统计基本概念

合集下载

统计学 笔记

统计学 笔记

以下是统计学中的一些基本概念和知识,供参考:
统计学基本概念
总体与样本:总体是研究对象全体的集合,样本是从总体中抽取的一部分元素的集合。

变量:用来描述数据的名称或符号。

数值变量与分类变量:数值变量是可度量的数据,如身高、体重等;分类变量是定性数据,如性别、血型等。

参数与统计量:参数是描述总体特征的指标,如总体均值、总体方差等;统计量是从样本中计算出来的指标,如样本均值、样本方差等。

描述性统计
频数分布表:将数据分为若干个组,统计每个组内的数据个数。

直方图:用直条矩形面积代表各组频数,矩形的面积总和代表频数的总和。

平均数:描述数据集中趋势的指标,计算方法有算术平均数、几何平均数、调和平均数等。

标准差:描述数据离散程度的指标,表示数据分布的宽窄程度。

概率与概率分布
概率:描述随机事件发生的可能性大小的数值。

概率分布:描述随机变量取值的概率规律的函数。

常见的概率分布有二项分布、泊松分布、正态分布等。

参数估计与假设检验
点估计:用单一的数值估计未知参数的值。

区间估计:用一定的置信水平估计未知参数的范围。

假设检验:根据样本数据对未知参数进行检验,判断假设是否成立。

常见的假设检验方法有t检验、卡方检验、F检验等。

相关分析与回归分析
相关分析:描述两个变量之间的线性关系的强度和方向。

回归分析:基于自变量和因变量之间的相关关系建立数学模型,用于预测因变量的值。

常见的回归分析方法有线性回归、逻辑回归等。

统计学中的基本概念

统计学中的基本概念

1 - 14

四、指标与指标体系
指标是说明总体综合数量特征的变量,简称指标。
一个科学、完整的指标都是由指标名称、所属时间、所属空间、 指标数值、计量单位等构成。例如:
2019年我国GDP的总量是达到了99.1万亿元,接近100万亿元人民币。 按平均汇率折算,人均达到了10276美元。 2019年全国居民人均可支配收入突破30000元。 2019年全国粮食总产量6.6亿吨,是世界第一大产粮国,也是中国历史 上最高的粮食产量。 2019年末高速铁路营业总里程达3.5万公里,占全球高铁里程超过2/3; 高速公路里程超过14万公里,居世界第一;电力装机容量接近2032千瓦, 居世界第一;互联网上网人数8.6亿人。
总体中抽取的一部分元素(个体)的集合,称 为样本。样本中个体的数目,称为样本容量 (sample size),或样本单位数。
从总体中抽取一部分元素作为样本,目的在于用样 本提供的有关信息去推断总体的特征。例如,从某 地区随机抽取100名消费者,被抽中的100名消费者 就构成了一个样本。然后再根据这100名消费对某种 家电产品的满意程度去推断该地区全部消费者对该 种家电产品的满意程度。
1-5

二、参数与统计量
(二)统计量(statistic)
统计量是关于样本的函数,是随机量。根据样本 数据计算的用于推断总体参数的测度量。
计算样本统计量的目的在于推断总体参数,所以相应 的样本统计量有:样本统计量有样本均值(x )、样本 标准差( s )、样本比例( p )等。 样本统计量通常用英文字母来表示。
1 - 11

(二)变量种类
(按取值方式及建构方式)
3、变量按取值特征。 (1)随机变量。 (2)非随机变量。 4、变量按构建方式。 (1)经验变量(empirical variables)

统计学的三组基本概念

统计学的三组基本概念

统计学的三组基本概念统计学是一门研究数据收集、整理、分析和解释的学科,它在各个领域中广泛应用,并发展出了许多基本概念和方法。

下面我将介绍统计学的三组基本概念。

第一组基本概念是描述统计学概念。

描述统计学是统计学的一个分支,它关注的是对数据进行总结和描述。

在描述统计学中,我们常用的基本概念包括变量、测量尺度、频率分布和图表等。

变量是描述研究现象或对象不同特征的属性。

根据其性质,变量可分为定性变量和定量变量。

定性变量是指描述对象属性或特征的变量,如性别、种族、学历等;定量变量是指可以进行数值比较的变量,如身高、体重、成绩等。

测量尺度是用来度量变量的属性的一种方法。

常见的测量尺度包括名义尺度、顺序尺度、间隔尺度和比例尺度。

名义尺度用来测量定性变量,它只能用来区分对象之间是否具有某种属性;顺序尺度除了可以区分对象是否具有某种属性,还可以表达对象之间的关系;间隔尺度在顺序尺度的基础上增加了单位间隔的概念,可以进行比较和加减运算;比例尺度在间隔尺度的基础上增加了零点的概念,可以进行除法运算。

