大学物理第10章

合集下载

《大学物理》第10章 电磁感应清华

《大学物理》第10章 电磁感应清华

(C)安培/米2; (D)安培·米2 。 18
21 在感应电场中电磁感应定律可写成
L
Ek

dl


d dt

式中 Ek为感应电场的电场强度。此式表明: [ D]
(A)闭合曲线 l 上
E
处处相等
k

(B)感应电场是保守力场 ;
(C)感应电场的电力线不是闭合曲线 ;
(D)在感应电场中不能像对静电场那样引入电势的概
)
2

[
B
]
(C)
1 2
(
2a 0 I
)2;
(D)
1
20
( 0 I
2a
)2。
解:距导线垂直距离为a的空间某点处的磁感强度为:
B

0 I 2a
则该点处的磁能密度为 :
wm

1
20
B2
1
20
(
0 I 2a
)
2

20((AP)15库0)仑电/米位2移;矢量(的B)时库间仑变/化秒率;ddDt 的单位是: [ C]
da

NL
0 I 2
(
1 d

d
1
a
)

1
103

0.2

2

4

107
2

5.0
(
1 0.1

0.1
1
0.1)
2 103 (V)
4
10.4 上题中若线圈不动,而长导线中通有交电流
i = 5sin100πt A,线圈内的感生电动势将为多大?
解:通 过N线圈的N磁链B为 ds s

大学物理第十章

大学物理第十章

大学物理第十章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十章稳恒磁场知识点5:电流的磁效应、磁场1、【】发现电流的磁效应的是:A:法拉第 B:安培 C:库仑 D:奥斯特2、【】提出分子电流假说的是:A:法拉第 B:安培 C:麦克斯韦 D:奥斯特3、【】下列说法错误的是:A:磁场和电场一样对其中的电荷都有力的作用;B:磁场只对其中的运动电荷有磁力的作用;C:运动的电荷激发磁场;D:磁场线永远是闭合的。

4、【】下列对象在磁场中不会受到磁场的作用的是:A:运动电荷 B:静止电荷 C:载流导体 D:小磁针5、【】关于静电场和磁场的异同,下列表述错误的是:A:静电场是有源场,而磁场是无源场;B:静电场是无旋场,而磁场是涡旋场;C:静电力是一种纵向力,而磁场力是一种横向力;D:静电场和磁场对其中的任何电荷都有力的作用。

知识点6:磁感应强度概念1、均匀圆电流I的半径为R,其圆心处的磁感应强度大小B=_________。

2、一条无限长载流导线折成如图示形状,导线上通有电流则P点的磁感强度B =______________.(μ0 = 4π×10-7 N·A-2)3、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)(a 为正值),点处的磁感强度的大小为___ ___ _,方向为_____________.4、真空中稳恒电流I 流过两个半径分别为R 1,R 2的同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入. (1) 如果两个半圆共面 (图1) ,圆心O 点的磁感强度0B的大小为__________________,方向为___________;(2) 如果两个半圆面正交 (图2) ,则圆心O 点的磁感强度0B 的大小为______________,0B的方向与y 轴的夹角为_______________。

