1,请在图中画出点A关于线段BC的“关联图形”;②若点A关于线段BC的“关联图形”与坐标轴有公共点.立接写出t的取值范围;(2)对于平面上一条长度为a的线段和一个半径为r的圆,点S在线段关于圆的“关联图形”上,记点S的纵坐标的最大值和最小值的差为d,当这条线段和圆的位置变化时,直接写出d的取值范围(用含a和r的式子表示).海淀区九年级第二学期期中练习数学试卷参考答案第一部分 选择题一、选择题 (共16分,每题2分)第二部分 非选择题二、填空题(共16分,每题2分)9.1x ≥ 10.(2)(2)a a a −+11.1x = 12.0 13.8 14.94015.180α︒−16.(1)鲁班锁;(2)1,2,3三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式212=++− 12=+−3=18. 解:原不等式组为435212.3x x x −<⎧⎪⎨+>−⎪⎩,①②解不等式①,得2x <.解不等式②,得1x >. ∴原不等式组的解集为12x <<. 19. 解: 原式241212a b b b +=−++2411a b +=+.∵240b a−=,∴24b a=.∴原式41 41aa+ =+1 =.20.(1)证明:∵四边形ABCD为平行四边形,∴AD // BC.∴AFO CEO∠=∠,FAO ECO∠=∠.∵O为AC的中点,∴AO CO=.∴△AOF≌△COE.∴AF EC=.∵AF//EC,∴四边形AECF为平行四边形.∵AE AF=,∴四边形AECF为菱形.(2)解:∵O为AC的中点,4AC=,∴122OA AC==.∵四边形AECF为菱形,∴AC EF⊥.∴90AOE∠=︒.∴在Rt△AOE中,由勾股定理得OE=.∵E为BC的中点,∴2AB OE==.21. 解:设每平方米木地板的价格为5x元,则每平方米瓷砖的价格为3x元.由题意可得,123(3615)5100001270x x⨯++⨯=−.解得30x=.∴5150x=,390x=.答:每平方米木地板的价格为150元,每平方米瓷砖的价格为90元.22.解:(1)∵函数(0)y kx b k =+≠的图象经过点(1,2)A 和(0,1)B ,∴21.k b b +=⎧⎨=⎩,解得11.k b =⎧⎨=⎩,∴该函数的解析式为1y x =+. (2)13m ≤≤.23.解:(1)32,25;(2) 60,四; (3) >.24.(1)证明:∵BE BE =,∴BAE BDE ∠=∠. ∵45EDB EAD ∠+∠=︒,∴45BAE EAD ∠+∠=︒,即45BAD ∠=︒. ∵AB 为O 的直径, ∴90ADB ∠=︒. ∴AD BG ⊥. ∵AB AG =,∴45BAD GAD ∠=∠=︒. ∴90BAG ∠=︒. ∴AB AG ⊥.∵AB 为O 的直径, ∴AG 与O 相切.(2)解:连接BE ,如图.∵AB AG =,AD BG ⊥,BG =∴12BD BG == 在Rt △ADB 中,90ADB ∠=︒,45BAD ∠=︒,可得AB =∴12OA AB ==. ∵BAE BDE ∠=∠, ∴1tan tan 3BAE BDE ∠=∠=.∵AB 为O 的直径,∴90AEB ∠=︒.在Rt △AEB 中,1tan 3BAE ∠=,可得13BE AE =.由勾股定理得 222BE AE AB +=.∴2221()3AE AE +=.∴6AE =. ∵290BOD BAD ∠=∠=︒. ∴90AOF ∠=︒.在Rt △AOF 中,1tan 3BAE ∠=,OA =OF =.由勾股定理得 103AF =. ∴108633EF AE AF =−=−=. 25.解:(1)60n ,525n ⨯−;(2) a ,7; (3)1535t <≤.26.解:(1)由题意可知,点(40),在抛物线2(0)y ax bx a =+>上,∴1640a b +=. ∴4b a =−. ∴4222b aa a−==−−. ∴抛物线的对称轴为直线2x =.(2)① 法一:令0y =,则20(0)ax bx a +=>. 解得0x =或b x a=−. ∴抛物线2(0)y ax bx a =+>与x 轴交于点(00),,(0)b a−,. ∵0a >,∴抛物线开口向上. (ⅰ)当0b <时,0ba−>.∴当0bx a <<−时,0y <;当0x <或b x a>−时,0y >. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. (ⅱ)当0b >时,0ba−<. ∴当0bx a −<<时,0y <;当b x a<−或0x >时,0y >. ∴当04m <<时,0n >,不符合题意. 综上,40a b +≤. 法二:∴由题意可知,2am bm n +=.若0n <,则2()0am bm m am b +=+<. ∵0m >, ∴0am b +<. ∵0a >, ∴b m a<−. ∴当0bm a<<−时,0n <. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. ② 存在.设抛物线的对称轴为x t =,则2b t a=−. ∵,∴当x t ≥时,y 随x 的增大而增大;当x t ≤时,y 随x 的增大而减小. ∵12k <<,∴336k <<,3k k <. (ⅰ)当1t ≤时,∵3t k k ≤<. ∴12y y <,符合题意. (ⅱ)当12t <≤时,当2t k ≤<时, ∵3t k k <<. ∴12y y <. 当1k t <<时,设点1()P k y ,关于抛物线对称轴x t =的对称点为点01'(,)P x y , 则0x t >,0t k x t −=−. ∴02x t k =−. ∵1k t <<,12t <≤, ∴23t k −<. ∴03t x <<. ∵336k <<. ∴03t x k <<. ∴12y y <.∴当12t <≤时,符合题意. (ⅲ)当23t <≤时,令12k t =,332k t =,则12y y =,不符合题意.(ⅳ)当36t <<时,令3k t =,则3k k t <≤. ∴12y y >,不符合题意. (ⅴ)当6t ≥时,∵3k k t <<,∴12y y >,不符合题意. ∴ 当2t ≤,即22ba−≤时,符合题意. ∵0a >, ∴40a b +≥. 由①可得40a b +≤. ∴40a b +=.27.(1)线段AE 与BD的数量关系:AE .证明:连接BE ,如图1.∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =.∴30DBC EBC ∠=∠=. ∴60DBE ∠=.∴△DBE 是等边三角形.∴BD BE DE ==,60BDE BED ∠=∠=. ∵△ABC 中,90ACB ∠=,30ABC ∠=, ∴2AB AC =.依题意,得AD AC =,点D 在AB 上. ∴2AB AD =. ∴.BD AD = ∴.DE AD =∴30.DAE DEA ∠=∠= ∴90.BEA ∠= ∴在Rt △ABE 中,tan tan 60 3.AEABE BE=∠== ∴AE. ∴.AE =(2)依题意补全图2,如图.B图1方法一:解:延长AC 至F ,使CF AC =,连接BF ,BE ,EF ,CD ,CE ,如图2. ∵90ACB ∠=, ∴.AB BF = ∵60BAC ∠=,∴△ABF 是等边三角形. ∴AB AF BF ==,60BFC ∠=. ∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DCB ECB ∠=∠. ∵90ACB DCF ∠=∠=, ∴DCA ECF ∠=∠. ∵AC FC =, ∴△DAC ≌△EFC . ∴CAD CFE ∠=∠. ∵AE BD =, ∴BE AE =.∵EF EF =,BF AF =, ∴△BEF ≌△AEF .∴30BFE AFE ∠=∠=. ∴30CAD AFE ∠=∠=. ∴30.α= 方法二:解:如图3,取AB 中点F ,连接DF ,BE ,CD ,CE ,设DBC β∠=.F∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DBC EBC β∠=∠=.∴30EBA β∠=︒+,30DBA β∠=︒−. ∵AE BD =, ∴AE BE =.∴30EAB EBA β∠=∠=︒+. ∵90ACB ∠=︒,30ABC ∠=︒, ∴60BAC ∠=︒. ∴30EAC β∠=︒−. ∴EAC DBA ∠=∠. 由(1)可得2.AB AC = ∵F 为AB 中点, ∴22.AB AF BF == ∴.AC AF BF ==∵AC BF =,EAC DBA ∠=∠,AE BD =, ∴△ACE ≌△BFD . ∴CE FD =. ∴CD FD =.∵AD AD =,AF AC =, ∴△ADF ≌△ADC . ∴30FAD CAD ∠=∠=︒. ∴30α=︒.28.(1)①如图,线段B'C'即为所求.②4t ≤−或2t ≥.图3FD≤≤+. (2)d a。

2024年北京西城区九年级初三一模数学试卷及答案

2024年北京西城区九年级初三一模数学试卷及答案

北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数 学 2024.4考生须知1. 本试卷共7页,共两部分, 28道题。

