椭圆及其标准方程
椭圆的一般方程和标准公式
![椭圆的一般方程和标准公式](https://img.taocdn.com/s3/m/2f45b72da9114431b90d6c85ec3a87c240288ad1.png)
椭圆的一般方程和标准公式
椭圆是一个常见的二维几何图形,其一般方程和标准公式如下:
1.椭圆的一般方程:
椭圆的一般方程表示为:
A(x - h)^2 + B(y - k)^2 = 1
其中,(h, k)表示椭圆的中心坐标,A和B是正实数,且A > B。
2.椭圆的标准公式:
椭圆的标准公式表示为:
(x - h)^2/a^2 + (y - k)^2/b^2 = 1
其中,(h, k)表示椭圆的中心坐标,a和b分别表示椭圆在x轴和y轴上的半长轴长度。
具体详细解释如下:
●中心坐标(h, k):椭圆的中心点在坐标平面上的位置,坐标为(h, k)。
●半长轴长度a:椭圆在x轴上的半长轴长度,表示椭圆沿着x轴正方向延伸
的距离。
●半短轴长度b:椭圆在y轴上的半短轴长度,表示椭圆沿着y轴正方向延伸
的距离。
椭圆的标准公式以中心点(h, k) 为中心,沿x轴和y轴方向分别以a和b为轴长度绘制。
当a和b相等时,椭圆退化为一个圆。
若a大于b,则椭圆在x轴方向上更为扁平,称为长轴椭圆;若b大于a,则椭圆在y轴方向上更为扁平,称为短轴椭圆。
注意事项:
●椭圆的方程中,A和B的值与a和b的关系为A = 1/a^2,B = 1/b^2。
●当椭圆的中心不在原点时,方程中的坐标需要进行平移,即(x - h) 和(y - k)。
●椭圆的方程也可以表示为离心率和焦点的形式,但这超出了一般方程和标准
公式的范围。
通过了解椭圆的一般方程和标准公式,您可以利用这些公式来描述和绘制椭圆的几何形状,并对椭圆的中心、半长轴和半短轴进行准确的计算和描绘。
2.1.1 椭圆及其标准方程
![2.1.1 椭圆及其标准方程](https://img.taocdn.com/s3/m/181ae3f3172ded630b1cb6f3.png)
(3)已知两圆 C1:(x-4) +y =169,C2:(x+
2 2
2
2
4) +y =9,动圆和圆 C1 内切,和圆 C2 外切,求 动圆圆心的轨迹方程.
解:如图所示,设动圆圆心为 M(x,y),半径为 r. 由题意得动圆 M
和内切于圆 C1, ∴|MC1|=13-r. 圆 M 外切于圆 C2, ∴|MC2|=3+r. ∴
一、椭圆的定义
平面内到两个定点F1,F2的 定义
距离之和等于常数
(大于| F1F2|)的点的集合叫作椭圆 两个 定点 F1,F2叫作椭圆的焦点 两焦点F1,F2间的 距离 叫作椭圆的焦距 P={M| |MF1|+|MF2|=2a, >| F1F2|}
焦点 焦距 集合语
言
椭圆的标准方程
焦点在x轴上
解: 设圆 P 的半径为 r ,又圆 P 过点 B , ∴ |PB| =r,又∵圆P与圆A内切,圆A的半径为10. ∴两圆的圆心距|PA|=10-r, 即|PA|+|PB|=10(大于|AB|). ∴点P的轨迹是以A、B为焦点的椭圆. ∴2a=10,2c=|AB|=6, ∴a=5,c=3.∴b2=a2-c2=25-9=16.
以过 B、C 两点的直线为 x 轴,线段 BC 的垂直平分线为 y 轴,建立直 角坐标系 xOy,如图所示.由|BC|=8,可知点 B(-4,0),C(4,0),c =4. 由|AB|+|AC|+|BC|=18,|BC|=8,得|AB|+|AC|=10.因此,点 A
的轨迹是以 B,C 为焦点的椭圆,这个椭圆上的点与两焦点的距离之
a2= 15, 解得 2 b = 5.
x2 y2 所以所求椭圆的方程为 + = 1. 15 5 y2 x2 ②当焦点在 y 轴上时,设椭圆的标准方程为 2+ 2=1(a> b> 0).依题 a b
《椭圆及其标准方程》课件
![《椭圆及其标准方程》课件](https://img.taocdn.com/s3/m/b13434207f21af45b307e87101f69e314332faea.png)
感谢观看
THANKS
《椭圆及其标准方 程》ppt课件
目 录
• 椭圆的定义 • 椭圆的方程 • 椭圆的性质 • 椭圆的图像 • 椭圆的实际应用
01
椭圆的定义
椭圆的几何定义
01
椭圆是由平面内两个定点F1、F2 的距离之和等于常数(常数大于 F1、F2之间的距离)的点的轨迹 形成的图形。
02
两个定点F1、F2称为椭圆的焦点 ,焦点的距离c满足关系式: c²=a²-b²,其中a为椭圆长轴半径 ,b为短轴半径。
椭圆的范围
总结词
椭圆的范围是指椭圆被坐标轴所限制的范围。
详细描述
这意味着椭圆永远不会出现在坐标轴之外。在x轴上,椭圆的范围是从-a到a;在y轴上,椭圆的范围是从-b到b。 其中a和b是椭圆的长轴和短轴的半径。
椭圆的顶点
总结词
椭圆的顶点是指椭圆与坐标轴的交点 。
详细描述
椭圆的顶点是椭圆与x轴和y轴的交点 。这些点是椭圆的边界点,并且它们 位于椭圆的长轴和短轴上。具体来说 ,椭圆的顶点是(-a,0),(a,0),(0,-b) 和(0,b)。
小和形状。
平移变换
将椭圆在坐标系中移动,可以实现 椭圆的平移变换。平移变换不会改 变椭圆的大小和形状,只会改变椭 圆的位置。
旋转变换
通过旋转椭圆,可以实现椭圆的旋 转变换。旋转变换会改变椭圆的方 向,但不会改变椭圆的大小和形状 。
椭圆的图像应用
天文学
在天文观测中,行星和卫星的轨道通常可以用椭圆来近似 描述。通过研究椭圆的性质,可以更好地理解天体的运动 规律。
焦点位置
离心率
定义为c/a,其中c是焦点到椭圆中心 的距离,a是椭圆长轴的半径。离心率 越接近0,椭圆越接近圆;离心率越 大,椭圆越扁。
椭圆的标准方程及性质
![椭圆的标准方程及性质](https://img.taocdn.com/s3/m/648ec9256ad97f192279168884868762caaebb97.png)
椭圆的标准方程及性质椭圆作为二维空间中的图形,具有一些独特的性质和特点。
本文将介绍椭圆的标准方程以及其相应的性质。
一、椭圆的标准方程椭圆的标准方程可以通过平面几何的推导得出。
设椭圆的中心为点(h,k),椭圆的长轴为2a,短轴为2b,则可得出椭圆的标准方程:(x-h)^2/a^2 +(y-k)^2/b^2 = 1其中,h和k分别是椭圆的中心在x轴和y轴上的坐标,a和b分别是椭圆长轴和短轴的一半。
