平面向量的基本概念练习题
平面向量习题及答案
平面向量习题及答案【篇一:平面向量练习题集答案】>典例精析题型一向量的有关概念【例1】下列命题:①向量ab的长度与ba的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量ab与向量cd是共线向量,则a、b、c、d必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;ab与cd是共线向量,则a、b、c、d可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:①|a|=a?a;②(a?b) ?c=a? (b?c);③oa-ob=ba;④在任意四边形abcd中,m为ad的中点,n为bc的中点,则ab +=2;其中正确的个数为( )a.1b.2c.3d.4【解析】选d.| a|=a?a正确;(a?b) ?c≠a? (b?c); oa-ob=ba 正确;如下图所示,mn=++且mn=++,两式相加可得2mn=ab+dc,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线,即得(a+b)⊥(a-b).所以命题①③④⑤正确.题型二与向量线性运算有关的问题【例2】如图,abcd是平行四边形,ac、bd交于点o,点m在线段do上,且=,点n在线段oc上,且=,设=a, =b,试用a、b表示,,1313.【解析】在?abcd中,ac,bd交于点o,111所以==(-)a-b),222=2=2(+)=2(a+b).11又=,=, 331所以=ad+=b+ 31115=b(a-b)=a, 3266111=+=+3 4412==(a+b)a+b). 3323所以=- 21511=(a+b)-+)=a. 36626【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.所以? (+)=?0=0,故填0.题型三向量共线问题【例3】设两个非零向量a与b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:a,b,d三点共线;(2)试确定实数k,使ka+b和a+kb共线. 1【解析】(1)证明:因为=a+b,=2a+8b,=3(a-b),所以bd=bc+cd=2a+8b+3(a-b)=5(a+b)=5ab,所以ab, bd共线.又因为它们有公共点b,所以a,b,d三点共线.(2)因为ka+b和a+kb共线,因为a与b是不共线的两个非零向量,【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练3】已知o是正三角形bac内部一点,+2+3=0,则△oac的面积与△oab的面积之比是(3a. 2c.2 2b. 31d. 3 )【解析】如图,在三角形abc中, oa+2ob+3oc=0,整理可得oa+oc+2(ob+oc)=0.1令三角形abc中ac边的中点为e,bc边的中点为f,则点o在点f与点e连线的处,即oe=2of. 32由于ab=2ef,oe=,所以ab=3oe, 31s△oacoe?h2==.故选b. 3s△oabab?h4总结提高1.向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a与b共线同向时,|a+b|=|a|+|b|;当向量a与b共线反向时,|a+b|=||a|-|b||;当向量a与b不共线时,|a+b|<|a|+|b|.典例精析题型一平面向量基本定理的应用【例1】如图?abcd中,m,n分别是dc,bc中点.已知am=a,=b,试用a,b表示,ad与ac【解析】易知am=ad+dm 1=+, 21an=ab+bn=ab2ad, 1???a,??2即? ??1?b.?2?22所以=b-a),=2a-b). 332所以=+=a+b). 3【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知d为△abc的边bc上的中点,△abc所在平面内有一点p,满足++=0等于( ) 1b. 2c.1 d.2 1a. 3【解析】由于d为bc边上的中点,因此由向量加法的平行四边形法则,易知pb+pc=2pd,因此结合pa+bp+cp=0即得pa=2pd,因此易得p,a,d三点共线且d是pa=1,即选c.题型二向量的坐标运算【例2】已知a=(1,1),b=(x,1),u=a+2b,v=2a-b.(1)若u=3v,求x;(2)若u∥v,求x.【解析】因为a=(1,1),b=(x,1),所以u=(1,1)+2(x,1)=(1,1)+(2x,2)=(2x+1,3),v=2(1,1)-(x,1)=(2-x,1).(1)u=3v?(2x+1,3)=3(2-x,1)?(2x+1,3)=(6-3x,3),所以2x+1=6-3x,解得x=1.?2x?1??(2?x),?? 3????(2x+1)-3(2-x)=0?x=1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视.+|a141+b|2的最大值为.值为284.题型三平行(共线)向量的坐标运算【例3】已知△abc的角a,b,c所对的边分别是a,b,c,设向量m=(a,b),n=(sin b,sin a),p=(b-2,a-2).(1)若m∥n,求证:△abc为等腰三角形;【解析】(1)证明:因为m∥n,所以asin a=bsin b.由正弦定理,得a2=b2,即a=b.所以△abc为等腰三角形.a(b-2)+b(a-2)=0,所以a+b=ab.由余弦定理,得4=a2+b2-ab=(a+b)2-3ab,所以(ab)2-3ab-4=0.所以ab=4或ab=-1(舍去).113所以s△abc=absin c3. 222【点拨】设m=(x1,y1),n=(x2,y2),则①m∥n?x1y2=x2y1;②m⊥n?x1x2+y1y2=0.【变式训练3】已知a,b,c分别为△abc的三个内角a,b,c的对边,向量m=(2cosc-1,-2),n=(cos c,cos c+1).若m⊥n,且a+b=10,则△abc周长的最小值为( )a.10-3c.10-23b.10+53d.10+231【解析】由m⊥n得2cos2c-3cos c-2=0,解得cos c=-cos c=2(舍去),所以c2=a2+b2-2abcos 2【篇二:高中数学平面向量测试题及答案】选择题:1。
(完整版)平面向量基本概念练习题
(完整版)平面向量基本概念练习题第二章平面向量§2.1 平面向量的实际背景及基本概念班级___________姓名____________学号____________得分____________一、选择题1.下列物理量中,不能称为向量的是()A .质量B .速度C .位移D .力 2.设O 是正方形ABCD 的中心,向量AO OB CO OD u u u r u u u r u u u r u u u r 、、、是()A .平行向量B .有相同终点的向量C .相等向量D .模相等的向量3.下列命题中,正确的是()A .|a | = |b |?a = bB .|a |> |b |?a > bC .a = b ?a 与b 共线D .|a | = 0?a = 04.在下列说法中,正确的是()A .两个有公共起点且共线的向量,其终点必相同;B .模为0的向量与任一非零向量平行;C .向量就是有向线段;D .若|a |=|b |,则a =b5.下列各说法中,其中错误的个数为()(1)向量AB u u u r 的长度与向量BA u u u r 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A .2个B .3个C .4个D .5个 *6.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF u u u r 共线的向量有()A .2个B .3个C .6个D .7个二、填空题7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是_______________________.8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中,(1)与AO u u u r 相等的向量有_________________________;(2)与AO u u u r 共线的向量有_________________________;(3)与AO u u u r 模相等的向量有_______________________;(4)向量AO u u u r 与CO u u u r 是否相等?答:_______________.9.O 是正六边形ABCDEF 的中心,且AO =u u u r a ,OB =u u u r b ,AB =u u u r c ,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中:(1)与a 相等的向量有;(2)与b 相等的向量有;(3)与c 相等的向量有.*10.下列说法中正确是_______________(写序号)(1)若a 与b 是平行向量,则a 与b 方向相同或相反;(2)若AB u u u r 与CD u u u r 共线,则点A 、B 、C 、D 共线;(3)四边形ABCD 为平行四边形,则AB u u u r =CD u u u r ;(4)若a = b ,b = c ,则a = c ;(5)四边形ABCD 中,AB DC =u u u r u u u r 且||||AB AD =u u u r u u u r ,则四边形ABCD 为正方形;(6)a 与b 方向相同且|a | = |b |与a = b 是一致的;三、解答题11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?O A B C D E F12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1)是否存在共线向量?相等向量?模相等的向量?若存在,请一一举出.13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北600走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点(1)作出向量AB u u u r 、BC u u u r 、CD u u u r (1cm 表示200m );(2)求DA u u u r 的模.*14.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来;若它位于图中的P 点,则这只“马”第一步有几种可能的走法?它能否走若干步从A 点走到与它相邻的B 点处?。
平面向量练习题及答案
平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。
5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。
三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。
7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。
8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。
四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。
10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。
答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。
高考数学 平面向量的概念及线性运算、平面向量基本定理及坐标表示 高考真题
专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。
平面向量(附例题,习题及答案)
向量的线性运算一.教学目标1.理解向量的概念;2.掌握向量的线性运算;3。
理解向量线性运算的几何意义、向量共线的含义、平行向量基本定理;4。
理解平面向量基本定理,掌握平面向量的正交分解及其坐标表示、平面向量的坐标运算;5。
理解用坐标表示平面向量的共线条件。
二.知识清单1。
向量基本概念(1)向量的定义:既有又有称为向量;(2)向量的大小(或称模):有向线段的表示向量的大小;(3)零向量与单位向量:叫做零向量,叫做单位向量; (4)共线向量与相等向量:叫做共线向量(或平行向量),叫做相等向量。
2。
向量的线性运算(1)向量的加法a。
向量加法的三角形法则、平行四边形法则和多边形法则.b.向量加法满足的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
(2)向量的减法a。
定义:a—b=a+(—b),即减去一个向量相当于加上这个向量的相反向量.一个向量等于终点位置向量减始点位置向量,即AB=OB-OA.b。
三角形法则:“共始点,连终点,指向被减"。
(3)数乘向量a.定义:一般地,实数λ和向量a的乘积是一个向量,记作λa。
b.数乘向量满足的运算律:(λ+μ)a=λ(μa)=λ(a+b)=3。
向量共线的条件与轴上向量坐标运算(1)向量共线的条件平行向量基本定理:如果,则;反之,如果,且 ,则一定存在,使。
(2)轴上向量的坐标运算4. 向量的分解与向量的坐标运算(1)平面向量基本定理如果是一平面内的的向量,那么该平面内的任一向量a,存在,使。
(2)平面向量的正交分解定义: 把一个向量分解为,叫做把向量正交分解。
(3)向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个_______作为基底。
对于平面内的任一个向量,由平面向量基本定理可知,有且只有一对实数x,y使得____________,这样,平面内的任一向量a都可由 __________唯一确定,我们把有序数对________叫做向量的坐标,记作___________此式叫做向量的坐标表示,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.(4)向量的坐标运算向量坐标的加减与数乘若a=(a1,a2),b=(b1,b2),则a+b=(a1+b1,a2+b2),a-b=(a1-b1,a2—b2),λa=(λa1,λa2).(5)用平面向量坐标表示向量共线条件两个向量a, b平行的条件:a=λb,b≠0。
平面向量的基本概念及线性运算练习题(基础、经典、好用)