满分 100分。

考试时间120分钟。

2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3. 试题答案一律填涂或书写在答题卡上, 在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束, 将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的展开图,该几何体是 (A) 圆锥 (B)三棱柱 (C)三棱锥 (D)四棱锥2. 2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit)的数据. 将 10000000000用科学记数法表示应为(A )0.1×10¹¹ (B )1×10¹⁰ (C )1×10¹¹ (D) 10×10⁹3.下列图形中,既是中心对称图形也是轴对称图形的是4. 直尺和三角板如图摆放,若∠1=55°,则∠2的大小为 (A)35° (B)55° (C) 135° (D) 145°北京市西城区九年级统一测试试卷 数学2024.4 第1页 (共7页)15.如图,两个边长相等的正六边形的公共边为BD,点A,B,C在同一直线上, 点O₁, O₂分别为两个正六边形的中心. 则tan∠O₂AC的值为.16. 将1, 2, 3, 4, 5, …, 37这37个连续整数不重不漏地填入37个空格中. 要求: 从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第 1 个空格填入 37,则第 2 个空格所填入的数为,第 37 个空格所填入的数为 .37三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:|−3|−+2sin60∘−12.18.解不等式组: 2(+1)<x+5, x+23≥x−12.19. 已知x²−x−4=0,求代数式 (x−2)²+(x−1)(x+3)的值.20. 如图,点E在▱ABCD的对角线DB的延长线上,AE=AD.AF⊥BD于点F,EG∥BC交AF的延长线于点G, 连接DG.(1) 求证: 四边形AEGD是菱形;(2)若AF=BF,tan∠AEF=12,AB=4,求菱形AEGD的面积.21.某学校组织学生社团活动,打算恰好用1000元经费购买围棋和象棋,其中围棋每套40元,象棋每套30元.所购买围棋的套数能否是所购买象棋套数的2倍?若能,请求出所购买的围棋和象棋的套数,若不能,请说明理由.22. 在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(3,5), B(-2,0), 且与y轴交于点 C.(1)求该函数的解析式及点C的坐标;(2)当x<2时, 对于x的每一个值, 函数y=-3x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.北京市西城区九年级统一测试试卷 数学2024.4 第3页 (共7页)24. 如图, AB 为⊙O 的直径, 弦CD⊥AB 于点H, OO 的切线CE 与BA 的延长线交于点E, AF∥CE, AF 与⊙O 的交点为F.(1) 求证: AF=CD;(2) 若⊙O 的半径为6, AH=2OH,求AE 的长.25. 如图,点O 为边长为1的等边三角形ABC 的外心. 线段PQ 经过点O,交边AB 于点P, 交边AC 于点Q. 若 AP =x,AQ =y 1,S APQ :S ABC =y 2,下表给出了x, y ₁, y ₂的一些数据 (近似值精确到0.0001).x 0.50.550.60.650.70.750.80.850.90.951y ₁10.84620.750.68420.63640.60.57140.54840.52940.51350.5y ₂0.46540.450.44470.44550.450.45710.46610.47650.48780.5(1)补全表格;(2)在同一平面直角坐标系xOy 中描出了部分点( x ,y ₁,x ,y ₂..请补全表格中数据的对应点,并分别画出y ₁与y ₂关于x 的函数图象;(3)结合函数图象,解决下列问题:①当△APQ 是等腰三角形时, y ₁关于x 的函数图象上的对应点记为(a ,b),请在x轴上标出横坐标为a 的点;C ②当y ₂取最大值时,x 的值为 .北京市西城区九年级统一测试试卷 数学2024.4 第5页 (共7页)5.不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为(A) 14(B) 13(C) 12(D)236. 已知-2<a<-1, 则下列结论正确的是(A) a<1<-a<2 (B) 1<a<-a<2 (C) 1<-a<2<a (D) -a<1<a<27.若关于x 的一元二次方程 lnx²+x−2=0有两个实数根,则实数k 的取值范围是(A )k ≤−18 (B )k >−18且k≠0 (C )k ≥−18且k≠0 (D )k ≥−14且k≠08. 如图, 在Rt△ABC 中, ∠ACB=90°, BC=a, AC=b(其中a<b). CD⊥AB 于点D,点E 在边AB 上, BE=BC. 设CD=h, AD=m, BD=n, 给出下面三个结论:①n²+h²<(m+n)²;②2h²>m²+n²;③AE 的长是关于 x 的方程 x²+2ax−b²=0的一个实数根.上述结论中,所有正确结论的序号是(A)① (B) ①③ (C) ②③ (D) ①②③第二部分 非选择题二、填空题 (共16分,每题2分)9. 若 x−3在实数范围内有意义,则实数x 的取值范围是 .10. 分解因式:x²y-12xy+36y= .11. 方程43x−1=3x−2的解为 .12.在平面直角坐标系xOy 中,若函数 y =kx(k ≠0)的图象经过点(-1,8)和(2,n), 则n 的值为.13. 如图, 在▱ABCD 中, 点E 在边AD 上, BA, CE 的延长线交于点F. 若AF=1, AB=2, 则 AEED =¯.14. 如图, 在⊙O 的内接四边形ABCD 中, 点A 是 ⌢BD 的中点,连接AC, 若∠DAB=130°, 则∠ACB= °.北京市西城区九年级统一测试试卷 数学2024.4 第2页 (共7页)23.某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8, 8.8, 8.9, 9.4, 9.4, 9.4, 9.6, 9.6, 9.6, 9.8, 10, 10, 10, 10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:平均数中位数众数甲9.5m9.2乙9.59.6n根据以上信息,回答下列问题:(1)写出表中m, n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);甲9.29.29.29.29.1乙9.49.49.48.98.8②甲同学从剩余的 10颗山楂中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为和 ;(3)估计这些山楂共能制作多少串冰糖葫芦.北京市西城区九年级统一测试试卷 数学2024.4 第4页 (共7页)26. 在平面直角坐标系xOy中,点A−2y₁,B2y₂,C m y₃在抛物线y=ax²+bx+3(a⟩0)上.设抛物线的对称轴为直线x=t.(1)若y₁=3,,求t的值;(2) 若当t+1<m<t+2时,都有y₁>y₃>y₂,求t的取值范围.27. 在△ABC中,∠ABC=∠ACB=45°,AM⊥BC于点M.D是射线AB上的动点 (不与点 A, B重合), 点 E 在射线 AC 上且满足.AE=AD,,过点D 作直线 BE 的垂线交直线BC于点F, 垂足为点 G, 直线BE交射线AM于点P.(1) 如图1, 若点D在线段AB上, 当AP=AE时,求∠BDF的大小;(2)如图2,若点D在线段AB的延长线上,依题意补全图形,用等式表示线段CF,MP, AB的数量关系, 并证明.北京市西城区九年级统一测试试卷 数学2024.4第6页 (共7页)28.在平面直角坐标系xOy 中,已知⊙O 的半径为1.对于⊙O 上的点 P 和平面内的直线l:y =ax 给出如下定义:点P 关于直线l 的对称点记为 P¹,,若射线OP 上的点Q 满足 OQ =PP ′,则称点Q 为点P 关于直线l 的“衍生点”.(1)当a=0时,已知⊙O 上两点 PP 2−22,在点Q ₁(1,2), QQ 3(−1,−1),Q 4(−2,−2)中,点P ₁关于直线l 的“衍生点”是 ,点P ₂关于直线l 的“衍生点”是 ;(2) P 为⊙O 上任意一点, 直线y=x+m (m≠0)与x 轴, y 轴的交点分别为点 A,B.若线段AB 上存在点S ,T ,使得点S 是点P 关于直线l 的“衍生点”,点T 不是点P 关于直线l 的“衍生点”,直接写出m 的取值范围;(3) 当-1≤a≤1时,若过原点的直线s 上存在线段 MN,对于线段 MN 上任意一点R,都存在⊙O 上的点P 和直线l ,使得点R 是点P 关于直线l 的“衍生点”. 将线段MN 长度的最大值记为D(s),对于所有的直线s ,直接写出D(s)的最小值.北京市西城区九年级统一测试试卷 数学2024.4 第7页 (共7页)北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数学答案及评分参考 2024.4一、选择题(共16分,每题2分)题号12345678答案C B D D A A C B二、填空题(共16分,每题2分)9. x≥3 10.y(x−6)² 11. x=-1 12. -413.1214. 25 15.3516. 1, 19三、解答题(共68分, 第17-22题, 每题5分, 第23-26题, 每题6分, 第27-28题,每题7分)17. 解: |−3|−+2sin60∘−12=3−5+2×32−23 4分 =-5 . 5分18.解:原不等式组为2(x+1)<x+5, x+23≥x−12.解不等式①, 得x<3. ·2分 解不等式②, 得x≤7. 4分 ∴ 原不等式组的解集为x<3. 5分19. 解: (x−2)²+(x−1)(x+3)=(x²−4x+4)+(x²+2x−3)=2x²−2x+1.…… 3分∵x²−x−4=0,∴x²−x=4.∴原式=2(x²−x)+1=9. ·5分20. (1) 证明: 如图1.∵ AE=AD, AF⊥BD于点F,∴ ∠EAG=∠DAG, EF=DF.∵ 四边形 ABCD 是平行四边形,北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第1页(共6页)①②∴ AD∥BC.∵ EG∥BC,∴ AD∥EG.∴ ∠AGE=∠DAG.∴ ∠EAG=∠AGE.∴ AE=EG.∴ AD=EG.∴ 四边形AEGD 是平行四边形.又∵ AE=AD,∴四边形AEGD是菱形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2) 解: 在Rt△ABF中, ∠AFB=90°, AF=BF, AB=4,∴ ∠ABF=45° , AF=AB·sin45°=22.在Rt△AEF中,∠AFE=90∘,tan∠AEF=12,AF=22,∴EF=AFtan∠AEF=4 2.∵ 四边形 AEGD 是菱形,∴AG=2AF=42,DE=2EF=8 2.∴S差πAEGD =12AG×DE=12×42×82=32. …5分21.解:设购买x套围棋,y套象棋 (1)假设所购买围棋的套数能是所购买象棋套数的2倍,①则40x+30y=1000,x=2y.② 3分解得y=10011. 4分此时 y不为正整数,不合题意.答:所购买围棋的套数不能是所购买象棋套数的2倍.⋯⋯⋯⋯⋯⋯⋯⋯5分22. 解: (1) ∵ 函数y=kx+b (k≠0) 的图象经过点 A(3,5), B(-2,0),∴3k+b=5,−2k+b=0.解得k=1,b=2.∴该函数的解析式为y=x+2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分点C的坐标为C(0,2).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)n≥10.……………………………………………………………………………5分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第2页 (共6页)23.解:(1)9.4,10;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)①甲;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分②9.3,9.6;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)76009.5×5=160(串).答:估计这些山楂共能制作160串糖葫芦.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分24. (1) 证明: 如图2, 连接OC, OC与AF交于点 G.∵ CE 与⊙O 相切, 切点为C,∴CE⊥OC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴ ∠OCE=90° .∵ AF∥CE,∴ ∠OGA=∠OCE=90° .∴ OC⊥AF于点 G.∴ AF=2AG.∵ CD⊥AB 于点 H,∴ ∠OHC=90° , CD=2CH .∴ ∠OGA=∠OHC.又∵ ∠AOG=∠COH, OA=OC,∴ △OAG≌△OCH.∴ AG=CH.∴AF=CD.…………………………………………………… 3分(2) 解: ∵ ⊙O的半径为6, AH=2OH,∴ OH=2, AH=4.在Rt△OCH中,∠OHC=90∘,cos∠COH=OHOC =13.在Rt△OCE中,∠OCE=90∘,cos∠COE=13,OC=6,∴OE=OCcos∠COE=18.∴AE=OE-OA=18-6=12.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第3页(共6页)25. 解: (1)0.5; ……………………… 1分(2)3分(3)①见图3; ·4分 ②0.5, 1. …6分26. 解: (1) 抛物线 y =ax²+bx +3与y 轴的交点的坐标为(0,3).∵ 抛物线. y =ax²+bx +3过A(-2,y ₁), y ₁=3,∴ A(-2,3)与(0,3)关于直线x=t 对称.∴t =−2+02=−1. 2分(2) ∵ a>0,∴ 当x≤t 时, y 随x 的增大而减小; 当x≥t 时, y 随x 的增大而增大.A(-2,y ₁), B(2,y ₂), C(m,y ₃).①当t≤-2时,∵ t≤-2<2,|.y₁<y₂,不合题意.②当-2<t<2时, A(-2,y ₁)关于对称轴x=t 的对称点为 A ′(2t +2,y ₁).∵ 当t+1<m<t+2时, 都有 y₁>y₃>y₂,∴t +1≥2,t +2≤2t +2.解得 t≥1.∴ 1≤t<2.③当t≥2时,A(-2,y ₁),B(2,y ₂)关于对称轴x=t 的对称点分别为 A ′(2t +2,y ₁), B ′(2t−2,y ₂).北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第4页(共6页)∵当t+1<m<t+2时, 都有. y₁>y₃>y₂,∴t +1≥2t−2,t +2≤2t +2.解得 0≤t≤3.∴ 2≤t≤3.综上所述,t 的取值范围是1≤t≤3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分27. 解: (1) 如图4.∵在△ABC 中, ∠ABC=∠ACB=45° ,∴ AB=AC, ∠BAC=90° , ∠1+∠2=90°.∵ AM⊥BC 于点 M,∴∠3=∠BAC 2=45∘,BM =CM.∵ AP=AE, ∴∠2=180∘−∠32=180∘−45∘2=67.5∘.∵ DF⊥BE 于点 G,∴ ∠1+∠BDF=90°.∴∠BDF=∠2=67.5°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)补全图形见图5.CF =2MP +2AB.证明: 如图4, 作 CQ∥AP 交BE 于点 Q.∵ CQ∥AP, BM=CM, AM⊥BC, ∴MP CQ =BM BC =12,∠BCQ =∠AMC =90∘ ∴CQ =2MP,∠5=180°−∠ACB−∠BCQ =45°.∵∠4=∠ABC =45°,∴ ∠4=∠5.北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第5页 (共6页)∵∠DBG=∠ABE,DG⊥BE于点 G,∠BAC=90°,∴ ∠D=∠E.∵AD=AE,AB=AC,∴AD−AB=AE−AC, 即BD=CE.∴△BDF≅△CEQ.:.BF=CQ.∵CF=BF+BC,BC=2AB,∴CF=CQ+2AB=2MP+2AB. ……………… 7分28. 解: (1)Q₂,Q₃; · ·2分(2)−22≤m≤−2或 2≤m≤22; ·5分(3)2−2. 7分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第6页(共6页)。

2024届上海市松江区初三一模数学试卷(含答案)

2024届上海市松江区初三一模数学试卷(含答案)

2024届上海市松江区初三一模数学试卷(满分 150 分,完卷时间 100 分钟)2024.01考生注意:1.本试卷含三个大题,共25题;没有特殊说明,几何题均视为在同一个平面内研究问题.2.答题时,务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列函数中,属于二次函数的是(▲)(A )2y x =−;(B )2y x =; (C )221)y x x =−+(; (D )22y x =. 2.在Rt △ABC 中,已知∠C =90°,∠A =α, BC =a ,那么AB 的长为(▲)(A )a sin α; (B )cos aα; (C )a sin α; (D )a cos α.3.关于二次函数22(1)y x 的图像,下列说法正确的是(▲)(A )开口向上;(B )经过原点;(C )对称轴右侧的部分是下降的; (D )顶点坐标是(1,0).4.下列条件中,不能判定a ∥b 的是(▲)(A )a ∥c ,b ∥c ,其中0c ≠;(B )a c =−,2b c =;(C )2a b =− ;(D )||3||a b =. 5.如图,在Rt △ABC 中,∠BAC =90°,斜边BC 上的高AH =3,矩形DEFG 的边DE 在边BC 上,顶点G 、F 分别在边AB 、AC 上,如果GF 正好经过△ABC 的重心,那么BD ·EC 的积等于( ▲ ) (A )4;(B )1;(C )1625; (D )925. 6.某同学对“两个相似的四边形”进行探究.四边形ABCD 和四边形A 1B 1C 1D 1是相似的图形,点A 与点A 1、点B 与点B 1、点C 与点C 1、点D 与点D 1分别是对应顶点,已知k B A AB=11.(第5题图)H G F AE CB D该同学得到以下两个结论:①四边形ABCD 和四边形A 1B 1C 1D 1的面积比等于2k ;②四边形ABCD 和四边形A 1B 1C 1D 1的两条对角线的和之比等于k . 对于结论①和②,下列说法正确的是( ▲ ) (A )①正确,②错误; (B )①错误,②正确; (C )①和②都错误;(D )①和②都正确.二、填空题(本大题共12题,每题4分,满分48分)7.若12y x = ,则y x y =+ ▲ .8.A 、B 两地的实际距离AB =250米,画在地图上的距离A ′B ′=5厘米,那么地图上的距离与实际距离的比是 ▲ .9.某印刷厂一月份印书50万册,如果第一季度从2月份起,每月印书量的增长率都为x ,三月份的印书量为y 万册,写出y 关于x 的函数解析式是 ▲.10.已知点P 是线段AB 的黄金分割点,且AP >BP ,如果AB =5,那么AP = ▲ . 11.在直角坐标平面中,将抛物线2(1)2y x =−++,先向左平移1个单位,再向下平移2个单位,那么平移后的抛物线表达式是 ▲ .12.如果一个二次函数图像的顶点在x 轴上,且在y 轴的右侧部分是上升的.请写出一个符合条件的函数解析式: ▲ .13.如图,一辆小车沿着坡度为1: 2.4的斜坡从A 点向上行驶了50米,到达B 点,那么此时该小车上升的高度为 ▲米.14.如图,梯形ABCD 中,AB ∥CD ,且43AB CD =,若AB m =, AD n =.请用m ,n 来表示AC = ▲ .15.如图,已知直线l 1、l 2、l 3分别交直线m 于点A 、B 、C ,交直线n 于点D 、E 、F ,且l 1∥l 2∥l 3,AB =2BC ,DF =6,那么EF = ▲ .16.如图,在梯形ABCD 中,AD ∥BC ,点E 是AD 的中点,BE 、CD 的延长线交于点F ,如果AD :BC =2:3,那么:EDF AEB S S △△=▲ .n mA DE B CF(第15题图)l 3l 2 l 1DBA(第18题图)(第14题图)CBAD (第16题图)(第13题图)水平面ABACB15° (第22题图)30°M17.在△ABC 中,AB = AC ,点D 、E 分别是边AB 、AC 的中点,BE 与CD 相交于点O ,如果△OBC 是等边三角形,那么tan ∠ABC = ▲ .18.如图,在矩形ABCD 中,AB =2,BC =3,将边AB 绕点A 逆时针旋转,点B 落在B '处,联结BB '、CB ',若90BB C ∠'=︒,则BB '= ▲ . 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)二次函数y =ax 2+bx +c (a ≠0)的图像上部分点的横坐标x 、纵坐标y 的对应值如下表.x … 0 1 2 3 4 … y…3-1?3…(1)由表格信息,求出该二次函数解析式,并写出该二次函数图像的顶点D 的坐标;(2)如果该二次函数图像与y 轴交于点A ,点P (5,t )是图像上一点,求△P AD 的面积.20.(本题满分10分)如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,联结DE 、EF .已知ED BC ∥,EF AB ∥,AD =3,9DB =.(1)求BFFC的值; (2)若△ABC 的面积为16,求四边形BFED 的面积. 21.(本题满分10分)已知:如图,△ABC 中,AB =15,BC =14, 4sin 5B =,AD ⊥BC 于D . (1)求AC 的长;(2)如果点E 是边AC 的中点,求cot ∠EBC 大小.22.(本题满分10分)如图,A 处有一垂直于地面的标杆AM ,热气球沿着 与AM 的夹角为15°的方向升空,到达B 处,这时 在A 处的正东方向200米的C 处测得B 的仰角为30° (AM 、B 、C 在同一平面内).求A 、B 之间的距离.(结果精确到1米,2 1.414)≈(第20题图)(第19题图)y xO (第21题图)CA23.(本题满分12分,其中每小题各6分)已知:如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,∠BDC =∠DEC . 求证:(1)△ADE ∽△ACD ;(2)AC AEBCCD =22. 24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)在平面直角坐标系xOy 中,抛物线2(0)y ax bx+c a =+>的图像经过原点O (0, 0)、点A (1,3a ),此抛物线的对称轴与x 轴交于点C ,顶点为B . (1)求抛物线的对称轴;(2)如果该抛物线与x 轴负半轴的交点为D ,且∠ADC 的正切值为2,求a 的值; (3)将这条抛物线平移,平移后,原抛物线上的点A 、B 分别对应新抛物线上的点E 、P .联结P A ,如果点P 在y 轴上,P A ∥x 轴,且∠EP A =∠CBO ,求新抛物线的表达式.25.(本题满分14分,其中第(1)小题4分,第(2)小题第5分、第(3)题5分)在△ABC 中,AC =BC .点D 是射线AC 上一点(不与A 、C 重合),点F 在线段BC 上,直线DF 交直线AB 于点E ,2CD CF CB =⋅. (1)如图,如果点D 在AC 的延长线上. ①求证:DE BD =;②联结CE ,如果CE ∥BD ,CE =2,求EF 的长. (2)如果DF :DE =1:2,求:AE :EB 的值.(第23题图)AD BCE (第24题图)yxO DAB C EF(第25题图)(第25题备用图)BCA参考答案一、选择题(本大题共 6 题,每题4 分,满分24 分) 1.B 2. A 3. C 4. D 5. B 6. D二、填空题(本大题共 12 题,每题4 分,满分48 分)7.13; 8.1:5000; 9. 250(1)y x =+; 10.5552−; 11. 2(2)y x =−+; 12. 2=y x (答案不唯一); 13. 2501314. 34+m n ; 15. 2; 16. 12;17.33 ; 18.125.三、解答题(本大题共7题,满分78分)19.解:(1)∵图像过(0,3)、(4,3)∴该二次函数图像的对称轴为直线x =2, ∴顶点坐标为D (2,-1),设该二次函数的解析式为2(2)1y a x =−−, ∵当x =1时,y =0,∴0=a -1,得a =1.∴二次函数的解析式为2(2)1y x =−−,顶点D 的坐标为(2,-1). (2)当x =5时,y =8, ∴点P (5,8), 当当x =0时,y =3,∴A (0,3)分别过点P ,D 作y 轴的垂线,垂足分别为点B 、点C ,则16325922PBCD S =+⨯=梯形()12442ACD S =⨯⨯=△;1255522ABP S =⨯⨯=△∴6325415.22APD S =−−=△ 20.解:(1)∵DE ∥BC ,∴=AD AEBD EC∵AD =3,BD =9,∴31.93==AE EC ∵EF ∥AB , ∴1.3AE BF EC FC ==(2)∵DE ∥BC ,∴ADE ABC△∽△∴2()ADE ABC S AD S AB=△△, ∵△ABC S =16,∴21().164ADE S =△ 1.ADE S =△ (第19题图)yxO DPAB C(第20题图)同理可得23().164EFC S =△∴9.EFC S =△∴1619 6.BFED S =−−=21.解:(1)∵AD ⊥BC, AB =15,4sin 5B =,∴AD =15sin B=12. ∴BD =9, ∵BC =14,∴CD =5 ∴AC =13(2)联结BE ,过点E 作EH ⊥BC ,垂足为H ∵ E 为AC 的中点 EH ∥AD ,∴.EH EC CH ADACCD==∴ EH =6, CH =DH =2.5,∴BH =11.5∴ cot ∠EBC =11.523.612==BH EH 22(本题满分10分)解:过点A 作AH ⊥BC ,垂足为H .∵ ∠C =30°,AC =200,∴ AH =12AC =100∵AM ⊥AC ,∠BAM =15°∴ ∠BAC =105°, ∠ABC =45° ∴AB =°1002141sin 45AH =≈米答:A 、B 之间的距离约为141米.23.证明:(1)∵∠BDC =∠DEC ∴∠ADC =∠AED ∵∠A =∠A ∴△ADE ∽△ACD (2)∵DE ∥BC ∴∠EDC =∠DCB ∵∠BDC =∠DEC ∴△BDC ∽△CED∴22=△△CDE BDC S CD S BC ∵DE ∥BC ∴=△△CDE BDC S DE S BC , =DE AE BC AC ∴ 22=CD AEBC AC24.解(1)∵抛物线2(0)y ax bx+c a =+>的图像经过原点O (0, 0)、点A (1,3a ),CB AD EH ACB15° (第22题图)30°MH(第23题图)AD BCE∴3⎧⎨++=⎩c =0a b c a∴2=⎧⎨⎩b a c =0∴抛物线的表达式22=+y ax ax ∵2122−=−=−b a a a∴抛物线的对称轴是:直线x =-1 (2)∵O (0, 0)对称轴是直线x =-1 ∴D (-2,0)过点A 作AH ⊥x 轴,垂足为H ,则AH =3a ,DH =3∴t a n ∠ADC =323==AH a DH∴ a =2(3)过点E 作EF ⊥P A ,垂足为F 当x =-1时,y =-a ,∴B (-1,-a ) ∵P A ∥x 轴 ∴P (0,3a )点B 到P 向右平移1个单位向上平移4a 个单位, ∴ PF =2,EF =4a ∵tan ∠CBO =1=OC BC a tan ∠EP A =422==EF aaPF ∵∠EPA =∠CBO ∴12,=a a2=a∴新抛物线的表达式是222=+y x 25.(1)①∵2CD CF CB =⋅ ∴=CF CDCD CB又∵∠DCB =∠FCD ∴△DCB ∽△FCD题图))DABCEF(第25题图)∴∠DBC =∠FDC ∵AC =BC ,∴∠A =∠CBA∠DEB =∠A +∠EDA ∠DBA =∠CBA +∠DBC ∴∠DEB = ∠DBA ∴DE =BD(1)②∵CE ∥DB ∴∠BDF =∠DEC 又∵DB =DE ,∠DBF =∠EDC ∴△DBF ≌△EDC∴CE =DF =2 DE =DB =2+EF∵=CE EF BD DF ∴222=+EFEF EF1 (EF=1舍去) (2)1º当点D 在AC 延长线上时过点D 作DH ∥AB 交BC 的延长线于点H∵DH ∥AB DF :DE =1:2 ∴DH =EB ∠H =∠HBA =∠A 又∵∠DBH =∠EDA BD =DE ∴△BHD ≌△DAE ∴DH =AE =EB AE :EB =1 2º当点D 在边AC 上时过点D 作DG ∥AB 交BC 于点G同理△DCB ∽△FCD ∴∠DBC =∠FDC =∠EDA ∵∠CBA =∠CAB =∠E +∠EDA ∴∠E =∠DBA =∠GDB ∴DE =DB △BGD ≌△DAE ∴DG =AE又∵DF :DE =1:2,13==DG DF BE EF ∴AE :EB=13DABCE F(第25(2)题图)H(第25题备用图)BCADFEG。