二、椭圆的性质1. 中心:椭圆的中心即标准方程中的点(h,k),表示椭圆在平面上的位置。
2. 焦点:椭圆上的每个点到两个焦点的距离之和等于定值2a,即椭圆的长轴长度。
焦点是椭圆的重要特点,用于定义椭圆的几何性质。
3. 长轴和短轴:标准方程中a和b分别表示椭圆的长轴和短轴的一半。
长轴是椭圆的最长直径,短轴是椭圆的最短直径。
4. 离心率:椭圆的离心率定义为焦距与长轴之比,通常用e表示。
离心率决定了椭圆的扁平程度,e<1时表示椭圆,e=0时表示圆。
5. 直径:椭圆上的两个端点同时到椭圆内一点的距离相等,则这两个端点和该内点连成的线段叫做该椭圆的直径。
6. 弦:椭圆上任意两点连线和椭圆的直径所围内部的线段叫做椭圆的弦。
7. 准线:椭圆上与两个焦点连线垂直的直线,与椭圆的侧弦相切。
8. 焦散性:入射到椭圆的平行光线在反射后会汇聚到另一个焦点上,这是椭圆焦散性的一个重要表现。
三、椭圆的应用椭圆作为一种常见的数学曲线,在现实生活中有广泛的应用。
以下是一些椭圆应用的例子:1. 天体运动:行星围绕太阳的轨迹、人造卫星轨道等可以近似看作椭圆。
2. 光学器件:抛物面镜、椭圆面镜等。
3. 固定时间下的最短路径问题。
4. 卫星通信:卫星的定位和通信领域中使用椭圆轨道。
4. 造船工业:船体的椭圆剖面设计,可以减少水的阻力。
5. 圆锥曲线中的一类,在几何光学中,椭球曲面可以聚焦光线。
总结:本文介绍了椭圆的标准方程及其性质。
椭圆作为一种重要的数学曲线,其在几何和物理学中有着广泛的应用。
椭圆及标准方程
![椭圆及标准方程](https://img.taocdn.com/s3/m/fa9b278b88eb172ded630b1c59eef8c75fbf95af.png)
椭圆及标准方程椭圆是平面上到定点F1、F2的距离之和等于常数2a的点P的轨迹。
设F1(-c,0),F2(c,0),点P(x,y),则PF1+PF2=2a。
椭圆的标准方程为,x^2/a^2+y^2/b^2=1(a>b>0)。
椭圆的性质:1.椭圆的离心率0<e<1,焦点到中心的距离为ae。
2.椭圆的长轴2a,短轴2b,焦距2ae。
3.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。
4.椭圆的面积为πab。
5.椭圆的焦点到直径的距离等于直径的一半。
6.椭圆的焦点到切线的距离等于焦点到法线的距离。
7.椭圆的切线与法线的交点坐标分别为(x1,y1)和(x1,-y1)。
8.椭圆的渐近线方程为y=±b/ax。
9.椭圆的参数方程为x=acosθ,y=bsinθ。
10.椭圆的极坐标方程为r=a(1-e^2)/(1+ecosθ)。
椭圆的标准方程推导:设椭圆的长轴为2a,短轴为2b,焦点为F1(-c,0),F2(c,0),中心为O(0,0),点P(x,y)。
则有PF1+PF2=2a,根据两点之间的距离公式可得。
√((x+c)^2+y^2)+√((x-c)^2+y^2)=2a。
整理得到。
(√((x+c)^2+y^2))^2+(√((x-c)^2+y^2))^2=4a^2。
化简得到。
x^2/a^2+y^2/b^2=1。
从而得到椭圆的标准方程。
椭圆的标准方程性质:1.椭圆的标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。
2.椭圆的中心在原点O(0,0)。
3.椭圆的长轴在x轴上,短轴在y轴上。
4.椭圆的焦点为F1(-c,0),F2(c,0),离心率e=c/a。
5.椭圆的长轴长为2a,短轴长为2b,焦距2ae。
6.椭圆的面积为πab。
7.椭圆的离心角θ满足e=cosθ,离心率e与离心角θ的关系为e=cosθ。
8.椭圆的参数方程为x=acosθ,y=bsinθ。
椭圆及其标准方程
![椭圆及其标准方程](https://img.taocdn.com/s3/m/15f6e423915f804d2b16c145.png)
A.5
B.8
C.3或5
D.3
x2 y 2 3.已知 F1、F2 是椭圆 25 49 1 的两个焦点,过 F 的直 1 线与椭圆交于A、B两点,则 ABF2 的周长是 ( )
A. 8 6 B.20 C.24 D.28 4.方程 Ax 2 By 2 1 什么时候表示椭圆?什么时候表示 焦点在x轴上的椭圆?什么时候表示焦点在y轴上的椭圆?
椭圆实物图
椭 圆 相 框
椭圆双层茶几
椭圆形钻戒
动画演示
椭圆的画法
通过试验形成概念
椭圆定义:
平面内与两定点 F 1、F2 的距离的和等于 常数(大于 F1F2 )的点的轨迹是椭圆。
王新敞
奎屯 新疆
这两个定点叫做椭圆的焦点,两焦点
间的距离叫做椭圆的焦距.
2、椭圆的标准方程
椭圆的焦距为2c(c>0),M与F1、F2的距离的和为2a 怎样建立平面直角坐标系呢?
【关系】
c2 a2 b2
b 2x 2 a2 y 2 a2b 2
a c
2
2
0
x y2 2 1(a b 0) 2 a b
y
x y 2 1 (a b 0) 2 a b
它表示: (1)椭圆的焦点在x轴上 (2)焦点是F1(-C,0),F2(C,0) (3)C2= a2 - b2
F1
2
2
这里c 2 a 2 b2
y
F2 M O F1
焦点F1 (0,c ), F2 (0, c )
x
y x 2 1(a b 0) 2 a b
2
2
这里c a b
2 2
2
y
椭圆及其标准方程ppt课件
![椭圆及其标准方程ppt课件](https://img.taocdn.com/s3/m/0a1a050ebf23482fb4daa58da0116c175e0e1e46.png)
课后作业
1.必做题:P51 练习4,5.
2.选做题:求与圆(x 2)2 y2 1 外切,且与圆 (x 2)2 y2 49 内切的动圆圆心的轨迹方程 3.思考题:Ax2 By 2 1什么时候表示椭圆?焦 点在哪个轴?
椭圆光学性质欣赏及探索
感谢大家的指导 谢谢
椭圆及其标准方程
01
圆锥曲线
现场演示观察
用一个圆锥形杯子,往杯子里倒入有色的 液体,然后倾斜杯子,请观察液体的水平 面是什么形状?
圆锥曲线
用一个平面去截圆锥面,当圆锥的 轴与截面所成的角不同时,可以得到不 同的截口曲线,它们分别是圆、椭圆、 抛物线和双曲线,我们这些曲线统称为 圆锥曲线.