平面向量的基本概念及线性运算一、选择题1.(2013·湛江质检)若a +c 与b 都是非零向量,则“a +b +c =0”是“b ∥(a +c )”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.设P 是△ABC 所在平面内的一点,BC→+BA →=2BP →,则( ) A.P A →+PB→=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB→+PC →=0 3.下列命题中是真命题的是( )①对任意两向量a 、b ,均有:|a |-|b |<|a |+|b |;②对任意两向量a 、b ,a -b 与b -a 是相反向量;③在△ABC 中,AB→+BC →-AC →=0; ④在四边形ABCD 中,(AB→+BC →)-(CD →+DA →)=0. A .①②③ B .②④ C .②③④ D .②③4.已知A 、B 、C 三点共线,点O 在该直线外,若OB →=λOA →+μOC →,则λ+μ的值为( )A .0B .1C .2D .35.(2013·佛山调研)已知e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,则a 与b 共线的条件是( )A .λ=0B .e 2=0C .e 1∥e 2D .e 1∥e 2或λ=0二、填空题6.如图4-1-2所示,向量a -b =________(用e 1,e 2表示).图4-1-27.(2013·揭阳模拟)已知点O 为△ABC 外接圆的圆心,且OA→+OB →+OC →=0,则△ABC 的内角A 等于________.8.已知向量a ,b 是两个非零向量,则在下列四个条件中,能使a 、b 共线的条件是________(将正确的序号填在横线上).①2a -3b =4e ,且a +2b =-3e ;②存在相异实数λ、μ,使λa +μb =0;③xa +yb =0(实数x ,y 满足x +y =0);④若四边形ABCD 是梯形,则AB→与CD →共线. 三、解答题图4-1-39.(2013·清远调研)如图4-1-3所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,求实数m 的值. 10.设a ,b 是不共线的两个非零向量.(1)若OA→=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线. (2)若AB→=a +b ,BC →=2a -3b ,CD →=2a -kb ,且A 、C 、D 三点共线,求k 的值. 11.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →|AB→|+AC →|AC →|),λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点: ①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心.解析及答案一、选择题1.【解析】 若a +b +c =0,则b =-(a +c ),∴b ∥(a +c );若b ∥(a +c ),则b =λ(a +c ),当λ≠-1时,a +b +c ≠0,因此“a +b +c =0”是“b ∥(a +c )”的充分不必要条件.【答案】 A2.【解析】 由BC→+BA →=2BP →知,点P 是线段AC 的中点, 则PC →+P A →=0.【答案】 B3.【解析】 ①假命题.∵当b =0时,|a |-|b |=|a |+|b |.∴该命题不成立.②真命题,这是因为(a -b )+(b -a )=0,∴a -b 与b -a 是相反向量.③真命题.∵AB→+BC →-AC →=AC →-AC →=0. ④假命题.∵AB→+BC →=AC →,CD →+DA →=CA →, ∴(AB→+BC →)-(CD →+DA →)=AC →-CA →=AC →+AC →≠0, ∴该命题不成立.【答案】 D4.【解析】 因为A 、B 、C 三点共线,所以AB→=kAC →, ∴OB→-OA →=k (OC →-OA →),所以OB →=OA →+kOC →-kOA →, ∴OB→=(1-k )OA →+kOC →,又因为OB →=λOA →+μOC →,所以λ=1-k ,μ=k ,所以λ+μ=1. 【答案】 B5.【解析】 若e 1与e 2共线,则e 2=λ′e 1,∴a =(1+λλ′)e 1,此时a ∥b ,若e 1与e 2不共线,设a =μb ,则e 1+λe 2=μ·2e 1,∴λ=0,1-2μ=0.【答案】 D二、填空题6.【解析】 由图知,a -b =BA →=e 1+(-3e 2)=e 1-3e 2. 【答案】 e 1-3e 27.【解析】 由OA→+OB →+OC →=0,知点O 为△ABC 重心,又O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.【答案】 60°8.【解析】 由①得10a -b =0,故①对.②对.对于③当x =y =0时,a 与b 不一定共线,故③不对.若AB ∥CD ,则AB→与CD →共线,若AD ∥BC ,则AB →与CD →不共线,故④不对. 【答案】 ①②三、解答题9.【解】 如题图所示,AP→=AB →+BP →, ∵P 为BN 上一点,则BP→=kBN →, ∴AP→=AB →+kBN →=AB →+k (AN →-AB →), 又AN →=13NC →,即AN →=14AC →, 因此AP →=(1-k )AB →+k 4AC →, 所以1-k =m ,且k 4=211,解得k =811.则m =1-k =311.10.【解】 (1)证明 AB →=OB →-OA →=a +2b ,AC→=OC →-OA →=-a -2b . 所以AC→=-AB →,又因为A 为公共点, 所以A 、B 、C 三点共线.(2)AC→=AB →+BC →=(a +b )+(2a -3b )=3a -2b , 因为A 、C 、D 三点共线,所以AC→与CD →共线. 从而存在实数λ使AC →=λCD →,即3a -2b =λ(2a -kb ),解得λ=32,k =43,所以k =43.11.【解】 如图,记AM →=AB →|AB →|,AN →=AC →|AC→|,则AM →,AN →都是单位向量, ∴|AM→|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC . ∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →, ∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.。
高中数学同步练习题,平面向量的基本概念
平面向量的基本概念知识点梳理:1.向量:既有________,又有________的量叫向量.2.向量的几何表示:以A为起点,B为终点的向量记作________.3.向量的有关概念:(1)零向量:长度为__________的向量叫做零向量,记作______.(2)单位向量:长度为______的向量叫做单位向量.(3)相等向量:__________且__________的向量叫做相等向量.(4)相反向量:__________且__________的向量叫做相反向量.(5)平行向量(共线向量):向__________的________向量叫做平行向量,也叫共线向量.①记法:向量a平行于b,记作________.②规定:零向量与__________平行.同步练习题一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有()A.1个B.2个C.3个D.4个2.下列条件中能得到a=b的是()A.|a|=|b| B.a与b的方向相同C.a=0,b为任意向量D.a=0且b=03.下列说法正确的有()①方向相同的向量叫相等向量;②零向量的长度为0;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同.A.2个B.3个C.4个D.5个4.命题“若a∥b,b∥c,则a∥c”()A.总成立B.当a≠0时成立C.当b≠0时成立D.当c≠0时成立5.下列各命题中,正确的命题为()A.两个有共同起点且共线的向量,其终点必相同B.模为0的向量与任一向量平行C.向量就是有向线段D.|a|=|b|⇒a=b6.下列说法正确的是()A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线B .长度相等的向量叫做相等向量C .零向量长度等于0D .共线向量是在一条直线上的向量二、填空题7.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0;⑤a 与b 都是单位向量.其中能使a ∥b 成立的是________.(填序号)8.在四边形ABCD 中,AB →=DC →且|AB →|=|AD →|,则四边形的形状为________.9.下列各种情况中,向量的终点在平面内各构成什么图形.①把所有单位向量移到同一起点;②把平行于某一直线的所有单位向量移到同一起点;③把平行于某一直线的一切向量移到同一起点.①__________;②____________;③____________.10.如图所示,E 、F 分别为△ABC 边AB 、AC 的中点,则与向量EF →共线的向量有________________(将图中符合条件的向量全写出来).三、解答题11. 在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?12. 如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量;(2)写出与EF →的模大小相等的向量;(3)写出与EF →相等的向量.13. 如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的模相等的向量有多少个?(2)与a 的长度相等,方向相反的向量有哪些?(3)与a 共线的向量有哪些?(4)请一一列出与a ,b ,c 相等的向量.参考答案知识梳理1.大小 方向 2.AB →3.(1)0 0 (2)1 (3)长度相等 方向相同 (4)相同或相反 非零 ①a ∥b ②任一向量同步练习题1.D2.D3.A [②与⑤正确,其余都是错误的.]4.C [当b =0时,不成立,因为零向量与任何向量都平行.]5.B [由于模为0的向量是零向量,只有零向量的方向不确定,它与任一向量平行,故选B.]6.C [向量AB →∥CD →包含AB →所在的直线平行于CD →所在的直线和AB →所在的直线与CD →所在的直线重合两种情况;相等向量不仅要求长度相等,还要求方向相同;共线向量也称为平行向量,它们可以是在一条直线上的向量,也可以是所在直线互相平行的向量,所以A 、B 、D 均错.]7.①③④解析 相等向量一定是共线向量,①能使a ∥b ;方向相同或相反的向量一定是共线向量,③能使a ∥b ;零向量与任一向量平行,④成立.8.菱形解析 ∵AB →=DC →,∴AB 綊DC∴四边形ABCD 是平行四边形,∵|AB →|=|AD →|,∴四边形ABCD 是菱形.9.单位圆 相距为2的两个点 一条直线10.FE →,BC →,CB →解析 ∵E 、F 分别为△ABC 对应边的中点,∴EF ∥BC ,∴符合条件的向量为FE →,BC →,CB →.11.解 (1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(作图略).12.解 (1)因为E 、F 分别是AC 、AB 的中点,所以EF 綊12BC .又因为D 是BC 的中点, 所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →.(3)与EF →相等的向量有:DB →与CD →.13.证明 (1)∵AA ′→=BB ′→,∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→.又∵A 不在BB ′→上,∴AA ′∥BB ′.∴四边形AA ′B ′B 是平行四边形.∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|.∴△ABC ≌△A ′B ′C ′.(2)∵四边形AA ′B ′B 是平行四边形,∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|.∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.14.解 (1)与a 的模相等的向量有23个.(2)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →.(3)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(4)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO →,ED →,AB →.。
平面向量练习题及答案
平面向量练习题及答案平面向量练习题及答案在数学学科中,平面向量是一个非常重要的概念。
它不仅在几何学中有广泛的应用,还在物理学、工程学等领域中发挥着重要的作用。
掌握平面向量的基本概念和运算法则对于解决各种实际问题具有重要意义。
本文将为大家提供一些平面向量练习题及答案,希望能够帮助大家更好地理解和掌握这一概念。
1. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a + b的结果。
解答:向量a + b的结果可以通过将向量a和向量b的对应分量相加得到。
所以,向量a + b = (3 + (-1), -2 + 4) = (2, 2)。
2. 题目:已知向量a = (2, -5)和向量b = (4, 3),求向量a - b的结果。
解答:向量a - b的结果可以通过将向量a和向量b的对应分量相减得到。
所以,向量a - b = (2 - 4, -5 - 3) = (-2, -8)。
3. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的数量积。
解答:向量a与向量b的数量积可以通过将向量a和向量b的对应分量相乘,并将结果相加得到。
所以,向量a与向量b的数量积为3*(-1) + (-2)*4 = -3 - 8 = -11。
4. 题目:已知向量a = (2, -5),求向量a的模长。
解答:向量a的模长可以通过计算向量a的坐标分量的平方和的平方根得到。
所以,向量a的模长为√(2^2 + (-5)^2) = √(4 + 25) = √29。
5. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的夹角的余弦值。
解答:向量a与向量b的夹角的余弦值可以通过计算向量a与向量b的数量积与向量a和向量b的模长的乘积的商得到。
所以,向量a与向量b的夹角的余弦值为(-11) / (√(3^2 + (-2)^2) * √((-1)^2 + 4^2)) = -11 / (√13 * √17)。
平面向量专题复习练习(含解析)【最新】
14.已知 与 垂直,则实数 的值为()
A.1B. C.2D.