频率分布是对变量在不同取值上出现的次数或占比进行总结和描述。

一般情况下,频率分布包括表格形式和图表形式两种。

表格形式将变量的不同取值列在一起,记录其频数和频率;图表形式将频率分布以图形的方式展示,如直方图、饼图和线图等。

第二组基本概念是统计推断概念。

统计推断是统计学的另一个分支,它关注的是基于样本数据对总体性质进行推断的方法。

在统计推断中,我们常用的基本概念包括概率、抽样、估计和假设检验等。

概率是描述随机事件发生可能性的一种度量。

统计学中的概率可以用来描述随机变量的分布、事件的发生概率等。

概率的计算基于一些基本规则,如加法规则和乘法规则等。

抽样是从总体中选取一部分个体作为样本进行研究的过程。

抽样的目的是通过样本的统计量来推断总体的参数。

常见的抽样方法包括简单随机抽样、分层抽样和系统抽样等。

估计是根据样本数据对总体参数进行推断的过程。

统计学中的基本概念

统计学中的基本概念

1.2统计学的几个基本概念1.2.1总体和总体单位1.总体(1)总体的概念:总体是指客观存在的、具有某种共同性质的许多个别事物组成的整体;在统计研究过程当中,统计研究的目的和任务居于支配和主导的地位,有什么样的研究目的就应该有什么样的统计总体与之相适应。

例如:要研究我们学院教师的工资情况,那么全体教师就是研究的总体,其中的每一位教师就是总体单位;如果要了解某班50个学生的学习情况,则总体就是该班的50名学生,每一名学生是总体单位。

根据我们研究目的的不同,我们要选取的研究对象也就是研究总体相应地要发生变化。

(2)总体的分类:总体根据总体单位是否可以计量分为有限总体和无限总体:★有限总体:指所包含的单位数是有限的总体。

如一个企业的全体职工、一个国家的全部人口等都是有限总体;★无限总体:指所包含的单位数目是无限的,或准确度量它的单位数是不经济或没有必要的,这样的总体称为无限总体。

如企业生产中连续生产的大量产品,江河湖海中生长的鱼的尾数等等。

划分有限总体和无限总体对于统计工作的意义就在于可以帮助我们设计统计调查方法。

很显然,对于有限总体,可以进行全面调查,也可以进行非全面调查,但对于无限总体不能进行全面调查,只能抽取一部分单位进行非全面调查,据以推断总体。

(3)总体的特征:★大量性:是指构成总体的单位数要足够的多,总体应由大量的单位所构成。

大量性是对统计总体的基本要求。

个别单位的现象或表现有很大的偶然性,而大量单位的现象综合则相对稳定。

因此,现象的规律性只能在大量个别单位的汇总综合中才能表现出来。

只有数量足够的多,才能准确地反应我们要研究的总体的特征,达到我们的研究目的。

★同质性:指总体中各单位至少在某一个方面性质相同,使它们可以结合起来构成总体。

同质性是构成统计总体的前提条件。

★变异性:即构成总体的各个单位除了至少在某一方面具有共同性质外,在其他方面具有一定的差异。

差异性是统计研究的主要内容。

如以一个班级的所有学生作为一个总体,则“专业”是该总体的同质性,而“性别”、“籍贯”等则是个体之间的变异性;以我院全体教师为一个总体,则“工作单位”是其同质性,而“学历”、“月工资”等则是它的变异性。

统计学的基本概念

统计学的基本概念

统计学的基本概念
3
1、同质:观察单位间被研究指标的影响因素相同或相近。

2、变异:指同质观察单位间研究指标存在的个体差异。

统计的研究任务: 同质的基础上研究个体变异
1、总体:根据研究目的确定的同质个体的全体。

(同质研究对象某种变量值的集合)
2、样本:从总体中随机抽取部分有代表性的个体进行研究,这部分个体即为样本。

随机化:抽样时要使总体中每一个体都有同等的机会被抽作样本。

5
1、抽样研究:指从确定的同质总体中随机抽取样本进行研究,用样本信息推断总体特征的研究方法。

2、抽样误差:指由于抽样而造成的样本指标与总体指标之间以及样本指标之间的差别。

是描述某随机事件发生可能性大小的数值,用P表示,介于0~1之间。

小概率事件:P ≤0.05。

统计基本概念和主要指标

统计基本概念和主要指标
❖ 普查方式: 一是成立专门的普查机构进行调查; 二是根据企、事业单位的原始资料和报表资料进行调查。
2021/1/19
3、统计调查的组织方式
重点调查:是所要调查的总体中选择一部分重点单 位进行的非全面调查。
❖ 特点: 调查单位少; 调查对象的标志值比较集中于 某些单位的场合。
注意:重点单位的选择是客观的。 只适用于客观存在着重点单位的情况。
新增价值和固定资产的转移价值之和。
❖ 计算方法:生产法、分配法。 生产法:工业增加值=工业总产出(总产值)-工业中间投入
+应交增值税 工业中间投入:工业企业在报告期内用于工业生产所消耗 或转换的外购货物和对外支付的服务费用。 包括:直接材料(不含烧油特别税),制造费用、销售费 用、管理费用中的中间投入,利息支出 应交增值税=(销项税额+出口退税+进项税额转出)-
反映每个民营企业职工的特征:性别、年龄、政治面貌、工 种、技术职称、文化程度、月工资额等。
2021/1/19
2、 统计的基本概念
标志的种类: 按标志是否能用数量表示分为:品质标志和数量标志。
❖ 品质标志:说明总体单位属性特征的名称,用文字描述。 ❖ 数量标志:说明总体单位数量特征的名称,用数量表示。
总体的特征:同质性、大量性、差异性 总体的类型:有限总体、无限总体
2021/1/19
2、 的特征或属性的名称。 标志表现:是标志特征在各个单位的具体表现。
例如:反映每个民营企业的特征:登记注册类型、所属行业、 固定资产原值、产量、增加值、 利润、税金等。
经济学家、教育家、人口学家 原北京大学校长 马寅初
❖学者不能离开统计而研究 ❖政治家不能离开统计而施政 ❖企业家不能离开统计而执业

