高中物理电磁感应知识点汇总精编版

合集下载

高中物理《电磁感应》核心知识学习总结要点归纳

高中物理《电磁感应》核心知识学习总结要点归纳

高中物理《电磁感应》核心知识点归纳一、电磁感应现象1、产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

2、感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

3、关于磁通量变化在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有:①S、α不变,B改变,这时②B、α不变,S改变,这时③B、S不变,α改变,这时二、楞次定律1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。

(1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。

(2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。

又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。

磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。

(3)从“阻碍自身电流变化”的角度来看,就是自感现象。

自感现象中产生的自感电动势总是阻碍自身电流的变化。

2、实质:能量的转化与守恒3、应用:对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。

“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。

“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。

高考物理电磁感应知识点归纳

高考物理电磁感应知识点归纳

高考物理电磁感应知识点归纳高考物理电磁感应知识点归纳1.电磁感应现象电磁现象:利用磁场产生电流的现象称为电磁感应,产生的电流称为感应电流。

(1)产生感应电流的条件:通过闭合电路的磁通量发生变化,即0。

(2)产生感应电动势的条件:无论回路是否闭合,只要通过线圈平面的磁通量发生变化,线路中就会产生感应电动势。

导体中产生感应电动势的部分相当于电源。

(3)电磁感应的本质是产生感应电动势。

如果回路闭合,会有感应电流;如果回路不闭合,只会有感应电动势而没有感应电流。

2.磁通量(1)定义:磁感应强度b与垂直于磁场方向的面积s的乘积称为通过这个表面的磁通量,定义公式为=BS。

如果面积S不垂直于B,则B应乘以垂直于磁场方向的投影面积S,即=BS,SI单位:Wb。

在计算磁通量时,应该是通过某一区域的磁感应线的净数量。

每张脸都有正面和背面;当磁感应线从表面的正方向穿透时,通过表面的磁通量为正。

相反,磁通量是负的。

磁通量是穿过正面和背面的磁感应线的代数和。

3.楞次定律(1)楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于感应电流方向的一般判断,而右手定则只适用于剪线时磁感应线的运动,用右手定则比楞次定律更容易判断。

(2)理解楞次定律(1)谁阻碍谁——感应电流的磁通量阻碍了感应电流的磁通量。

阻碍——阻碍的是通过回路的磁通量的变化,而不是磁通量本身。

如何阻碍——当一次磁通增加时,感应电流的磁场方向与一次磁场方向相反;当一次磁通量减少时,感应电流的磁场方向与一次磁场的方向相同,即,一次磁通量增加,一次磁通量减少。

阻塞-阻塞的结果不是停止,而是增加和减少。

(3)楞次定律的另一种表述:感应电流总是阻碍其产生的原因,表现形式有三种:(1)阻碍原始磁通量的变化;阻碍物体之间的相对运动;阻止一次电流(自感)的变化。

4.法拉第电磁感应定律电路中感应电动势的大小与通过电路的磁通量的变化率成正比。

表达式E=n/t当导体切割磁感应线时,感应电动势公式为E=BLvsin。

高中物理:磁场 电磁感应知识点总结

高中物理:磁场 电磁感应知识点总结

高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。

2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。

3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。

此外,磁场还可以产生电能,为机器提供动力。

二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。

2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。

3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。

高中物理的知识点:电磁感应

高中物理的知识点:电磁感应

高中物理的知识点:电磁感应高中物理的知识点:电磁感应高中物理的知识点:电磁感应1.[感应电动势的大小计算公式]1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}2)E=BLV垂(切割磁感线运动){L:有效长度(m)}3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}2.磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),&Delta 高中化学;I:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化; (3)单位换算:1H=103mH=106μH。