15.已知平面向量 , 满足 , ,且 ,则 ()
A.3B. C. D.5
16.已知向量 ,则向量 在向量 方向上的投影为()
A. B. C. D.
17.已知 , , =1,则向量 在 方向上的投影是()
A. B. C. D.1
2.下列命题正确的是()
A.单位向量都相等B.若 与 共线, 与 共线,则 与 共线
C.若 ,则 D.若 与 都是单位向量,则
3.在 中,点O满足 ,则 与 的面积比为()
A. B. C. D.
4.如图,在平行四边形 中,对角线 与 交于点 ,且 ,则 ()
A. B. C. D.
5.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则 ()
A. B. C. D.
【答案】D
6、如图, , , , ,若m= ,那么n=( )
A. B. C. D.
【解答】解:∵ ,故C为线段AB的中点,
故 = =2 ,∴ = ,
由 , ,
∴ , ,
∴ = ,
∵M,P,N三点共线,故 =1,当m= 时,n= ,故选:C
7、若向量a=(1,1),b=(-1,1),c=(4,2),则 c等于()
平面向量专题复习
一、基本概念与定理
1、定义:既有大小又有方向的量;向量的大小叫作向量的长度(或称模)
2、单位向量:长度等于1个单位的向量(与 同方向的单位向量为 )
3、零向量:长度为零的向量;其方向是任意的
4、平行、共线向量:同向或反向
5、相等向量:长度相等且方向相同的向量
6、相反向量:长度相等且方向相反的向量
平面向量的实际背景及基本概念课时练习
平面向量的实际背景及基本概念课时练姓名:1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功,其中不是向量的有( )A .1个B .2个C .3个D .4个2.在下列命题中,正确的是( )A .若|a |>|b |,则a >bB .若|a |=|b |,则a =bC .若a =b ,则a 与b 共线D .若a ≠b ,则a 一定不与b 共线3.设a ,b 为两个单位向量,下列四个命题中正确的是( )A. a =bB .若a ∥b ,则a =bC. a =b 或a =-bD .若a =c ,b =c ,则a =b4.设M 是等边△ABC 的中心,则AM →、MB →、MC →是( )A .有相同起点的向量B .相等的向量C .模相等的向量D .平行向量5.如右图,在四边形ABCD 中,其中AB →=DC →,则相等的向量是( )A.AD →与CB →B.OA →与OC →C.AC →与DB →D.DO →与OB → 6.如下图,ABCD 为边长为3的正方形,把各边三等分后,共有16个交点,从中选取两个交点作为向量,则与AC →平行且长度为22的向量个数是________.7.把平行于某一直线的一切向量平移到同一起点,则这些向量的终点构成的图形是__________.8.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0;⑤a与b 都是单位向量,其中能使a ∥b 成立的是________.9.如下图,E 、F 、G 、H 分别是四边形ABCD 的各边中点,分别指出图中:(1)与向量HG →相等的向量;(2)与向量HG →平行的向量;(3)与向量HG →模相等的向量;(4)与向量HG →模相等、方向相反的向量.10.一辆汽车从A 点出发向西行驶了100km 到达B 点,然后又改变方向向西偏北45°走了200km 到达C 点,最后又改变方向,向东行驶了100km 到达D 点.(1)作出向量AB →,BC →,CD →;(2)求|AD →|.。
平面向量的基本定理及坐标表示 练习 含答案
平面向量的基本定理及坐标表示1.设是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( ) A BC D2.已知向量a,b ,且AB =a+2b 5BC ,=-a +6b 7CD ,=a-2b,则一定共线的三点是( )A.A 、B 、DB.A 、B 、CC.B 、C 、DD.A 、C 、D3.已知平行四边形ABCD 中DA ,=a DC ,=b ,其对角线交点为O,则OB 等于( ) A.12a +bB.a 12+bC.12(a +b )D.a +b4.已知OA =a OB ,=b ,C 为AB 上距A 较近的一个三等分点,D 为CB 上距C 较近的一个三等分点,则用a ,b 表示OD 的表达式为( ) A.4+59a b B +7169a b . C. +32a b D. +43a b5.已知P 是△ABC 所在平面内的一点,若CB PA PB λ=+,其中λ∈R ,则点P 一定在( )A.△ABC 的内部B.AC 边所在的直线上C.AB 边所在的直线上D.BC 边所在的直线上 6.在△ABC 中AB ,=c AC ,=b ,若点D 满足2BD DC =,则AD 等于( ) A.23b 13+ c B.53c 23-b C.23b 13- c D.13b 23+c7.在△ABC 中,设AB =m AC ,=n ,D 、E 是边BC 上的三等分点,即BD=DE=EC,则AD = AE ,= .8.设为内一点,且满足,则为的( )A 外心B 内心C 重心D 垂心9.已知△ABC 中,点D 在BC 边上,且CD =4DB ,CD =r AB +s AC ,则3r+s 的值为 .12,e e 1212e e e e +-和1221326e e e e --和4122122e e e e ++和212e e e +和O ABC ∆0AO BO CO ++=O ABC ∆10.计算下列各题:(1)3(3a -b )+4(b -2a );14(2)[(a +2b )+3a 13(6-a -12b )];(3)()(λμ+a +b )()(λμ--a -b ).11.已知M 是△ABC 的重心,设MA =a MB ,=b ,用a 、b 表示AC 、BC .12.已知a ,b 是两个不共线的非零向量,若a 与b 起点相同,则实数t 为何值时,a ,t b 13(,a +b )三向量的终点共线?13.(1)在△ABC 中,D 为BC 边上的中点. 求证:12()AD AB AC =+. (2)求证:G 为△ABC 重心,O 为平面内不同于G 的任意一点,则13()OG OA OB OC =++.平面向量的基本定理及坐标表示1.B 2. A 3. C 4.A 5.B 6. A 7. 23m n AD += 23n m AE += 8. C 9. 8510. (1) a +b (2)32a b +(3) 22b a λμ+ 11. 2AC a b =-- 82C a b =--12. 解:由已知,存在唯一实数λ,使a -t b [λ=a 13(-a +b )],化简得23(1)λ-a =3()t λ-b .由于a ,b 不共线,故 233100t λλ-=,⎧⎨-=,⎩ 解得 3212t λ=,⎧⎨=,⎩ 即12t =时,三向量的终点共线. 13.(1)证法一:AD AB BD AD AC CD =+,=+, 又D 为中点,∴BD CD +=0.∴2AD AB AC =+,即12()AD AB AC =+. 证法二:延长AD 至E,使DE=AD.∵BD=DC,∴四边形ABEC 为平行四边形.∴AE AB AC =+.又AE AD DE AD DE =+,=, ∴12()AD AB AC =+. (2)证明:∵OG OB BG =+,OG OA AG OG OC CG =+,=+,又∵G为△ABC的重心,∴AG CG++=0.∴OG OG OG OA OB OC ++=++,即13()OG OA OB OC=++.。
平面向量的基本概念与线性运算-拔高难度-习题
平面向量的基本概念与线性运算一、选择题(共12小题;共60分)1. 下列各量中不是向量的是A. 浮力B. 风速C. 位移D. 密度2. 如图,点是的重心,则为A. B. C. D.3. 下列结论中,正确的是.A. 长的有向线段不可能表示单位向量B. 若是直线上的一点,单位长度已选定,则上有且只有两个点,,使得,是单位向量C. 方向为北偏西的向量与南偏东的向量不可能是平行向量D. 一人从点向东走米到达点,则向量不能表示这个人从点到点的位移4. 下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥密度;⑦功,其中不是向量的有A. 个B. 个C. 个D. 个5. 如图,在中,,是上的一点,若,则实数的值为A. B. C. D.6. 有三个命题;①向量与是共线向量,则,,,必在同一条直线上;②向量与平行,则与的方向相同或相反;③单位向量都相等,其中真命题有A. 个B. 个C. 个D. 个7. 已知等差数列的前项和为,若,且三点共线(该直线不过点),则等于A. B. C. D.8. 已知是正的中心.若,其中,,则的值为A. B. C. D.9. 设向量和的长度分别为和,夹角为,则等于A. B. C. D.10. 下列命题不正确的是A. 向量与是一对相反向量B. 若四边形中,,则此四边形是平行四边形C. 向量是与同方向的单位向量D. 若,则11. 若两个非零向量,使得成立,则下列各式成立的是A.B.C.D.12. 已知是正三角形内部一点,,则的面积与的面积之比是A. B. C. D.二、填空题(共5小题;共29分)13. 设是正方形的中心,下列结论:①;②;③与共线;④.其中正确结论的序号为.14. 已知四边形是菱形,,,则,.15. 在中,点在边上,若,则用,表示为.16. 如图,在中,为边上的中线,,设,若(),则的值为.17. 判断题:(1)与是两平行向量.(2)若是单位向量,也是单位向量,则.(3)长度相等且方向相反的两个向量不一定是平行向量.(4)与任一向量都平行的向量为零向量.(5)四边形是平行四边形,当且仅当.(6)两向量相等,当且仅当它们的起点相同,终点也相同.(7)若,,则.(8)若,且,则四边形是菱形.(9)若与是共线向量,则,,,四点必在同一直线上.答案:(1)(2)(3)(4)(5)(6)(7)(8)(9)解析:(2)单位向量是模为的向量,但方向不确定.(6)两向量相等指的是模相等,方向相同.(7)当时,与可以不共线.(9)共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量在同一直线上.三、解答题(共5小题;共65分)18. 在四边形中,已知,且.求证:四边形是菱形.19. 如图,已知四边形为正方形,且边长为,为,的交点.设点集,集合且不重合,且不重合,求集合,.20. 如图,四边形和都是平行四边形.(1)写出与向量相等的向量;(2)若,求.21. 如图所示,已知中,点是以为中心的点的对称点,在上,且,和交于,设,.(1)用和表示向量、;(2)若,求实数的值.22. 如图,四边形是正方形,延长至,使得,连接.若动点从点出发,按如下路线运动:,其中.(1)当点为的中点时,求的值;(2)满足的点有几个?。
(完整版)平面向量基础题
平面向量基础题一、高考真题体验1.(2015新课标卷I )已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4) 2.(2015新课标卷II )已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .23.(2014新课标卷I )设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A.AD B.D. BC 二、知识清单训练 【平面向量概念】1、定义:大小、方向2、几何表示:有向线段AB ,a 、3、基本概念:单位向量、相等向量、相反向量、共线(平行)向量4.下列判断正确的是 ( )A.若向量AB 与CD 是共线向量,则A,B,C,D 四点共线;B.单位向量都相等;C.共线的向量,若起点不同,则终点一定不同;D.模为0的向量的方向是不确定的。