统计学的基本概念

统计学的基本概念

第二部分数据的整理与抽样一、统计学的基本概念1、统计资料定义:凡是可以推导出某项论断的事实或数字均称为统计资料。

统计资料是进行分析、推断、预测的基础。

要根据研究的目的、要求,有计划地收集统计资料。

统计资料原始资料(初级):未经过加工处理的第一手统计调查资料。

次级资料:经过加工处理的数据(有权威性的公开发表的:统计年鉴、行业协会公布的报告等等)。

统计数据度量数据:用数量尺度测量的数据,如年龄、成绩。

品质数据:不用数量尺度测量的数据,如性别,企业类型。

称关于特定问题的统计资料为一个资料集合,其主要特征有:元素:统计资料由各个元素组成。

变量:元素的特征。

有定量的变量与定性的变量。

观测:一次观测指对统计资料中某一元素的所有变量表述的记录。

xxx xxx xxx xxx xxx xxx王五xxx xxx xxx xxx xxx Xxx李四xxx xxx xxx xxx xxx xxx张三…..…..….班级专业学号姓名2、统计资料收集的方法与途径方法间接引用直接收集实验式:设计统计实验,控制某些因素以研究其对变量的影响。

例如确定产品的价格弹性观察式:对变量的影响因素不加任何限制。

根据统计研究的目的和要求收集统计资料。

所收集的资料必须满足准确性、及时性和完整性的要求。

统计报表组织方式专门调查普查重点调查抽样调查典型调查途径直接观察:通过观察对象的活动进行记录获得资料。

优点:资料全面生动,避免由于理解偏差造成的误差。

缺点:耗时、人力,对观察者素质要求高。

访问:与被调查对象直接接触,获得资料问卷调查:设计并发放调查表。

优点:避免调查人对调查对象的直接影响,缺点:返回率低,无法保证调查表的质量。

3、总体与个体(1)定义:凡是客观存在的、具有统一性质的由个别事物组成的集合体,称为统计总体。

构成总体的个别事物称为个体(总体单位)。

(2)总体与个体必须具备的条件客观性:特定的非一般意义上;大量性:包含足够多的个体以避免偶然性;同质性:构成总体的个体在性质上必须是相同的,否则无法反映总体的特征;差异性:构成总体的个体之间存在差异。

统计分析学基础知识点总结

统计分析学基础知识点总结

统计分析学基础知识点总结一、统计学的基本概念1.总体和样本总体是指研究对象的全部个体或事物的集合,样本是从总体中抽取的部分个体或事物的集合。

在统计学中,我们通常通过对样本进行分析来进行总体的推断。

2.变量和数据类型变量是指在研究中所测量的特定属性或属性,它可以是数量变量(比如身高、体重)也可以是分类变量(比如性别、职业)。

数据类型包括定量数据和定性数据,定量数据是指其取值可以进行数值运算,定性数据是指其取值为某种类别或符号。

3.测度尺度在统计学中,我们通常将变量分为不同的测度尺度,包括名义尺度(仅仅表示事物标识的意义)、顺序尺度(表示顺序关系)、区间尺度(表示等距关系)和比率尺度(表示等比关系),不同的尺度对于统计分析的方法和技术有重要的影响。