《大学物理》第十章气体动理论习题参考答案

《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。

3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。

7、1:1;2:1;10:3。

8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。

已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。

质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。

大一物理第十章知识点

大一物理第十章知识点

大一物理第十章知识点回顾在大学物理课程中,第十章通常是关于电磁波和光学的内容。

这一章节涵盖了许多重要的知识点,既涉及到基本的电磁学原理,又涉及到光的传播和干涉现象。

本文将回顾,并结合实例进行解释和说明。

1. 电磁波的本质电磁波是一种由电场和磁场相互作用而形成的波动现象。

在电磁波中,电场和磁场垂直并且相互垂直地传播。

电磁波可以分为不同的频率和波长,包括射频、微波、红外线、可见光、紫外线、X射线和γ射线等。

2. 光的传播速度光的传播速度在真空中是常数,约为3×10^8 m/s,也即是光速。

光速是自然界中最快的速度之一,它的存在也决定了许多电磁学和相对论的基本原理。

3. 光的反射和折射光在介质之间传播时,会遇到不同介质的边界。

这时,光会发生反射和折射。

反射是指光线在遇到介质边界时,改变方向并保持传播的现象;而折射是指光线从一种介质传播到另一种介质时,改变传播方向的现象。

4. 玻璃棱镜的工作原理玻璃棱镜是光学实验中常用的光学元件。

它利用光的折射现象将入射光线分解成不同颜色的光谱。

这是因为不同波长的光在通过玻璃棱镜时会发生不同程度的折射,从而形成光谱。

5. 干涉现象干涉现象是指两个或多个波相互叠加形成的新的波动现象。

光的干涉常见于双缝干涉和薄膜干涉实验中。

在双缝干涉实验中,光通过两个紧密排列的缝隙后,会形成交替出现的明暗条纹。

而在薄膜干涉实验中,光通过薄膜后,会发生干涉现象,产生彩色的干涉条纹。

6. 波的衍射现象波的衍射是指波通过障碍物或通过狭缝时,波的传播方向发生改变并产生弯曲的现象。

光的衍射可以用来解释太阳光在云层后面形成彩虹的现象,以及人眼所能看到的景象。

7. 光的偏振现象偏振是指光的方向性特征。

光可以是无偏振的,也可以是偏振的。

在光通过某些介质后,光的振动方向将受到限制,使光的偏振发生改变。

这在实际生活中有很多应用,如太阳镜和液晶显示器等。

以上只是大一物理第十章的一些基本知识点的回顾。

电磁波和光学是一个庞大而且复杂的领域,涉及到更深的原理和应用。

大学物理第十章课后答案

大学物理第十章课后答案

题图10-1题10-1解图d第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。

分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。

解:(1)设B 、C 板上的电荷分别为B q 、C q 。

因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。

导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。

作如图中虚线所示的圆柱形高斯面。

因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ①又因为: ACAB U U =而: 2AC ACdU E =⋅ AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-2(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求:(1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。