5.下列命题正确的是( ) A .单位向量都相等B .若a 与b 共线,b 与c 共线,则a 与c 共线C .若||||a b a b +=-,则0a b ⋅=D .若a 与b 都是单位向量,则1a b ⋅=6.已知非零向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+【线性运算】1、 加法:首尾相连,起点到终点ACBC AB =+2、 减法:同起点、连终点、指向被减 CB AC AB =-3、数乘:⎪⎩⎪⎨⎧=<>=a a a a a a a λλλλλλλ方向相反方向与方向相同;方向与,0,07.空间任意四个点A 、B 、C 、D ,则等于 ( )A .B .C .D .8.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是 A.平行四边形B.等腰梯形C. 矩形D.菱形9.设D ,E ,F 分别为∆ABC 的三边BC ,CA ,AB 的中点,则EB FC += A .BC B .AD C .12BC D .12AD 10.设P 是△ABC 所在平面内的一点,+=2,则( )A .+=B .+=C .+= D .++=11.如图.点M 是ABC ∆的重心,则MC MB MA -+为( )A .0B .4MEC .4MD D .4MF【平面向量基本定理】b a c μλ+=,基底12.如图所示,已知2AB BC =,OA a =,OB b =,OC c =,则下列等式中成立的是( )(A)31c b a =- (B)2c b a =- (C)2c a b =- (D)31c a b =- 13.在空间四边形ABCD 中,AB a =,AC b =,AD c =,M ,N 分别为AB 、CD 的中点,则MN 可表示为( )()a b c +- ()a b c -+ )a b c -++ ()a b c ++ 14.在ABC ∆中,已知D 是AB边上一点,若12,3AD DB CD CA CB λ==+,则λ=( )A B 【共线定理】1221//y x y x a b b a -==⇒λ15.已知1232a e e =+,则与a 共线的向量为(A) 1223e e -- (B) 1264e e - (C) 1264e e + (D) 1232e e -+ 16.平面向量(1,2)=-a ,(2,)n =-b ,若a // b ,则n 等于A .4B .4-C .1-D .2【坐标运算】1、已知()()2211,,,y x B y x A ==,则()1212,y y x x AB --=2、已知()()2211,,,y x b y x a == 则()2121,y y x x b a ++=+,()2121,y y x x b a --=-,),(11y x a λλλ=,2121y y x x b a +=•17.已知向量()()2,1,3,4==-a b ,则+=a bA .()1,5-B .()1,5C .()1,3--D .()1,318.若向量(2,4)AB =,(1,3)AC =,则BC =( ) A .(1,1) B .(1,1)-- C .(3,7) D .(3,7)-- 19.已知向量(2,4)a =,(1,1)b =-,则2a b -=A . (5,7)B . (5,9)C . (3,7)D . (3,9)【数量积】 1、2、3、模:2121y x a +==4、5、垂直:02121=+⇒=⋅⇒⊥y y x x b a b a20.已知||6a =,||3b =,12a b ⋅=-,则向量a 在向量b 方向上的投影是( ) A .-4 B .4 C .-2 D .2 213a =,23b =,3a b =-,则a 与b 的夹角是 A. 30︒ B. 60︒ C. 120︒ D. 150︒22.设(1,2)a =,(2,)b k =,若(2)a b a +⊥,则实数k 的值为( ) A .2- B .4- C .6- D .8- 23.已知,a b是平面向量,若(2)a ab ⊥-,(2)b b a ⊥-,则a 与b 的夹角是 A24.空间四边形OABC 中,OB OC =,,则cos <,OA BC >的值是( )D.025.设向量,a b 满足||1,||3,()0a a b a a b =-=⋅-=,则|2|a b +=( )A .2B .4 D26.已知等边ABC ∆的边长为1,则=⋅BC ABA27.在Rt ABC ∆中,D 为BC 的中点,且AB 6AC 8==,,则AD BC ⋅的值为 A 、28- B 、28 C 、14- D 、1428.若同一平面内向量a ,b ,c 两两所成的角相等,1a =,1b =,3c =,a b c ++等于( ) A .2 B .5 C .2或5 D【课后练习】29.已知和点满足.若存在实数使得成立,则=( )A .2B .3C .4D . 30.设向量12,ee是夹角为的单位向量,若13a e =,12b e e =-,则向量b 在a 方向的投影为( ) A 2.131.已知平面向量a ,b 满足3a=,2b =,3a b ⋅=-,则2a b +=( ) A .1 B 321,2,()a b a a b ==⊥-且,则向量a 与向量b 的夹角为( ).(A )30 (B )45 (C ) 90 (D )135 33.在平行四边形ABCD 中,下列结论中错误的是 ( ) A .AB DC = B .AD AB AC += C .AB AD BD -= D .AD CD BD +=34.在平行四边形ABCD 中,AC 为一条对角线,(2,4)AB =,(1,3)AC =,则DA =( ) A .(2,4) B .(3,5) C .(1,1) D .(-1,-1)ABC M 0=++MC MB MA m AM m AC AB =+m3235.如下图,在△OAB 中,P 为线段AB 上的一点,OP =x OA +y OB ,且BP =3PA ,则( ).A 、x =23,y =13 B 、x =13,y =23 C 、x =14,y =34 D 、x =34,y =1436.已知向量(1,2),(4,)a b m ==-,若2a b +与a 垂直,则m =( ) A .-3 B .3 C .-8 D .8 37.已知平面向量,a b 满足()=3a a +b ⋅,且2,1ab ,则向量a 与b 的夹角为( )A .6πB .3πC .32πD .65π38.已知向量(2,1),(5,3)a b →→==-,则a b →→⋅的值为 A .-1 B .7 C .13 D .1139.已知平面向量(1,2),(2,)a b m ==-,且//a b ,则实数m 的值为 ( ) A .1 B .4 C .1- D .4-40.已知平面向量AB ()1,2=,AC ()3,4=,则向量CB =( ) A .(4,6)-- B .(4,6) C .(2,2)-- D .(2,2)41.已知向量()21=,a ,()2x =-,b ,若a ∥b ,则a +b 等于( ) A .()2,1-- B .()2,1 C .()3,1- D .()3,1-42. 已知两点A(4,1),B(7,-3),则与向量AB 同向的单位向量是( ) A .(53,-54) B .(-53,54) C .(-54,53) D .(54,-53) 43.若向量,满足条件,则x=( )A .6B .5C .4D .344.设R y x ∈,,向量()()(),4,2,,1,1,-===c y b x a 且c b c a //,⊥,则=+b a ( ) A.5 B.10 C .25 D .10 45.已知向量(1,2),(2,1)a b ==-,下列结论中不正确...的是( ) A .//a bB .a b ⊥C .||||a b =D .||||a b a b +=-平面向量基础题参考答案1.A 【解析】试题分析:∵AB OB OA =-=(3,1),∴BC =AC AB -=(-7,-4),故选A. 考点:向量运算 2.C 【解析】试题分析:由题意可得2112=+=a ,123,⋅=--=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:本题主要考查向量数量积的坐标运算. 3.A 【解析】试题分析:根据平面向量基本量的加减运算可得:在BEF ∆中,12EB EF FB EF AB =+=+,12FC FE EC FE AC =+=+,则11111()()()()22222EB FC EF AB FE AC AB AC AB AC AD+=+++=+=+=. 考点:向量的运算 4.D【解析】解:因为A.若向量AB 与CD 是共线向量,则A,B,C,D 四点共线;可能构成四边形。
平面向量基本概念与运算法则及相对应练习题(含答案)
平面向量1一、向量的基本概念思考:生活中有哪些量是既有大小又有方向的?哪些量只有大小没有方向?向量的概念:既有大小又有方向的量叫向量。
回答下列问题:(1).数量与向量有何区别?(2).如何表示向量?(3).有向线段和线段有何区别和联系?分别可以表示向量的什么?(4).长度为零的向量叫什么向量?长度为1的向量叫什么向量?1.数量和向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小,不能比较大小。
2.向量的表示方法:①用有向线段表示;②用字母a 、b(黑体)等表示;③用有向线段的起点与终点字母表示:AB ;向量AB 的大小——长度称为向量的模,记作|AB |。
3.有向线段:具有方向的线段叫做有向线段,三要素:起点、方向、长度。
向量与有向线段的区别:⑴向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同的向量; ⑵有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向,也是不同的有向线段。
4.零向量、单位向量概念:①长度为0的向量叫零向量,记作0。
②长度为1个单位长度的向量,叫做单位向量。
说明:零向量、单位向量的定义都只是限制了大小。
5.满足什么条件的两个向量是相等向量?单位向量是相等向量?相等向量的定义:长度相等且方向相同的向量叫相等向量。
说明:⑴向量a 与b 相等,记作a =b ;⑵零向量与零向量相等;⑶任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的起点无关。
6.平行向量的定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行。
说明:⑴综合①②才是平行向量的完整定义;⑵向量c b a 、、平行,记作c b a ////。
二、向量的运算法则1.向量的加法问题:数可进行加法运算:1+2=3,那么向量的加法是怎样定义的?长度是1的向量与长度是2的向量相加是一定是长度为3的向量呢?①某人从A 到B ,再从B 按原方向到C ,则两次的位移和:AC BC AB =+;②若上题改为从A 到B ,再从B 按反方向到C ,则两次的位移和;③某人从A 到B ,再从B 改变方向到C ,则两次的位移和。
高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案
1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
平面向量复习(含练习+答案)
向量知识清单一、向量的有关概念1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也就是用来表示向量的有向线段的长度).2.向量的表示方法:⑴字母表示法:如,,,a b c r r rL 等.⑵几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r等.⑶坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量ar与b r相等,记为a b =r r .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. 二、向量的运算 (一)运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。
研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.运 算 图形语言 符号语言 坐标语言加法与减法 OA --→+OB --→=OC --→ OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 1,y 2) 则OA OB +uu u r uuu r =(x 1+x 2,y 1+y 2)OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积 AB --→=λa → λ∈R 记a →=(x ,y ) 则λa →=(λx ,λy )两个向量的数量积 cos ,a b a b a b ⋅=⋅r r r r r r记1122(,),(,)a x y b x y ==r r 则a →·b →=x 1x 2+y 1y 2 加法:①a b b a +=+r r r r (交换律); ②()()a b c a b c ++=++r r r r r r(结合律)实数与向量的乘积:①()a b a b λλλ+=+r r r r ; ②()a a a λμλμ+=+r r r;③()()a a λμλμ=r r两个向量的数量积: ①a →·b →=b →·a →; ②(λa →)·b →=a →·(λb →)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b →)2=222a a b b →→→→±⋅+ (三)运算性质及重要结论⑴平面向量基本定理:如果12,e e u r u u r是同一平面内两个不共线的向量,那么对于这个平面内任一向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r ,称1122e e λλ+u r u u r 为12,e e u r u u r的线性组合。
平面向量综合练习7讲(等和线,极化恒等式,奔驰定理,矩形大法一应俱全)