生活中的椭圆
实例(-2,0),(2,0),
,并且 并解由2所解由2所解由2所aaa:=:=椭以椭以且:=椭以经由由圆圆由圆bb((经b(552222522于于的的过 于的===过aa椭椭定定22a椭定222))2--)点 22点-圆圆义义2圆义ccc的的知知((22的知(2===(焦焦2323焦cc236652c6))==..)=22点点.2点222,,,,在在在(((2355xx225x2轴轴)轴222, 上上))上)22求2,,,(((椭可可可232323设设))圆设)222其其其的22标标2标标11准准1准000,,方方准,方程程程方解解解为为为得得程得aaxxax2222aa.22a===
图形
标准方程 x2 y2 = 1(a>b>0)
a2 b2
y2 a2
x2 b2
=
1(a>b>0)
a, b, c的关系
a2__b2=c2
焦点
(-c, 0),(c, 0)
(0, -c),(0, c)
椭圆及标准方程
![椭圆及标准方程](https://img.taocdn.com/s3/m/5c9a966dae45b307e87101f69e3143323868f56e.png)
椭圆及标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
F1和F2称为椭圆的焦点,2a称为椭圆的长轴。
椭圆的标准方程为:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。
其中a为长轴的一半,b为短轴的一半。
在椭圆的标准方程中,a和b的大小决定了椭圆的形状,当a>b时,椭圆的长轴水平;当a<b时,椭圆的长轴垂直。
椭圆的离心率e定义为焦距与长轴的比值,即e=\(\frac{c}{a}\),其中c为焦距之一。
离心率决定了椭圆的形状,当e=0时,椭圆退化为圆;当0<e<1时,椭圆是一个扁平的椭圆;当e=1时,椭圆是一个狭长的椭圆;当e>1时,椭圆不存在,退化为双曲线。
根据椭圆的标准方程,我们可以得到椭圆的一些重要性质。
首先,椭圆的中心在原点O(0,0),长轴与x轴平行,短轴与y轴平行。
其次,椭圆的焦点坐标为F1(-c,0)和F2(c,0),其中c=\(\sqrt{a^2-b^2}\)。
最后,椭圆的顶点坐标为A(a,0)和B(-a,0),其中a为长轴的一半。
除了标准方程外,椭圆还可以有其他形式的方程。
例如,椭圆的参数方程为:\(\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}\)。
其中t为参数,a和b同样为长轴和短轴的一半。
利用参数方程,我们可以更加灵活地描述椭圆上的点的运动规律。
另外,椭圆还可以通过矩形方程来表示,即:\( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)。
其中(h,k)为椭圆的中心坐标。
通过矩形方程,我们可以方便地得到椭圆的中心和长短轴的信息。
总之,椭圆是一种重要的几何图形,具有许多独特的性质和形式。
通过标准方程、参数方程和矩形方程,我们可以更加深入地理解和描述椭圆的形状和特点。
对于数学和物理学的学习和应用都有着重要的意义。
椭圆及其标准方程ppt课件
![椭圆及其标准方程ppt课件](https://img.taocdn.com/s3/m/b50a074a6d175f0e7cd184254b35eefdc8d315b3.png)
( 3)2
(-2)2
+ 2
2
(-2 3)2
1
+ 2
2
2
轴上时,设椭圆的标准方程为 2
= 1,
2 = 15,
解得 2
=
5,
= 1,
2
故所求椭圆的标准方程为
15
+
2
=1.
5
+
2
=1(a>b>0).
2
②当焦点在 y
(-2)2
( 3)2
+
2
2
1
(-2 3)2
+ 2
2
接设所求椭圆方程为mx2+ny2=1(m>0,n>0,m≠n).
解 (1)因为椭圆的焦点在 x 轴上,
2
所以设它的标准方程为 2
+
2
=1(a>b>0).
2
因为 2a= (5 + 4)2 + (5-4)2 =10,所以 a=5.
又 c=4,所以 b2=a2-c2=25-16=9.
2
故所求椭圆的标准方程为25
O
为什么?
D
解1:(相关点代入法) 设点M的坐标为(x, y),点P的坐标
为(x0, y0),则点D的坐标为(x0, 0).
y0
寻求点M的坐标(x,y)中x, y
.
由点M是线段PD的中点,得 x x0 ,y
2
与x0, y0之间的关系,然后消
∵点P ( x0 ,y0 )在圆x 2 y 2 4上, ∴x02 y02 4,
2
a
a c
椭圆及其标准方程
![椭圆及其标准方程](https://img.taocdn.com/s3/m/1e975a6f492fb4daa58da0116c175f0e7dd1194b.png)
椭圆及其标准方程椭圆是一个非常重要的几何图形,它在数学和物理学中都有着广泛的应用。
在本文中,我们将探讨椭圆的定义、性质以及其标准方程。
首先,让我们来看一下椭圆的定义。
椭圆可以被定义为平面上到两个定点F1和F2的距离之和等于常数2a的点P的集合。
这两个定点被称为焦点,而常数2a 则被称为椭圆的长轴长度。
椭圆还有一个与长轴垂直的短轴,其长度为2b。
椭圆的形状可以由长轴和短轴的长度来描述,而这个描述也可以用椭圆的标准方程来表示。
接下来,让我们来看一下椭圆的标准方程。
椭圆的标准方程可以写成(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)是椭圆的中心坐标,a和b分别是长轴和短轴的长度。
如果椭圆的长轴与x轴平行,那么它的标准方程可以简化为(x-h)^2/a^2 + (y-k)^2/b^2 = 1。
如果椭圆的长轴与y轴平行,那么它的标准方程可以简化为(y-k)^2/a^2 + (x-h)^2/b^2 = 1。
通过这个标准方程,我们可以轻松地确定椭圆的中心、长轴、短轴以及焦点的位置。
除了标准方程之外,椭圆还有许多重要的性质。
例如,椭圆上任意一点到两个焦点的距离之和等于常数2a,这个性质被称为椭圆的焦点性质。
此外,椭圆还具有对称性,关于长轴和短轴都有对称轴。
这些性质使得椭圆在数学和物理学中有着广泛的应用,例如在天体运动、工程设计以及密码学中都可以看到椭圆的身影。
总之,椭圆是一个非常重要的几何图形,它具有许多重要的性质和应用。
通过椭圆的标准方程,我们可以轻松地描述和理解椭圆的形状和位置。
希望本文对您理解椭圆有所帮助,谢谢阅读!。
椭圆及其标准方程
![椭圆及其标准方程](https://img.taocdn.com/s3/m/dfb69234dd36a32d7375811b.png)
第一讲 椭圆及其标准方程一 椭圆定义椭圆的(第一)定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距(2c)。
.注意:①注意一定有在“平面内”三个字,若去掉,则为椭球.②若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F . ③若)(2121F F PF PF <+,则动点P 的轨迹无图形.例1 已知有点)0,5(),0,5(21F F -且有1021=+PF PF ,则点P 的轨迹是( ) A 椭圆 B 双曲线 C 线段 D 两条射线二 椭圆的方程(1)推导(2)椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 。