大学物理复习资料第10章

大学物理复习资料第10章

第十章静电场中的导体与电介质10-1将一个带正电的带电体A从远处移到一个不带电的导体B 附近,则导体B 的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A).10-2将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷.若将导体N的左端接地(如图所示),则()(A) N上的负电荷入地(B)N上的正电荷入地(C) N上的所有电荷入地(D)N上所有的感应电荷入地题 10-2 图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关.因而正确答案为(A).10-3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0== (B )dεqV d εq E 020π4,π4==(C )0,0==V E (D )RεqV d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ).10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A ).10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.题 10-6 图分析与解 根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力.()20π4r εq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.10-7 一真空二极管,其主要构件是一个半径R 1=5.0×10-4 m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3 m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1) 该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 10-7 图分析 (1) 由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2) 计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力.解 (1) 电子到达阳极时,势能的减少量为J 108.4Δ17ep -⨯-=-=eV E由于电子的初始速度为零,故J 108.4ΔΔ17ep ek ek -⨯-=-==E E E因此电子到达阳极的速率为1-7ek s m 1003.122⋅⨯===meVm E v (2) 两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力r e e E F N)1037.414-⨯=-=(这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.10-8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布. 分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=p p V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, ()01=r ER 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布.r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布: 在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布:r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2 时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-9 地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解 由于地球半径R 1=6.37×106 m ;电离层半径R 2=1.00×105 m +R 1 =6.47×106 m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R R εC10-10 两线输电线,其导线半径为3.26 mm ,两线中心相距0.50 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,-++=E E E再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解 建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为)11(π20xd x E --=ελ 电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ上式积分得RR d ελU -=ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据 F 1052.512-⨯=C题 10-10 图10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2 ,两金属片之间的距离是0.600 mm.如果电路能检测出的电容变化量是0.250 pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC 按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=S C d Cd d d d ε10-12 一片二氧化钛晶片,其面积为1.0 cm 2 ,厚度为0.10 mm .把平行平板电容器的两极板紧贴在晶片两侧.(1) 求电容器的电容;(2) 当在电容器的两极间加上12 V 电压时,极板上的电荷为多少? 此时自由电荷和极化电荷的面密度各为多少? (3) 求电容器内的电场强度.解 (1) 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dS εεC r (2) 电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQ σ 晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr(3) 晶片内的电场强度为1-5m V 102.1⋅⨯==dU E 10-13 如图所示,半径R =0.10 m 的导体球带有电荷Q =1.0 ×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10m ,另一层介质为空气,充满其余空间.求:(1) 离球心为r =5cm 、15 cm 、25 cm 处的D 和E ;(2) 离球心为r =5 cm 、15 cm 、25 cm 处的V ;(3) 极化电荷面密度σ′.题 10-13 图分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理⎰∑=⋅0d q S D 可得D (r ).再由r εε0/D E =可得E (r ).介质内电势的分布,可由电势和电场强度的积分关系⎰∞⋅=r V lE d求得,或者由电势叠加原理求得. 极化电荷分布在均匀介质的表面,其极化电荷面密度n P ='σ. 解 (1) 取半径为r 的同心球面为高斯面,由高斯定理得 r <R 0π421=⋅r D01=D ;01=ER <r <R +d Q r D =⋅22π4 22π4rQ D =;202π4r εεQ E r = r >R +d Q r D =⋅23π423π4r Q D =;203π4rQ E ε= 将不同的r 值代入上述关系式,可得r =5 cm 、15 cm 和25 cm 时的电位移和电场强度的大小,其方向均沿径向朝外.r 1 =5 cm ,该点在导体球内,则01=r D ;01=r Er 2 =15 cm ,该点在介质层内,εr =5.0,则2822m C 105.3π42--⋅⨯==r Q D r 12220m V 100.8π42-⋅⨯==r εεQ E r r r 3 =25 cm ,该点在空气层内,空气中ε≈ε0 ,则2823m C 103.1π43--⋅⨯==r Q D r ; 13220m V 104.1π43-⋅⨯==r Q E r ε(2) 取无穷远处电势为零,由电势与电场强度的积分关系得 r 3 =25 cm ,V 360π4d 0r 331==⋅=⎰∞rεQ V r E r 2 =15 cm ,()()V480π4π4π4d d 0020r3222=+++-=⋅+⋅=⎰⎰+∞+d R Q d R Q r Q V r r d R d R εεεεεr E r E r 1 =5 cm ,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQ d R εεQ R εεQ V r r d R R d R r E r E (3) 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0 ,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-= ()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n -=-= ()282m C 104.6π41--⋅⨯-=-=-='R εQ εP σr r n 介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号.10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2 ×10-9m ,两表面所带面电荷密度为±5.2 ×10 -3 C /m 2 ,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差.解 (1)细胞壁内的电场强度V /m 108.960⨯==r εεσE ;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-15 如图(a )所示,有两块相距为0.50 的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K 内,金属盒上、下两壁与A 、B 分别相距0.25 mm ,金属板面积为30 mm ×40 mm.求(1) 被屏蔽后电容器的电容变为原来的几倍;(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?题 10-15 图分析 薄金属板A 、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A 、B 间的电容.解 (1) 由等效电路图可知13232123C C C C C C C C ++⋅=+= 由于电容器可以视作平板电容器,且32122d d d ==,故1322C C C == ,因此A 、B 间的总电容12C C =(2) 若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于2C (或者3C )极板短接,其电容为零,则总电容13C C =10-16 在A 点和B 点之间有5 个电容器,其连接如图所示.(1)求A 、B 两点之间的等效电容;(2) 若A 、B 之间的电势差为12 V ,求U AC 、U CD 和U DB .题 10-16 图解 (1) 由电容器的串、并联,有μF 1221=+=C C C ACμF 843=+=C C C CD51111C C C C CD AC AB ++=求得等效电容C AB =4 μF.(2) 由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACAB AC U C C UV 6==AB CDAB CD U C C UV 2==AB DBAB DB U C C U 10-17 如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQ U r 00+-= 相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQ U -=0综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容d SεC 00=充电后,极板上的电荷和极板间的电场强度为U d SεQ 00=d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδSεεδS εεQ δd S εQQ C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδU S εεQE r r -+=='011空气中电场强度()δd εδUεS εQ E r r -+==011(3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02U δd SεQ -=02导体中电场强度 02='E 空气中电场强度 δd U E -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.10-18 为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr 的电介质),通常在生产流水线上设置如图所示的传感装置,其中A ,B 为平板电容器的导体极板,d 0 为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?题 10-18 图分析 导体极板A 、B 和待测物体构成一有介质的平板电容器,关于电容C 与材料的厚度的关系,可参见题10-17 的分析.解 由分析可知,该装置的电容为()d d d S C r r -+=00εεε 则介质的厚度为()()C εS εεd εεC εS εεC d εd r r r r r r r 1110000---=--= 如果待测材料是金属导体,其等效电容为dd S εC -=00 导体材料的厚度CS εd d 00=-= 实时地测量A 、B 间的电容量C ,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.10-19 有一电容为0.50 μF 的平行平板电容器,两极板间被厚度为0.01 mm 的聚四氟乙烯薄膜所隔开,(1) 求该电容器的额定电压;(2) 求电容器存贮的最大能量.分析 通过查表可知聚四氟乙烯的击穿电场强度E b =1.9 ×107 V /m ,电容器中的电场强度E ≤E b ,由此可以求得电容器的最大电势差和电容器存贮的最大能量.解 (1) 电容器两极板间的电势差V 190b max ==d E U(2) 电容器存贮的最大能量J 1003.92132max e -⨯=CU W 10-20 半径为0.10 cm 的长直导线,外面套有内半径为1.0 cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1) 导线表面最大电荷面密度;(2) 沿轴线单位长度的最大电场能量.分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE == 查表可以得知空气的击穿电场强度E b =3.0 ×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1) 导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2) 由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为 ()1210m π2R r R r R r E <<==ελ0=E (其他)222102m 0m 2121rE R E w b εε== 沿轴线单位长度的最大电场能量r r E R r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε 14122210m m J 1076.5ln π--⋅⨯==R R E R W b ε 10-21 一空气平板电容器,空气层厚1.5 cm ,两极间电压为40 kV ,该电容器会被击穿吗? 现将一厚度为0.30 cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10 MV · m -1 .则此时电容器会被击穿吗?分析 在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题10-17 可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40 kV 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿.解 未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=b E ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6 -26 可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εV εE r r 此时,因b E E > ,空气层被击穿,击穿后40 kV 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '> ,故玻璃也将相继被击穿,电容器完全被击穿.10-22 某介质的相对电容率 2.8r ε=,击穿电场强度为611810V m -⨯⋅ ,如果用它来作平板电容器的电介质,要制作电容为0.047 μF,而耐压为4.0 kV 的电容器,它的极板面积至少要多大.解 介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0 kV ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047 μF 的平板电容器,其极板面积210m 42.0==εεCd S 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装.10-23 一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极板间距拉开到2d .求:(1) 电容器能量的改变;(2) 此过程中外力所作的功,并讨论此过程中的功能转换关系.分析 在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功.解 (1) 极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为20220221SεQ E εw e ==在外力作用下极板间距从d 被拉开到2d ,电场占有空间的体积,也由V 增加到2V ,此时电场能量增加Sεd Q V w W e e 022ΔΔ== (2) 两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为Sεd Q QEd 02e 2ΔA ==⋅-=r F 外力克服静电引力所作的功等于静电场能量的增加.。