目录第1讲平面向量基本概念和基本定理..............................................................................................1第2讲平面向量基本定理及三点共线定理....................................................................................21第3讲平面向量中的范围、最值问题..........................................................................................30第4讲极化恒等式............................................................................................................................44第5讲矩形大法................................................................................................................................50第6讲五心问题(奔驰定理)........................................................................................................55第7讲等和线 (67)第1讲平面向量基本概念和基本定理题型1平面向量的线性运算1.如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC的夹角为30︒,且||||1,||3OA OB OC === ,若OC OA OB λμ=+,则(λμ+=)A .1B .2C .3D .4【解析】解: OA 与OB 的夹角为120︒,OA 与OC的夹角为30︒,且||||1,||3OA OB OC === ;∴对OC OA OB λμ=+两边平方得:223λλμμ=-+①;对OC OA OB λμ=+ 两边同乘OA 得:322μλ=-,两边平方得:22944μλλμ=-+②;①-②得:23344μ=;根据图象知,0μ>,1μ∴=,代入322μλ=-得,2λ=;3λμ∴+=.故选:C .2.已知向量,OA OB 满足||||1,,(,)OA OB OA OB OC OA OB R λμλμ==⊥=+∈,若M 为AB 的中点,并且||1MC =,则λμ+的最大值是()A .1-B .1+C .D .1【解析】解:如图所示,向量,OA OB 满足||||1OA OB == ,OA OB ⊥,不妨取(1,0)A ,(0,1)B .M 为AB 的中点,11(,)22M ∴.(1OC OA OB λμλ=+=,0)(0μ+,1)(λ=,)μ. ||1MC =,∴2211(()122λμ-+-=,设1cos 2λθ=+,1sin 2μθ=+,[0θ∈,2)π.则1sin cos 1)14πλμθθθ+=++=++ sin(14πθ+=时取等号.λμ∴+的最大值是1+故选:B .3.在ABC ∆中,AB c = ,AC b =.若点D 满足2,(BD DC AD == 则)A .2133b c+ B .5233c b-C .2133b c-D .1233b c+【解析】解:由题意可得AD AB BD=+22()33AB BC AB AC AB =+=+- 12213333AB AC b c =+=+故选:A .4.已知OA ,OB 是两个单位向量,且0OA OB =.若点C 在AOB ∠内,且30AOC ∠=︒,(,)OC mOA nOB m n R =+∈ ,则(m n=)A .13B .3C .D 【解析】解:因为OA ,OB 是两个单位向量,且0OA OB = .所以OA OB ⊥,故可建立直角坐标系如图所示.则(1,0)OA = ,(0,1)OB = ,故(1OC mOA nOB m =+=,0)(0n +,1)(m =,)n ,又点C 在AOB ∠内,所以点C 的坐标为(,)m n ,在直角三角形中,由正切函数的定义可知,tan 30n m ︒==mn=故选:D .5.在ABC ∆中,M 为边BC 上任意一点,N 为AM 中点,AN AB AC λμ=+,则λμ+的值为()A .12B .13C .14D .1【解析】解:设BM tBC=则1111()2222AN AM AB BM AB BM==+=+ 111()2222t AB tBC AB AC AB =+⨯=+-1()222t t AB AC =-+∴122t λ=-,2tμ=∴12λμ+=故选:A .6.点M 是ABC ∆的边BC 上任意一点,N 在线段AM 上,且AN xAB y AC =+ ,若13x y +=,则NBC ∆的面积与ABC ∆的面积的比值是()A .12B .13C .23D .14【解析】解:如图,设BM BC λ= ,AM AN μ=,∴111()()AN AM AB BM AB BC λμμμ==+=+11()AB AC AB AB AC λλλλμμμ-=+-=+, AN xAB y AC =+ ,且13x y +=,∴1113λλμμμ-+==,则3μ=.∴3AM AN = ,则2AM NM = ,又NBC ∆ 与ABC ∆的底边BC 相等,NBC ∴∆的面积与ABC ∆的面积的比值是||23||AM NM =.故选:C .7.ABC ∆中,M 为边BC 上任意一点,N 为线段AM 上一点,且3AM AN =,又AN AB AC λμ=+ ,则λμ+的值为()A .12B .13C .14D .1【解析】解:设BM tBC = ,3AM AN =,∴11()33AN AM AB BM ==+ 1133AB BM =+1133AB tBC =+11()33AB t AC AB =+-1(333t t AB AC =-+,又AN AB AC λμ=+ ,所以11(3333t t λμ+=-+=故选:B .8.在ABC ∆中,点D 满足3,(,)AD DC BD BA CB R λμλμ==-∈,则λμ= 316.【解析】解: 点D 满足3AD DC =,∴34AD AC = ,又AC BC BA =- ,∴3()4AD BC BA =- ,∴313()444BD BA AD BA BC BA BA CB =+=+-=- .又BD BA CB λμ=- ,∴14λ=,34μ=.∴1334416λμ=⨯=.故答案为:316.9.如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心、AB 为半径的圆弧上的任意一点,设向量AC DE AP λμ=+,则λμ+的最小值为12.【解析】解:以A 为原点,以AB 所在的为x 轴,建立坐标系,设正方形ABCD 的边长为1,则1(2E ,0),(1,1)C ,(0,1)D ,(0,0)A ,(1,0)B .设(cos ,sin )P θθ,∴(1,1)AC =.再由向量1(2AC DE AP λμλ=+= ,1)(cos μθ-+,sin )(θ=cos 2λμθ+,sin λμθ-+)(1=,1),∴cos 12sin 1λμθλμθ⎧+=⎪⎨⎪-+=⎩,∴2sin 2cos 2cos sin 32cos sin θθλθθμθθ-⎧=⎪⎪+⎨⎪=⎪+⎩,32sin 2cos (2cos sin )3sin 33sin 312cos sin 2cos sin 2cos sin θθθθθθλμθθθθθθ+---+++∴+===-++++.由题意得02πθ ,0cos 1θ∴,0sin 1θ .求得223cos (2cos sin )(33)(2sin cos )66sin 3cos ()0(2cos sin )(2cos sin )sn θθθθθθθθλμθθθθ+-+-++-+'=>++,故λμ+在[0,2π上是增函数,故当0θ=时,即cos 1θ=,这时λμ+取最小值为3021202+-=+,故答案为:12.10.如图,在ABC ∆中,M 为BC 上不同于B ,C 的任意一点,点N 满足2AN NM =.若AN xAB y AC =+ ,则229x y +的最小值为25.【解析】解:不妨设BM BC λ=,01λ<<,∴222222222()()33333333AN AM AB BM AB BC AB AC AB AB AC λλλλ-==+=+=+-=+ ,AN xAB y AC =+,223x λ-∴=,23y λ=,222222(22)4084401294()99999105x y λλλλλ-∴+=+=-+=-+,当110λ=时,229x y +有最小值,最小值为25,故答案为:25.题型2平行问题1.已知(1,1),(1,0),(1,2)a b c =-==- ,若a与b mc - 平行,则(m =)A .1-B .1C .2D .3【解析】解:(1,1),(1,0),(1,2)a b c =-==-,(1,2)b mc m m -=-,当a与b mc - 平行时,1(1)(1)20m m ⨯---⨯=,解得1m =-.故选:A .2.已知向量()()1,2,,1,2,2,//a b x u a b v a b u v ===-=+若,则实数x 为()A .112-B .72或2-C .1D .12【解析】解:由题意可得:22(1u a b =-=,2)(x -,1)(2x =-,3),2(1v a b =+=,2)2(x +,1)(12x =+,4)//u v,(2)43(12)0x x ∴-⨯-⨯+=,解得12x =故选:D .3.已知向量(3,)m k = ,(2,4)n = ,若//m n ,则m n =30.【解析】解: 向量(3,)m k = ,(2,4)n = ,且//m n,212k ∴=,即6k =.则(3m n =,6)(2 ,4)326430=⨯+⨯=.故答案为:30.4.已知向量(,2)a x x =+ ,(3,4)b = ,若//a b ,则向量a的模为10.【解析】解:向量(,2)a x x =+,(3,4)b = ,若//a b,则43(2)0x x -+=,解得6x =,∴(6,8)a =,∴向量a的模为||10a == .故答案为:10.5.已知||10a =,(3,4)b = ,//a b ,则向量a =(6,8)或(6,8)--.【解析】解;设:(,)a x y =, //b a ,||10a =,∴22430100x y x y +=⎧⎨+=⎩解得;68x y =⎧⎨=⎩或68x y =-⎧⎨=-⎩∴a等于(6,8)或(6,8)--故答案为(6,8)或(6,8)--.题型3模长问题1.设向量a,b满足||a b +=||a b -= ,则(a b = )A .1B .2C .3D .5【解析】解:||a b +=||a b -=,∴分别平方得22210a a b b ++= ,2226a a b b -+= ,两式相减得41064a b =-=,即1a b =,故选:A .2.若向量a,b 满足||1a = ,(2)a b a +⊥ ,(2)a b b +⊥ ,则||(b = )A .2B .22C .1D【解析】解: 向量a,b 满足||1a = ,(2)a b a +⊥ ,(2)a b b +⊥ ,∴222cos ,02cos ,0a ab a b a b a b b ⎧+<>=⎪⎨<>+=⎪⎩ ,∴22b a =,||||1b a ∴== .故选:C .3.已知向量a,b 的夹角为45︒,且||1a =,|2|a b -= ||(b = )AB.C.D.【解析】解:因为向量a,b 的夹角为45︒,且||1a =,|2|a b -= 所以224410a a b b -+=,即2|||60b b --= ,解得||b = 或||b =).故选:C .4.已知向量a与b 的夹角为45︒,且||1a = ,||b = ||a b -=1.【解析】解:根据题意得,222()21221451a b a a b b -=-⋅+=+-⨯⨯︒=∴1a b-= 故答案为1.5.已知向量a,b 夹角为45︒,且||1a = ,||b = ,则|2|a b - 【解析】解:根据题意,得;|2|a b -====6.已知向量(2,1),10,||a a b a b =⋅=+=,则||b = 5.【解析】解: 向量(2,1),10a a b =⋅=,又 ||a b +=∴2()50a b +=即22||||250a b a b ++⋅=即25||2050b ++=即2||25b =∴||5b = 故答案为:57.已知向量,a b满足||2a = ,||b = ,a 与b 的夹角为4π,则||a b +【解析】解:向量,a b满足||2a =,||b = a 与b 的夹角为4π,则||a b +===.题型4夹角问题1.已知向量a = ,(3,)b m = ,若向量a,b 的夹角为6π,则实数(m =)A.BC .0D.【解析】解:由题意可得cos 62||||a b a b π== ,解得m =,故选:B .2.已知非零向量a ,b 满足||4||b a = ,且(2)a a b ⊥+ ,则a与b 的夹角为()A .3πB .2πC .23πD .56π【解析】解:由已知非零向量a,b 满足||4||b a = ,且(2)a a b ⊥+ ,可得2(2)20a a b a a b +=+= ,设a与b 的夹角为θ,则有22||||4||cos 0a a a θ+= ,即1cos 2θ=-,又因为[0θ∈,]π,所以23πθ=,故选:C .3.已知非零向量,a b满足:||2||a b a b ==- ,则a与b 的夹角为()A .23πB .2πC .3πD .6π【解析】解:由||2||a b a b ==-,所以22222874(2)a b a a b b ==-+ ,解得||2||b a = ,且2||a b a =- ;所以2||1cos ||2||2||||a b a a a a b θ-===-⨯⨯ ;又[0θ∈,]π,所以23πθ=,即a与b 的夹角为23π.故选:A .4.已知非零向量,a b满足||||a b a b +=- ,则a 与b 的夹角为()A .3πB .2πC .4πD .23π【解析】解:由于非零向量,a b满足||||a b a b +=- ,等号两边同时平方化简得:0a b =,则夹角为2π,故选:B .5.