初三数学一模带答案试卷

初三数学一模带答案试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 0.1010010001……2. 如果 |x| = 5,那么 x 的值为()A. 5B. -5C. ±5D. 03. 在直角坐标系中,点 P(-3, 4) 关于 x 轴的对称点坐标为()A. (-3, -4)B. (3, -4)C. (-3, 4)D. (3, 4)4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 45. 若 a > b,且 c > d,那么下列不等式中正确的是()A. a + c > b + dB. a - c > b - dC. ac > bdD. a/c > b/d6. 下列图形中,是轴对称图形的是()A. 等边三角形B. 长方形C. 平行四边形D. 梯形7. 已知 a、b、c、d 是正数,且 a + b = c + d,那么下列结论正确的是()A. a > cB. b > dC. ac > bdD. a^2 + b^2 > c^2 + d^28. 若 a、b、c、d 是等差数列的前四项,且 a + c = 10,那么 b + d 的值为()A. 10B. 8C. 6D. 49. 下列方程中,有唯一解的是()A. x^2 - 2x - 3 = 0B. x^2 + 2x - 3 = 0C. x^2 - 4x + 4 = 0D. x^2 + 4x + 4 = 010. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=6,b=8,c=10,则角B 的度数为()A. 30°B. 45°C. 60°D. 90°二、填空题(每题5分,共25分)11. 若 |x| = 3,那么 x 的值可以是 _______ 或 _______。

初三数学一模试题及答案

初三数学一模试题及答案

初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 0.33333...答案:B2. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A3. 以下哪个选项是等腰三角形?A. 两边长度为3和5的三角形B. 两边长度为4和4的三角形C. 三边长度都为3的三角形D. 两边长度为2和3的三角形答案:B4. 计算 (2x+3)(2x-3) 的结果为:A. 4x^2 - 9B. 4x^2 + 9C. 9 - 4x^2D. -4x^2 + 9答案:A5. 下列哪个是二次函数?A. y = 3x + 2B. y = x^2 + 3x + 2C. y = 2x^3 - 5xD. y = 4/x答案:B6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:C7. 一个角的补角是120°,那么这个角的度数是:A. 60°B. 30°C. 45°D. 90°答案:B8. 以下哪个是正比例函数?A. y = 2x + 3B. y = 5xC. y = x^2D. y = 1/x答案:B9. 一个长方体的长、宽、高分别是4、3、2,那么它的体积是:A. 24B. 36C. 48D. 5210. 计算√(9 - 4√5) 的结果为:A. √5 - 2B. 2 - √5C. 2 + √5D. √5 + 2答案:A二、填空题(每题4分,共20分)11. 一个数的绝对值是5,这个数可以是 ________ 或 ________。

答案:5 或 -512. 如果一个角是另一个角的两倍,且这两个角的和是180°,那么较小的角是 ________。

13. 计算 (x+2)(x-2) 的结果为 ________。

答案:x^2 - 414. 一个等差数列的首项是2,公差是3,那么它的第五项是________。

2024届上海市虹口区初三一模数学试题及答案

2024届上海市虹口区初三一模数学试题及答案

图2上海市虹口区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列函数中,y 是关于x 的二次函数的是().A 21y x ;.B 21y x;.C 221y x ;.D 321y x .2.将抛物线23y x 向左平移4个单位长度,所得到抛物线的表达式是().A 2y 22.D 234y x .3.如图1).A 4.如图250厘米,小球在为(.A 50.C 505.如图3//GE AC 交BC 于点E .如果).A 3;.B 4;.C 6;.D 8.6.如图4,四边形的顶点在方格纸的格点上,下列方格纸中的四边形与已知四边形相似的是().A .B .C .D 二、填空题(本大题共12题,每题4分,满分48分)7.已知:3:2x y ,那么 :x y x.图4图68.如果向量a、b 和x 满足2a x a b ,那么x.9.已知抛物线 213y a x 开口向下,那么a 的取值范围是.10.如果点 2,1A 在抛物线 21y x m 上,那么m 的值是.11.如果将抛物线22y x 平移,使顶点移到点 3,1P 的位置,那么所得抛物线的表达式是.12.已知点 13,A y 和 21,B y 都在抛物线 2212y x 上,那么1y 和2y 的大小关系为1y 2y .(填“ ”或“ ”或“ ”)13.2在第象限.14.15.2AD ,2BE AE ,AD a 16.在边AD 上,2AF FD ,直线BF 的17.83 ,BC 的18.如图9,在ABC 中,5AB AC ,3tan 4B.点M 在边BC 上,3BM ,点N 是射线BA 上一动点,联结MN ,将BMN 沿直线MN 翻折,点B 落在点'B 处,联结'B C ,如果'//B C AB ,那么BN的长是.图8①图8②图9三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:2tan 454sin 30cos30cos 60.20.(本题满分10分)画二次函数2y ax bx 的图像时,在“列表”的步骤中,小明列出如下表格(不完整).请补全表格,21.10②的示意图.DE 的长.图10①图10②图10③图1222.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图11①,已知线段a 、b 和MON .如图11②,小明在射线OM 上顺次截取2OA a ,3AB a ,在射线ON 上顺次截取2OC b ,3CD b .联结AC 、BC 和BD ,4AC ,6BC .(1)求BD 的长;(2)小明继续作图,如图11③,分别以点B 、D 为圆心,以大于12BD 的长为半径作弧,两弧分别相交于点P 、Q ,联结PQ ,分别交BD 、OD 于点E 、F .如果BC OD ,求EF 的长.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图12,在ABC 中,已知点D 、E 分别在边BC 、AB 上,EC 和AD 相交于点F ,EDB ADC ,2DE DF DA .(1)求证:ABD ECD ∽;(2)如果90ACB ,求证:12FC EC.图11①图11②图11③图1324.(本题满分12分,第(1)小题满分4分,第(2)①题满分4分,第(2)②题满分4分)如图13,在平面直角坐标系xOy 中,已知抛物线22y x x m 经过点 3,0A ,与y 轴交于点C ,联结AC 交该抛物线的对称轴于点E .(1)求m 的值和点E 的坐标;(2)点M 是抛物线的对称轴上一点且在直线AC 的上方.①联结AM 、CM ,如果AME MCA ,求点M 的坐标;②点N 是抛物线上一点,联结MN ,当直线AC 垂直平分MN 时,求点N 的坐标.图14①图14②备用图25.(本题满分14分,第(1)小题满分4分,第(2)①小题满分5分,第(2)②小题满分5分)如图14①,在Rt ABC 中,90ACB ,4tan 3ABC,点D 在边BC 的延长线上,联结AD ,点E 在线段AD 上,EBD DAC .(1)求证:DBA DEC ∽;(2)点F 在边CA 的延长线上,DF 与BE 的延长线交于点M (如图14②).①如果2AC AF ,且DEC 是以DC 为腰的等腰三角形,求tan FDC的值;②如果2DE CD,3EM ,:5:3FM DM ,求AF 的长.2023学年度学生学习能力诊断练习初三数学评分参考建议2024.1说明:1.解答只列出试题的一种或几种解法.如果解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因解答中出现错误而中断对本题的评阅.如果解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.C 2.A 3.A 4.D 5.B 6.D二、填空题(本大题共12题,每题4分,满分48分)7.138.+2a b9.a >110.011.22(3)1y x 12.>13.二14.2415.43a16.317.15718.6三、解答题(本大题共7题,满分78分)19.解:原式=214(2211) 20.解:把A (-1,-5)和B (2,4)代入2y ax bx5;442.a b a b 解得1;4.a b∴抛物线的表达式为24y x x21.解:过点B 作BG ⊥CD 于点G ,根据题意,可得∠BEC=∠ABC-∠BCD=53°在Rt △BCG 中,CG =BC cos ∠BCD =8×cos63°=3.6cmBG =BC sin ∠BCD =8×sin63°=7.2cm在Rt △BEG 中,GE =BG cot ∠BEC =7.2×cot53°=5.4cm ∴DE =CD -CG -GE =20-3.6-5.4=11cm 答:DE 的长为11厘米.x…-10245…y…-54-5…22.解:(1)∵OA =2a ,AB =3a ,OC =2b ,CD =3b∴OA OC AB CD ∴AC //BD ∴25OA AC OB BD ∵AC =4∴BD =10(2)根据题意,PQ 垂直平分BD∴152BE DE BD ∵BC =6∴在Rt △BDC 中,3sin 5BC BDC BD ∴3tan 4BDC 在Rt △DEF 中,5315tan 244EF DE BDC23.证明:(1)∵2DE DF DA∴DF DE DE DA∵∠ADE =∠EDF∴△EDF ∽△ADE∴∠FED=∠DEA ∵∠EDB =∠ADC ∴∠ADB =∠EDC ∴△ABD ∽△ECD(2)∵△ABD ∽△ECD ∴∠B =∠ECB ∴BE =CE∵∠ACB =90°∴∠ACE +∠ECB =90°在Rt △ABC 中,∠B +∠BAC =90°∴∠ACE =∠BAC ∴EC =EA ∴12EC BE AB∵△ABD ∽△ECD∴AB BD EC CD∵∠B =∠ECB ,∠EDB =∠FDC∴△EDB ∽△FDC ∴BE BDFC CD又∵EC BE ∴12FC EC24.解:(1)把A (-3,0)代入22y x x m ∴096m 解得m =-3可得对称轴为直线x=-1可求l AC :y=-x -3∴E (-1,-2)(2)∵∠AME =∠MCA ,又∵∠MAC =∠EAM∴△MAC ∽△EAM∴AM ACAE可求AE =,AC =∴AM 设点M 坐标(-1,m )可得222+12m 解得m∴点M 坐标(-1,(3)可得点A (-3,0),点C (0,-3)∴AO=OC∵∠AOC =90°∴∠OAC =45°∵AC 垂直平分MN ∴EM=EN 可得∠EMN =∠MNE =45°∴NE ⊥ME 即N 的纵坐标为-2把y =-2代入223y x x ,得2223x x解得1x∵点M 在直线AC 上方,∴点N (12) .25.解:(1)∵∠DAC=∠EBD∠ADC=∠BDE∴△DAC ∽△DBE∴DC DA DE DB∴DB DA DE DC∵∠ADB=∠CDE ∴△DBA ∽△DEC (2)∵△DBA ∽△DEC ,△DEC 是以DC 为腰的等腰三角形∴△DBA 是以AD 为腰的等腰三角形①AD=AB∵∠ACB=90°∴DC=BC根据题意,设DC=BC=3k ,AC=4k∵AC=2AF ∴AF =2kCF =6k ∴在Rt △DCF 中,tan 2FCFDC DC②AD=BD根据题意,设BC=3k ,AC=4k ,则AB =5k过点D 作DH ⊥AB ,垂足为点H ∴BH 15=22AB k在Rt △BDH 中,BD =25cos 6BH k ABC ∴DC =257366k k k∵AC=2AF ∴AF =2k CF =6k∴在Rt △DCF 中,36tan 7FC FDC DC综上所述,tan ∠FDC =2或36(3)∵△DAC ∽△DBE ,2DE ∴2DE DB DC过点D 作DH ⊥AB ,垂足为点H 设BD ,2AD m在Rt △BDH 中,cos BH BD ABC ,sin DH BD ABC在Rt △ADH 中,AH∴AB AH BH在Rt △ABC 中,cos BC AB ABC∴DC ∴sin ∠过点F 作FG//ME 交DA 的延长线于点G ∴38ME DM FG DF ∵ME=3∴FG =8∵∠FAG=∠DAC ∴sin ∠FAG =sin ∠DAC在Rt △AFG 中,sin FG AF DAC。