(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

高一物理教案匀速直线运动的图象教学目的:1.会认识图象;理解匀速直线运动图象的意义;会画简单的图象;会利用图象求位移和速度。

2.了解用图象来处理实验数据,探索物理规律的研究。

重点、难点:理解匀速直线运动的图象的物理意义。

教具:气垫导轨(包括气源和滑块),J0201-1型数字计时器三台,光电门四个,放大器(自制)一个,米尺,三角板。

教学过程:[上节内容,引入新课] 匀速直线运动速度公式v=s/t和位移公式s=vt 指出:物体的运动规律除了用公式来表示外,还可以用图象来表示。

怎样用图象来表示物体的运动规律?请看下面的例子。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。

2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。

1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。

高中物理 电磁感应 知识点归纳[汇编]

高中物理 电磁感应 知识点归纳[汇编]

高中物理电磁感应知识点归纳[汇编]电磁感应是指导体内部的自由电子在磁场作用下发生的运动所产生的电动势的现象。

以下是针对电磁感应的知识点归纳。

1. 电磁感应原理当导体在磁场中运动时,导体内部的自由电子将发生运动,并在导体两端产生电动势。

这种现象被称为电磁感应。

电磁感应原理是法拉第电磁感应定律,它描述了磁场和电场之间的相互作用。

2. 磁通量磁通量是磁场通过某一平面的量度。

磁通量的单位是韦伯(Wb),它等于磁场的强度在时间上的积分。

如果随着时间而改变的磁场穿过一个闭合的线圈,该线圈内将会产生一个电动势。

此时,电动势与磁通量的改变率成正比。

3. 法拉第电磁感应定律法拉第电磁感应定律是指一个变化的磁场穿过一个闭合电路时,该电路中将会产生电动势。

电动势的大小和磁场的变化率成正比。

若闭合电路中还存在电阻,则可产生电流。

电磁感应有着广泛的应用,如电磁感应式发电、变压器、感应加热、感应炉、电感传感器等。

其中,电磁感应式发电是最广泛应用的电磁感应原理。

5. 感应电动势感应电动势是指导体内部的自由电子在磁场作用下运动所产生的电动势。

感应电动势大小与磁通量变化率成正比。

若磁通量不变,则感应电动势为零。

感应电动势的方向遵循楞次定律。

当导体在变化的磁场中运动时,产生的感应电动势遵循楞次定律:感应电动势的方向是这样的,即它的磁作用面积的方向与感应电流方向构成右手法则,并且感应电动势方向与磁场的变化方向相反。

若导体不断旋转,则电动势的方向将始终相同,即感应电动势的方向与导体运动的轴线相垂直。

为了研究电磁感应现象,可以进行一些简单的实验。

例如,在一个磁场中放置一个闭合线圈,使它在磁场中旋转。

当线圈旋转时,将会产生一个感应电动势。

这个电动势可以通过连接电阻来产生电流。

总之,了解这些基本的电磁感应知识点是理解该领域的关键。

它们不仅是高中物理的重要部分,也是应用于电力和电子工程的基础。

高三物理《电磁感应》知识点归纳总结

高三物理《电磁感应》知识点归纳总结

高三物理《电磁感应》知识点归纳总结高三物理《电磁感应》知识点归纳总结在平平淡淡的学习中,很多人都经常追着老师们要知识点吧,知识点就是一些常考的内容,或者考试经常出题的地方。

想要一份整理好的知识点吗?以下是店铺精心整理的高三物理《电磁感应》知识点归纳总结,欢迎大家分享。

1.[感应电动势的大小计算公式]1)E=nΔ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,Δ/Δt:磁通量的变化率}2)E=BLV垂(切割磁感线运动){L:有效长度()}3)E=nBSω(交流发电机最大的感应电动势){E:感应电动势峰值}4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(/s)}2.磁通量=BS{:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(2)}3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}4.自感电动势E自=nΔ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103H=106μH。

(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

高考物理电磁感应知识点1.电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即Δ≠0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

【高中物理】高考物理电磁感应知识点总结

【高中物理】高考物理电磁感应知识点总结

【高中物理】高考物理电磁感应知识点总结展开全文一、知识网络二、知识点归纳1、电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。