已知向量(1,2)a =- ,(1,)b λ= ,若a b ⊥ ,则2a b + 与a的夹角为()A .23πB .34πC .3πD.4π【解析】解:根据题意,设2a b + 与a的夹角为θ,向量(1,2)a =-,(1,)b λ= ,若a b ⊥,则有(1)120a b λ=-⨯+= ,解可得12λ=,则1(1,2b = ,则2(1,3)a b +=,则有|2|a b +=,||a =(2)(1)1235a b a +=-⨯+⨯= ,则有(2)cos 2|2|||a b a a b a θ+===+,则4πθ=;故选:D .6.在ABC ∆中,22AB AC ==,120BAC ∠=︒,点D 为BC 边上一点,且2BD DC =,则AB AD =23.【解析】解:由题意可知D 为BC 的靠近C 的三等分点,∴2212()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+ ,∴21212122()412cos1203333333AB AD AB AB AC AB AB AC =+=+=⨯+⨯⨯⨯︒= .故答案为:23.题型5平面向量的坐标运算1.已知(2,1)a =,(1,2)b =- ,若(9,8)(,)ma nb m n R +=-∈ ,则m n -的值为()A .2B .2-C .3D .3-【解析】解:(2,1)a =,(1,2)b =- ,(2,2)ma nb m n m n +=+- ,(9,8)(,)ma nb m n R +=-∈,可得:2928m n m n +=⎧⎨-=-⎩,可得2m =,5n =.3m n -=-故选:D .2.向量a,b ,c 在正方形网格中的位置如图所示,若(,)c a b R λμλμ=+∈ ,则(λμ=)A .2B .4C .12D .12-【解析】解:以向量a,b 的公共点为坐标原点,建立如图直角坐标系可得(1,1)a =- ,(6,2)b = ,(1,3)c =--(,)c a b R λμλμ=+∈,∴1632λμλμ-=-+⎧⎨-=+⎩,解之得2λ=-且12μ=-,因此,则4λμ=故选:B .3.已知向量(1,1)a =-,(1,2)b =- ,则(2)(a b b += )A .1-B .0C .1D .2【解析】解: (1,1)a =-,(1,2)b =- ,222(2)22(12)(1)2651a b b a b b ∴+=+=--+-+=-+=- 故选:A .4.在ABC ∆中,点P 在BC 上,且2BP PC =,点Q 是AC 的中点,若(4,3)PA = ,(1,5)PQ = ,则(BC = )A .(2,7)-B .(6,21)-C .(2,7)-D .(6,21)-【解析】解:(3,2)AQ PQ PA =-=-点Q 是AC 的中点∴2(6,4)AC AQ ==-(2,7)PC PA AC =+=-2BP PC = 3(6,21)BC PC ==-故选:B .5.已知正方形ABCD 的边长为2,E 为CD 的中点,则(AE BD =)A .2-B .6C .2D .6-【解析】解:根据题意,如图:以B 为坐标原点建立坐标系,BC 所在直线为x 轴,AB 所在直线为y 轴建立坐标系,则(2C ,0)(0A ,2),(2,2)D ,则(2,1)E ,则(2,1)AE =- ,(2,2)BD =,则22(1)22AE BD =⨯+-⨯=,故选:C .6.已知向量(2,1)a =,(1,2)b =- ,若(9ma nb += ,8)(m -,)n R ∈,则m n -的值为3-.【解析】解:向量(2,1)a =,(1,2)b =- ,若(9,8)ma nb +=- 可得2928m n m n +=⎧⎨-=-⎩,解得2m =,5n =,3m n ∴-=-.故答案为:3-.7.已知ABC ∆是边长为1的等边三角形,点D 、E 分别是边AB 、BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC的值为18.【解析】解:以BC 所在的直线为x 轴,以BC 的垂直平分线为y 轴,建立平面直角坐标系,ABC ∆ 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,1(2B ∴-,0),1(2C ,0),(0,0)E ,2A ,1(4D ∴-,∴(1,0)BC = ,1(4DE = ,34-,设(,)F x y ,∴(,)EF x y =,2DE EF = ,∴2DE EF = ,1(4∴,2(x =,)y ,解得18x =,38y =,∴(AF = 18,8-,∴(AF BC = 18,(1 ,10)8=,故答案为:18.题型6投影问题1.已知点(1,1)A -,(1,2)B ,(2,1)C --,(3,4)D ,则向量AB 在CD方向上的投影为()A .3152-B .3152C .322-D .322【解析】解:(2,1),(5,5)AB CD ==;∴向量AB 在CD 方向上的投影为:32||cos ,2||AB CD AB AB CD CD <>==.故选:D .2.已知ABC ∆外接圆圆心为O ,半径为1,2AO AB AC =+ ,且||||OA AB = ,则向量AB 在向量BC方向的投影为()A .12B .2C .2D .12-【解析】解:由2AO AB AC =+知,O 为BC 的中点,如图所示;又O 为ABC ∆外接圆的圆心,半径为1,BC ∴为直径,且2BC =,1OA AB ==,3ABC π∠=;∴向量AB 在向量BC 方向的投影为1||cos()32AB ππ-=- .故选:D .3.已知ABC ∆的外接圆的圆心为O ,半径为2,且0OA AB AC ++= ,则向量CA 在向量CB方向上的投影为()A .3B C .3-D .【解析】解:ABC ∆的外接圆的圆心为O ,半径为2,且0OA AB AC ++= ,∴OB CA =,OBAC ∴为平行四边形.ABC ∆ 的外接圆的圆心为O ,半径为2,得||||||OA AB OB ==,∴四边形OBAC 是边长为2的菱形,且60ABO ACO ∠=∠=︒,因此,1302ACB ACO ∠=∠=︒,∴向量CA 在CB方向上的投影为:||cos 2cos30AC ACB ∠=︒= 故选:B .4.已知向量a ,b 的夹角为60︒,且||2a = ,|2|a b -= ,则向量b 在a方向上的投影等于()A .2B .32C .12D .1【解析】解: ,60a b <>=︒,||2a = ,|2|a b -= ,∴244||4||28b b +-= ,解得||3b =或2-(舍去),∴b 在a方向上的投影等于3||cos 602b ︒= .故选:B .5.已知向量(1,2)a = ,(,1)b m = ,且向量b 满足()3b a b ⋅+= ,则向量a在b 方向上的投影为()A B .22C .2D .2或22【解析】解:向量(1,2)a =,(,1)b m = ,()3b a b ⋅+= ,可得:20m m +=,解得0m =,1m =-,当0m =时,(0,1)b =,向量a在b 方向上的投影为2||a b b ⋅= ,当1m =-时,(1,1)b =-,向量a在b 方向上的投影为2||a b b ⋅== ,故选:D .6.向量a ,b 满足a = ,||1b = ,||a b += b 在a方向上的投影为()A .1-B .12-C .12D .1【解析】解:向量a,b 满足a = ,||1b = ,||a b += 可得2223a a b b ++= ,所以1a b =-,则b 在a方向上的投影为:1||2a b a =- .故选:B .7.已知向量b =,向量a在b 方向上的投影为4-,若()a b b λ+⊥ ,则实数λ的值为()A .3B .12C .13D .23【解析】解: ||2b = ,a在b 方向上的投影为4-,∴42a b =- ,8a b =-,又()a b b λ+⊥,∴2()840a b b a b b λλλ+=+=-+= ,解得12λ=.故选:B .8.若b 为单位向量,||||a b a += ,则向量a在向量b 方向上的投影为()A .1-B .1C .12D .12-【解析】解: ||1,||||b a b a =+=,∴2212a a b a ++= ,∴12a b =-,∴a在b 方向上的投影为:12||a b b =- .故选:D .9.已知非零向量a ,b 满足||2a = ,|2|4a b -= ,a在b 方向上的投影为1,则(2)b a b ⋅+= 36.【解析】解:设a ,b 的夹角为θ,则a在b 方向上的投影为||cos 1||a b a b θ⋅== ,∴||a b b ⋅=,|2|4a b -= ,∴224||4||16a a b b -⋅+=,2164||||16b b ∴-+= ,解得:||4b = ,∴4a b ⋅=,∴2(2)2||43236b a b a b b ⋅+=⋅+=+=.故答案为:36.10ABC ∆中,则向量AB在向量CA方向上的投影为32.【解析】解:根据题意,||,120AB AB CA =<>=︒,∴AB 在CA 方向上的投影为:1||cos120()22AB ︒=-=-.故答案为:11.已知向量||3b = ,且6a b ⋅= ,则向量a在向量b 的方向上的投影为2.【解析】解: ||3,6b a b =⋅=,∴a在b 的方向上的投影为2||a b b ⋅= .故答案为:2.12.若两单位向量a ,b 的夹角为3π,则向量2a b - 在a方向上的投影为32.【解析】解: ||||1,,3a b a b π==<>=,∴12a b = ,213(2)2222a b a a a b -=-=-=,∴2a b - 在a方向上的投影为:(2)3||2a b a a -= .故答案为:32.13.已知向量a ,b 满足|||2|a b a b +=- ,其中b 是单位向量,则a在b 方向上的投影为.【解析】解: ||1b = ,|||2|a b a b +=-,∴221244a a b a a b ++=+- ,∴12a b = ,∴a在b 方向上的投影是12||a b b = .故答案为:12.题型7垂直问题1.已知向量(1,2)a =,(,1)b m =- ,且()a a b ⊥+ ,则(m =)A .5-B .5C .6D .7【解析】解:(1,3)a b m +=- ,(1,2)a =,且()a a b ⊥+ ,∴()160a a b m +=-+=,解得7m =.故选:D .2.已知向量(1,2)a = ,(,4)b x = ,(2,)c y = ,若//a b ,a c ⊥,则()(b ac -= )A .14B .14-C .10D .6【解析】解:向量(1,2)a = ,(,4)b x = ,(2,)c y =,//a b,可得142x ⨯= ,解得2x =,(2,4)b = ,a c ⊥,可得1220y ⨯+=,解得1y =-,(1,3)a c -=-,则()21210b a c -=-+=.故选:C .3.已知向量(1,2)a =,向量(,4)b x = ,且a b ⊥ ,则(x =)A .6B .2C .6-D .8-【解析】解: 向量(1,2)a = ,向量(,4)b x = ,且a b ⊥,∴80a b x =+=,则8x =-,故选:D .4.已知向量(1,2)a =- ,(,1)b m = .若向量a b + 与a垂直,则(m =)A .6B .3C .7D .14-【解析】解:已知向量(1,2)a =- ,(,1)b m = ,若向量a b + 与a垂直,则2()5(2)0a b a a a b m +=+=+-+=,求得7m =,故选:C .5.设x ,y R ∈,向量(,1),(1,),(2,4)a x b y c ==-=- 且a c ⊥,//b c ,则||(a b += )A B C .D .10【解析】解: a c ⊥;∴240a c x =-=;2x ∴=; //b c ;420y ∴-=;2y ∴=;∴(2,1),(1,2)a b ==-;∴(1,3)a b +=;∴||10a b +=.故选:B .6.已知两个单位向量a,b 的夹角为60︒,(1)c t a tb =-+ ,若0b c = ,则t =1-.【解析】解: 两个单位向量a,b 的夹角为60︒,∴111cos 602a b =⨯⨯︒=.(1)c t a tb =-+ ,0b c =,∴20(1)b c t a b tb ==-+ ,10(1)2t t ∴=-+,解得1t =-,故答案为:1-.第2讲平面向量基本定理及三点共线定理一.选择题(共4小题)1.如图所示,已知点G 是ABC ∆的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM xAB =,AN y AC =,则x y +的最小值为()A .2B .13C .43D .34【解析】解:根据条件:1AC AN y= ,1AB AM x =;又1133AG AB AC =+ ;∴1133AG AM AN x y=+;又M ,G ,N 三点共线;∴11133y x+=;0x > ,0y >;111124()()23333333333x y x y x y x y x y y x y x ∴+=++=++++= ;x y +的最小值为43.当且仅当23x y ==.故选:C .2.