大学物理学习指导 第10章 光与物质的相互作用

大学物理学习指导 第10章  光与物质的相互作用

第10章 光与物质的相互作用10.1 内容提要(一)光的波粒二象性 1.普朗克量子假设(1)一个频率为v 的谐振子只能处于一系列不连续的分立状态,在这些状态中,谐振子的能量只能是某一最小能量ε= hv 的整数倍,即hv ,2hv ,3hv ,…,nhv其中n 为正整数,h 是普朗克常量,ε=hv 称为能量子。

(2)当谐振子从一个量子态跃迁到另一个量子态时,谐振子将发射或吸收以能量子(现称为光子)为单位的电磁能。

一个光量子的能量就是两个相邻量子态之间的能量差,即Thh E ==ν (10.1) 而当谐振子停留在原来的量子态时,它将不发射或吸收任何能量。

普朗克的量子假设突破了经典物理学的观念,第一次提出了微观粒子具有分立的能量值,即振子的能量是按量子数做阶梯式分布,后来人们把振子处于某些能量状态,形象地称为处于某个能级。

2.爱因斯坦的光量子学说(1)光电效应:当光照到某些金属的表面时,金属内部的自由电子会逸出金属表面,这种光致电子发射现象叫做光电效应。

(2)爱因斯坦的光量子假设:光束可以看成是由微粒构成的粒子流,这些粒子叫光量子,也叫光子。

光子以光速运动,对于频率为v 的光束,光子的能量为νεh = (10.2)按照爱因斯坦的光子假设,频率为v 的光束可以看作是由许多能量均等于hv 的光子所构成;频率越高,光子的能量越大;对给定频率的光束来说,光的强度越大,就表示光子的数目越多。