2024届上海市宝山区初三一模数学试题及答案

2024届上海市宝山区初三一模数学试题及答案

图3上海市宝山区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列各组中的四条线段成比例的是().A 2cm ,3cm ,4cm ,5cm ;.B 2cm ,3cm ,4cm ,6cm ;.C 1cm ,2cm ,3cm ,2cm ;.D 3cm ,2cm ,6cm ,3cm .2.已知线段2AB ,点P 是线段AB 的黄金分割点,且AP BP ,则AP 的长是().A 3.50米,AB 与AC .A .50cos 24米.4.是().A 5.).A .D 第四象限.6.如图,在正方形网格中,、、、、M 、N 都是格点,从A 、B 、、四个格点中选取三个构成一个与AMN 相似的三角形,某同学得到两个三角形:①ABC ;②ABD .关于这两个三角形,下列判断正确..的是().A 只有①是;.B 只有②是;.C ①和②都是;.D ①和②都不是.二、填空题(本大题共12题,每题4分,满分48分)7.已知线段2a ,4b ,如果线段c 是a 和b 的比例中项,那么c =.8.比例尺为1:100000的地图上,A 、B 两地的距离为2cm ,那么A 、B 两地的实际距离为km .9.计算:sin 30sin 45cos 45.图22b x a10.二次函数2y ax bx c (0a )图像上部分点的坐标 ,x y 对应值如表1所示,那么该函数图像的对称轴是直线.表111.直径是2的圆,当半径增加x 时,面积的增加值s 与x 之间的函数关系式是.12.在ABC 中,90BAC ,点G 为重心,联结AG 并延长,交BC 于点F ,如果6BC ,那么GF 的长是.13.如图4,已知斜坡AB 的坡顶B 离地面的高度BC 为30m ,如果坡比1:3i ,那么这个斜坡的长度AB14.ABC 中,如果2BC,7AB ,AC 15.2y .16.6BC ,17.轴的“亲密点”的坐标是.18.AEC 与矩形的重叠部分是三角形ACF ,联结DE .如果6AB ,2BF ,那么BDE 的正切值是.x01234 y313图4三、解答题:(本大题共7题,满分78分)19.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图6,在ABC 中,90C ,4sin 5B ,10AB ,点D 是AB 边上一点,且BC BD .(1)求BD 的长;(2)求ACD 的余切值.20.如图7E .(1)(2)21.(1)求该二次函数的表达式;(2)如果点 4,E m 在该函数图像上,求ABE 的面积.图922.(本题满分10分)综合实践活动中,某小组利用木板和铅锤自制了一个简易测高仪测量塔高.测高仪ABCD 为矩形,CD30cm ,顶点D 处挂了一个铅锤H .图8是测量塔高的示意图,测高仪上的点C 、D 与塔顶G 在一条直线上,铅垂线DH 交BC 于点M .经测量,点D 距地面1.9m ,到塔EG 的距离13DF m ,20CM cm .求塔EG 的高度.(结果精确到1m )23.如图9AC 于点P 、Q .(1)(2)图1024.(本题满分12分,第(1)小题满分4分,第(2)题满分4分,第(3)题满分4分)如图10,在平面直角坐标系xOy 中,将抛物线212y x 平移,使平移后的抛物线仍经过原点O ,新抛物线的顶点为M (点M 在第四象限),对称轴与抛物线212y x 交于点N ,且4MN .(1)求平移后抛物线的表达式;(2)如果点N 平移后的对应点是点P ,判断以点O 、M 、N 、P 为顶点的四边形的形状,并说明理由;(3)抛物线212y x上的点A 平移后的对应点是点B ,BC MN ,垂足为点C ,如果ABC 是等腰三角形,求点A 的坐标.图1125.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知ABC 中,1AB AC ,D 是边AC 上一点,且BD AD ,过点C 作//CE AB ,并截取CE AD ,射线AE 与BD 的延长线交于点F .(1)求证:2AF DF BF ;(2)设AD x ,DF y ,求y 与x 的函数关系式;(3)如果ADF 是直角三角形,求DF 的长.2023学年第一学期期末考试九年级数学试卷评分参考一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.D ;3.A ;4.D ;5.C ;6.B .二、填空题:(本大题共12题,每题4分,满分48分)7.22;8.2;9.0;10.x =2;11.S =πx 2+2πx ;12.1;13.1030;14.37;15. ;16.2.417.),085( ;18.31或33.三、解答题:(本大题共7题,满分78分)19.解:(1)∵在Rt △ABC 中,sinB =ABAC ,又∵sinB =54,AB =10,∴AC =8,…………………………………………………………………………2分∵ C =90 ,∴,222AB BC AC ∴BC =6,…………………………………………………………………………2分∵BC =BD ,∴BD =6.…………………………………………………………………………1分(2)过点D 作DE ⊥AC ,垂足为点E .………………………………………………………1分又由 C =90 ,可得DE ∥BC ,∴,ABAD BC DE ∵BC =6,AD =4,AB =10,∴DE =2.4,………………………………………………………………………1分同理可得EC =4.8,………………………………………………………………1分∵在Rt △DEC 中,cot ACD =DE EC ,…………………………………………1分∴cot ACD = …………………………………………………………………1分20.解:(1)∵BD 平分∠ABC ,∴ 1= 2,∵DE ∥BC ,∴ 2= 3,∴ 1= 3,………………………………………………………………………1分∴DE =BE ,………………………………………………………………………1分设DE =BE =x ,则AE =5-x ,……………………………………………………1分∵DE ∥BC ,∴AB AE BC DE ,……………………………………………………1分∴554x x ………………………………………………………………………1分解得920 x ,所以,.920 DE …………………………………………………1分(2)BD =a b ,……………………………………………………………………2分BF =.149149a b …………………………………………………………………2分21.解:(1)由图像经过点B (0,3),可知c =3,………………………………………2分再由图像经过点A (1,0),可得0312b ,解得b =-4,……………………2分所以,该二次函数的表达式为.342x x y …………………………………1分(2)把x =4代入342x x y ,得y =3,……………………………………1分由B (0,3)、E (4,3)可知BE ∥x 轴,……………………………………………1分于是BE =4,BE 边上的高为3,…………………………………………………2分∴.63)04(21ABE S …………………………………………………1分22.解:在Rt △CDM 中,cot ∠CDM =CMCD ,……………………………………………1分又∵CD =30cm ,CM =20cm ,………………………………………………………1分∴cot ∠CDM =23,……………………………………………………………………1分∵DF ⊥EG ,∴∠DGF+∠GDF =90°,……………………………………………………………1分又由题意可得∠CDM+∠GDF =90°,∴∠CDM =∠DGF ,…………………………………………………………………1分在Rt △DGF 中,cot ∠DGF =DF GF ,…………………………………………………1分又∵DF =13m ,∴GF =m 239,………………………………………………………………………1分∴EG =GF+EF =m 219.1239 ,……………………………………………………2分答:塔EG 的高度约为21m .…………………………………………………………1分23.证明:(1)∵在正方形ABCD 中,∴CD =BC ,AD =CD ,∠ADE =∠DCF =90°,…………………………………1分又∵CE =BF ,∴CD -CE =BC -BF ,即DE =CF ,…………………………………………………………………………1分∴△ADE ≌△CDF ,∴∠1=∠2,…………………………………………………………………………1分∵∠ADE =90°∴∠1+∠3=90°,∴∠2+∠3=90°,……………………………………………………………………1分∵∠APQ =∠2+∠3,∴∠APQ =90°,………………………………………………………………………1分∴AE ⊥DF.(2)过点E 作EG ⊥AC ,垂足为点G .………………………………………………1分∵∠APQ =90°,∴∠APQ =∠AGE ,又∵∠PAQ =∠EAG ,∴△APQ ∽△AEG ,……………………………………………………………………1分∴EGAEPQ AQ,…………………………………………………………………………1分∵在正方形ABCD 中,∴ 45214 DCF ,在Rt △CDM 中,cot ∠4=22 CE EG ,∴CE EG 22 ,………………………………………………………………………1分∵CE =BF ,∴BF EG 22 ,………………………………………………………………………1分∵△ADE ≌△CDF ,∴AE =DF ,…………………………………………………………………………1分∴BF DF PQAQ 22,∴DF PQ BF AQ2.……………………………………………………………1分24.解:(1),,设)0)(21(2 t t t N )421(2t t M ,则,……………………………………………………1分于是平移后抛物线的表达式是421)(2122t t x y ,………………………………1分由平移后抛物线经过原点O (0,0),可得t =2(负值不合题意舍去),………………1分所以,平移后抛物线的表达式是2)2(212 x y .……………………………………1分(2)四边形OMPN 是正方形.根据题意可得O (0,0),M (2,-2),N (2,2),P (4,0),…………………………1分记MN 与OP 交于点G ,则G (2,0),∴OG =GP =2,MG =NP =2,MN =OP =4,22 NP NO ,∴四边形OMPN 是平行四边形,……………………………………………………1分∵MN =OP =4,∴四边形OMPN 是矩形,……………………………………………………………1分∵22 NP NO ,∴四边形OMPN 是正方形.……………………………………………………………1分(3),,设)21(2a a A ,,则)2212(2 a a B )2212(2a C ,,222,2)2(22a BC a AC AB ,可得,……………………………………1分;,(舍去①)84(),0,4,04,2)2(22,11222A a a a a a AC AB …………1分;,或,②)422()422(,22,22,22,112 A A a a a BC AB ………………1分;,,,③)22(2,2)2(222A a a a BC AC ……………………………………1分所以,点A 的坐标是)2,2()422()422()8,4(、,、,、 .25.(1)证明:∵CE ∥AB ,∴∠1=∠2,………………………………………………………………………………1分又∵AB =AC ,CE =AD ,∴△ABD ≌△AEC ,………………………………………………………………………1分∴∠3=∠4,又∵∠AFB =∠AFD ,∴△ABF ∽△ADF ,………………………………………………………………………1分∴AFBF DF AF ,∴BF DF AF 2.…………………………………………………………………………1分解:(2)过点D 作DG ∥AB ,交AE 于点G.………………………………………………1分又∵CE ∥AB ,∴DG ∥CE ,∴AC AD CE DG ,……………………………………………………………………………1分由AD =x ,则CE =x ,CD =1-x ,∴2x DG ,………………………………………………………………………………1分∵DG ∥AB ,∴BF DF AB DG ,……………………………………………………………………………1分∴y x y x 12,∴231x x y .……………………………………………………………………………1分(3)①∠DAF =ABD ≠90°,………………………………………………………………1分②如果∠AFD =90°,由∠1=∠3=∠4,∠1+∠3+∠4=90°,可得∠3=∠4=30°,……………………1分设DF =m ,则AD =BD =2m ,在Rt △ABF 中,cos ∠3=ABBF ,∴2312 m m ,63 m .………………………………………………………………1分③如果∠ADF =90°,由∠1=∠3=∠4,∠1+∠3=90°,可得∠3=∠4=45°,……………………………1分设DF =m ,AD =BD =m ,在Rt △ABF 中,cos ∠3=BFAB ,∴221 m m ,22 m .………………………………………………………………1分所以,当△ADF 是直角三角形时,DF 的长为63或22.。