如图所示,已知点G 是ABC ∆的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM xAB =,AN y AC =,则2x y +的最小值为()A .2B .13C .3223+D .34【解析】解:M ,N ,G 三点共线,∴MG GN λ= ,∴()AG AM AN AG λ-=- , 点G 是ABC ∆的重心,∴1()3AG AB AC =+ ,∴11()(())33AB AC x AB y AC AB AC λ+-=-+,∴11331133x y λλλ⎧-=-⎪⎪⎨⎪=-⎪⎩,解得,(31)(31)1x y --=;结合图象可知112x ,112y ;令31x m -=,31y n -=,1(22m ,12)2n ;故1mn =,13m x +=,13ny +=;故112233m n x y +++=+⨯211221333m n =+++ ,(当且仅当233m n=,即2m =,22n =时,等号成立),故2x y +的最小值为132222133++= ;故选:C .3.如图所示,已知点G 是ABC ∆的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AB xAM = ,AC y AN = ,则111x y +-的最小值为()A .2B .12+C .32D .22+【解析】解:G 为ABC ∆的重心,∴21()32AG AB AC =⨯+ 1()3xAM y AN =+又G 在线段MN 上,∴11133x y +=3x y ∴+=(1)2x y ∴+-=∴11111[(1)]()121x y x y x y +=+-+--11(11)21x y y x-=+++-1(22)22+= 故选:A .4.已知G 是三角形ABC 的重心,过G 的直线分别交直线AB ,AC 于M ,N 两点,AB mAM = ,AC nAN =,(m ,n 都是正数),12m n+的最小值是()A .2B .3C .1D .2213+【解析】解:如图所示,设D 是BC 的中点.M ,N ,G 三点共线,∴存在实数λ使得(1)AG AM AN λλ=+-, AB mAM = ,AC nAN =,(m ,n 都是正数),∴1AG AB AC m n λλ-=+,G 是三角形ABC 的重心,∴22111()33233AG AD AB AC AB AC ==⨯+=+.∴13113m nλλ⎧=⎪⎪⎨-⎪=⎪⎩,化为3m n +=.又m ,n 为正数,∴1211212122()()(3)(313333n m m n m n m n m n +=++=+++=+,当且仅当1)n ==时取等号.∴12m n +的最小值是2213+.故选:D .二.填空题(共5小题)5.如图,在ABC ∆中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N ,若AM AB λ= ,(0,0)AN AC μλμ=>>,则3λμ+的最小值是3.【解析】解: 若AM AB λ= ,(0,0)AN AC μλμ=>>,∴(1)MB MD DB AB λ=+=- ,M ,D ,N 三点共线,∴存在实数k ,使()MD kMN k AN AM k AB k AC λμ==-=-+. 111444DB CB AB AC ==- ,11()((1)44k AB k AC AB λμλ∴-+-=-,∴114k λλ-=-,104k μ-=,43λμλ∴=-,3343λλμλλ+=+-.设3()43f λλλλ=+-,0λ>,则29()1(43)f λλ-'=+-,令()0f λ'=得,0λ=,或32λ=.在3(0,)2上,()0f λ'<;在(32,)+∞时,()0f λ'>;32λ∴=时,()f λ取极小值,也是最小值;()f λ∴的最小值为3,即3λμ+的最小值是3,故答案为:3.6.在ABC ∆中,M ,N 分别在AB ,BC 上,且2AM MB = ,3BN NC =,AN 交CM 于点P ,若BP xPA yBC =+ ,则x =18,y =.【解析】解:如图:过点M 作//MD BC 交AN 于D ; 2AM MB = ,3BN NC = ,2AD DN ∴=;2DP PN =;18NP AP ∴=∴3148BP BN NP BC PA =+=+ ;BP xPA yBC =+ ,18x ∴=,34y =.故答案为:18,34.7.如图所示,已知点G 是ABC ∆的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且,AM xAB AN y AC == ,则xyx y+的值为13.【解析】解:根据题意G 为三角形的重心,∴1()3AG AB AC =+ ,111()()333MG AG AM AB AC x AB x AB AC =-=+-=-+ ,111()()333GN AN AG y AC AG y AC AB AC y AC AB =-=-=-+=-- ,由于MG 与GN 共线,根据共线向量基本定理知,存在实数λ,使得MG GN λ= ,即1111()[(]3333x AB AC y AC AB λ-+=--,∴113311()33x y λλ⎧-=-⎪⎪⎨⎪=-⎪⎩,消去λ得30x y xy +-=,3x y xy ∴+=,即13xy x y =+.8.已知点G 为ABC ∆的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且,AM xAB AN y AC ==,x ,y R +∈,则x y +的最小值为43.【解析】解:M ,G ,N 三点共线,∴存在m ,使(1)(1)AG mAM m AN mxAB m y AC =+-=+-,又G 是ABC ∆的重心,∴1()(1)3AG AB AC mx AB m y AC =+=+- ,13mx ∴=,1(1)3m y -=,∴11133x y +=,即113x y+=.111114()()(2)(23333y x x y x y x y x y ∴+=++=+++= ,当且仅当23x y ==时取等号.故答案为:43.9.点G 是ABC ∆的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM xAB = ,AN y AC =.若12x =,则y =1,若23AMN ABC S S ∆∆=,则x y +=.【解析】解:根据条件:1AC AN y = ,1AB AM x=;又1133AG AB AC =+ ;∴1133AG AM AN x y=+;又M ,G ,N 三点共线;∴11133x y+=;12x =,1y ∴=; 23AMN ABC S S ∆∆=,∴1sin 2213sin 2AM AN MANAM AN xy AB AC AB AC BAC ∠===∠ ,又113x y +=,即3x y xy+=,2x y ∴+=.故答案为:1,2.三.解答题(共3小题)10.已知点G 为ABC ∆的重心,过点G 作直线与AB 、AC 两边分别交于M 、N 两点,且,AM xAB AN y AC == ,求11x y+的值.【解析】解:根据题意G 为三角形的重心,1()3AG AB AC =+ ,111()()333MG AG AM AB AC x AB x AB AC =-=+-=-+ ,GN AN AG y AC AG=-=-1()3y AC AB AC =-+ 11(33y AC AB =--,由于MG 与GN 共线,根据共线向量基本定理知,存在实数λ,使得MG GN λ= ,即1111()[()]3333x AB AC y AC AB λ-+=--,即113311(33x y λλ⎧-=-⎪⎪⎨⎪=-⎪⎩∴11331133xy -=--即30x y xy +-=两边同除以xy 整理得113x y+=.11.若点M 是ABC ∆所在平面内一点,且满足:3144AM AB AC =+.(1)求ABM ∆与ABC ∆的面积之比.(2)若N 为AB 中点,AM 与CN 交于点O ,设BO xBM yBN =+,求x ,y 的值.【解析】解(1)由3144AM AB AC =+,根据三点共线的性质,31144+=,且AB 与AC 不共线,可知M 、B 、C 三点共线.如图令1()(1)4BM BC AM AB BM AB BC AB AC AB AB AC λλλλλλ=⇒=+=+=+-=-+⇒= ,∴14ABM ABC S S ∆∆=,即面积之比为1:4.(2)由2y BO xBM yBN BO xBM BA =+⇒=+,4x BO BC yBN =+ ,由O 、M 、A 三点共线及O 、N 、C 三点共线41726147y x x x y y ⎧⎧=+=⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪+==⎪⎪⎩⎩12.在ABC ∆中,3144AM AB AC=+(Ⅰ)求ABM ∆与ABC ∆的面积之比(Ⅱ)若N 为AB 中点,AM 与CN 交于点P 且(,)AP xAB y AC x y R =+∈,求x y +的值.【解析】解:(Ⅰ)在ABC ∆中,3144AM AB AC =+⇒4303()AM AB AC AM AB AC AM--=⇒-=- 3BM MC ⇒=,即点M 在线段BC 上的靠近B 的四等分点,ABM ∴∆与ABC ∆的面积之比为14.(Ⅱ) 3144AM AB AC =+ ,(,)AP xAB y AC x y R =+∈,//AP AM ,∴设334424AP AM AB AC AN AC λλλλλ==+=+ ;三点N 、P 、C 共线,∴341,247λλλ+==解得,3311,4747x y λλ====,47x y +=.第3讲平面向量中的范围、最值问题一.选择题(共17小题)1.如图,四边形OABC 是边长为1的正方形,3OD =,点P 为BCD ∆内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于()A .14B .43C .13D .1【解析】解:以O 为原点,以OD 所在直线为x 轴建立直角坐标系,设点(,)P x y , OP OC OD αβ=+,则(x ,)(0y α=,1)(3β+,0)(3β=,)α.所以,3x y βα=⎧⎨=⎩13x y αβ+=+.由于点P 在BCD ∆内(包含边界),目标函数为13x y αβ+=+,如图所示,当点P 为点(1,1)B 时,13x y αβ+=+取得最大值,其最大值为14133+=,故选:B .2.已知1,||,||AB AC AB AC t t ⊥== ,若P 点是ABC ∆所在平面内一点,且4||||AB ACAP AB AC =+,则PB PC ⋅ 的最大值等于()A .13B .15C .19D .21【解析】解:由题意建立如图所示的坐标系,可得(0,0)A ,1(B t,0),(0,)C t ,4||||AB ACAP AB AC =+,(1,4)P ∴,∴1(1PB t=- ,4)-,(1,4)PC t =-- ,∴11(1)4(4)17(4PB PC t t t t ⋅=----=-+ ,由基本不等式可得144t t += ,117(4)17413t t ∴-+-= ,当且仅当14t t =即12t =时取等号,∴PB PC ⋅的最大值为13,故选:A .3.已知AB AC ⊥ ,1||AB t = ,||AC t = ,1[4t ∈,4];若P 是ABC ∆所在平面内一点,且4||||AB AC AP AB AC =+,则PB PC的取值范围是()A .[13,17]B .[12,13]C .3[4,12]D .3[4,13]【解析】解:由题意建立如图所示的坐标系,可得(0,0)A ,1(B t,0),(0,)C t ,4(1||||AB ACAP AB AC =+=,0)(0+,4)(1=,4),(1,4)P ∴,∴1(1PB t =- ,4)-,(1,4)PC t =-- ,∴11(1)4(4)17(4)1713PB PC t t t t =----=-+-= ,当且仅当14t t =,即11[24t =∈,4],时,取等号,由4t =可得1317(1644-+=,由14t =可得17(14)12-+=,∴PB PC 的最大值为13,最小值为34.则PB PC 的范围是3[4,13].故选:D .4.已知a,b 是平面内互不相等的两个非零向量,且||1a = ,a b - 与b 的夹角为150︒,则||b 的取值范围是()A .(0B .[1C .(0,2]D .2]【解析】解:如图所示,设OA a = ,OB b = ,则BA OA OB a b =-=-.由于||1a =,a b - 与b 的夹角为150︒,可得OAB ∆中,1OA =,30OBA ∠=︒.由正弦定理可得:OAB ∆的外接圆的半径1r =.则点B 为圆上的动点.由图可令(1cos ,sin )b OB θθ==+,则||b ==.∴||(0,2]b ∈.故选:C .5.设向量α,β 的夹角θ定义:||||sin αβαβθ⨯= 若平面内互不相等的两个非零向量a ,b满足:||1a = ,()a b - 与b 的夹角为150︒,a b ⨯的最大值为()A .2BC .D 【解析】解:设a OA =,b OB = ,则BA a b =- ,||1a = ,a b - 与b的夹角为150︒,OAB ∴∆中,1OA =,30OBA ∠=︒,由正弦定理可得:OAB ∆的半径为1,则B 点为圆上与OA 不重合的动点,设(0150)AOB θθ∠=︒<<︒,由正弦定理可得,2sin AB θ=,2sin(150)OB θ=︒-,则sin 2sin30OAB a b OA OB S AB OB θ∆⨯===︒2sin sin(150)[cos150cos(2150)]θθθ=︒-=-︒--︒cos(2150)2θ=+-︒,当75θ=︒时,a b ⨯取得最大值,且为1+故选:C .6.