(3)爱因斯坦的光电效应方程:0221A m h m +=v ν (10.3) 式(10.3)中A 0为逸出功,221m m v 为电子的初动能。

3.光的波粒二象性(1)光子的能量: λνhch E == (10.4)(2)光子的质量: λνhch m ==2(10.5)(3)光子的动量: λhmc p == (10.6)(二)光的吸收 散射 色散 1.光的吸收(1)朗伯定律:当一束单色光透过一定厚度的介质时,透射光的强度就会降低,并且产生吸收光谱。

大学物理教程第10章习题答案

大学物理教程第10章习题答案

思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。

10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。

为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。

10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。

入射光强度增加一倍时,饱和电流增加一倍。

(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。

10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。

10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。

10.6 完成下列核衰变方程。

(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。

如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。

大学物理学(下册)第10章 气体动理论

大学物理学(下册)第10章 气体动理论
分子力f与分子间距离r的关系
分子力 f 与分子之间的距离r有关 存在一个r0——平衡位置
r= r0≈10-10m时,分子力为零 r < r 0分子力表现在排斥力 r > r0分子力表现在吸引力
10.1.2 统计规律 ⑴.统计规律
在一定的条件下,大量的偶然事件存在着一种必然的规 律性,这种规律性称为统计规律。气体分子热运动服从统 计规律。 ⑵.几率(概率) 定义:一定条件下,某个偶然事件出现可能性的大小。 ⑶.研究统计规律性的一个著名实验是伽尔顿板实验
同数量的分子。即在标准状态下,1摩尔任何气体所占有
的体积都为22.4升。
2. 理想气体的物态方程
形式1

pV m RT M
pVRT
m——气体质量 M ——气体摩尔质量 R=8.31J·mol-1·K-1——摩尔气体常量
形式2
p1V1 = p2V2
T1
T2
10.3 理想气体的压强
10.3.1 理想气体的微观模型
① 1cm3的空气中包含有2.7×1019 个分子 ②水和酒精的混合 2. 组成物质的分子(或原子)在不停地运动着,这种运动 是无规则的,其剧烈程度与物体的温度有关 ① 布朗运动 ②气体、液体、固体的扩散
3. 分子(或原子)之间存在相互作用力
如: 铅柱重新接合、流体很难压缩 吸引力——固、液体聚集在一起 排斥力——固、液体较难压缩
10.3.2 理想气体压强公式
1. 气体压强产生原理
压强是大量分子 对容器壁发生碰 撞, 从而对容器 壁产 生冲力的 宏观效果。
气体压强产生原理
压强是大量分子对容器壁发生 碰撞,从而对容器壁产生冲力的宏 观效果。
单个分子
多个分子

《大学物理教程》郭振平主编第十章 机械振动和机械波

《大学物理教程》郭振平主编第十章  机械振动和机械波

第十章 机械振动和机械波一、基本知识点机械振动:物体在平衡位置附近的往复运动叫做。

胡克定律: 弹簧弹性力F 的大小与位移x 的大小成正比,而且F 的方向与位移方向相反,即F kx =-式中,k 为弹簧的劲度系数。

具有这种性质的力称为线性回复力。

简谐振动的运动学方程:cos()x A t ωϕ=+式中A 为振幅,表示振动物体离开平衡位置的最大位移的绝对值;()t ωϕ+是决定简谐振动状态的物理量,称为在t 时刻振动的相位,单位是弧度()rad ;ϕ为初相位,是0t =时刻的相位;ω=角频率。

简谐振动的动力学方程:2220d x x dtω+=简谐振动的频率:振动物体在单位时间内完整振动的次数,单位是赫兹()Hz 。

简谐振动的周期:振动物体完成一次完整振动所经历的时间,单位是秒()s 。

关系:周期T 是频率ν的倒数;ω=2πν=2π/T简谐振动物体的速度:sin()cos()2dx A t A t dt πυωωϕωωϕ==-+=++ 简谐振动物体的加速度:22222cos()cos()d xa A t x A t dtωωϕωωωϕπ==-+=-=++振幅:A = 初相位:arctanx υϕω-= 式中,0x 为t=0时刻的初始位移,0υ为t=0s 时刻的初始速度。