这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。

2、电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。

电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。

3、电磁感应发现的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。

②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。

③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。

4、对电磁感应的理解:电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的。

只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。

引起电流的原因概括为五类:① 变化的电流。

② 变化的磁场。

③ 运动的恒定电流。

④ 运动的磁场。

⑤ 在磁场中运动的导体。

5、磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。

对磁通量Φ的说明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。

6、产生感应电流的条件:一是电路闭合。

二是磁通量变化。

7、楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

8、楞次定律的理解:① 感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。

② “阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。

电磁感应高中物理知识点

电磁感应高中物理知识点

电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。

电磁感应是电磁学的重要基础,具有广泛的应用。

2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。

它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。

3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。

磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。

4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。

根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。

楞次圈定律是描述电磁感应中感应电动势的方向的定律。

根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。

5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。

根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。

6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。

涡流会在导体内部产生能量损耗,称为涡流损耗。

涡流损耗的大小与导体特性、磁场强度、频率等因素有关。

7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。

互感的大小与线圈的匝数、磁场强度等因素有关。

自感是指线圈中自身磁场变化所产生的感应电动势。

自感的大小与线圈的匝数、磁场强度等因素有关。

8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。

它们的原理都是利用电磁感应现象。

以上是电磁感应的高中物理知识点的简要介绍。

电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。

希望这份文档能对你有所帮助!。

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。

(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。

二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。

产生电动势的那部分导体相当于电源。

2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。

3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。

产生感应电动势的那部分导体相当于电源。

【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。

2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。

②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

高中物理-电磁感应-知识点归纳

高中物理-电磁感应-知识点归纳

电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。

(2)由电磁感应现象产生的电流,叫做感应电流。

物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。

....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。

(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。

(3)磁场强度B变化或有效面积S变化。

(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。

(2)“运动不一定切割,切割不一定生电”。

导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。

三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。

从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。

(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。

(4)“阻碍”的形式.1.阻碍原磁通量的变化,即“增反减同”。

2.阻碍相对运动,即“来拒去留”。

3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。

部编版高中物理必修三第十三章电磁感应与电磁波初步重点知识归纳

部编版高中物理必修三第十三章电磁感应与电磁波初步重点知识归纳

(名师选题)部编版高中物理必修三第十三章电磁感应与电磁波初步重点知识归纳单选题1、两段材料不同、横截面积相同的均匀导线a和b,其长度分别为2m和1m。

串联在电路中时,沿长度方向电势变化如图所示,则a、b两种材料的电阻率之比为()A.1:2B.1:4C.2:1D.4:1答案:B有图可知导线a两端电压为U a=6V−4V=2V导线b两端电压为U b=4V−0V=4V两导线串联,可知通过两导线的电流相等,根据欧姆定律可知两导线的电阻之比为R a R b =U aU b=12根据电阻定律R=ρl S可得ρ=RS l两导线的横截面积相等,则a、b两种材料的电阻率之比为ρa ρb =R aR b⋅l bl a=12×12=14B正确,ACD错误。

故选B。

2、一个标有“220V、60W”的白炽灯泡,两端的电压由零逐渐增大到220V。

在此过程中,灯泡两端的电压U 和通过灯泡的电流I的关系图线是图中的哪一个?()A.B.C.D.答案:B由题意可知白炽灯泡上的电压U由零逐渐增大到220V时,白炽灯泡的温度不断升高,电阻变大,由电阻的定义式R=U I可知电阻等于图线上的点与原点连线的斜率,电阻一直增大,斜率一直增大,故B正确,ACD错误。

故选B。

3、有研究发现,某神经细胞传递信号时,离子从细胞膜一侧流到另一侧形成跨膜电流。

若将该细胞膜视为1×10-8F的电容器,在4ms内细胞膜两侧的电势差从-70mV变为30mV,则该过程中跨膜电流的平均值为()A.1.5×10-7AB.2×10-7AC.2.5×10-7AD.5×10-7A答案:C电势差为-70mV时电荷量为Q1=CU1=7×10−10C电势差为30mV时电荷量为Q2=CU2=3×10−10C由于电势差从-70mV变为30mV,则电容器中电荷量线中和后反向充电,则移动的电荷量为Q=Q1+Q2=1.0×10−9C 则该过程中跨膜电流的平均值为I=Qt=2.5×10−7A故选C。