4.概率概率是描述不确定事件发生可能性的一种数值。

在统计学中,我们通过概率来对随机事件进行描述和预测,并且使用统计概率来进行统计推断。

5.统计量统计量是指从样本数据中计算得到的数值指标,比如均值、方差、标准差等。

统计量可以帮助我们从样本数据中获取总体特征的信息,并且在假设检验、参数估计等统计推断中起到重要的作用。

6.概率分布在统计学中,我们通常通过概率分布来描述随机变量的取值概率规律。

常见的概率分布包括正态分布、均匀分布、指数分布等,它们在统计分析中都有重要的应用。

7.统计推断统计推断是指根据样本数据对总体特征进行推断的一种方法。

它包括参数估计和假设检验两种基本方法,通过这些方法,我们可以对总体参数进行估计和推断。

8.统计学的应用统计学在科学研究、社会调查、市场调查、生物医学等领域都有重要的应用,它可以帮助我们从数据中获取信息,揭示事物规律,为决策提供依据。

二、常用的统计方法和分析技术1.描述统计描述统计是指通过对数据的整理和描述来获取数据特征的一种方法。

常见的描述统计方法包括均值、中位数、众数、标准差、方差等指标,它们可以帮助我们了解数据的集中趋势和离散程度。

统计的基本概念与性质总结

统计的基本概念与性质总结

统计的基本概念与性质总结统计学是一门研究数据收集、分析和解释的学科,它在各个领域都发挥着重要的作用。

在统计学中,有许多基本概念和性质,对于我们理解统计学的原理和应用非常重要。

本文将对统计学的基本概念与性质进行总结。

一、总体和样本在统计学中,总体是指研究对象的全体,样本是从总体中选取的一部分个体。

总体和样本是统计学中的基本概念。

在实际应用中,由于获取总体数据困难或成本过高,我们常常会从总体中随机抽取样本进行研究。

二、参数和统计量参数是用来描述总体特征的数值,统计量是用来描述样本特征的数值。

参数和统计量是统计学中的重要概念。

参数可以通过样本统计量的估计得到。

三、测量尺度测量尺度是指用于度量和描述变量特性的标准或方法。

常见的测量尺度包括名义尺度、顺序尺度、间隔尺度和比率尺度。

不同的测量尺度适用于不同类型的变量,对于统计分析的正确性有重要影响。

四、频数和频率频数是某一数值在样本或总体中出现的次数,频率则是频数除以总体或样本的大小。

频数和频率可以帮助我们理解数据的分布情况,对于描述和比较数据具有重要作用。

五、平均数、中位数和众数平均数是一组数据的算术平均值,中位数是数据按大小顺序排列后中间的数值,众数是数据中出现次数最多的数值。

这三个统计量可以帮助我们了解数据的集中趋势,是常用的描述性统计量。

六、标准差和方差标准差和方差是衡量数据离散程度的统计量。

标准差是方差的正平方根,它们表示了数据的分散程度。

标准差和方差越大,数据越分散;反之,数据越集中。

七、相关性和回归分析相关性和回归分析是用于研究变量之间关系的统计方法。

相关性分析可以衡量两个变量之间的线性关系强度,回归分析则可以通过建立数学模型预测一个变量对另一个变量的影响。

八、假设检验假设检验是用于检验统计推断的方法。

它通过对样本数据进行统计推断,判断总体参数是否与某个预先设定的值相符。

假设检验可以帮助我们做出对总体的推断和决策。

九、抽样误差与置信区间抽样误差是由于样本数量有限而引入的误差,置信区间则是对总体参数取值范围进行估计。

统计学的几个基本概念

统计学的几个基本概念

1.统计总体与总体单位
统计总体是根据统计研究的任务⽬的所确定的研究事物的全体,是客观存在的具有共同性质的个体所构成的整体。

构成统计总体的个体单位称总体单位。

随着统计研究任务、⽬的及范围的变化,统计总体和总体单位可以相互转化。

2.标志与标志表现
标志是说明总体单位所共同具有的属性和特征的名称。

标志有品质标志和数量标志之分。

标志表现即标志特征在各单位的具体表现。

如果说标志是统计所要调查的项⽬,那么标志表现是调查所得结果,标志的实际体现。

标志表现有品质标志表现和数量标志表现之分。

3.变异与变量
可变标志的标志表现由⼀种状态变到另⼀种状态,统计上把这种现象或过程称变异。