例2 已知方程110422=---k y k x 表示焦点在x 轴上的椭圆,则实数k 的取值范围为例3 写出适合下列条件的椭圆的标准方程 (1) 焦点在x 轴上,6,1:2:==c b a(2) 焦点在y 轴上,522=+b a ,且过点)0,2(-三 求椭圆方程的常用方法(1)待定系数法:由题设条件确定方程的类型,设出标准方程,再由条件确定方程中的参数,其主要步骤可归纳为“先定位,后定量”,一般步骤为:①先定位:根据条件判定焦点在x 轴上还是在y 轴上,还是两个都有可能;②设方程:根据上述判断设方程为12222=+b y a x 或22221y x a b +=③寻关系:根据已知条件列出相应的关系④得方程注意:有时利用待定系数法时,设出椭圆的一般方程mx 2+ny 2=1(n m n m ≠>>,0,0),可以避免焦点位置的讨论,更简单(3) 定义法:根据题目条件确定点的轨迹为椭圆,然后根据定义寻找c b a ,,关系,从而得到椭圆方程例4 已知椭圆的两个焦点坐标分别是)2,0(),2,0(-,并且经过点)25,23(-,求椭圆的标准方程(用尽量多的方法解决)例5 已知椭圆经过点3,36()和点(1,322),求椭圆的标准方程四 椭圆中的焦点三角形(可自己证明)椭圆上任意一点P 与两焦点1F ,2F 构成的三角形△21F PF ,称为焦点三角形 (1) 焦点三角形的周长为2a+2c (2) 焦点三角形的面积为2tan 2b (α=∠21PF F )例6 已知P 为椭圆17542522=+y x 上一点,1F ,2F 是椭圆的焦点,∠21PF F =60°,求三角形21F PF 的面积随堂练习1已知点M 到两个定点A(-1,0)和B(1,0)的距离之和是定值2,则动点M 的轨迹是( ) A.一个椭圆 B.线段AB C.线段AB 的垂直平分线 D.直线AB2已知椭圆+=1上一点P 到椭圆的一个焦点的距离为3,则到另一个焦点的距离为( )A.2B.3C.5D.73若P 是以F 1、F 2为焦点的椭圆+=1上一点,则三角形PF 1F 2的周长等于( )A.16B.18C.20D.不确定4动点P 到两定点(0,-2),(0,2)距离的和为8,则动点P 的轨迹方程为( )A.+=1 B.+=1 C.+=1 D.+=15以坐标轴为对称轴,两焦点的距离是2,且过点(0,2)的椭圆的标准方程是( )A. +=1 B.+=1 C.+=1或+=1 D.+=1或+=16已知曲线C:+=1,则点(3,0)与曲线C 的位置关系为( )A.不能确定B.点(3,0)在曲线C 上C.点(3,0)在曲线C 的外部D.点(3,0)在曲线C 的内部7已知椭圆的上顶点和左焦点都在直线y=2x+2上,则这一椭圆的标准方程是( )A.+=1 B.+=1 C.+=1 D.+=18已知椭圆的中心在原点,对称轴是坐标轴,若椭圆短轴的一个端点B 与两个焦点F 1,F 2组成的三角形的周长是4+2,且∠F 1BF 2=,则这一椭圆的方程是 .9过椭圆4x 2+2y 2=1的一个焦点F 1的弦AB 与另一个焦点F 2所围成的△ABF 2的周长是________.10已知方程(k2-1)x2+3y2=1表示焦点在y轴上的椭圆,则k的取值范围是______________.11已知椭圆过点A(1,2)和点B(-2,),则椭圆的标准方程是____________.12 椭圆+=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的大小为________.13 已知一个三角形的周长为10,其中两个顶点A,B间的距离是2,试建立恰当的直角坐标系,求出三角形的第三个顶点的轨迹方程.14 已知中心在原点的椭圆C的两个焦点和椭圆C1:4x2+9y2=36的两个焦点是一个正方形的四个顶点,且椭圆C过点A(2,-3).(1)求椭圆C的方程;(2)若PQ是椭圆C的弦,O是坐标原点,且OP⊥OQ,已知点P的坐标是(,2),求点Q的坐标.15如图,点A是椭圆C: +=1(a>b>0)的短轴位于x轴下方的端点,过A作斜率为1的直线l交椭圆于点B,若点P的坐标为(0,1),且满足BP∥x轴,·=9.求椭圆C的方程.。
椭圆及其标准方程ppt课件
![椭圆及其标准方程ppt课件](https://img.taocdn.com/s3/m/c3722a3c7f21af45b307e87101f69e314332fad8.png)
y
y
y
O
F1
2
F2
2
x
y
2 1
2
a
b
P ( x, y )
P ( x, y )
P ( x, y )
x
F1
x c
a2
x
F2
2
2
y
2 1
b
x
F2
F1
x c
a2
2
y2
2 1
b
16
已知:在平面内有两个定点 F1 、F2 和动点 P ,满足
(2)设椭圆的焦距 F1F2 2c c 0
(3)椭圆上任意一点到两焦点的距离之和为常数
2a a c .
8
探究二
例1 用定义判断下列动点的运动轨迹是否为椭圆.
(1) 在平面内,到 F1 2,0 , F2 2,0 的距离之和为6
的点的轨迹.
是
(2) 在平面内,到 F1 2,0 , F2 2,0 的距离之和为4
结果?
线段 F1F2
4.如果绳子的长度小于F1F2的距离时,你是否还能
画出图形? 不存在运动轨迹
7
探究二
思考:你能否根据以上实验操作,类比圆的定义,
归纳总结出椭圆的定义?
椭圆定义 平面内到两定点 F1 、F2 的距离之和等于
常数(大于 F1F2 )的点的集合叫作椭圆。
(1)焦点:定点 F1 、F2
建系
设点
列式
化简
证明
10
已知:在平面内有两个定点 F1 、F2 和动点 P ,满足
3.1.1椭圆及其标准方程
![3.1.1椭圆及其标准方程](https://img.taocdn.com/s3/m/644bb939453610661ed9f484.png)
△ F1PF2 称为焦点三角形,解关于椭圆中的焦点三角形问题时 要充分利用椭圆的定义、三角形中的正弦定理、余弦定理、勾 股定理等知识.对于求焦点三角形的面积,若已知∠F1PF2, 1 可利用 S=2|PF1|· |PF2|sin∠F1PF2 求面积,这时可把|PF1|· |PF2| 看成一个整体,运用公式 |PF1|2+|PF2|2=4a2-2|PF1||PF2|及余 弦定理求出|PF1|· |PF2|,而无需单独求出|PF1|和|PF2|,这样可以 减少运算量.
x2 y2 y2 x2 ∴椭圆的标准方程为 当焦点在 x 轴上时,设椭圆的标准方程为 x2 y2 + =1(a>b>0). a2 b2
2 2 - 2 3 2 + 2 =1, b a 依题意有 2 - 2 3 1 + 2=1, 2 b a 2 a =15, 解得 2 b =5.
即|PF2|=4-|PF1|. 6 将②代入①解得|PF1|=5,
②
1 1 6 3 3 3 ∴S△ PF1F2=2|PF1|· |F1F2|· sin 120° =2× 2× 2 = 5 . 5× 3 因此所求△ PF1F2 的面积是5 3.
[一点通]
椭圆上一点 P 与椭圆的两焦点 F1、F2 构成的
[一点通] 求椭圆标准方程的一般步骤为:
[例 2]
如图所示, 已知椭圆的方程
x2 y2 为 4 + 3 =1,若点 P 在椭圆上,F1,F2 为椭圆的两个焦点,且∠PF1F2=120° , 求△ PF1F2 的面积. [思路点拨] 因为∠PF1F2=120°,|F1F2|=2c,所以要
求S△PF1F2,只要求|PF1|即可.可由椭圆的定义|PF1|+|PF2| =2a,并结合余弦定理求解.