高中物理重点——电磁感应知识点及练习

高中物理重点——电磁感应知识点及练习

高中物理重点——电磁感应知识点及练习一、电磁感应基本概念1. 电磁感应的基本原理2. 法拉第电磁感应定律3. 洛伦兹力的概念练习题:1. 一根长度为20 cm 的导线以10 m/s 的速度进入一个磁感应强度为0.5 T 的匀强磁场中,导线的两端产生的感应电动势为多少?答案:1 V2. 一个载流导体绕着垂直于磁场方向的轴旋转,导体两端产生的感应电动势的大小为导体长度乘以什么?答案:磁感应强度3. 当磁通量密度变化率为200 T/s 时,一个线圈内部产生的感应电动势为20 V,此时线圈中的匝数为多少?答案:100二、法拉第电磁感应定律应用1. 电动势的方向和大小2. 电磁感应的应用:感应电流和感应电磁铁3. 磁场中的动生电现象:电磁感应现象和劳埃德力练习题:1. 一个长度为25 cm 的导体被放置在一个磁感应强度为0.2 T 的匀强磁场中,且在导体的两端施加一共 2 A 的电流,求该导体受到的安培力大小为多少?答案:0.25 N2. 在一个长度为10 cm 的导体内部施加一个0.5 T 的磁场,导体稳定地保持在匀强磁场中,当导体的长度与磁场的夹角为30 度时,导体内部的自感系数为多少?答案:0.00125 H3. 一个宽度为10 cm,长度为20 cm,大约0.5 毫米厚的铜片在磁感应强度为0.1 T 的恒定磁场中以 5 m/s 的速度向下运动,求铜片两端感应的电动势大小为多少?答案:1 V三、电磁感应现象与电磁波1. 电磁波的基本特征和传播方式2. 波长和频率的关系及其应用3. 电磁波的反射、折射和衍射现象练习题:1. 某广播电台的发射频率为100 MHz,求其波长的大小为多少?答案:3 m2. 一台微波炉的工作频率为2.45 GHz,求其波长的大小为多少?答案:0.12 m3. 一个频率为500 MHz 的电磁波垂直入射到一种材质中,该材质的折射率为 1.5,求折射后的电磁波的频率为多少?答案:333.3 MHz总结:电磁感应是高中物理中的重要知识点,包括电磁感应的基本概念、法拉第电磁感应定律应用以及电磁感应现象与电磁波等内容。

高考物理中电磁感应的考点和解题技巧有哪些

高考物理中电磁感应的考点和解题技巧有哪些

高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。

理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。

一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。

其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。

这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。

2、楞次定律楞次定律用于判断感应电流的方向。

其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。

3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。

在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。

4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。

例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。

在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。

5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。

例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。

6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。

要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。

部编版高中物理必修三第十三章电磁感应与电磁波初步基础知识点归纳总结

部编版高中物理必修三第十三章电磁感应与电磁波初步基础知识点归纳总结

(名师选题)部编版高中物理必修三第十三章电磁感应与电磁波初步基础知识点归纳总结单选题1、一根横截面积为S的铜导线,通过的电流为I。

已经知道铜的密度为ρ,铜的摩尔质量为M,电子电荷量为e,阿伏加德罗常数为N A,设每个铜原子只提供一个自由电子,则铜导线中自由电子定向移动速率为()A.MIρN A Se B.MN AρSeC.M AMρSeD.M A SeMρ答案:A设自由电子定向移动的速率为v,导线中自由电子从一端定向移到另一端所用时间为t,对铜导体研究:每个铜原子可提供一个自由电子,则铜原子数目与自由电子的总数相等,为n=ρSvtMN A,t时间内通过导体截面的电荷量为q=ne,则电流强度为I=qt=ρSveN AM解得v=MI ρSN A e故选A。