不变的数量标志称常量或参数。

可变的数量标志和所有的统计指标称变量。

变量的数值表现称变量值,即标志值或指标值。

变量按其数值是否连续可分为连续性变量和离散性变量。

4.统计指标和指标体系
统计指标是反映社会经济现象总体综合数量特征的科学概念或范畴。

统计指标按其反映的数量特点不同可分为数量指标和质量指标。

统计指标体系是各种互相联系的指标群构成的整体,⽤以说明所研究的社会经济现象各⽅⾯互相依从和互相制约的关系。

指标和统计标志的主要区别是:
①指标是说明总体特征的,标志是说明总体单位特征的;②指标具有可量性,⽽标志不⼀定。

标志和指标的主要联系表现在:
①指标值往往由数量标志值汇总⽽来;②在⼀定条件下,数量标志和指标存在着变换关系。

统计学的基本概念和原理

统计学的基本概念和原理

统计学的基本概念和原理统计学是一门研究数据收集、分析和解释的学科。

通过运用数学和统计方法,统计学帮助我们理解和描述数据,揭示数据之间的关系,并从数据中获取有关现象和问题的信息。

本文将介绍统计学的基本概念和原理,帮助读者了解其核心内容。

一、统计学的定义和作用统计学可以被定义为一种通过数据的收集、整理、分析和解释来研究和描述现象的科学方法。

它对于我们理解和解释现实生活中的问题和现象至关重要。

统计学通过量化和总结数据,帮助我们从海量信息中提取有意义的结论。

二、统计学的基本概念1. 总体和样本:在统计学中,总体是指我们要研究的整体群体,而样本则是从总体中抽取出的一部分个体。

通过从样本中收集数据并进行分析,我们可以对整体总体进行推断。

2. 变量:变量是指在研究中可能会发生变化的属性或特征。

变量可以分为定性变量和定量变量。

定性变量是具有类别或标签的变量,例如性别、颜色等。

定量变量则是可以进行数值化衡量的变量,例如年龄、身高等。

3. 观测和测量:观测和测量是指对变量进行数据收集的过程。

观测是指直接观察并记录数据,例如观察某人的行为。

测量是指使用测量工具对变量进行量化,例如使用尺子测量身高。

4. 描述统计学和推论统计学:描述统计学是指通过对数据进行整理、总结和描述,来了解数据的特征和结构。

推论统计学是指通过从样本推断总体特征的过程,通过利用样本的信息来推断总体的参数。

三、统计学的原理1. 概率:概率是统计学中一个重要的概念,它描述了事件发生的可能性。

概率可以帮助我们理解和预测事件的结果,并在统计推断中起到重要的作用。

2. 样本的代表性:在统计学中,样本的代表性是指样本能够准确地反映总体的特征。

为了保证样本的代表性,我们需要进行随机抽样,并确保样本的大小足够大。

3. 统计推断:统计推断是指通过从样本中获得的信息,对总体进行统计学上的推断。

统计推断的核心方法是利用概率和抽样理论来进行参数估计和假设检验。

4. 假设检验:假设检验是统计学中的一种方法,用于检验关于总体参数的假设是否成立。

统计基础知识点总结

统计基础知识点总结

统计基础知识点总结一、统计学基本概念统计学是一门研究数据的科学,它包括描述统计和推论统计两个方面。

描述统计是对数据进行总结和描述,包括数据的中心趋势、离散程度和分布形态等内容;推论统计则是从部分观测数据推断出整体数据的性质。

1.总体与样本总体是指研究对象的全部个体或观察值的集合,样本是从总体中抽取出来的一部分个体或观察值。

通过对样本的研究,可以得出一些对总体的推断。

2.参数与统计量参数是总体的特征值,如总体均值、标准差等;统计量是样本的特征值,如样本均值、标准差等。

通过对统计量的研究,可以对参数进行估计。

3.变量与数据类型变量是研究对象中的一个特征,它可以是定量型变量(如身高、体重)或定性型变量(如性别、学历);数据类型包括定量数据和定性数据。

定量数据是可以进行数值比较的数据,定性数据是以性质或类别来表示的数据。

4.测量尺度测量尺度包括名义尺度、顺序尺度、间距尺度和比例尺度。

名义尺度是用于分类的尺度,没有顺序或大小关系;顺序尺度是用于分类,但有顺序关系;间距尺度是用于度量距离和大小关系,但没有绝对零点;比例尺度是度量距离和大小关系,并且有绝对零点。