椭圆及其标准方程
![椭圆及其标准方程](https://img.taocdn.com/s3/m/74ad08a9284ac850ad024277.png)
5 2 3 2 ( ) (- ) 3 5 又∵椭圆经过点 , ∴ 2 2 1 2 2 2 2 a b 即 2 5b 2 9 a 2 4 a 2 b 2 ②
由① ②得 a 1 0,b 6
2 2
因此椭圆的标准方程为
y
2
x
2
1
巩固
10 6 小结:椭圆标准方程 a > b > 0
x b
2
2
+
y a
2
2
= 1 a > b > 0
y P
y F2 P x
不 同 点
图
形
F1
O
F2
x
O
F1
焦点坐标
F1 - c , 0 , F 2 c , 0
F1 0 ,- c , F 2 0 ,c
相 同 点
定 义
a、b、c 的关系
y
所以 设它的标准方程为 2 2 1( a b 0 ) a b 由椭圆的定义知,
2a 3 5 2 2 2
2 2
x
2
3 5 2 2 2
2
2
2 10
所以 b 2 a 2 c 2 10 4 6 2 2 y x 1 因此椭圆的标准方程为 10 6 小结:椭圆标准方程的求法(定义法)
(2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点, 8 并且CF1=2,则CF2=___.
变式:椭圆
x
2
y
2
16
9
1 的焦距是_______, 2 7
( 7 , 0) ( 7 , 0) 焦点坐标为___________和____________;
椭圆及其标准方程ppt课件
![椭圆及其标准方程ppt课件](https://img.taocdn.com/s3/m/a45bd8405e0e7cd184254b35eefdc8d376ee14f0.png)
令b=POI=√a²-c², 那么方程⑤就
由于方程②③的两边都是非负实数,因此方程①到方程⑥的变形都是同解变 形.这样,椭圆上任意一点的坐标(x,y) 都满足方程⑥;反之,以方程⑥的解为 坐标的点(x,y)与椭圆的两个焦点(c,0),(-c,0)的距离之和为2a, 即以方程⑥的 解为坐标的点都在椭圆上.则方程⑥是椭圆的方程,这个方程叫做圆的标准方 程.它表示焦点在x 轴上,两个焦点分别是F(-c,0),F₂ (c,0) 的椭圆,这里
所以点M 的轨迹是椭圆.
例3如图,设A,B 两点的坐标分别为(-5,0),(5,0).直线AM,BM 相交于点M, 且它们的斜率之积是 ,求点M 的轨迹方程.
事
解 :设点M 的坐标为(x,y),因为点A 的坐标是(-5,0), 所以直线AM的斜率 同理,直线 BM 的斜率 由已知有
化简得点M 的轨迹方程为
设M(x,y )是椭圆上任意一点,椭圆的焦距为2c(c>0), 那么焦点F,F₂ 的 坐 标分别为(-c,0),(c,0) ,根据椭圆的定义,设点M 与焦点F,F₂ 的距离的和等于 2a.
由椭圆的定义可知,椭圆可看作点集P={M||MF₁I+|MF₂I=2a}. 因为IMFI= √ (x+c)²+y²,IMF₂F= √ (x-c)²+y², 所以J(x+c)²+y²+ √ (x-c)²+y²=2a.① 化简得√(x+c)²+y²=2a-√(x-c)²+y².② 对方程②两边平方得(x+c)²+y²=4a²-4aJ(x-c)²+y²+(x-c)²+y². 整理得a²-cx=aJ(x-c)²+y².③
椭圆及其标准方程
![椭圆及其标准方程](https://img.taocdn.com/s3/m/7beb8667b7360b4c2e3f6493.png)
椭圆及其标准方程1.椭圆的定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.注意:定义中的常数用2a表示,|F1F2|用2c表示,当2a>2c>0时,轨迹为椭圆,当2a=2c 时,轨迹为线段F1F2;当2a<2c时,无轨迹.这样,椭圆轨迹一定要有2a>2c这一条件.另外,应用定义来求椭圆方程或解题时,往往比较简便.2.椭圆的标准方程当焦点在x轴上时:+ =1(a>b>0)当焦点在y轴上时:+ =1(a>b>0)注意:(1)三个量之间的关系:a2=b2+c2(2)由x2,y2的分母大小确定焦点在哪条坐标轴上,x2的分母大,焦点就在x轴上,y2的分母大,焦点就在y轴上.(3)在方程Ax2+By2=C中,只有A、B、C同号时,才可能表示椭圆方程.(4)当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.典型例题例1 求与椭圆+ =1共焦点,且过点M(3,-2)的椭圆方程.解法一:(待定系数法)由已知椭圆方程+ =1得C2=9-4=5,且焦点在x轴上,设所求椭圆方程为+ =1又∵点M(3,-2)在椭圆上∴+ =1,得a4-18a2+45=0∴a2=15或a2=3<5=C2(舍)∴所求椭圆方程为+ =1解法二:(定义法)椭圆两焦点为F1(- ,0),F2( ,0),点M(3,-2)到这两个焦点距离之和是2a,即2a=|M1F1|+|M1F2|= + =2∴a2=15 b2=a2-c2=15-5=10∴所求椭圆方程为+ =1例2 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1( ,1),P2(- ,- ),求椭圆的方程.解:设椭圆方程为mx2+ny2=1,(m>0,n>0)由题意有解得m= ,n=∴所求椭圆方程为+ =1说明:设椭圆方程为mx2+ny2=1(m>0,n>0)可免讨论焦点的位置,而且计算简便.例3 已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作焦点所在轴的垂线恰好过椭圆的一个焦点,求椭圆方程.解:设两个焦点为F1F2,且|PF1|= ,|PF2|=由椭圆定义知2a=|PF1|+|PF2|=2 ∴a=而|PF1|>|PF2|知PF2与焦点所在的对称轴垂直.∴Rt△PF2F1中,sin∠PF1F2= =∴∠PF1F2=2C=|PF1|cos =∴b2=a2-c2=故所求方程为+ y2=1或x2+ =13.(代入法)与椭圆有关的轨迹问题:常用的方法有定义法,坐标转移法,交轨法,点差法. 例4 已知圆C1:x2+y2+4x-12=0与圆C2:x2+y2-4x=0,动圆C与C1相内切,且与C2相外切,求动圆圆心的轨迹方程.解:圆C1与C2的标准方程是(x+2)2+y2=16,(x-2)2+y2=4圆心分别为C1(-2,0),C2(2,0)设动圆P的圆心为P,半径为r,有|PC1|=4-r,|PC2|=2+r∴|PC1|+|PC2|=6>|C1C2|=4∴P点在椭圆上运动,又2a=6,2c=4,∴b2=a2-c2=5∴P的轨迹为+ =1(在已知圆C1内)例5 已知MN是椭圆+ =1(a>b>0)中垂直于长轴的动弦,AB是椭圆长轴的两端点,求直线MA与NB的交点P的轨迹方程.