2、家用电子调光灯的调光功能是用电子线路将输入的正弦交流电压的波形截去一部分来实现的,截去部分后通过调光灯的电流随时间的变化如图所示,则下列说法正确的是()A.这也是一种交流电B.电流的变化周期是0.01 sC.电流的有效值是1 AD.电流通过100 Ω的电阻时,1 s内产生的热量为200 J答案:CA.交流电的特点是电流方向变化,而题图中电流不是交流电,故A错误;B.根据图像可得电流的变化周期是0.02s,故B错误;C.根据有效值的定义得(I√2)2R⋅T2=I2RT代入数据解得I=1A故C正确;D.电流通过100Ω的电阻时,1s内产生热量为Q=I2Rt=100J故D错误。

故选C。

3、某同学要测量一均匀新材料制成的圆柱体的电阻率ρ,步骤如下:用多用电表的电阻“×100”挡,按正确的操作步骤测此圆柱体的电阻,表盘的示数如图丙,则该电阻的阻值约为___________Ω;()A.2000B.2100C.2200D.2400答案:C欧姆表读数是表盘读数乘以挡位倍率,图中读数为22Ω×100=2200ΩABD错误,C正确。

故选C。

4、下列关于物理量和物理单位的说法,正确的是()A.s、m、g是基本单位,也是国际制单位,全世界通用B.物理学中也有一些物理量没有单位C.电荷量的单位库仑(C)是电学中的基本单位D.只要科学界的科学权威们统一意见,可以设立更多的基本单位答案:BA.s、m、g是基本单位,g不是国际制单位,A错误;B.物理学中动摩擦因数是没有单位的,B正确;C.电学中的基本单位是电流的单位A(安培),C错误;D.基本单位的个数是由现有物理量之间的关系确定的,不会人为定的,不能多也不能少,D错误。

(word完整版)高中物理电磁感应专题复习

(word完整版)高中物理电磁感应专题复习

高考综合复习——电磁感应专题复习一电磁感应基础知识、自感和互感编稿:郁章富审稿:李井军责编:郭金娟总体感知知识网络考纲要求内容要求电磁感应现象磁通量法拉第电磁感应定律楞次定律自感、涡流I I II II I命题规律1.从近五年的高考试题可以看出,本专题内容是高考的重点,每年必考,命题频率较高的知识点有:感应电流的产生条件、方向判断和感应电动势的计算;电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流(或感应电动势)的图象问题,在高考中时常出现。

2.本专题在高考试卷中涉及的试题题型全面,有选择题、填空题和计算题,选择题和填空题多为较简单的题目,计算题试题难度大,区分度高,能很好地考查学生的能力,备受命题专家的青睐。

今后高考对本专题内容的考查可能有如下倾向:①判断感应电流的有无、方向及感应电动势的大小计算仍是高考的重点,但题目可能会变得更加灵活。

②力学和电学知识相结合且涉及能量转化与守恒的电磁感应类考题将继续扮演具有选拔性功能的压轴题。

复习策略1.左手定则与右手定则在使用时易相混,可采用“字形记忆法”:(1)通电导线在磁场中受安培力的作用,“力”字的最后一撇向左,用左手定则;(2)导体切割磁感线产生感应电流,“电”字最后一钩向右,用右手定则;总之,可简记为力“左”电“右”。

2.矩形线框穿越有界匀强磁场问题,涉及楞次定律(或右手定则)、法拉第电磁感应定律、磁场对电路的作用力、含电源电路的计算等知识,综合性强,能力要求高,这也是命题热点。

3.电磁感应图象问题也是高考常见的题型之一;滑轨类问题是电磁感应中的典型综合性问题,涉及的知识多,与力学、静电场、电路、磁场及能量等知识综合,能很好的考察考生的综合分析能力。

本章知识在实际中应用广泛,如日光灯原理、磁悬浮原理、电磁阻尼、超导技术应用等,有些问题涉及多学科知识,不可轻视。

第一部分电磁感应现象、楞次定律知识要点梳理知识点一——磁通量▲知识梳理1.定义磁感应强度B与垂直场方向的面积S的乘积叫做穿过这个面积的磁通量,。

最新精编高中人教版高中物理高考必备知识点法拉第电磁感应定律

最新精编高中人教版高中物理高考必备知识点法拉第电磁感应定律

法拉第电磁感应定律『夯实基础知识』1、法拉第电磁感应定律: 在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变率成正比。