对于不同的测量尺度,需要选择不同的统计方法进行分析。

二、数据的描述性统计描述性统计是统计学中的基础知识,它包括数据的中心趋势、离散程度和分布形态等内容。

1.中心趋势中心趋势是指数据集中的位置,包括均值、中位数和众数。

均值是所有数据值的平均数,中位数是数据值按大小排列后处于中间位置的数,众数是数据中出现次数最多的数。

2.离散程度离散程度反映了数据集合的分散程度,包括极差、方差和标准差。

极差是最大值和最小值之间的差值,方差是各数据值与均值的离差平方和的平均数,标准差是方差的平方根。

3.分布形态分布形态是指数据分布的形状,包括对称分布、偏态分布和峰态分布等。

对称分布是指数据集中的数据值分布呈现出对称形状,偏态分布是指数据集中的数据值分布不是对称的,峰态分布是指数据集中的数据值分布的尖度情况。

统计 知识点

统计 知识点

统计:知识点写一篇文章统计是一门研究搜集、整理、分析和解释数据的学科。

它在各个领域中具有广泛的应用,能够为我们提供洞察力和决策依据。

本文将从统计的基本概念、数据收集、数据整理、数据分析和数据解释等多个方面,逐步介绍统计的知识点。

一、统计的基本概念统计的核心概念包括总体和样本、参数和统计量、描述统计和推断统计等。

总体是指研究对象的全体,样本是从总体中抽取出来的一部分个体。

参数是总体的特征值,统计量是样本的特征值。

描述统计是通过对数据的整理、总结和可视化,从而对数据进行描述和解释。

推断统计是根据样本数据,推断总体的特征值,并对结果给出置信区间等。

二、数据收集数据的收集是统计分析的基础。

常用的数据收集方法有实验法、调查法和观察法。

实验法是在控制变量的条件下,进行人工干预来观察结果。

调查法是通过问卷调查、访谈等方式,收集来自个体的信息。

观察法是直接观察和记录事件或现象。

在数据收集过程中,我们需要注意样本的选择和抽样方法,以及确保数据的可靠性和有效性。

三、数据整理数据整理是将原始数据转化为可供分析的形式,包括数据清洗、数据转换和数据汇总。

数据清洗是检查和纠正数据中的错误、异常和缺失值,以确保数据的准确性。

数据转换是对数据进行计算、归类和编码等操作,使其适合分析。

数据汇总是将数据按照一定的规则进行分类、求和和计数等操作,得到有用的信息。

四、数据分析数据分析是统计学的核心环节,包括描述统计和推断统计两个方面。

描述统计是通过图表和统计量等方式,对数据的集中趋势、离散程度和分布形状等进行描述。

常用的描述统计方法有均值、中位数、标准差和频率分布等。

推断统计是根据样本数据推断总体特征,并对结果给出置信区间和假设检验等。

常用的推断统计方法有参数估计和假设检验等。

五、数据解释数据解释是对统计分析结果的解读和说明,以便为决策提供依据。

在数据解释过程中,我们需要注意结果的可靠性和有效性,并将结果与实际问题联系起来,给出合理的解释和建议。

统计学中的八个基本概念

统计学中的八个基本概念

统计学中的八个基本概念在统计学中,有以下八个基本概念:1. 总体(Population):指研究对象的全体集合,即我们希望从中推断出结论的群体。

例如,全国人口是一个总体,全球经济数据是另一个总体。

2. 样本(Sample):指从总体中抽取的一部分个体。

样本是用来对总体进行研究和推断的代表性子集。

例如,我们可以对全国人口进行抽样调查,或者对一段时间内的股票交易数据进行抽样。

3. 参数(Parameter):是描述总体的数字度量。

例如,总体的平均值、方差、标准差等。

参数通常是未知的,需要通过对样本的统计分析推断出来。

4. 统计量(Statistic):是样本的数字度量。

统计量是通过对样本的观察和测量得到的。

例如,样本的平均值、方差、标准差等。

5. 抽样误差(Sampling Error):是指由于样本的随机性引起的样本统计量与总体参数之间的差异。

由于抽样误差的存在,样本统计量通常会有一定的偏差。

6. 假设检验(Hypothesis Testing):是一种统计推断方法,用于对总体参数进行推断。

假设检验包括建立一个原假设(null hypothesis)和一个备择假设(alternative hypothesis),然后使用样本数据来决定是否拒绝原假设。

7. 置信区间(Confidence Interval):是对总体参数的估计范围。

置信区间给出了对总体参数的估计,同时也给出了估计的不确定性。

8. 样本容量(Sample Size):指样本中包含的个体数量。

样本容量的大小会影响统计推断的准确性和可靠性。

较大的样本容量通常会产生更准确的结果。

统计学的基本概念简介

统计学的基本概念简介

统计学的基本概念简介统计学是一门研究数据收集、分析和解释的学科,是现代科学和社会科学的基石之一。

统计学主要包括描述统计学和推断统计学两个方面,通过运用数学和概率论的方法,为我们提供了一种了解和解释现象、做出决策的有效工具。

统计学的基本概念包括如下几个方面:1. 总体和样本:统计学的研究对象是总体,即研究对象的全体;而样本是从总体中选取出来的一小部分,用来代表和推断总体的特征。

2. 变量:统计学关注的是可变动的特征,即变量。

变量可以是定量的,如身高、体重等;也可以是定性的,如性别、颜色等。

通过对变量进行测量和观察,我们可以得到有关总体的信息。

3. 数据收集:统计学的一个重要环节是数据的收集。

数据可以通过调查问卷、实验观察、统计报表等方式获得。

数据的质量和多样性对统计学的分析和结论的准确性至关重要。

4. 描述统计学:描述统计学是统计学的第一步,它通过图表、表格、平均值、方差等指标对数据进行整理、概括和描述。

描述统计学为我们提供了全面了解数据的手段,可以对数据的分布、中心趋势和变异程度等进行定量描述。

5. 参数和统计量:参数是总体特征的度量,统计量是样本特征的度量。

通过对样本进行分析和推断,我们可以估计出总体的参数,进而研究和理解总体的特征。

6. 概率:概率是统计学的重要概念之一,它用来描述事件发生的可能性。

概率可以从频率或主观信念等角度来定义。

概率论提供了统计学推断和决策的理论基础,可以帮助我们评估风险、做出合理的决策。

7. 推断统计学:推断统计学是在样本数据的基础上对总体进行推断的学科。

推断统计学通过抽样方法和概率理论,从样本的统计量出发,通过假设检验、置信区间等方法,对总体特征进行估计和推断,从而对总体做出有关性质、差异、关联等方面的推断。

统计学的应用广泛,几乎涉及到所有学科领域,如自然科学、社会科学、商业管理等。

在自然科学中,统计学可以帮助我们分析天气变化、疾病传播、物种分布等问题;在社会科学中,统计学可以帮助我们研究人口统计、调查数据、社会经济等问题;在商业管理中,统计学可以帮助我们分析市场需求、销售趋势、风险评估等问题。