解:设M、N的坐标为M(x0,y0),N(x0,-y0),又A(-a,0),B(a,0)所以直线AM的方程为y= (x+a) ①直线BN的方程为:y= ②①×②得:y2= (x2-a2) ③∵点M(x0,y0)在椭圆上,∴b2x20+a2y20=a2b2∴x20-a2=- y02,代入得③得:y2= (x2-a2)∴交点P的轨迹方程为- =1例6已知椭圆+y2=1(1)求斜率为2的平行弦的中点轨迹方程(2)过A(2,1)引椭圆的割线,求截得的弦中点轨迹方程(3)求过点P( ,),且被P平分的弦所在的直线方程.解:(点差法)设弦的两端点分别为M(x1,y1)N(x2,y2)、MN的中点为P(x,y),则x21+2y21=2,x22+2y22=2,两式相减弄除以(x2-x1)得:x1+x2+2(y1+y2) =0而x1+x2=2x,y1+y2=2y∴x+2y· =0 (*)(1)将=2代入(*)式得所求的轨迹方程为x+4y=0(椭圆内部分)(2)将= 代入(*)式,得所求的轨迹方程为x2+2y2-2x-2y=0(椭圆内部分)(3)将x1+x2=1,y1+y2=1代入(*)式,得=-∴所求的直线方程为2x+4y-3=0例7已知中心在原点,一焦点为F(0,)的椭圆被直线l:y=3x-2截得弦的中点横坐标为,求椭圆方程.解:∵C= ,∴a2=b2+50∴可设椭圆方程为+ =1把直线y=3x-2代入椭圆方程整理得10(b2+5)x2-12b2x-b4-46b2=0∴x1+x2=又∵=∴12b2=10b2+50解得b2=25 a2=75∴所求的椭圆方程为+ =1例8已知P为椭圆+ =1上的一点,F1F2是椭圆上的两焦点,∠F1PF2=60°,求△F1PF2的面积.解:∵= |PF1|·|PF2|sin∠F1PF2∴只需求|PF1|·|PF2|即可又|PF1|+|PF2|=10|PF1|2+|PF2|2-2|PF1|·|PF2|cos60°=4C2=64解得|PF1|·|PF2|=12∴= ×12× =3例9已知方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,求实数k的取值范围.解:结合椭圆的变形方程式a2y2+b2x2-a2b2=0从而有:2(k2-2)>0 k<- 或k>k2≠0解得k≠0k2-k-6<0 -2<k<32(k2-2)≠k2k≠±2∴k∈(-2,- )∪( ,2)∪(2,3)例10△ABC的三边a>b>c,且a+c=2b,|AC|=2,求顶点B的轨迹.解:以AC的中点为坐标原点建立坐标系,则A(-1,0),C(1,0),又a+c=2b=4由椭圆的定义知B点在椭圆上运动.∵a>b>c,且A、B、C三点不共线∴B点的轨迹方程是椭圆+ =1,在y轴左侧的部分,但要去掉点(-2,0),(0,),(0,- )核心知识1.椭圆+ =1(a>b>0),范围:椭圆位于直线x=±a和y=±b所围成的矩形里,即|x|≤a,|y|≤b.2.对称性:椭圆关于x轴,y轴和原点都是对称的.坐标轴为椭圆的对称轴,原点是椭圆的对称中心,即为椭圆的中心.3.顶点:椭园与坐标轴的交点为椭圆的顶点为A1(-a,0),A2(a,0),B1(0,b),B2(0,-b)4.离心率:e= ,(o<e<1),e越接近于1,则椭圆越扁;e越接近于0,椭圆就越接近于圆.5.椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(0<e<1=的点的轨迹.定点即为椭圆的焦点,定直线为椭圆的准线.6.椭圆的焦半径公式:设P(x0,y0)是椭圆+ =1(a>b>0)上的任意一点,F1、F2分别是椭圆的左、右焦点,则|PF1|=a+ex0,|PF2|=a-ex0.7.椭圆的参数方程典型例题例1 设直线l过点P(-1,0),倾角为,求l被椭圆x2+2y2=4所截得的弦长.解:直线l的方程为y= x+ ,代入椭圆方程,得7x2+12x+2=0,∵△=144-4×7×2=88∴弦长= =例2 求椭圆+ =1上的点到直线3x+4y-64=0的最长距离与最短距离.解:设椭圆上的点为(5cosθ,9sinθ),则d= ==∴d max=例3 已知椭圆+ =1内有一点P(1,-1),F是右焦点,M是椭圆上的动点,求|MP|+2|MF|的最小值,并求此时M的坐标.解:过M作右准线x=4的垂线,垂足为M1,由椭圆第二定义,有= ∴2|MF|=|MM1|∴|MP|+2|MF|=|MP|+|MM1|过P作右准线的垂线交椭圆于N,垂足为N1,垂线方程为y=-1.显然|MP|+|MM1|≥|NP|+|NN1|(当M与N重合时等号成立)而|NP|+|NN1|=|PN1|=3由方程组得N( ,-1)∴|MP|+2|MF|的最小值是3,此时M的坐标是( ,-1)例4 P是椭圆方程为+ =1上的任意一点,F1,F2是椭圆的两个焦点,试求|PF1|·|PF2|的取值范围.解:设|PF1|=t,则t∈[a-c,a+c],即t∈[4- ,4+ ]且|PF2|=2a-t=8-t.∴|PF1|·|PF2|=t(8-t)=-(t-4)2+16 t∈[4- ,4+ ]当t=4时,取最大值为16当t=4± 时,取最小值为9.∴所求范围为[9,16]例5 F1、F2是椭圆的两个焦点,过F2作一条直线交椭圆于P、Q两点,使PF1⊥PQ,且|PF1|=|PQ|,求椭圆的离心率e.解:如下图,设|PF1|=t,则|PQ|=t,|F1Q|= t,由椭圆定义有:|PF1|+|PF2|=|QF1|+|QF2|=2a∴|PF1|+|PQ|+|F1Q|=4a 即( +2)t=2a,t=(4-2 )a∴|PF2|=2a-t=(2 -2)a在Rt△PF1F2中,|F1F1|2=(2c)2∴[(4-2 )a]2+[(2 -2)a]2=(2c)2∴=9-6 ∴e= = -双曲线1.双曲线的定义平面内与两定点F1、F2的距离差的绝对值是常数(大于零小于|F1F2|)的点的轨迹叫双曲线.两定点F1、F2是焦点,两焦点间的距离|F1F2|是焦距,用2c表示.常数用2a表示.(1)若|MF1|-|MF2|=2a时,曲线只表示焦点F2所对应的一支双曲线.(2)若|MF1|-|MF2|=-2a时,曲线只表示焦点F1所对应的一支双曲线.(3)若2a=2c时,动点的轨迹不再是双曲线,而是以F1、F2为端点向外的两条射线.(4)若2a>2c时,动点的轨迹不存在.2.双曲线的标准方程- =1(a>0,b>0)焦点在x轴上的双曲线;- =1(a>0,b>0)焦点在y轴上的双曲线.判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上.典型例题例1 若方程+ =1表示双曲线,则实数m的取值范围是( )A.-3<m<2或m>3B.m<-3或m>3C.-2<m<3D.-3<m<3或m>3分析该方程表示双曲线,则x2与y2项的系数的符号相反,即(2-m)(|m|-3)<0,将问题转化为不等式的求解.答:A例2 求与椭圆+ =1共焦点,且过点(3 ,)的双曲线的方程.