公式: t n E ∆∆ϕ=,其中为线圈的匝。

法拉第电磁感应定律的解(1)tn ∆∆ϕ=E 的两种基本形式:①当线圈面积S 不变,垂直于线圈平面的磁场B 发生变时,t BS nE ∆∆=;②当磁场B 不变,垂直于磁场的线圈面积S 发生变时,t SB n E ∆∆=。

(2)感应电动势的大小取决于穿过电路的磁通量的变率t ∆∆ϕ,与φ的大小及△φ的大小没有必然联系。

(3)若t ∆∆ϕ为恒定(如:面积S 不变,磁场B 均匀变,k tB =∆∆,或磁场B 不变,面积S 均匀变,'=∆∆k t S ),则感应电动势恒定。

若t ∆∆ϕ为变量,则感应电动势E 也为变量,t n E ∆∆ϕ=计算的是△时间内平均感应电动势,当△→0时,t n E ∆∆ϕ=的极限值才等于瞬时感应电动势。

2、磁通量ϕ、磁通量的变ϕ∆、磁通量的变率t∆∆ϕ (1)磁通量ϕ是指穿过某面积的磁感线的条,计算式为θϕsin BS =,其中θ为磁场B 与线圈平面S 的夹角。

(2)磁通量的变ϕ∆指线圈中末状态的磁通量2ϕ与初状态的磁通量1ϕ之差,12ϕϕϕ-=∆,计算磁通量以及磁通量变时,要注意磁通量的正负。

(3)磁通量的变率。

磁通量的变率t∆∆ϕ是描述磁通量变快慢的物量。

表示回路中平均感应电动势的大小,是t -ϕ图象上某点切线的斜率。

t ∆∆ϕ与ϕ∆以及ϕ没有必然联系。

3、对公式E =Bv 的研究(1)公式的推导取长度为1的导体棒b ,强度垂直于磁场方向放在磁感强度为B 的匀强磁场中,当棒以速度v 做垂直切割磁感线运动时,棒中自由电子就将受到洛仑兹力f b =vB 的作用,这将使的、b 两端分别积累起正、负电荷而在棒中形成电场,于是自由电子除受f b 作用外又将受到电场力f c =E ,开始、b 两端积累的电荷少,电场弱,f c 小,棒两端积累的电荷继续增加,直至电场力与洛仑兹力平衡:f c =f B 。