已知平面内互不相等的非零向量a,b 满足||1a = ,a b - 与b 的夹角为150︒,则a b 的最大值为()A .2BC .32D .32【解析】解:如图所示,设OA a = ,OB b =.则BA OA OB a b =-=- .||1a =,a b - 与b 的夹角为150︒,OAB ∴∆中,1OA =,18015030OBA ∠=︒-︒=︒.由正弦定理可得:OAB ∆的外接圆的半径1r =.则点B 为圆上与A 点重合的动点.由图可令:1(,2a OA ==,(1cos ,sin )b OB θθ==+ .∴11313cos sin()222622a b πθθθ=+-=--+ ,当sin(16πθ-=-时取等号.∴a b 的最大值为32.故选:C .7.已知向量OA 与OB 的夹角为θ,||2OA = ,||1OB = ,OP tOA = ,(1)OQ t OB =-,||PQ 在0t 时取最小值,当0104t <<时,cos θ的取值范围为()A .1(2-,0)B .1(2-,14-C .1(4,1)D .1(2-,1)4【解析】解:由题意得:21cos 2cos OA OB θθ=⨯⨯=,(1)PQ OQ OP t OB tOA =-=-- ,∴22222(1)2(1)PQ t OB t OA t t OA OB=-+-- 222(1)44(1)cos (54cos )(24cos )1t t t t t t θθθ=-+--=++--+,由二次函数知,当上式取最小值时,012cos 54cos t θθ+=+,0104t <<,12cos 1054cos 4θθ+∴<<+,解得11cos 24θ-<<.cos θ∴的取值范围为11(,)24-.故选:D .8.已知向量OA 与OB 的夹角为θ,||2OA = ,||1OB = ,OP tOA = ,(1)OQ t OB =-,||PQ 在0t 时取得最小值.当0105t <<时,夹角θ的取值范围为()A .(0,)3πB .(3π,)2πC .(2π,2)3πD .2(0,3π【解析】解:由题意可得21cos 2cos OA OB θθ=⨯⨯=,(1)PQ OQ OP t OB tOA =-==-- ,∴2222222(1)2(1)(1)44(1)cos PQ t OB t OA t t OA OB t t t t θ=-+--=-+-- 2(54cos )(24cos )1t t θθ=++--+,由二次函数知,当上式取最小值时,012cos 54cos t θθ+=+,由题意可得12cos 1054cos 5θθ+<<+,求得1cos 02θ-<<,∴223ππθ<<,故选:C .9.设向量1e 、2e 满足:12||2,||1e e == ,1e ,2e 的夹角是90︒,若1227te e + 与12e te +的夹角为钝角,则t 的取值范围是()A .(,0)-∞B .1414(,(22-∞-C .(,)2-∞-D .(2-【解析】解: 向量1e 、2e 满足:12||2,||1e e == ,1e ,2e 的夹角是90︒,∴120e e =.若1227te e + 与12e te +的夹角为钝角,则1212(27)()0te e e te ++< ,且12(27)te e + 与12()e te +不共线,即22122070te te ++< ,且271t t≠,即870t t +<,且t ≠.求得0t <,142t ≠±,即(t ∈-∞,1414)(22--⋃,0),故选:B .10.在空间直角坐标系O xyz -中,已知(1,2,3)OA = ,(2,1,2)OB = ,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB取得最小值时,点Q 的坐标为()A .131(,,)243B .133(,,)224C .448(,,)333D .447(,,333【解析】解: 点Q 在直线OP 上运动,∴存在实数λ使得(OQ OP λλ==,λ,2)λ,∴(1,2,32)QA λλλ=--- ,(2,1,22)QB λλλ=---.∴(1)(2)(2)(1)(32)(22)QA QB λλλλλλ=--+--+--22498616106()33λλλ=-+=--,当且仅当43λ=时,上式取得最小值,448(,,333Q ∴.故选:C .11.已知Rt AOB ∆的面积为1,O 为直角顶点,设向量||OA a OA ==,||OB b OB =,2OP a b =+ ,则PA PB 的最大值为()A .1B .2C .3D .4【解析】解:以O 为原点,OA 所在直线为x 轴,建立直角坐标系,设(,0)A m ,(0,)B n ,则(1,0)a =,(0,1)b = ,2(1,2)OP a b =+=,(1,2)PA m =-- ,(1,2)PB n =-- ,Rt AOB ∆的面积为1,即有2mn =,则12(2)PA PB m n =---5(2)55221m n =-+-=-⨯= .当且仅当22m n ==时,取得最大值1.故选:A .12.已知向量a ,b 均为单位问量,且12a b = .向量a c - 与向量b c - 的夹角为6π,则||a c - 的最大值为()A .32B .1C .233D .2【解析】解: 由12a b = ,向量a ,b 为单位向量,可得a ,b的夹角为60︒.设OA a = ,OB b = ,OC c = .由向量12a b = ,向量a ,b 均为单位问量11cos a ∴⨯⨯<,12b >= ,∴a <,3b π>= .设OA a = ,OB b = ,OC c = . 向量c 满足a c -与b c - 的夹角为6π,6ACB π∴∠=.由等边三角形OAB ,点C 在AB 外且ACB ∠为定值,可得C 的轨迹是两段圆弧,ACB ∠是AB 所对的圆周角.可知:当AC 时是弧 AB 所在圆(上述圆弧)的直径时,||a c -取得最大值||AC ,在ABC ∆中,由正弦定理可得:2sin 30ABAC ==︒.|∴,||a c -取得最大值||AC 取得最大值是2.故选:D .13.已知平面向量(1,2)a = ,(2,1)b = ,(,)c x y =,满足0x ,0y .若1a c ⋅ ,1b c ⋅ ,()z a b c=-+⋅ 则()A .z 有最大值2-B .z 有最小值2-C .z 有最大值3-D .z 有最小值3-【解析】解: 21a c x y ⋅=+21b c x y ⋅=+332x y ∴+ ()(33)3()2Z a b c x y x y =-+⋅=-+=-+-Z ∴的最大值为2-故选:A .14.已知a 、b 是平面内两个互相垂直的单位向量,若向量c满足()()0c a c b --= ,则||c 的最大值是()A .1B .2C .D【解析】解:由题意可得0a b =,可得||a b +== 2()()()c a c b c a b c a b --=+-+ 2||||||cos (c c a b a b =-+<+ ,0c >=,即为||c a b =<+ ,c > ,当cos a b <+ ,1c >= 即a b + ,c同向时,||c故选:C .15.已知向量(cos ,sin )a θθ=,向量b = 1)-则|2|a b - 的最大值,最小值分别是()A .0B .4,C .16,0D .4,0【解析】解:2(2cos a b θ-=-,2sin 1)θ+,|2|a b -===4,最小值为0.故选:D .16.已知,a b是单位向量,0a b = ,若向量c 满足||1c a b -+= ,则|||c b - 的取值范围是()A .1]-B .1]+C .[0,2]D .1]-+【解析】解:由,a b是单位向量,且0a b = ,则可设(1,0)a = ,(0,1)b = ,(,)c x y = ;向量c满足||1c a b -+= ,|(1,1)|1x y ∴-+=,∴1=,即22(1)(1)1x y -++=,它表示圆心为(1,1)C -,半径为1r =的圆;又|||(c b x -=,1)|y -=C 上的点到点(0,1)B 的距离,如图所示:且||BC =,∴1||1PB - ;即||c b -的取值范围是1-1]+.故选:D.17.设1e ,2e 为单位向量,非零向量12b xe ye =+ ,x ,y R ∈,若1e ,2e 的夹角为6π,则||||b x的最小值为()A .14B .12C .1D .4【解析】解: 1e ,2e 为单位向量,非零向量12b xe ye =+ ,x ,y R ∈,若1e ,2e 的夹角为6π,∴12123||||cos 62e e e e π==,则22221212||()2b xe ye x y xye e =+=++=,则||1||2b x ==== ,当且仅当y x =故选:B .二.填空题(共7小题)18.在边长为2的等边三角形ABC 中,D 是AB 的中点,E 为线段AC 上一动点,则EB ED的取值范围为23[16,3].【解析】解:由题意可得AE 和AB 的夹角为60︒,设||AE x =,[0x ∈,2],22()()212cos60cos60EB ED AB AE AD AE AB AD AB AE AD AE AE x x x=--=--+=⨯-︒-︒+ 2233232()2416x x x =-+=-+,故当34x =时,EB ED 取得最小值为2316,当2x =时,EB ED 取得最大值为3,故EB ED 的取值范围为23[,3]16,19.已知向量,,a b c满足||6,||a b == ,a 与b 的夹角为4π,()()4c a c b --=- ,则||c a - 的最小值为1-.【解析】解:由向量||6a = ,||b = ,a与b 的夹角为4π,可设(6,0)OA a == ,4OB b π== ,(24π=,2),(,)OC c x y == ,由()()4c a c b --=-,得(6)(2)(2)4x x y y --+-=-;化为22(4)(1)1x y -+-=,所以点C 在以(4,1)M 为圆心,以1为半径的圆的上;且||c a -=表示圆上的点到点(6,0)A 的距离,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的实际背景及基本概念
一、选择题:
1.下列物理量中,不能称为向量的是( )
A .质量
B .速度
C .位移
D .力
2.设O 是正方形ABCD 的中心,向量AO 、OB 、CO 、OD 是( )
A .平行向量
B .有相同终点的向量
C .相等向量
D .模相等的向量
3.下列命题中,正确的是( )
A .||||a b =a b ⇒=
B .||||a b >a b ⇒>
C .a b a =⇒与b 共线
D .||00a a =⇒=
4.在下列说法中,正确的是( )
A .两个有公共起点且共线的向量,其终点必相同
B .模为0的向量与任一非零向量平行
C .向量就是有向线段
D .若||||a b =,则a b =
5.下列各说法中,其中错误的个数为( )
(1)向量AB 的长度与向量BA 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行
A .2个
B .3个
C .4个
D .5个
*6.ABC ∆中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF 共线的向量有( )
A .2个
B .3个
C .6个
D .7个
二、填空题:
7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是 .
8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中,
(1)与AO 相等的向量有 ; (2)与AO 共线的向量有
; (3)与AO 模相等的向量有 ;
(4)向量AO 与CO 是否相等答: . 9.O 是正六边形ABCDEF 的中心,且AO a =,OB b =,AB c =,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中:
(1)与a 相等的向量有 ;
(2)与b 相等的向量有
; (3)与c 相等的向量有 .
O A B C
D
E F
*10.下列说法中正确是 .(写序号)
(1)若a 与b 是平行向量,则a 与b 方向相同或相反;
(2)若AB 与CD 共线,则点A 、B 、C 、D 共线;
(3)四边形ABCD 为平行四边形,则AB =CD ;
(4)若a b =,b c =,则a c =;
(5)四边形ABCD 中,AB DC =且||||AB AD =,则四边形ABCD 为正方形;
(6)a 与b 方向相同且||||a b =与a b =是一致的; 三、解答题:
11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模有多少种不同的方向
12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1)是否存在共线向量相等向量模相等的向量若存在,请一一举出.
13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北60走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点.
(1)作出向量AB 、BC 、CD (1cm 表示200m );
(2)求DA 的模.。