分析一由题意知所求双曲线的焦点在x轴上,且焦距为8,∴c=4,设所求双曲线方程为- =1代入点(3 ,),得λ2=7,故所求双曲线方程为- =1.分析二运用与椭圆共焦点的曲线系方程.设所求双曲线方程为+ =1,代入点(3 ,),得λ=16或λ=-7(舍),故所求双曲线方程为- =1.例3 课本第108页习题8.3第一题:△ABC一边的两个端点是B(0,6)和C(0,-6),另两边所在直线的斜率之积是,求顶点A的轨迹.分析其顶点A的轨迹方程求得:- =1(x≠0).若将问题一般化:B(0,a)、C(0,-a)·k AB·k AC= ,则顶点A的轨迹方程为:- =1(x≠0).若B(bcotφ,acosφ)、C(-cotφ,-acscφ).k AB·k AC= ,则顶点A的轨迹会是怎样?反之,双曲线- =1(x≠0)上任一点到B(0,a),C(0,-a)两点的连线的斜率之和,等于;若改变B、C的位置保持B、C两点关于原点对称于双曲线上,k AB·k AC是否成立.总之,同学们在学习过程中要多动手、多思考,举一反三,做到“以点代面,以少胜多”.例4一动圆与圆(x+3)2+y2=1外切又与圆(x-3)2+y2=9内切,求动圆圆心轨迹方程.分析如图,设动圆M与⊙O外切于A,与⊙O2内切于B,由位置关系可得数量关系:|MO1|=|MA|+1 |MO2|=|MB|-3由|MA|=|MB|可得|MO1|-|MO2|=4由定义可知M点轨迹为双曲线的一支.解:如图,设动圆圆心M坐标为M(x,y),圆M与圆O1外切于A,与圆O2内切于B,则,MO1=|MA|+1,①|MO2|=|MB|=3②,①-②:|MO1|-|MO2|=4由双曲线定义知,M点轨迹是以O1(-3,0)O2(3,0)为焦点2a=4的双曲线的右支∴b2=32-23=5∴所求轨迹方程为:- =1(x≥2)说明:在求轨迹方程时,要注意使用曲线的定义,此时的思路:位置关系(内切,外切)数量关系(|MO1|=r1+r0,|MO2|=r-r2其中r为动圆半径曲线形状写出标准方程,可以简化运算.同时应注意定义中是到两定点距离的绝对值,此时不含绝对值,要求|MO1|>|MO2|,所以是双曲线的右支,而不是整个双曲线.例5过双曲线- =1的右焦点作倾角为45°的弦,求弦AB的中点C到右焦点F 的距离,并求弦AB的长.分析将直线方程与双曲线方程联立,求出A、B两点的坐标,再求其中点,由两点的距离公式求出|CF|.解:∵双曲线的右焦点为F(5,0),直线AB的方程为y=x-5,故16x2-9y2-144=0 ①y=x-5 ②消去y,并整理得7x2+90x-369=0 ③此方程的两个根x1、x2是A、B两点的横坐标,设AB的中心点C的坐标为(x,y),则x===- .C点的坐标满足方程②,故y=- -5=-∴|CF|==(5+ )=又设A点坐标为(x1,y1),B点坐标为(x2,y2),则y1=x1-5,y2=x2-5.∴y1-y2=x1-x2,|AB|====由方程③知x1+x2=- ,x1·x2=-∴|AB|====27点评:利用韦达定理及两点间距离公式求弦长核心知识1.双曲线- =1的简单几何性质(1)范围:|x|≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。
椭圆及其标准方程
![椭圆及其标准方程](https://img.taocdn.com/s3/m/60d51be4172ded630b1cb627.png)
若距离之和小于|F1F2|,则点M的轨迹是 ( 不存在 )
在直角坐标平面上直线和圆都有相应 的方程,从而就可以用代数方法来研 究它们的几何性质、位置关系等。 那么椭圆的方程又是什么呢? 求曲线方程的一般步骤,可概括为:
建系 代坐标
设点
列式
化简、证明
椭圆的方程
y
o
以经过椭圆焦点 F1,F2 的直线为 x 轴,线段 F1F2的中垂线为y轴,建立直角坐标系xoy。 设 M(x,y)是椭圆上的任一点, 设椭圆的焦距为 2c,点M与两焦 点的距离之和为常数 2a。 故椭圆的两焦点坐标分别为 F1(-c,0) 和 F2(c,0)
答案
C
例 2 求适合下列条件的椭圆的标准方程.
16 (1)已知两焦点 F1(-3,0),F2(3,0),且椭圆过(3, ). 5 (2)已知 a=4,c= 15,焦点在 y 轴上. (3)经过两点 P1( 6,1),P2(- 3,- 2).
例 3 过椭圆 4x2+y2=1 的一个焦点 F1 的直线与椭圆交 于 A,B 两点,则 A,B 与椭圆的另一个焦点 F2 构成△ABF2 的周长是( A.2 C. 2 ) B.4 D.2 3
右焦点,并且︱MF1︱=6,则︱MF2︱= 4 .
课堂小结:
1、椭圆的定义:我们把平面内与两个定点 F1 , F2的距离之 和等于常数(大于 | F1 F2 | ) 的点的轨迹叫做椭圆。 即
| MF1 | | MF2 | 2a(a > c)
这两个定点F1,F2叫做椭圆的焦点,两焦点间的距离 |F1F2|叫做焦距。 2、椭圆的图形与标准方程
练习:下列方程哪些表示椭圆?若表示椭圆 焦点在那个轴上?(独立思考后回答)
x y (1) 1 16 16 2 2 x y (2) 1 25 16
椭圆的定义和标准方程
![椭圆的定义和标准方程](https://img.taocdn.com/s3/m/52f4a96e9b6648d7c1c7462a.png)
1. 已知椭圆经过点P(3,0), 且a 3b, 求椭圆的标准方程。
变式训练
(2)当椭圆的焦点在y轴上时 y x 设方程为 2 2 1(a b 0) a b 9 1 y2 x2 2 则 b 得a 9, b 3, 1 81 9 a 3b x2 y2 x2 综合(1)( 2)得椭圆的标准方程为 y 2 1或 1 9 81 9
2
2
2
例 1 已知动点 P 到点 F1 (0, 2) , F2 (0, 2) 的距离之 和为 12,求动点 P 的轨迹方程.
解:⑴由椭圆定义可知,动点 P 的轨迹是椭圆, 且焦点是 F1 (0, 2) , F2 (0, 2) ,∴ c 2 . ∵ PF1 PF2 12 ,∴ 2a 12 ,∴ a 6 , ∴ b2 a 2 c 2 36 4 32 x2 y2 1. ∴所求的轨迹方程为 32 36
例 2 已知 B、C 是两个定点, BC 6 ,且△ABC 的周长 等于 16,求顶点 A 的轨迹方程.
解:如图,以直线 BC 为 x 轴,线段 BC 的中点为原点,建立 平面直角坐标系,则 B(3,0), C (3,0) .
设顶点 A 的坐标为 ( x , y )
∵ AB AC BC 16 , ∴ BA CA 10 . x2 y2 ∴由椭圆定义及标准方程知识可知 1 25 16 又∵A、B、C 三点不共线,∴ y 0 .
2
o
M
x
F1
b a o c F2 x
F1
y2 x2 2 1(a b 0) 2 a b
其中F1(-c,0),F2(c,0)
b2=a2— c2 其中F1(0,-c),F2(0,c) 共同点:椭圆的标准方程表示焦点在坐标轴上,中心 在坐标原点的椭圆;方程的左边是平方和,右边是1.