高二物理电磁感应重点必考知识点

高二物理电磁感应重点必考知识点

高二物理电磁感应重点必考知识点电磁感应是高中物理中的重要内容之一,也是高考物理必考的知识点。

掌握好电磁感应的理论与应用,对于学生来说至关重要。

本文将介绍高二物理电磁感应的重点必考知识点,帮助同学们更好地应对考试。

一、法拉第电磁感应定律法拉第电磁感应定律是电磁感应理论中最重要的定律之一。

它的形式可以表达为:电磁感应电动势等于导线内磁感应强度的变化率乘以导线的长度。

根据法拉第电磁感应定律,当导体与磁场相对运动时,导体内将产生感应电动势。

二、楞次定律楞次定律是在法拉第电磁感应定律的基础上得出的。

它对于电磁感应现象的解释起到了重要作用。

楞次定律可以表述为:感应电流的方向与产生感应电流的磁场变化方向相反,通过改变磁场方向或导体运动方向可以改变感应电流的方向。

三、感应电流与电动势的关系根据法拉第电磁感应定律,感应电动势与导线的长度和磁感应强度的变化率有关。

因此,我们可以通过改变导线长度、改变磁场强度或改变磁场变化的速率来改变感应电流的大小。

四、电磁感应中的能量转化电磁感应过程中,磁场通过导体内感应电流的产生将自身能量转化为电能。

同样地,由于感应电流在导体内有阻力,导体内电能也会转化为热能,导致电阻发热。

五、感应电磁场的产生在电磁感应过程中,除了产生感应电动势和感应电流外,还会产生感应磁场。

感应磁场的方向可以根据楞次定律来确定,即感应磁场的方向与产生感应电动势的磁场变化方向相反。

六、电磁感应的应用电磁感应有许多重要的应用,如发电机、变压器、感应磁罗盘等。

发电机是将机械能转化为电能的装置,利用了电磁感应的原理。

变压器则利用了电磁感应的电磁感应定律和法拉第电磁感应定律,用于改变电压大小。

感应磁罗盘则利用感应电流产生的磁场与地磁场相互作用,指示出地磁场的方向。

总结:电磁感应是高中物理中的重点知识,掌握好这一部分内容对于备战高考至关重要。

本文介绍了高二物理电磁感应的重点必考知识点,包括法拉第电磁感应定律、楞次定律、感应电流与电动势的关系、能量转化、感应电磁场的产生以及电磁感应的应用。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.(1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.(2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.(3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流。

2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化。

理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况)确定感应磁场(B 感方向)判断感应电流(I 感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理电磁感应知识点汇总精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.(1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.(2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.(3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流。

2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化。

理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况)确定感应磁场(B 感方向)判断感应电流(I 感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场。

2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值,即ΔΦ=|Φ2-Φ1|.【例】面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ=.【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsin θ减小到零,再由零增大到负向BScos θ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ=-BS(cos θ+sin θ)【答案】-BS(cos θ+sin θ)【点拨】磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量. 二、感应电流方向的判定:方法一:右手定则(部分导体切割磁感线)。

方法二:楞次定律【例】某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是(D) →→bB.先a →→b,后b →→a C.先b →→aD.先b →→a,后a →→b第二部分法拉第电磁感应定律一、感应电动势:在电磁感应现象中产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源,其电阻相当于电源内电阻.电动势是标量,感应电动势的方向就是电源内部电流的方向,由电源的负极指向电源的正极。

二、感应电动势的大小1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:nt∆ΦE =∆图9-1-3图9-1-1公式理解:①上式适用于回路中磁通量发生变化的情形,回路不一定闭合.②感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比.要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③当∆Φ由磁场变化引起时,t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.④由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。