2024北京市延庆区初三一模数学试卷答案

2024北京市延庆区初三一模数学试卷答案

延庆区2024年初三统一练习 数学试卷答案 2024.04第一部分 选择题一、选择题(共16分,每小题2分)第二部分 非选择题二、填空题:(共16分,每小题2分)9.4≠x 10.()()x x y x y +- 11.1=x 12.> 13.4 14.=,< 15.132 16.①,6 三、解答题(共68分)17.解:2)31(845sin 41-++-︒-2322224++-⨯= 5=.18.解:⎪⎩⎪⎨⎧>+≥+②①.223,12x x x x由①得,1-≥x ; 由②得,1<x ;∴原不等式组的解集为:11<≤-x .19.解:2)1()4(++-x x x 12422+++-=x x x x1222+-=x x 1)(22+-=x x .∵032=--x x , ∴32=-x x . ∴原式=7.……………………………4分 ……………………………5分……………………………5分……………………………4分 ……………………………2分 ……………………………5分……………………………4分 ……………………………3分OBECDF A 20.解:∵ 关于x 的方程01342=++-m x x 有实数根,∴△≥0.∵ a =1,b =-4,c =3m +1,∴01212)13(41642≥-=+-=-=∆m m ac b . ∴1≤m . ∵ m 为正整数, ∴1=m .∴此时的方程为:0442=+-x x . ∴方程的解为:221==x x .21.(1)证明:∵矩形ABCD ,∴AF ∥EC,. ∴∠F AC=∠ACE . ∵EF 的垂直平分AC ,∴AO =CO ,∠AOF=∠EOC=90°. ∴△AOF ≌△EOC . ∴AF =EC .∴四边形AECF 为平行四边形. ∵∠AOF=90°,∴平行四边形AECF 为菱形. (2)解:∵ 菱形AECF ,∴ AF =AE=EC=4. ∵ 矩形ABCD , ∴∠ABC=90°. ∵ 15tan =∠AEB ,∴ABEB= 设BE=x ,则x 15,在Rt △ABC 中,由勾股定理得222AE BE AB =+, ∴ x=1.∴ BE=1,BC =5.在Rt △ABC 中,由勾股定理得222AC BC AB =+, ∴102=AC . ∴1021==AC OB . ……………………………5分……………………………4分 ……………………………3分 ……………………………2分……………………………3分……………………………6分22.解:(1)∵一次函数)0(≠+=k b kx y 的图象经过点A (0,1)和点B (3,2),∴⎩⎨⎧+==.32,1b k b∴⎪⎩⎪⎨⎧==.31,1k b∴一次函数表达式为131+=x y .(2)m 的取值范围是131≤≤x .23.(1)证明:∵点D 为BC ︵的中点,∴弧CD =弧BD . ∴∠BDA =∠CDA . (2)∵cos DBC ∠, ∴∠DBC =30°.∵AD 是⊙O 的直径,AD ⊥BC , ∴∠ABD =90°. ∴∠ABC =60°. ∵弧AB =弧AC , ∴AB =AC .∴△ABC 是等边三角形. ∴AC =BC .∵∠DBC =∠DAC =30°, ∴∠BAD =30°. ∴∠BDA =∠ADC =60°. ∴∠CDF =60°. ∵CF ⊥BD , ∴∠DCF =30°. ∵DF =3, ∴DC =6. ∴AD =12.∴AC =BC= ∴AC 的长是36.……………………………3分……………………………5分FA……………………………6分……………………………2分24.解:(1)图略;(2)七年级20八年级20(3)估计这两个年级共有500名同学受表彰. 25.解:(1)表中的m 的值为 6.0 ; (2)x 的取值范围是60≤≤x ; (3)(3)DE 的长约为 2.4 cm .26.(1)解:∵点A (3,m),点B (5,n )在抛物线2(0)y ax bx c a =++>上,且m =n ,抛物线的对称轴为x=t , ∴5-t =t -3. ∴t =4.(2)∵点A (3,m ),点B (5,n ),点)(0p x C ,在抛物线2(0)y ax bx c a =++>上,∴c b a m ++=39, c b a n ++=525, c bx ax p ++=020.∵ p n m <<, ∴n m <且p n <.①当n m <时,有c b a c b a ++<++52539, ∴b a b a 52539+<+. ∴08>+b a . ∴a b 8->.……………………………1分……………………1分 ……………………5分 ……………………6分……………………2分……………………3分……………………3分……………………4分 ∵0>a .∴0<-a . ∴42<-ab. ∵t ab=-2, ∴4<t .②当p n <时,有c bx ax c b a ++<++020525, ∴a ax bx b 255200-<-. ∴)5)(5()5(000-+<-x x a x b . ∵100<<x , ∴)5(0+<x a b . ∴2520+>-x a b. ∴3≥t . 综上:43<≤t .27.(1)①证明:∵DB ⊥DE ,AF ⊥AB ,∴∠BDE =∠EAF=90°.∴∠DBE+∠DEB =∠AFE+∠AEF . ∵∠DEB =∠AEF , ∴∠DBE =∠AFE .②过点D 作DG ⊥AC ,交AB 于G , ∵AC = BC ,∠ACB =90°, ∴∠DAG =∠DGA =45°.∴AD =DG ,∠DGB =∠DAF=135°. ∵∠ADG =∠BDF =90°, ∴∠DAF =∠BDG . ∴△DAF ≌△BDG . ∴AF =BG .在Rt △ADG 中,由勾股定理得,AD AG 2=. ∵AB=AG+BG , ∴AF AD AB +=2.……………………2分……………………5分 ……………………4分……………………6分……………………5分EFA BCD(2)AF AD AB -=2.28.解:(1)点B '的坐标是(4,2);点B ''的坐标是 (-2,2) ; (2)∵ 点C (0,3),它的平对图形C ''(4,3),∴设C (0,3)向右平移a 个单位长度,得到)3,(a C ',C '关于直线x =b 的对称图形C '',∴4-b =b -a . ∴2b -a=4. (3)b 的最小值为321-,相应的a 的值为1. ……………6分…………2分 ……………………7分……………………4分 ……………7分。

初三数学一模试题及答案

初三数学一模试题及答案

初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是无理数的是()。

A. 0.1010010001…(每两个1之间依次多一个0)B. 0.1010010001…(每两个1之间依次多一个1)C. πD. 0.33333(3无限循环)2. 已知一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是()。

A. 7B. 10C. 11D. 143. 如果一个数的平方根是它本身,那么这个数是()。

A. 0B. 1C. -1D. 0或14. 函数y=2x+1的图象不经过第几象限()。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限A. 0B. 1C. -1D. 任意数6. 已知一个角的余角是30°,那么这个角的补角是()。