统计学的基本概念

统计学的基本概念
质量的统计指标(用相对数和平
均数表示)
例如,粮食平均亩产、员工平均工资、 人口密度、出生率、死亡率、出勤率8等
按表 现形 式不
同分
绝对数指标——总量指标,反映现象总体规 模、总体水平的统计指标, 说明现象的广度
相对数指标——相对指标,两个相联系的指 标之比
平均数指标——平均指标,反映事物一般水 平
标志与指标 既有联系又有区别
区别: ①标志是说明总体单位特征的;指标是说明总体特 征的。 ②标志中的品质标志不能用数量表示;而所有的指 标都能用数量表示。
③标志(指数量标志)不一定经过汇总,可直接取得; 而指标(指数量指标)一定要经过汇总才能取得。
④标志一般不具备时间、地点等条件;但完整的统计 指标一定要讲明时间、地点、范围。
固定资产、存货、其他生产资产、土地和地下 资产、其他非生产资产、各种金融资产 各种金融负债 资产净值、国民财富 人口数、劳动适龄人口数、劳动力资源、就业 劳动力、失业劳动力

专家建议:构建循环经济统计 指标体系。
该套统计指标体系拟由国民生 产、国际贸易、产业结构、资 源利用、人民生活、生态修复 和和谐社会等7组共52项指标 组成。
补充——变量

确定性变量是受确定性因素影响的变量,即
影响变量值变化的因素是明确的,是可解释和可
控制的。

随机变量则是受许多微小的不确定因素(又
称随机因素)影响的变量。变量的取值无法事先
确定。


社会经济现象既有确定性变量也有随机变量。
统计学所研究的主要是随机变量。
5 统计指标体系
研究社会经济现象的一系列相互联系 的统计指标称为统计指标体系。
2.同质性:构成总体的各总体单位 必须在某一个方面具有相同的性质。

统计学基本概念

统计学基本概念

不同类型变量间关系
例:一组2040岁成年人的血压 <8 8 12 17 低血压 正常血压 轻度高血压 重度高血压
定量变量
定序变量
15 中度高血压
以12kPa为界分为正常与异常两组
定类变量
俱乐部: 休斯顿火箭 健康状况: 良好
分类 顺序 数值 数值
精 确

出生年份: 1980

体重: 134公斤
定序数据
定距数据
定比数据
定性数gorical
定量数据 定量变量 Numerical
(二)统计数据的类型
统计数据的类型
按测量尺度
定 类 数 据 定 序 数 据 数 值 型 数 据
按收集方法
观 测 数 据 实 验 数 据
按时间状况
截 面 数 据 序 时 数 据
二、变量(variable)
1、什么是变量? A VARIABLE is a characteristic of interest for the elements 说明研究对象某种特征的概 念; 我们给所要研究的事物起的名 字。
2、特点:



从一次观察到下一次 观察,该特征会呈现 出差别或变化; 从一个个体到另一个 个体,该特征会呈现 出差别或变化; 不能用一个常数来表 示。
(二)统计数据的类型



按测量尺度,数据可以分为定类/分类/名义数据 (nominal、 categorical data)、定序/顺序数据 (Ordinal、rank data)、数值型数据(metric data) ; 按数据的收集方法,可以将其分为观测数据 (observational data)和实验数据 (experimental data)。 按时间状况,统计数据可分为截面数据(crosssectional data)和时间序列数据(time series data)。