2.导体切割磁感线产生的感应电动势公式:θsin Blv E =,对公式的理解如下:①公式只适用于一部分导体在匀强磁场中做切割磁感线运动时产生的感应电动势的计算,其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直(实际应用中一般只涉及此种情况).②若θ=900,即B ⊥v 时,公式可简化为E=BL v ,此时,感应电动势最大;若θ=00,即B ∥V 时,导体在磁场中运动不切割磁感线,E=0.③若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定平面的垂线上的投影长度.④公式E=BL v 中,若v 为一段时间内的平均速度,则E 亦为这段时间内感应电动势的平均值;若v 为瞬时速度,则E 亦为该时刻感应电动势的瞬时值.⑤直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L v ω+=,所以ω221Bl v Bl E==-3.反电动势:反电动势对电路中的电流起削弱作用.三、几个总结:重点难点解析一、公式nt∆ΦE =∆和sin Lv θE =B 的比较=n t∆∆Φ求的是回路中Δt 时间内的平均电动势.=BL v sin θ既能求导体做切割磁感线运动的平均电动势,也能求瞬时电动势.v 为平均速度,E 为平均电动势;v 为瞬时速度,E 为瞬时电动势.其中L 为有效长度.(1)E=BL v 的适用条件:导体棒平动垂直切割磁感线,当速度v 与磁感线不垂直时,要求出垂直于磁感线的速度分量.(2)122L ωE =B 的适用条件:导体棒绕一个端点垂直于磁感线匀速转动切割磁感线.(3)E=nBS ωsin ωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt 3.公式nt∆ΦE =∆和E=BL v sin θ是统一的,前者当Δt →0时,E 为瞬时值,后者v 若代入平均速度v ,则求出的是平均值.一般说来,前者求平均感应电动势更方便,后者求瞬时电动势更方 便.二、Ф、ΔФ、ΔФ/Δt 三者的比较【例】一个200匝、面积为20cm 2的线圈,放在磁场中,磁场的方向与线圈平面成300角,若磁感应强度在内由增加到,则始末通过线圈的磁通量分别为Wb 和Wb;在此过程中穿过线圈的磁通量的变化量为Wb;磁通量的平均变化率为Wb/s;线圈中的感应电动势的大小为V.【解析】始、末的磁通量分别为:Φ1=B 1Ssin θ=×20×10-4×1/2Wb=10-4Wb Φ2=B 2Ssin θ=×20X10-4×1/2Wb=5×10-4Wb 磁通量变化量ΔΦ=Φ2-Φ1=4×10-4Wb磁通量变化率05.01044-=∆∆Φx t Wb/s=8×10-3Wb/s 感应电动势大小nt∆ΦE =∆=200×8×10-3V=【点拨】Φ、ΔΦ、ΔΦ/Δt 均与线圈匝数无关,彼此之间也无直接联系;感应电动势Ε的大小取决于ΔΦ/Δt 和线圈匝数n,与Φ和ΔΦ无必然联系. 三、直导体在匀强磁场中转动产生的感应电动势直导体绕其一点在垂直匀强磁场的平面内以角速度ω转动,切割磁感线,产生的感应电动势的大小为: (1)以中点为轴时Ε=0(2)以端点为轴时122L ωE =B (平均速度取中点位置线速度v =ωL/2)(3)以任意点为轴时122()122L L ωE =B -(与两段的代数和不同)第三部分互感和自感涡流一、互感与互感电动势1.互感现象:一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象.2.互感电动势:在互感现象中产生的电动势叫做互感电动势. 二、自感现象1.自感现象:由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象.2.自感电动势(1).定义:在自感现象中产生的电动势,叫做自感电动势. (2).作用:总是阻碍导体中原电流的变化.(3).自感电动势的方向:自感电动势总是阻碍导体中原电流的变化.即当电流增大时,自感电动势阻碍电流增大;当电流减小时,自感电动势阻碍电流减小. (4).自感电动势的大小:Lt∆I E =∆,自感电动势的大小与电流的变化率成正比,其中L 为自感系数.3.自感系数:自感系数也叫自感或电感.自感系数L 由线圈本身的特性决定.L 的大小与线圈的长度、线圈的横截面积等因素有关,线圈越长,单位长度的匝数越多,横截面积越大,自感系数L 越大.另外,若线圈中有铁芯,自感系数L 会大很多.4.自感现象与互感现象的区别和联系区别:(1)互感现象发生在靠近的两个线圈间,而自感现象发生在一个线圈导体内部; (2)通过互感可以把能量在线圈间传递,而自感现象中,能量只能在一个线圈中储存或释放. 联系:二者都是电磁感应现象.通电自感和断电自感的比较【例】如图9-3-6所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其 直流电阻忽略不计.当电键K 闭合时,下列说法正确的是() 比B 先亮,然后A 熄灭比A 先亮,然后B 逐渐变暗,A 逐渐变亮 、B 一齐亮,然后A 熄灭、B 一齐亮.然后A 逐渐变亮.B 的亮度不变 【正解】电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源,这样对整个回路而言相当于两个电源共同作用在同一个回图9-3-6图9-3-7路中.两个电源各自独立产生电流,实际上等于两个电流的叠加.根据上述原理可在电路中标出两个电源各自独立产生的电流的方向.图9-3-7a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图.由图可知在A灯处原电流与感应电流反向,故A灯不能立刻亮起来.在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流,故B灯比正常发光亮(因正常发光时电流就是原电流).随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A灯变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光,应选B.三、三、涡流1.涡流:当线圈的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的漩涡,把它叫做涡电流,简称涡流.特点:整块金属的电阻很小,涡流往往很大.四.电磁阻尼与电磁驱动(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.(2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动.注意:电磁阻尼与电磁驱动也是一种特殊的电磁感应现象,原理上都可以用楞次定律解释.五、电磁感应中的能量问题1.电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能量.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.解决这类问题的一般步骤:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向(2)画出等效电路,求出回路中电阻消耗电功率的表达式(3)分析导体机械能的变化,用动能定理或能量守恒关系,得到机械功率的改变所满足的方程。

相关文档
最新文档