A. 60°B. 90°C. 120°D. 150°7. 一个数的绝对值是它本身,这个数是()。

A. 正数B. 负数C. 非负数D. 非正数8. 一个二次函数的顶点坐标是(2,3),那么这个函数的解析式可以是()。

A. y=(x-2)^2+3B. y=-(x-2)^2+3C. y=(x+2)^2-3D. y=-(x+2)^2-39. 一个数的立方根是它本身,这个数是()。

A. 0B. 1C. -1D. 0或1或-1A. 0B. 1C. -1D. 1或-1二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数可以是______。

2. 一个数的相反数是-2,这个数是______。

3. 一个数的平方是25,这个数可以是______。

4. 一个数的立方是-8,这个数是______。

5. 一个角的补角是120°,这个角的度数是______。

6. 一个角的余角是60°,这个角的度数是______。

7. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是______。

8. 函数y=3x-2与x轴的交点坐标是______。

2024北京通州区初三一模数学试卷和答案

2024北京通州区初三一模数学试卷和答案

2024北京通州初三一模数 学考生须知1.本试卷共8页,共三道大题,28个小题,满分为100分,考试时间为120分钟.2.请在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,请将答题卡交回.一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 长方体D. 圆柱2. 2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为( )A. 110.22310⨯ B. 102.2310⨯ C. 922.310⨯ D. 822310⨯3. 如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =( )A. 10°B. 20°C. 30°D. 40°4. 已知关于x 的方程240x x n -+=有两个不相等的实数根,则n 的取值范围是( )A. 4n < B. 4n ≤ C. 4n > D. 4n =5. 如图,由5个“○”和3个“□”组成的图形关于某条直线对称,该直线是( )A. 1lB. 2lC. 3lD. 4l 6. 一个不透明的口袋中有2个红球和1个白球,这三个球除颜色外完全相同.摇匀后,随机从中摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的颜色相同的概率是( )A.34B.13C.14D. 127. 已知数轴上有A 、B 两点,点B 在点A 的右侧,若点A 、B 分别表示数a 、b ,且满足2a b +=,则下列各式的值一定为负数的是( )A. aB. a- C. 1a - D. 1b -8. 如图,在菱形ABCD 中,60ABC ∠=︒,点P 和点Q 分别在边CD 和AD 上运动(不与A 、C 、D 重合),满足DP AQ =,连接AP 、CQ 交于点E ,在运动过程中,则下列四个结论正确的是( )①AP CQ =;②AEC ∠的度数不变;③180APD CQD ∠+∠=︒;④2=⋅CP AP EP .A. ①②B. ③④C. ①②④D. ①②③④二、填空题(本题共8个小题,每小题2分,共16分)9. 在实数范围内有意义,则实数x 的取值范围是______.10. 分解因式:x 2y -4y =____.11. 分式方程2132x x=+的解是x =______.12. 在平面直角坐标系xOy 中,直线y x =与双曲线ky x=交于点(,3)P m ,则k 的值是________.13. 如图,点E 是ABCD Y 的边AD 上一点,且:1:2AE DE =,连接CE 并延长,交BA 的延长线于点F .若6AF =,则CD 的长为________.14. 为合理安排进、离校时间,学校调查小组对某一天九年级学生上学、放学途中的用时情况进行了调查.本次调查在九年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:已知该校九年级共有400名学生,请估计九年级学生上学途中用时不超过15min 的有________人.15. 我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”.所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积,并以此求取圆周率π的方法,刘徽指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.例如,O 的半径为1,运用“割圆术”,以圆内接正六边形面积估计O 的面积,1612S =⨯⨯=正六边形,所以O得π,若用圆内接正十二边形估计O 的面积,可得π的估计值为________.16. 某公司筹备一场展览会,现列出筹备展览会的各项工作.具体筹备工作包含以下内容(见下表).其中,“前期工作”是指相对于某项工作,排在该工作之前需完成的工作称为该工作的前期工作.工作代码工作名称持续时间(天)前期工作A 张贴海报、收集作品7无B 购买展览用品3无C 打扫展厅1无D 展厅装饰3CE 展位设计与布置3ABDF 展品布置2EG 宣传语与环境布置2ABD H展前检查1FG(1)在前期工作结束后,完成“展厅装饰 ”最短需要________天;(2)完成本次展览会所有筹备工作的最短总工期需要________天.三、解答题(本题共68分,第17-20题每题5分;第21题6分;第22题5分;第23-24题每题6分;第25题5分;第26题6分;第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:2014sin 45(3)2π-⎛⎫︒-+- ⎪⎝⎭.18. 解不等式组:2(1)21.2x x x x -<+⎧⎪⎨+<⎪⎩,19. 已知2210x x --=,求代数式4(1)(21)(21)-++-x xx x 的值.20. 2023年12月27日北京城市副中心“三大文化建筑”之一的北京城市图书馆对外开放,其总建筑面积约7.5万平方米,藏书量达800万册,建有世界最大的单体图书馆阅览室.图书馆内的功能区设置阅览坐席,方便读者使用.其中,山体阅览区、非遗文献馆、少年儿童馆的坐席总数为1900个,非遗文献馆的坐席数与少年儿童馆坐席数之比为23:,山体阅览区的坐席数是少年儿童馆坐席数的4倍多200个,求山体阅览区、非遗文献馆、少年儿童馆的坐席数量.21. 如图,ABC 中,90ACB ∠=︒,点D 为AB 边中点,过D 点作AB 的垂线交BC 于点E ,在直线DE 上截取DF ,使DF ED =,连结AE 、AF 、BF .(1)求证:四边形AEBF 是菱形;(2)若4sin 5EAF ∠=,5BE =,求AD 的长.22. 在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图象经过点()0,1A -和()4,3B ,与过点()0,3-且平行于x 轴的直线交于点C .(1)求该函数的表达式及点C 的坐标;(2)当2x >-时,对于x 的每一个值,函数()0y mx m =≠的值大于函数()0y kx b k =+≠的值,直接写出m 的取值范围.23. 为了选出适应市场需求的小番茄秧苗,在条件基本相同的情况下,工作人员把两个品种的小番茄秧苗分别种植在甲、乙两个大棚.对两个品种的小番茄的产量进行了抽样调查,数据整理如下:a .从甲、乙两个大棚各收集了20株秧苗,将每株秧苗上的小番茄的个数做如下记录:甲:26 32 40 74 44 63 81 54 62 41 54 43 34 51 63 64 73 64 54 33乙:27 34 46 52 48 67 82 48 56 63 73 35 56 56 58 60 36 46 40 71b .对以上样本数据按如下分组整理:个数大棚2535x ≤<3545x ≤<4555x ≤<5565x ≤<6575x ≤<7585x ≤<甲44m n 21乙235631c .两组样本数据的平均数、众数、中位数和方差如下表所示:统计量大棚平均数众数中位数方差甲52.554p 228.75乙52.75654196.41(1)m =________,n =________.(2)p =________.(3)可以推断出________大棚的小番茄秧苗品种更适应市场需求,理由为_____________.(从两个不同的角度说明推断的合理性)24. 如图,AB 为O 的直径,过点A 作O 的切线AM ,C 是半圆AB 上一点(不与点A 、B 重合),连结AC ,过点C 作CD AB ⊥于点E ,连接BD 并延长交AM 于点F .(1)求证:∠=∠CAB AFB ;(2)若O 的半径为5,8AC =,求DF 的长.25. 某部门研究本公司生产某种产品的利润变化y (万元)与生产总量x (吨)之间的关系情况,产品的生产总量为x (吨)时,所获得的利润记为p (万元),公司生产x 吨产品所获得的利润与生产(1)x -吨产品获得的利润之差记为y (万元).例如:当0x =时, 1.00=-p ,当1x =时, 2.50=p .所以,当1x =时, 2.50( 1.00) 3.50=--=y ;当 1.5x =时, 6.31=p ,当 2.5x =时,16.19=p .所以,当 2.5x =时,16.19 6.319.88=-=y .记录的部分数据如下:x 00.50.751 1.5 1.752 2.533.544.555.56p 1.00-0.06- 1.04 2.50 6.318.5711.0016.1921.5026.5631.0034.4436.5036.8135.00y 3.50 6.377.53m 9.8810.5010.379.50n 5.50 2.37 1.50-根据以上数据,解决下列问题:(1)m =________,n =_______.(2)结合表中的数据,当16x ≤≤时可以用函数刻画利润的变化量y (万元)和生产总量x (吨)之间的关系,在平面直角坐标系xOy 中画出此函数的图象.(3)结合数据,利用所画的函数图象可以推断:①当生产总量约为________吨(精确到0.1),利润变化值y 最大.②当生产总量约为________吨(精确到0.1),利润开始降低.26. 在平面直角坐标系xOy 中,1(,)M m y ,2(2,)N m y +是抛物线2(0)y ax bx c a =++>上两点,且满足0m >.设抛物线的对称轴为直线x t =.(1)当12y y =时,写出m ,t 的之间的等量关系.(2)当34t <<时,均满足21>>c y y ,求m 的取值范围.27. 如图,将线段AB 绕点A 逆时针旋转α度(0180α︒<<︒)得到线段AC ,连结BC ,点N 是BC 的中点,点D ,E 分别在线段AC ,BC 的延长线上,且CE DE =.(1)EDC ∠=________(用含α的代数式表示);(2)连结BD ,点F 为BD 的中点,连接AF ,EF ,NF .①依题意补全图形;②若AF EF ⊥,用等式表示线段NF 与CE 的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点(,)M m n ,A 为坐标系中任意一点.现定义如下两种运动:P 运动:将点A 向右平移m 个单位长度,再向上平移n 个单位长度,得到点A ',再将点A '绕点O 逆时针旋转90︒,得到点1A ;Q 运动:将点A 绕点O 逆时针旋转90︒,得到点A '',再将点A ''向右平移m 个单位长度,再向上平移n 个单位长度,得到点2A .(1)如图,已知点(1,1)A ,(,0)M m ,点A 分别经过P 运动与Q 运动后,得到点1A ,2A .①若1m =,请你在下图中画出点1A ,2A 的位置;②若122A A =,求m 的值.(2)已知AB t =,点A ,B 分别经过P 运动与Q 运动后,得到点1A ,2A 与点1B ,2B ,连接11A B ,22A B .若线段11A B 与22A B 存在公共点,请直接写出此时线段MO 长度的取值范围(用含有t 的式子表示).参考答案一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 【答案】A【分析】本题考查了三视图的相关知识,其中主视图、左视图、俯视图是分别从物体正面、左面和上面观察物体所得到的图形,三视图的掌握程度和空间想象能力是解题关键.结合选项,根据主视图和俯视图确定是柱体,锥体还是球体,再根据左视图确定具体形状.【详解】解:由主视图和左视图为长方形可知,这个几何体是柱体,由俯视图为三角形可知,这个柱体是三棱柱,故选:A .2. 【答案】B【分析】本题考查了把绝对较大的数用科学记数法表示,关键是确定 n 与a 的值. 科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,它等于原数的整数数位与1的差.【详解】解:1022300000000 2.2310=⨯;故选:B .3. 【答案】C【分析】根据三角形外角的性质、平行线的性质进行求解即可;【详解】解:∵∠C +∠D =∠AEC ,∴∠D =∠AEC -∠C =50°-20°=30°,∵AB CD ∥,∴∠A =∠D=30°,故选:C .【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.4. 【答案】A【分析】本题考查了一元二次方程根的判别式;根据方程有两个不相等的实数根,则判别式为正,解不等式即可求得n 的取值范围.【详解】解:∵关于x 的方程240x x n -+=有两个不相等的实数根,∴2(4)410n ∆=--⨯⨯>,解得:4n <;故选:A .5. 【答案】C【分析】本题考查的是轴对称的性质,熟知如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称是解题的关键.根据轴对称的性质解答即可.【详解】解:由图可知,该图形关于直线3l 对称.故选:C 6. 【答案】B【分析】本题主要考查了树状图法或列表法求解概率,先画出树状图得到所有等可能性的结果数,再找到两次摸出小球的颜色相同的结果数,最后依据概率计算公式求解即可.【详解】解:画树状图如下:由树状图可知,一共有6种,其中两次摸出小球的颜色相同的结果数有2种,∴两次摸出小球的颜色相同的概率为2163=,故选:B .7. 【答案】C【分析】本题考查了数轴,由点B 在点A 的右侧确定a b <是本题的关键.因为点B 在点A 的右侧,所以a b <,由2a b +=,可得2b a =-,所以2a a <-,化简得1a <,所以1a -一定为负数.【详解】解:由题意得,a b <,2a b += ,即2b a =-,2a a ∴<-,1a ∴<,10a ∴-<,故选:C .8. 【答案】D【分析】本题考查了菱形的性质,等边三角形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,掌握以上知识点是解题的关键.证明ACP CDQ ≌可得APC CQD ∠=∠,PAC DCQ ∠=∠,AP CQ =,进而判断①;进而可得180APD CQD ∠+∠=︒,进而判断②,根据120QEP ∠=︒,进而判断③;证明APC CPE ∽△△,进而判断④;【详解】解:∵ABCD 是菱形,60ABC ∠=︒,DP AQ =,∴60,ACP D ACD ∠=∠=︒V 是等边三角形,∴AC CD =,∴ACP CDQ ≌,∴APC CQD ∠=∠,PAC DCQ ∠=∠,AP CQ =,故①正确;∵180APD APC ∠+∠=︒,∴180APD CQD ∠+∠=︒,故②正确;∵60,180D APD CQD ∠=︒∠+∠=︒,∴120QEP ∠=︒,∴120AEC QEP ∠=∠=︒,故③正确;∵PAC DCQ ∠=∠,APC EPC ∠=∠,∴APC CPE ∽△△,∴AP CP CP EP=,∴2=⋅CP AP EP ,故④正确;故选:D .二、填空题(本题共8个小题,每小题2分,共16分)9. 【答案】3x ≥【分析】此题主要考查了分式有意义及二次根式有意义的条件,正确掌握相关定义是解题关键.由分式有意义及二次根式有意义的条件,进而得出x 的取值范围.【详解】由二次根式的概念,可知30x -≥,解得3x ≥.故答案为:3x ≥10. 【答案】y (x +2)(x -2)【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.【详解】x 2y -4y =y (x 2-4)=y (x +2)(x -2),故答案为:y (x +2)(x -2).【点睛】提公因式法和应用公式法因式分解.11. 【答案】1【分析】根据解分式方程的步骤“先去分母化为整式方程,再解整式方程,最后进行检验”进行解答即可得.【详解】解:2132x x=+方程两边同乘2(3)x x +,得43x x =+,移项,得33x =,系数化为1,得1x =,检验:当1x =时,2(3)0x x +≠,∴原分式方程的解为1x =,故答案为:1.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法并检验.12. 【答案】9【分析】本题考查了正比例函数与一次函数的交点问题,交点坐标满足两个函数解析式是解答本题的关键.根据反比例函数图象上点的坐标特征进行解答即可.【详解】解: 点(,3)P m 在直线y x =上,3m ∴=,()3,3P ∴,()3,3P 在反比例函数图象上,339k ∴=⨯=.故答案为:9.13. 【答案】12【分析】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由FAE CDE ∽,推出::1:2AF CD AE DE ==.由平行四边形的性质得到AB DC ,推出FAE CDE ∽,得到::1:2AF CD AE DE ==,即可求出12CD =.【详解】解: 四边形ABCD 是平行四边形,AB DC ∴ ,FAE CDE ∴∽,::1:2AF CD AE DE ∴==,6AF =Q ,12CD ∴=.故答案为:12.14. 【答案】280【分析】本题考查了从图象获取信息,用样本估计总体,熟练掌握用样本估计总体的思想是解题的关键.根据图中信息,可得上学途中用时不超过15min 的学生有14人,用总人数⨯抽取的学生中上学用时不超过15min 的学生所占比例,即可求解.【详解】解:根据图中信息可知,上学途中用时不超过15min 的学生有14人,故该校九年级学生上学途中用时不超过15min 的人数为1440028020⨯=(人).故答案为:280.15. 【答案】3【分析】过A 作AM OB ⊥于M ,求得AOB ∠的度数,根据直角三角形的性质得到AM ,求出三角形的面积,于是得到正十二边形的面积,根据圆的面积公式即可得到结论.本题考查了正多边形与圆,三角形的面积的计算,正确地作出辅助线是解题的关键.【详解】如图,AB 是正十二边形的一条边,点O 是正十二边形的中心,设O 的半径为1,过A 作AM OB ⊥于M ,在正十二边形中,3601230AOB ∠=︒÷=︒,1122AM OA ∴==111112224AOB S OB AM ∴=⋅=⨯⨯= ∴正十二边形的面积为11234⨯=,231π∴=⨯,3π∴=,π∴的近似值为3,故答案为:3.16. 【答案】 ①. 4 ②. 13【分析】本题考查了优化问题,即如何在最短的时间内完成工作,实现最优效果.(1)根据表格知,完成“展厅装饰 ”要完成C 、D 两项工作,故可得到至少需要的天数;(2)由表格知,完成A 的时间里,可同时完成B 、C 、D 的工作,可进行E 的工作,则可进行G 、H 的工作,从而完成整个工作,从而可得最短总工作时间.【详解】解:(1)由表格知,在前期工作结束后,完成“展厅装饰 ”最短需要134+=(天);故答案为:4;(2)完成本次展览会所有筹备工作的路径为:A E G H →→→,最短总工期需要的天数为:732113+++=(天);故答案为为:13.三、解答题(本题共68分,第17-20题每题5分;第21题6分;第22题5分;第23-24题每题6分;第25题5分;第26题6分;第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】5【分析】本题考查了特殊角的三角函数值、二次根式的性质、负整数次幂和取绝对值等知识.先运用特殊角的三角函数值、二次根式的性质、负整数次幂和取绝对值对原式进行化简,然后再计算即可.【详解】解:214sin45(3)2π-⎛⎫︒++-⎪⎝⎭441=-+41=-++5=.18. 【答案】14x<<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:原不等式组为2(1)212x xxx-<+⎧⎪⎨+<⎪⎩①②解不等式①得,4x<,解不等式②得,1x>,∴原不等式组的解集为14x<<.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 【答案】3【分析】本题考查了整式的乘法混合运算,涉及单项式乘多项式及平方差公式;先利用单项式乘多项式、平方差公式展开,再合并同类项;再由2210x x--=,得221x x-=,最后整体代入即可求值.【详解】解:原式224441=-+-x x x2841=--x x;2210x x--=,221x x∴-=,∴原式24(2)1=--x x3=.20. 【答案】非遗文献馆的坐席数为200个,少年儿童馆坐席数为300个,山体阅览区的坐席数为1400个【分析】本题考查的是一元一次方程的应用,找出等量关系列方程是解题关键,设非遗文献馆的坐席数为2x个,则少年儿童馆坐席数为3x个,山体阅览区的坐席数为()12200x+个,根据坐席总数为1900个列方程解决即可.【详解】解:设非遗文献馆的坐席数为2x 个,则少年儿童馆坐席数为3x 个,山体阅览区的坐席数为()12200x +个,根据题意得:23122001900+++=x x x ,解得,100x =,答:非遗文献馆的坐席数为200个,少年儿童馆坐席数为300个,山体阅览区的坐席数为1400个.21. 【答案】(1)证明见解析(2)AD =【分析】本题考查了菱形的判定与性质、矩形的判定与性质、平行四边形的判定与性质、锐角三角函数定义以及勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.(1)先证明四边形AEBF 是平行四边形,再由菱形的判定即可得出结论;(2)过点E 作EG AF ^于点G ,由菱形的性质得5,BE AE AF BC ==∥,再证明四边形ACEG 是矩形,得,AC EG CE AG ==,进而解直角三角形求出4,3EG AG ==,然后由勾股定理求出AB 的长,即可解决问题.【小问1详解】证明:∵点D 为AB 边中点,∴AD BD =,∵DF ED =,∴四边形AEBF 是平行四边形,∵EF AB ⊥,∴四边形AEBF 是菱形;【小问2详解】解:如图,过点E 作EG AF ^于点G ,∵四边形AEBF 是菱形,∴5,BE AE AF BC ==∥,∴EG BC ⊥,∴90GEC ∠=︒,∴90CEG GEC ACB ∠=∠=∠=︒,∴四边形ACEG 是矩形,∴,AC EG CE AG ==,∵4sin 5EG EAF AE ∠==,∴445455EG AE ==⨯=,在Rt AGE 中,由勾股定理得:AG =3==,4,3AC EG CE AG ∴====,538BC BE CE ∴=+=+=,在Rt ABC 中,由勾股定理得:AB ===∵点D 为AB 边中点,1122AD AB ∴==⨯=.22. 【答案】(1)1y x =-,()2,3C --(2)312m ≤≤【分析】(1)将A 、B 坐标分别代入函数表达式y kx b =+,即可得到一次函数解析式,然后计算函数值为3-对应的自变量的值即可得到C 点坐标;(2)分情况讨论:当直线y mx =过点C 时和当直线y mx =与直线1y x =-平行时,即可得到符合条件的m 的取值范围.【小问1详解】解:将()0,1A -、()4,3B 代入函数表达式y kx b =+可得:143b k b =-⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,则函数的表达式为1y x =-,依题得,过点()0,3-且平行于x 轴的直线为3y =-,C 是该函数与过点()0,3-且平行于x 轴的直线的交点,13x ∴-=-,解得2x =-,1213y x =-=--=-,即()2,3C --.【小问2详解】解:当直线y mx =过点C 时,即把()2,3--代入y mx =,得23m -=-,32m =, 当2x >-时,对于x 的每一个值,()0y mx m =≠的值大于1y x =-的值,221m ∴-≥-- ,解得32m ≤,当y mx =与直线1y x =-平行时,1m =,此时,满足条件,且当1m <时,不满足条件,即312m ≤≤.【点睛】本题考查的知识点是待定系数法求解析式、一次函数的图象与性质,解题关键是熟练掌握数形结合的方法解题.23. 【答案】(1)4,5 (2)54(3)乙;乙大棚每株秧苗上的小番茄个数的平均数高于甲大棚,且方差小,产量的稳定性更好【分析】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.(1)根据收集数据进行求解;(2)根据中位线的定义进行求解即可;(3)根据平均数和方差进行求解即可.【小问1详解】解:甲大棚中4555x ≤<的有4株,5565x ≤<的有5株,∴4m =,5n =;故答案为:4,5;【小问2详解】解:将甲大棚中20株秧苗上小番茄的个数从小到大进行排序,排在第10、11位的都是54个,所以中位数为5454542+=,故答案为:54.【小问3详解】解:乙大棚的小番茄秧苗品种更适应市场需求,因为乙大棚每株秧苗上的小番茄个数的平均数高于甲大棚,且方差小,产量的稳定性更好;故答案为:乙,乙大棚每株秧苗上的小番茄个数的平均数高于甲大棚,且方差小,产量的稳定性更好.24. 【答案】(1)证明见解析(2)323DF =【分析】本题考查切线的判定和性质,垂径定理,圆周角定理以及勾股定理,掌握切线的性质和判断方法,垂径定理,圆周角定理以及勾股定理是正确解答的关键.(1)根据切线的性质,平行线的判定和性质以及圆周角定理即可得出结论;(2)根据相似三角形的判定和性质以及垂径定理进行计算即可.【小问1详解】证明:AM 是O 的切线,90BAM ∴∠=o ,CD AB ⊥ 于点E ,90CEA ∴∠= ,CD AF ∴∥,∴∠=∠CDB AFB ,CDB CAB ∠=∠ ,∴∠=∠CAB AFB .【小问2详解】解:连结AD ,CD AB ⊥ 于点E ,AB 是O 的直径,CE DE ∴=,AB ∴是CD 的垂直平分线,8AC AD ∴==,O 的半径为5,10AB ∴=,6BD =∴,AB 是O 的直径,90BDA =∴∠ ,BAD AFB ∴∠=∠,tan tan ∴∠=∠BAD AFB ,∴=ADBDDF AD ,2AD DF BD ∴=⋅,323∴=DF .25. 【答案】(1)8.50,7.88(2)见详解 (3)①3.2(答案不唯一,介于3.1 3.3:);②5.8(答案不唯一,介于5.6 5.9:)【分析】本题考查二次函数的应用,理解题意并掌握描点作图的方法是解题的关键.(1)根据题意和举例的计算方法求出m 和n 的值即可;(2)将表格中数据对(),x y 描点并连线即可;(3)①根据图象作答即可;②0y =时对应x 的值即为答案.【小问1详解】解:当2x =时,11.00p =,当1x =时, 2.50=p ,∴当2x =时,11.00 2.508.50m =-=;当 4.5x =时,34.44p =,当 3.5x =时,26.56p =,∴当 4.5x =时,34.4426.567.88n =-=.故答案为:8.50,7.88.【小问2详解】描点并作图如图所示:【小问3详解】①由图象可知,当生产总量约为3.2吨时,利润变化值y 最大;②由图象可知,当生产总量约为5.8吨时,利润变化值0y =,之后利润开始降低.故答案为:3.2,5.8.26. 【答案】(1)1t m =+(2)34m ≤≤【分析】本题考查了二次函数的性质,二次函数图像上点的坐标特征,二次函数图像的对称性等知识.(1)根据抛物线关于对称轴对待的性质,点M 、N 到对称轴的距离相等,即可求得m ,t 的之间的等量关系;(2)将点M 到对称轴的距离记为M d ,点N 到对称轴的距离记为N d ,抛物线与y 轴交点记为点()0,C c ,到对称轴的距离记为C d .根据21>>c y y ,分别考虑21y y >及2>c y 时m 的范围,最后取两个范围的公共部分即可.【小问1详解】解: 点()1,M m y ,()22,N m y +是抛物线2(0)y ax bx c a =++>上两点,当12y y =时,点M 和点N 关于抛物线的对称轴直线x t =对称,2m t t m ∴+-=-,212++∴==+m m t m .【小问2详解】解:将点()1,M m y 到对称轴的距离记为M d ,点()22,N m y +到对称轴的距离记为N d ,抛物线与y 轴交点记为点()0,C c ,到对称轴的距离记为C d .0a > ,21y y >,∴点N 到对称轴的距离大于点M 到对称轴的距离,即>N M d d ,2m t m t ∴+->-,22(2)()0∴+--->m t m t ,()()220m t m t m t m t ∴+-+-+--+>,1∴>-m t ,当34t <<时,均满足21y y >,3m ∴≥,0a > ,2>c y ,∴点C 到对称轴的距离大于点N 到对称轴的距离,即>N C d d ,2t m t ∴>+-,22(2)0∴-+->t m t ,22∴<-m t ;当34t <<时,均满足2>c y ,4m ∴≤,综上,34m ≤≤.27. 【答案】(1)1902α︒-(2)①见解析;②CE =,证明见解析【分析】本题考查了根据条件画图,平行四边形的性质和判定,全等三角形的判定和性质,解直角三角形等知识,解决问题的关键是作辅助线,构造全等三角形.(1)根据旋转和题意即可得出1902CDE DCE ACB α∠=∠=∠=︒-;(2)①根据题意画出图形即可;②延长AF 至点M ,使FM AF =,连接,,,BM DM EM AE .证明四边形ABMD 为平行四边形,证明ACE MDE V V ≌,算出90α=︒,45ECD EDC ∠=∠=︒,结合三角形中位线定理即可求解;【小问1详解】∵A α∠=,由旋转得AB AC =,∴18019022ABC ACB αα︒-∠=∠==︒-,∵CE DE =,∴1902CDE DCE ACB α∠=∠=∠=︒-.【小问2详解】①补全图形如图:②延长AF 至点M ,使FM AF =,连接,,,BM DM EM AE .∵点F 为线段BD 中点,∴四边形ABMD 为平行四边形,,AB DM AB DM ∴=∥,180BAC ADM ∴∠+∠=︒,180ADM α∴∠=︒-,AF EF ⊥ ,AE ME ∴=,又,AB AC EC ED ==Q ,AC DM ∴=,∴()ACE MDE SSS ≌,∴1180902MDE ACE ACB α∠=∠=︒-∠=︒+,11909022ADM MDE CDE ααα⎛⎫∴∠=∠-∠=︒+-︒-= ⎪⎝⎭,180αα∴︒-=,90α∴=︒,∴45ECD EDC ∠=∠=︒,∴CD =,∵N 为BC 中点,F 为BD 中点,∴NF 是BDC 中位线,2CD NF ∴=,∴CE =.28. 【答案】(1)①见详解;②m =(2)0MO ≤≤【分析】本题考查了旋转的性质,平移的性质,全等三角形的判定与性质,熟练掌握知识点是解题的关键.(1)①根据P 运动和Q 运动的运动方式求解即可;②首先表示出点1A 的坐标为()1,1m -+,2A 的坐标为()1,1m -+,然后根据122A A =得到2=,进而求解即可;(2)由题意得:1122A B A B ∥,1122A B A B t ==设(),A x y ,经过P 运动,则(),A x m y n '++,则()1,A y n x m --+;Q 运动后,(),A y x ''-,()2,A y m x n -++,则12A A t =≤即可求解.【小问1详解】①作图如图所示:由P 运动知()2,1A ',由旋转得1OA OA '=,190AOA '∠=︒,而90M N ∠=∠=︒,∴11809090A OM AON '∠+∠=︒-︒=︒,90A OM OA M ''∠+∠=︒,∴1AON OA M '∠=∠,∴1A NO A OM '△≌△,∴12,1A N OM ON A N '====,∴()11,2A -;由Q 运动同理可求()1,1A ''-,再向右平移1个单位,向上平移0个单位得到()20,1A .②∵(1,1)A ,∴点A 经过P 运动后得到的点1A 的坐标为()1,1m -+点A 经过Q 运动后得到的点2A 的坐标为()1,1m -+∵122A A =2=,∴m =.【小问2详解】由题意可得:由旋转的不变性和平移的性质得:1122A B A B ∥,1122A B A B t ==,设(),A x y ,经过P 运动,则(),A x m y n '++,则()1,A y n x m --+;Q 运动后,(),A y x ''-,()2,A y m x n -++,则12A A ===,∴当12A A t ≤时,线段11A B 与22A B 存在公共点,t ≤,∴0MO ≤≤.。