§2.2.1 椭圆及其标准方程
![§2.2.1 椭圆及其标准方程](https://img.taocdn.com/s3/m/fd7f4296dd88d0d233d46a93.png)
b 2 a 2 c 2 10 4 6.
y2 x2 1. 所以所求椭圆的标准方程为 10 6
5、回顾小结 一种方法: 求椭圆标准方程的方法 二类方程:
x2 y2 y2 x2 2 1 2 2 1 a b 0 2 a b a b
三个意识: 求美意识, 求简意识,前瞻意识
M
立坐标系才能使 椭圆的方程简单?
y
M
y M
F1o
y
F2
x
F1 o
y
F2
x
F1 o
yF2xຫໍສະໝຸດ F2F2M
F2
M
o
M
x
F1
o
x
F1
o
x
F1
以 F1 , F2 的中点为坐标原点, F1 , F2 所在直线为 设M(x,y)是椭圆上任意一点 x轴建立直角坐标系,
F1F2 =2C,那么F1 ,F2的坐标分别是 -c,0 , c,0
圆的标准方程?哪些是椭圆的方程。
练习2比较椭圆的两种标准方程并填表
标准方程 不 同 点 图形
焦点坐标 定义 共 同 a、b、c 点 的关系
F1 c,0
F2 c,0
F1 0, c
F2 0, c
c 2 a 2 b2 (a b 0, c 0)
焦点位置 的判定
y A
F1 o F2
B
x
例1 已知△ABC的一边BC固定,长为6,周长为16, 求顶点A的轨迹方程。
解: AB BC AC 16, BC 6
.
y
A
AB AC 10, 且10 BC 根据椭圆的定义知所求轨迹是椭圆, B o C 且B、C为焦点 以BC的中点为原点,BC所在的直线为x轴建立直 角坐标系。 所以可设椭圆的标准方程为 : x2 y2 2 1(a b 0) 2 a b
椭圆及其标准方程
![椭圆及其标准方程](https://img.taocdn.com/s3/m/d4c3f13eb90d6c85ec3ac6e7.png)
要点 1
椭圆的定义 (大于
平面内与两定点 F1、F2 的距离之和 等于常数 |F1F2|)的点的轨迹叫做椭圆。 这两个定点 点. 两焦点间的距离 叫做椭圆的焦距.
叫做椭圆的焦
要点 2
椭圆的标准方程
(1)这里的“标准”指的是中心在 原点 ,对称轴为 坐标轴. x2 y2 (2)焦点在 x 轴时,标准方程为a2+b2=1(a>b>0);焦点在 y y2 x2 轴时,标准方程为a2+b2=1(a>b>0).为了计算上的方便,有时将 方程写为 mx2+ny2=1(m>0,n>0,m≠n). (3)标准方程中的两个参数 a 和 b, 确定了椭圆的形状和大小, 是椭圆的定形条件.
(4)椭圆的两种标准方程中,如果 x2 的分母大,焦点就在x 轴 上;如果 y2 的分母大,则焦点就在 y 轴 上. (5)椭圆的方程中,a、b、c 三者之间 a 最大,且满足
a2=b2+c2 .
1.椭圆定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小 于|F1F2|”的常数,其他条件不变点的轨迹是什么?
解析
设椭圆方程为 mx2+ny2=1(m>0,n>0 且 m≠n),
椭圆经过 P1,P2 点,所以 P1,P2 点坐标适合椭圆方程,
6m+n=1 有 3m+2n=1
① ②
1 1 x2 y2 解得 m= ,n= ,∴所求椭圆方程为 + =1 9 3 9 3
探究 3
方程 mx2+ny2=1(m>0,n>0 且 m≠n)表示椭圆:若
m<n,则焦点在 x 轴上;若 n<m,则焦点在 y 轴上。 思考题 3 求经过两点 A(3, 3),B(2,3)的椭圆标准方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M F 1
F 2 东升高级中学师生共用讲学稿 执笔:刘华山 审核:周志明 课型:新授 时间:07年12月 日
§2.1.1椭圆及其标准方程
学习要求:1.了解椭圆的定义、焦点、焦距的概念,及标准方程的推导;
2.熟悉椭圆标准方程两种形式;
3.熟悉求曲线方程的一般方法.
4. 学会椭圆标准方程的简单应用。
学习重点:椭圆的定义和标准方程的形式
学习难点:椭圆标准方程的推导
一、学前准备
1.填空:
(1)圆的定义是什么?
(2)写出以点(a,b )为圆心,r 为半径的圆的标准方程.
2.学具准备:细线一条,图钉两枚,直尺,铅笔,白纸。
二、新知探究
1.独立思考·解决问题
在探究题里面思考下列几个问题:
1) 在作图的过程中,有哪些物体的位置没有变?有哪些量没有变?
2) 根据作图实践回答:椭圆是满足什么条件的点的轨迹?
3)在绳长不变的条件下,改变F 1 , F 2两点间的距离,画出的椭圆有何变化?
(a )绳长等于21F F 时是什么图形?
(b )绳长小于21F F 时是什么图形?
(c )若21F F =0时,则轨迹是什么图形?
所以我们可以得到以下结论:
椭圆的定义:。
2.回顾求曲线方程的一般方法、步骤
① ② ③ ④
3.小组合作·最优组合:给椭圆建立直角坐标系,思考建系方案,哪种得到的方程更加简单?
经过建系等系列过程,我们可以得到22222222()()a c x a y a a c -+=-,这个方程比
较繁锁,我们由椭圆的定义知,22a c >,即a c >,∴22a c >,
令222a c b -=,其中0b >,代入上式,得222222b x a y a b +=, 两边除以22
a b ,得:22
221x y a b += (1)
思考: 以上方程中,a b 的大小关系如何? (0a b >>). 我们把方程22
221x y a b
+=(0a b >>)(1)叫做椭圆的标准方程。
它表示焦点在x 轴上,焦点坐标为1(,0)F c -,2(,0)F c ,其中222
c a b =-
拓展思考:如果焦点在y 轴,椭圆的标准方程又会是怎样的呢?
在22221x y a b +=和22
221y x a b
+=两个方程中都有0a b >>的条件.那么如何判断椭圆焦点的位置?
4.现学现用·自我检测: i)19
162
2=+y x 的焦点位置 : 焦点坐标: ii )22326x y +=的焦点位置 : 焦点坐标:
iii) 22
31916
x y +=的焦点位置 : 焦点坐标: 5.再次提升:
写出适合下列条件的椭圆的标准方程:
⑴4,1a b ==,焦点在x 轴上;
M F 1 F 2
⑵4,a c ==y 轴上;
(3)焦点坐标分别为(0,4),(0,4),5;a -=
例1 .课本P36第3题
完成这一题之后 ,我们小试下面的练习。
练习:P36的第2(3)题
三、自我测试:
2
132
x y 21.已知椭圆方程为,则这个椭圆的焦距为( )23+=
11266F F F F M MF MF M 2122.、是定点,且,动点满足, 则点的轨迹是( ) (A)椭圆 (B)直线 (C)圆 (D)线段
=+=
22
132516
27
x y P P 3.已知椭圆上一点到椭圆一个焦点的距离为,则到另一焦点的距离为( ) (A) (B)3 (C)5 (D)+=
4.设ABC 的周长为10及其A(-2,0),B(2,0), 求动点C 的轨迹方程.
四:信息技术·合作交流
如图,圆A 的半径为定长r,C 是圆A 内一点,D 是圆上任意一点,线段DC 的垂直平分线L
和半径AD 相交于点F,当点D 在圆上运动时,点F
五、小结、自我回顾:
六、课后记:在这一节课后,我还有什么疑惑?我该怎么做?并给自己作一个评价!。