统计学及其基本概念

统计学及其基本概念
政治算术学派
人物:
【英国】威廉·配第和约翰·格朗特
贡献:
“有统计之实,无统计之名”的学派
评价:
开用数量方法研究社会经济现象之先河
01
04
数理统计学派
【比利时】人才济济。如:凯特勒、戈赛特 、费希尔、内曼、卡尔.皮尔逊
人物:
完成统计学和概率论结合 建立了丰富的数理统计理论
贡献:
社会统计学派
人物: 【德国】克尼斯、恩格尔和梅尔 观点: 统计学的研究对象是社会现象,目的在于明确社会现象的内在联系和相互之间的关系。 在研究过程中,要用全面调查,也可以适量的使用抽样调查。
第一章 统计学及基本概念
BRAND PLANING
本 章 内 容
第一节 统计学简介 一、统计的涵义 二、统计的过去与现在 三、统计学在经济管理中的应用 第二节 数据及其分类 一、认识数据 二、数据类型Ⅰ 三、数据类型Ⅱ 四、数据类型III 五、数据类型IV 第三节 总体、个体与样本 一、统计总体和个体 二、总体的特点 三、样本 第四节 标志、指标与指标体系 一、统计标志 二、统计指标 三、统计指标体系 第五节 统计计算工具 一、统计分析软件简介 二、Excel实现数据处理的主要途径
3
统计学在管理领域的应用 (案例1 案例2)
三、统计学在经济管理中的应用
案例1
1995年9月,美国斯坦福大学经济学教授刘遵义就通过实证比较,数量分析和模糊评价等方法,预测出菲律宾、韩国、泰国、印尼和马来西亚有可能发生金融危机。
案例2
2005年3月16日上证平均指数中30支股票的市盈率是21.08。东方电子集团有限公司的市盈率是17.92。这时,市盈率方面的统计信息显示:与上证指数股票的平均收入相比,东方电子集团有限公司的股票价格较低。因此,投资顾问可以得出结论:东方电子集团有限公司的现行价格低估了。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计基本概念
1、知识回放
(1)全面调查(普查):考查 的调查叫做全面调查.
抽样调查:从全体对象中抽取 进行调查,然后根据调查对象推断全体对象的情况,这样的调查方法称为抽样调查.
(2)要考查的全体对象称为 ,组成总体的每一个考查对象称为 ,被抽取的那些个体组成一个 ,样本中 称为样本容量.
(3)扇形统计图:用圆的面积表示总体,圆中各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中的 ,这样的统计图叫做扇形统计图.
(4)平均数:一般地,如果有n 个数1x ,2x ,…,n x ,那么x = 叫做这n 个数的平均数.
加权平均数:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则 叫做这n 个数的加权平均数.
中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于 位置的数称为这组数据的中位数;如果数据的个数是偶数,则 称为这组数据的中位数.
众数:在一组数据中出现次数 的数据称为这组数据的众数.
(5)极差:一组数据中的最大数据与最小数据的 叫做这组数据的极差.
方差:设有n 个数据1x ,2x ,…,n x ,各数据与它们平均数的差的平方分别是21)(x x -,
2
2)(x x -,…,
2)(x x n -,我们用它们的 ,即用
])()()[(1
222212x x x x x x n
s n -+⋯+-+-=来衡量这组数据的波动的大小,并把它叫做
这组数据的方差.
(6)频数:对落在各个小组内的数据进行累计,得到各个小组内的数据的 叫做频数.
频率: 与数据总数的比称为频率. 2、犯规提示
(1)混淆加权平均数与算术平均数
例1 数名射击运动员第一轮比赛成绩如下表所示:
则他们本轮比赛的平均成绩是( )
A .7.8
B .7.9
C .8.1
D .8.5
错解:(7+8+9+10)÷4=8.5,故本题选D .
错解剖析:错误的原因是忽略了各环数的射击人数,即“权”.不考虑每个数据的“权”,只是简单地把每个环数相加求平均数,这是同学们最易犯的错误.
正解:
1324110392847+++⨯+⨯+⨯+⨯=10
81
=8.1,故本题选C .
(2)求中位数忘记排序
例2 某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2、3、2、5、6、7、6、2,则这组数据的中位数为 .
错解:样本中共有8个数据,中位数是位于中间的两个数的平均数,即
5.52
6
5=+. 错解剖析:根据中位数的定义知,求一组数据的中位数时,一定要先将数据按从小到大(或从大到小)进行排序,若数据是奇数个,则中间的数据是中位数;若数据是偶数个,则中间两个数的平均数是中位数.
正解:将数据按从小到大的顺序排列为:2、2、2、3、5、6、6、7,位于中间的两个数的平均数即为中位数,
42
5
3=+. 3、竞技中考
(1)总体、个体、样本、样本容量
例1 (2011年内江市)为了了解某市参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是( )
A .32000名学生是总体
B .16000名学生的体重是总体的一个样本
C .每名学生是总体的一个个体
D .以上调查是普查
思路点拨:本题中总体是32000名学生的体重情况,个体是每名学生的体重情况,样本是1600名学生的体重情况,样本容量是1600,因只考查部分学生,所以采用的是抽样调查而不是普查(全面调查).
解:选C .
教练提示:要注意本题的总体、个体和样本的对象不是学生,而是学生的体重情况. (2)平均数、中位数、众数
例2 (2011年乌鲁木齐)图1的条形统计图描述了某车间加工零件数的情况,则这些加工零件数的平均数、中位数、众数分别是( )
A .6.4,10, 4
B .6, 6,6
C .6.4,6,6
D .6,6,10
思路点拨:从条形图中获取有关数据
(如下表所示),运用求加权平均数、中位数、众数的方法进行相应的求解.
图1
解:平均数:
6
410846
8471068544++++⨯+⨯+⨯+⨯+⨯=6(件);
中位数:32个数据的中位数应该是大小排列后第16个和17个数据的平均数,第16个数据是6,第17个数据也是6,所以中位数是6与6的平均数,即6(件);
众数:在32个数据中,6出现的次数最多,所以众数是6(件). 本题选C .
教练提示:众数、中位数、平均数都是从不同角度描述一组数据的集中趋势的特征数.一组数据的平均数、中位数是唯一的,但众数可以不唯一.
(3)极差、方差、标准差
例3 (2011年滨州市)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:
若从甲、乙两人射击成绩方差的角度评价两人射击水平,则谁的射击成绩更稳定些? 思路点拨:方差的作用是用来比较两组数据的波动大小的,方差越大,数据的波动越大;方差越小,数据的波动越小.本题欲判断谁的射击成绩更稳定,所以只要找出谁的方差最小即可.
解:甲的平均数:1
221
102827++⨯+⨯+⨯=
x =8(环);
甲的方差:2
甲S = ])810()88(2)87(2[5
1222-+-+-=1.2.
乙的平均数:1311
93817++⨯+⨯+⨯=x =8(环);
乙的方差:2乙S = ])89()88(3)87[(5
12
22-+-+-=0.8

∵2
甲S >2
乙S ,∴乙同学的射击成绩更稳定.。

相关文档
最新文档