2024届上海市静安区初三一模数学试题及答案

2024届上海市静安区初三一模数学试题及答案

第6题图上海市静安区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列计算正确的是().A 010 ;.B 111 ;.C 111 ;.D 111 .2.下列选项中的两个图形一定相似的是().A 两个平行四边形;.B 两个圆;.C 两个菱形;.D 两个等腰三角形.3..A 2.4.在//AC ,//DF AB ,且.A 5.).A 3个单位;.C 个单位,再向下平移3个单位.6..A .C 二、填空题(本大题共12题,每题4分,满分48分)7.0.5的倒数是.8.如果35a b (0b ),那么a b.9.已知线段2AB cm ,点P 是AB 的黄金分割点,且AP PB ,那么PB 的长度是cm .(结果保留根号)10.如果二次函数2y ax bx c 图像对称轴的右侧部分是上升的,那么它的开口方向是.(填“向上”或“向下)11.已知抛物线29y x mx 的顶点在x 轴负半轴上,那么m 的值为.12.在三角形ABC 中,点D 、E 分别在边AB 、AC 上,已知4DE ,6BC ,:2:3AE AC ,那么能否得到//DE BC ?(填“能”或“否”)13.如果两个相似三角形对应边上的高之比是4:9,那么它们的周长之比等于.14.如图,小红沿坡度1:2.4i 的坡面由A 到B 行走了26米,那么小红行走的水平距离AC 米.15.16.在 处,那么DB 17.③31y x ;④y 18.点D 那么19.第20题图如图,在平面直角坐标系xOy 中,已知直线l 经过点 1,0A ,与双曲线my x(0x )交于点 2,0B .点 ,2P a 在直线AB 上,过点P 作x 轴的平行线分别交双曲线m y x (0x )和my x(0x )于点E 、F .(1)求m 的值和直线l 的表达式;(2)联结EB 、FA .求证://EB FA .21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知AC 是矩形ABCD 的对角线,//DE AC ,DE 交BC 延长线于E ,AE 交DC 于F ,BF 交AC 于G .(1)求证:点G 是ABE 的重心;(2)如果2BG BC ,求AEB 的正弦值.第21题图第23题图如图,某建筑物AB 高为200米,某人乘热气球来到距地面400米的C 处(即CE 长为400米).此时测得建筑物顶部A 的俯角为 ,当乘坐的热气球垂直上升到达D 处后,再次测得建筑物顶部A 的俯角为 .(参考数据:tan 1.25 ,tan 1.75 )(1)请在图中标出俯角 、 ,并用计算器求 、 的大小;, ;(精确到1'')(2)求热气球上升的垂直高度(即CD 的长).23.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在ABC 中,AB AC ,D 是BC 中点,点E 在BA 延长线上,点F 在AC 边上,EDF B .(1)求证:BDE CFD ∽;(2)求证:2DF EF CF .第22题图第24题图24.(本题满分12分,第(1)小题4分,第(2)①小题4分,第(2)②小题4分)在平面直角坐标系xOy 中(如图),已知点 2,0A 、 6,0B 、 0,8C 、322,3D在同一个二次函数的图像上.(1)请从中选择适当的点坐标,求二次函数解析式;(2)如果射线BE 平分ABC ,交y 轴于点E ,①现将抛物线沿对称轴向下平移,顶点落在线段BE 的点F 处,求此时抛物线顶点F 的坐标;②如果点P 在射线BE 上,当PBC 与BOE 相似时,请求点P 的坐标.第25题图1第25题图2备用图25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知梯形ABCD 中,//AD BC ,2AB ,4AD ,3DC ,7BC .点P 在射线BA 上,点Q 在射线BC 上(点P 、点Q 均不与点B 重合),且PQ BQ ,联结DQ ,设BP x ,DQC 的面积为y .(1)如图1所示,求sin B 的值;(2)如图2所示,点Q 在线段BC 上,求y 关于x 的函数解析式,并写出定义域;(3)当DQC 是等腰三角形时,求BP 的长.第1页共4页2023学年第一学期九年级期终考试数学答案要点及评分标准一、选择题:1.D ;2.B ;3.C ;4.C ;5.A ;6.B .二、填空题:7.2;8.35;9.53 ;10.向上;11.6;12.否;13.4:9;14.24;15.b a 4121;16.5512;17.①②④;18.a 21.三、解答题:19.解:原式=23322122…………………………(4+1分)=2322221 …………………………(2分)=231=25……………………………………(1+2分)20.(1)∵点B (2,1)在双曲线x m y(x >0)上,代入得:21m,∴2 m ;…(2分)又直线l 经过点A (1,0)、B (2,1),设直线l :)0( k b kx y ,∴代入得:120b k b k ,解得 11b k ,直线l 的表达式是1 x y ;………………(2分)(2)点P (a ,2)在直线AB 上,∴12 a ,∴3 a ,点P (3,2),…………(1分)过点P 作x 轴的平行线分别交双曲线x y 2(x >0)和xy 2 (x <0)于点E 、F ,可知点E 、F 纵坐标为2,分别代入解析式得F (-1,2),E (1,2)∴EP =2,EF =2,∵BP =2)12()23(22 ,BA =2)01()12(22 ,…………(4分)∴BAPBEF PE,∴EB ∥FA .………………………………(1分)21.证明:(1)∵矩形ABCD ,∴AD ∥BE ,AD =BC ,……………………(1分)又∵DE ∥AC ,∴四边形ADEC 是平行四边形,……………………(1分)∴AD =CE ,∴BC =CE ,……………………(1分)∵四边形ADEC 是平行四边形,∴AF =FE ,……………………(1分)∴AC 、BF 是△ABE 的中线,∴点G 是△ABE 的重心.……………………(1分)(2)解:∵G 是△ABE 的重心,BG =BC =2,∴GF =1,BF =3,……………………(1分)第2页共4页∵矩形ABCD ,∴∠ABC=∠FCB =90°,……………………(1分)∴EF =BF =3,Rt △ECF 中,CE =BC =2,∴5232222CE EF CF ,∴35sin EF CF FEC ,即35sin AEB .………………………………(3分)22.(1)标图(略)…(1分),α≈///0252051,β≈///0181560(2)作AH ⊥DE ,垂足为点H ,由题意得AB 、DE 均垂直于地面,∴ABEH 为矩形则HE =AB =200米,∴CH =400-200=200(米),…………(1分)Rt △AHC 中,∠CAH=α,,cot CHAH1605420025.11200cotCH AH (米),………(3分)Rt △AHD 中,∠DAH=β,,tan AH DH 28047160tan AH DH (米),……………………(2分)∴CD =280-200=80(米).答:热气球垂直上升的高度CD 为80米.……………………(1分)23.(1)∵AB =AC ,∴∠B =∠C ,……………………(2分)∵∠EDC =∠B +∠BED =∠EDF +∠FDC ,……………………(2分)又∵∠EDF =∠B ,∴∠BED =∠FDC ,……………………(1分)∴△BDE ∽△CFD ……………………(1分)(2)∵△BDE ∽△CFD ,∴DC BE DF DE ,……………………(1分)又∵BD =DC ,∴BD BE DF DE ,即BDDF BE DE ,……………………(2分)又∠EDF =∠B ,∴△DFE ∽△BDE ,……………………(1分)∴△DFE ∽△CFD ,∴CFDFDF EF,∴CF EF DF 2.……………………(2分)24.(1)由二次函数的图像过A (-2,0)、B (6,0),可知其对称轴为直线2 x ,又∵D (2,332)在同一个二次函数的图像上,可知抛物线顶点为点D ,设解析式为332)2(2x a y ,将C (0,8)代入得:32a ,…………………(3分)∴解析式为3322-322)(x y .…………………(1分)(第22题图)AB BADCFE(第23题图)第3页共4页或者)6)(2(32 x x y ,或者838322 x x y .(2)由(1)得抛物线对称轴为直线2 x ,Rt △BOC 中,OB =6,OC =8,CB =1022 OB OC ,①作EH ⊥BC 于H ,∵BE 平分∠ABC ,EO ⊥OB ,得OE =EH ,设OE =m ,则CE =8-m ,由△BEC 面积一定可知,EH CB OB CE 2121,代入得:m m 106)8( ,∴m =3,即OE =3,∴E (0,3),…………………(2分)设二次函数对称轴交x 轴于点M ,则2163 OB OE MB FM ,2,4 FM MB ,即点F 的纵坐标y =2,又横坐标x =OM =2,∴F (2,2).…………………(2分)②由△PBC 与Rt △BOE 相似,可知△PBC 为直角三角形,∠EBO =∠CBP ,536322 EB ,过点P 作PN ⊥x 轴,垂足为点N ,∴PN ∥EO ,∴51533 EB EO PB PN ,PB PN 55 ,(i )当∠BP 1C =90°时,525361 BE OB BC BP ,∴541BP ,411 N P ,Rt △P 1N 1B 中,21tan 11BN P ,∴82111 N P BN ,21 ON ,∴P 1(-2,4).…………………(2分)(ii )当∠BCP 2=90°,256532 BO BE BC BP ,∴552 BP ,522 N P ,Rt △P 2N 2B 中,21tan 22BN P ,∴102222 N P BN ,42 ON ,∴P 2(-4,5).…………………(2分)综上所述,点P 的坐标为(-2,4)或(-4,5).25.(1)AD //BC ,AB =2,AD =4,DC =3,BC =7.作AE //DC 交BC 于点E ,∴四边形AECD 是平行四边形.则AE =DC =3,BE =BC -AD =3,∴AE =BE ,…………(2分)作EF ⊥AB 于F ,则BF =AF =1,EF =2222BFBE ,∴Rt △BFE 中,322sin BEEF B ;…………………(3分)B第25题图(1)第4页共4页(2)由(1)得,Rt △EFB 中,31cos BEBF B ,∵PQ =BQ ,BP =x ,作QK ⊥AB 于K ,∴BK =x 21,Rt △QKB 中,31cos BQ BK B ,∴x BK BQ 233 ,x QC 237 ,………(2分)作DH ⊥BC 于H ,AG ⊥BC 于G ,Rt △ABG 中,2342322sin B AB AG ,∵AD //BC ,∴234 AG DH ,又∵△DQC 的面积为y .x x S DQC 22314234)237(21,∴x y 22314,3140( x .…………………(3分)(3)Rt △DHC 中,373247 CH ,97cos DC HC C ,点Q 在线段BC 上,当△DQC 是等腰三角形时,①DC =QC ,3237 x ,38 x ;②DC =DQ ,CH QC 2 ,237237 x ,914x ③DQ =QC ,过Q 点作QI ⊥DC 于I ,DC =2IC ,IC =1.5,Rt △QIC 中,1427cos CIC QC ,1427237 x ,2171x 点Q 在线段BC 延长线上,当△DQC 是等腰三角形时,④∠DCQ 为钝角,仅存在CD =CQ ,320,3723x x ∴综上,当△DQ C 是等腰三角形时,BP 长为38或914或2171或320.……………(4分)B第25题图(2)。

初三数学一模试题及答案

初三数学一模试题及答案

初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 0.33333...2. 如果一个二次函数的图像开口向上,那么它的判别式Δ的值应该满足什么条件?A. Δ > 0B. Δ = 0C. Δ < 0D. Δ ≥ 03. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的高是多少?A. 4厘米B. 6厘米C. 8厘米D. 10厘米4. 一个数列的前三项为1,3,5,那么它的通项公式是什么?A. an = 2n - 1B. an = 2n + 1C. an = 2nD. an = 2n - 25. 一个圆的半径为5厘米,那么它的面积是多少?A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米6. 一个多边形的内角和为900度,那么这个多边形有多少条边?A. 5B. 6C. 7D. 87. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是多少?A. 5厘米B. 6厘米C. 7厘米D. 8厘米8. 一个等差数列的前三项为2,5,8,那么它的公差是多少?A. 1B. 2C. 3D. 49. 一个函数y = 2x + 3的图像与x轴的交点坐标是什么?A. (-3/2, 0)B. (3/2, 0)C. (0, 3/2)D. (0, -3/2)10. 一个二次函数y = ax^2 + bx + c的图像与x轴有两个交点,那么它的判别式Δ的值应该满足什么条件?A. Δ > 0B. Δ = 0C. Δ < 0D. Δ ≥ 0二、填空题(每题3分,共15分)11. 一个等腰直角三角形的斜边长为10厘米,那么它的直角边长是______厘米。

12. 一个二次函数y = ax^2 + bx + c的顶点坐标为(-1, 4),那么a 的值是______。

13. 一个圆的直径为12厘米,那么它的周长是______厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市东城区2010--2011学年第二学期初三综合练习(一)数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.-2的相反数是 A. 2 B.21 C. 21- D. -2 2.根据国家统计局的公布数据,2010年我国GDP 的总量约为398 000亿元人民币. 将398 000 用科学记数法表示应为A. 398×103B. 0.398×106C. 3.98×105D. 3.98×106 3.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于 A . 30° B. 40° C. 60° D . 70°4.如图,在△ABC 中,D 、E 分别是BC 、AC 边的中点.若DE =2,则AB 的长度是 A .6 B .5 C .4 D .35.甲、乙、丙、丁四名学生10次小测验成绩的平均数(单位:分)和方差如下表:则这四人中成绩最稳定的是A.甲B.乙C.丙D.丁 6.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于A .11πB .10πC .9πD .8π7. 若从10~99这连续90个正整数中选出一个数,其中每个数被选出的机会相等,则选出的 数其十位数字与个位数字的和为9的概率是 A .901 B. 101 C. 91 D. 4548. 如图,在矩形ABCD 中,AB =5,BC =4,E 、F 分别是AB 、AD 的中点.动点R 从点B 出发,沿B →C →D →F 方向运动至点F 处停止.设点R 运动的路程为x ,EFR △的面积为y ,当y 取到最大值时,点R 应运动到 A .BC 的中点处 B .C 点处 C .CD 的中点处 D .D 点处选 手 甲 乙 丙 丁 平均数 92 92 92 92 方差0.0350.0150.0250.027二、填空题(本题共16分,每小题4分) 9. 若分式53+x 有意义,则x 的取值范围是____________. 10. 分解因式:a 2b -2ab+b =________________.11. 已知A 、B 是抛物线y=x 2-4x +3上关于对称轴对称的两点,则A 、B 的坐标可能 是 .(写出一对即可) 12. 如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点4A 的坐标为( , );点n A ( , ). 三、解答题(本题共30分,每小题5分) 13.计算: 084sin 45(3)4-︒+-π+-.14. 求不等式组46,1(3)22x x +≤⎧⎪⎨->-⎪⎩ 的整数解.15.先化简,再求值:1)1213(22-÷-+-x xxx x x ,其中13-=x .16. 如图,在四边形ABCD 中, AC 是∠DAE 的平分线,DA ∥CE ,∠AEB =∠CEB . 求证:AB=CB .17.列方程或方程组解应用题随着人们节能意识的增强,节能产品进入千家万户,今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米.18.如图,在平行四边形ABCD 中,过点A 分别作AE ⊥BC 于点E ,AF ⊥CD 于点F . (1)求证:∠BAE =∠DAF ;(2)若AE =4,AF =245,3sin 5BAE ∠=,求CF 的长.四、解答题(本题共20分,每小题5分)19. 某中学的地理兴趣小组在本校学生中开展主题为“地震知识知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:等级 非常了解 比较了解 基本了解不太了解频数 40 120 n 4 频率0.2m0.180.02(1)表中的m 的值为_______,n 的值为 .(2)根据表中的数据,请你计算“非常了解”的频率在下图中所对应的扇形的圆心角的度数,并补全扇形统计图.(3)若该校有1500名学生,请根据调查结果估计这些学生中“比较了解”的人数约为多少?20. 已知:AB 是⊙O 的弦,OD ⊥AB 于M 交⊙O 于点D ,CB ⊥AB 交AD 的延长线于C .(1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =2,CE=1,求⊙O 的半径.21.在平面直角坐标系xOy 中,一次函数y=k 1x+b 与反比例函数y =xk 2的图象交于A (1,6),B (a ,3)两点 . (1)求k 1, k 2的值;(2)如图,点D 在x 轴上,在梯形OBCD 中,BC ∥OD ,OB=DC ,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为18时,求PE :PC 的值.22. 如图1,在△ABC 中,已知∠BAC =45°,AD ⊥BC 于D ,BD =2,DC =3,求AD 的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB 、AC 为对称轴,画出△ABD 、△ACD 的轴对称图形,D 点的对称点为E 、F ,延长EB 、FC 相交于G 点,得到四边形AEGF 是正方形.设AD =x ,利用勾股定理,建立关于x 的方程模型,求出x 的值. (1)请你帮小萍求出x 的值.(2) 参考小萍的思路,探究并解答新问题:如图2,在△ABC 中,∠BAC =30°,AD ⊥BC 于D ,AD =4.请你按照小萍的方法画图,得到四边形AEGF ,求△BGC 的周长.(画图所用字母与图1中的字母对应)图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的方程(m -1)x 2-(2m-1)x +2=0有两个正整数根.(1) 确定整数m 值;(2) 在(1)的条件下,利用图象写出方程(m -1)x 2-(2m -1)x +2+xm=0的实数根的个数24. 等边△ABC 边长为6,P 为BC 边上一点,∠MPN =60°,且PM 、PN 分别于边AB 、AC 交于点E 、F .(1)如图1,当点P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状;(2)如图2,若点P 在BC 边上运动,且保持PE ⊥AB ,设BP =x ,四边形AEPF 面积的y ,求y 与x 的函数关系式,并写出自变量x的取值范围;(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.图1 图2 图325. 如图,已知二次函数y=ax2+bx+8(a≠0)的图像与x轴交于点A(-2,0),B,与y轴交于点C,tan∠ABC=2.(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF 总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?北京市东城区2010--2011学年第二学期初三综合练习(一)数学试卷参考答案一、选择题(本题共32分,每小题4分)题 号 1 2 3 4 5 6 7 8 答 案 A C AC BDBB二、填空题(本题共16分,每小题4分)题 号 9 10 1112答 案x ≠5b (a -1)2(1,0),(3,0)或 (0,3),(4,3)等938,0 1)332(-n ,0 三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解:084sin 45(3)4-︒+-π+-=22422⨯-+1+4 ………………………………………4分 =5. …………………………………… 5分14.(本小题满分5分) 解:由①得:x ≤2. --------1分 由②得:x-3>-4,x >-1. --------2分∴原不等式组的解集为 -1<x ≤2. --------3分 ∴原不等式组的整数解为 0,1,2. --------5分 15.(本小题满分5分)1)1213(22-÷-+-x x xx x x=xx x x x x x 1]12)1)(1(3[2-⨯--+---------2分 =213-+x x=12+-x x . --------3分 当13-=x 时,3133312-=-=+-x x .--------5分 16.(本小题满分5分)证明:∵AC 是∠DAE 的平分线,-121CD3∴∠1=∠2. -------1分 又∵AD ∥EC ,∴∠2=∠3. ------2分 ∴∠1=∠3.∴AE=CE. --------3分 在△ABE 和△CBE 中, AE=CE , ∠AEB=∠CEB , BE=BE ,∴△ABE ≌△CBE. --------4分 ∴AB=CB. ------5分17.(本小题满分5分)解:设小明家2月份用气x 立方米,则去年12月份用气(x +10) 立方米.-------1分 根据题意,得%251096109690⨯+=+-x x x . ----------------3分 解这个方程,得x =30. ---------------4分 经检验,x =30是所列方程的根.答:小明家2月份用气30立方米. -----------------5分 18.(本小题满分5分) 证明:(1)∵四边形ABCD 是平行四边形, ∴∠B=∠D. 又AE ⊥BC ,AF ⊥CD ,∴∠AEB=∠AFD.∴∠BAE=∠DAF.---------2分 (2)在Rt △ABE 中,sin ∠BAE=53,AE=4,可求 AB=5. ---------3分 又∵∠BAE=∠DAF , ∴ sin ∠DAF=sin ∠BAE=53. 在Rt △ADF 中,AF=524, sin ∠DAF =53,可求DF=518-------4分∵ CD=AB=5.ABCDEF∴CF=5-518=57. …………………………………………5分 四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)0.6;36;------------2分 (2)72°;补全图如下:60%比较了解20%非常了解基本了解不太了解2%18%------------4分(3)1500×0.6=900.答:学生中“比较了解”的人数约为900人 ------------5分 20.(本小题满分5分)(1)证明:在⊙O 中,OD ⊥AB ,CB ⊥AB ,∴AM =MB ,OD ∥BC . …………………1分 ∴AD =DC . ……………2分 (2)∵DE 为⊙O 切线,∴OD ⊥DE ……………3分 ∴四边形MBED 为矩形.∴DE ∥AB. ……………4分 ∴MB=DE =2,M D=BE =EC =1. 连接OB.在R t △OBM 中,OB 2=OM 2+BM 2.解得 OB=25. …………………5分 21.(本小题满分5分)解:(1)∵点A (1,6),B (a ,3)在反比例函数y =xk 2的图象上, ∴ k 2=1×6=6. --------1分 ∴ a ×3=6,a =2. ∴B (2,3).由点A (1,6),B (2,3)也在直线y=k 1x+b 上, 得⎩⎨⎧=+=+,32,611b k b kC DxyOEPA BMOA BCDE解得k 1=-3.∴k 1=-3, k 2=6. -----------------2分 (2) 设点P 的坐标为(m,n ). 依题意,得21×3(m +2+m -2)=18,m =6. -----------------3分 ∴ C (6,3),E (6,0). ∵ 点P 在反比例函数y =x6的图象上, ∴ n =1. ------------------4分 ∴PE :PC =1:2 . ------------------5分22.(本小题满分5分)解: (1)设AD =x ,由题意得,BG=x -2,CG=x-3. 在Rt △BCG 中,由勾股定理可得 222(2)(3)5x x -+-=. 解得 6x =. --------------2分(2)参考小萍的做法得到四边形AEGF ,∠EAF=60°,∠EGF=120°,∠AEG=∠AFG= 90°,AE=AF=AD=4. 连结EF ,可得 △AEF 为等边三角形. ∴ EF=4.∴ ∠FEG=∠EFG= 30°. ∴ EG=FG.在△EFG 中,可求,433EG =. ∴△EFG 的周长=BG+CG+BC=BG+CG+EB+FC=2EG=833. ---5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分) 解: 由方程(m -1)x 2-(2m -1)x +2+xm=0可得)1(22)1(4)12()12(2-⨯-⨯--±--=m m m m x =)1(2)32(12)1(2)32()12(2-+±-=--±-m m m m m mOxyGF ED CBA111-=m x ,.22=x ∵21,x x 均为正整数,m 也是整数, ∴m =2. ----------3分 (2)由(1)知x 2-3x +2+x2=0. ∴x 2-3x +2= -x2. 画出函数y = x 2-3x +2,y = -x2的图象,---------6分 由图象可知,两个函数图象的交点个数是1. ---------7分24. (本小题满分7分)(1)△EPF 为等边三角形. --------------1分 (2)设BP=x ,则CP =6-x.由题意可 △BEP 的面积为238x . △CFP 的面积为23(6)2x -. △ABC 的面积为93. 设四边形AEPF 的面积为y. ∴ 93y =-238x 23(6)2x --=25363938x x -+-. 自变量x 的取值范围为3<x <6. --------------4分(3)可证△EBP ∽△PCF.∴BP BECF CP=. 设BP=x , 则 (6)8x x -=. 解得 124,2x x ==.∴ PE 的长为4或23. --------------7分25.(本小题满分8分)解:(1)依题意,可知 C(0,8),则B(4,0) 将A(-2,0),B(4,0)代入 y=ax 2+bx +8,初三数学一模试题(包含答案)11 / 11⎩⎨⎧=++=+-.08416,0824b a b a 解得⎩⎨⎧=-=.2,1b a 228y x x ∴=-++配方得y2(1)9x =--+,顶点D (1,9). ---------3分 (2)假设满足条件的点P 存在,依题意设(2)P t ,, 由(08)(19)C D ,,,求得直线CD 的解析式为8y x =+, 它与x 轴的夹角为45. 过点P 作PN ⊥y 轴于点N.依题意知,∠NPO=30°或∠NPO=60°.∵PN=2,∴ON= 332或23.∴存在满足条件的点P ,P 的坐标为(2,332 )和(2,23).-----------6分 (3)由上求得(80)(412)E F -,,,.当抛物线向上平移时,可设解析式为228(0)y x x m m =-+++>. 当8x =-时,72y m =-+. 当4x =时,y m =.720m ∴-+≤或12m ≤.由题意可得m 的范围为072m ∴<≤.∴ 抛物线最多可向上平移72个单位. -----------8分FP 2M 2N 2P 1N 1M 1HABOxy CD11E。

相关文档
最新文档