旋转矢量法: 用一个旋转矢量末端在一条轴线上的投影点的运动来表示简谐振动的方法。

以简谐振动的平衡位置O 作为x 轴的坐标原点,自O 点出发作一矢量A(其长度等于简谐振动振幅A )。

设0t = 时刻,矢量A 与x 轴所成的角等于初相位ϕ。

若矢量A以角速度ω(其大小等于简谐振动角频率ω)匀速绕O 点逆时针旋转,则在任一时刻矢量A末端在x 轴上的投影点P 相对原点的位移为cos()x A t ωϕ=+,显然,P 在x 轴上做简谐振动。

如图10-1所示。

cos()x A t ωϕ=+图10-1 简谐振动的旋转矢量法弹簧振子的弹性势能:222211cos ()22p E kx mA t ωωϕ==+弹簧振子的动能:222211sin ()22k E m mA t υωωϕ==+ 系统的总机械能:2212p k E E E mA ω=+=表明总机械能总量守恒。

大学物理学完整10PPT课件

大学物理学完整10PPT课件

上式还可写为: 2π
上式表明,ω是频率的2π倍,表示物体在2π秒内完成的全 振动次数,故ω称为角频率或圆频率。
周期、频率和角频率都是描述物体振动快慢的物理量。在
国际单位制中,周期的单位为秒(s);频率的单位为赫兹(Hz );角频率的单位为弧度每秒(rad/s)。
对弹簧振子,由于
k m
故有:
T 2π m k
第4篇 振动与波动
第10章 机械振动
.
1
本章学习要点
简谐振动 简谐振动的合成 阻尼振动、受迫振动与共振 本章小结
.2ຫໍສະໝຸດ 10.1 简谐振动物体运动时,如果离开平衡位置的位移(或角位移)按余 弦函数或正弦函数的规律随时间变化,则这种运动称为简谐振 动。在忽略阻力的情况下,弹簧振子的振动及单摆的小角度摆 动等都可视为简谐振动。
当t=0时,相位ωt+φ=φ,φ称为初相位,简称初相,它是 决定初始时刻振动物体运动状态的物理量。在国际单位制中, 相位的单位为弧度(rad)。
.
12
用相位描述物体的运动状态,还能充分体现出振动的周期 性。例如:
ωt+φ=0时,物体位于正位移最大处,且v=0; ωt+φ=π/2时,物体位于平衡位置,且向x轴负方向运动 ,v=ωA; ωt+φ=π时,物体位于负位移最大处,且v=0; ωt+φ=3π/2时,物体位于平衡位置,且向x轴正方向运动 ,v=ωA; ωt+φ=2π时,物体位于正位移最大处,且v=0。
【解】以OO′为平衡位置,设逆时针转向为θ 角正向,棒在任意时刻的角位移都可用棒与OO′ 的夹角θ表示。根据题意,棒所受的重力矩为:
M1mgslin
2
.
7
当摆角θ很小时,sinθ≈θ,故
M 1mgl

大学物理第10章麦克斯韦方程组

大学物理第10章麦克斯韦方程组
麦克斯韦方程组是19世纪物理学的重 要成果,由英国物理学家詹姆斯·克拉 克·麦克斯韦在19世纪60年代提出, 是经典电磁理论的基石。
重要性
麦克斯韦方程组统一了电场和磁场, 预言了电磁波的存在,为现代电磁学 和通信技术的发展奠定了基础。
麦克斯韦方程组的基本概念
1
麦克斯韦方程组由四个基本方程构成,包括:高 斯定理、高斯定理关于磁场的应用、法拉第电磁 感应定律和安培环路定律。
光纤通信
在光纤通信中,麦克斯韦方程组被用来 描述光波在光纤中的传播行为。通过控 制光纤的折射率,可以实现光的调制和 传播方向的控制。
VS
电磁兼容性
在电子设备和系统的设计中,麦克斯韦方 程组被用来分析电磁干扰和电磁兼容性问 题。通过合理的设计和控制,可以降低电 子设备之间的电磁干扰,提高系统的稳定 性。
02
电场和磁场具有能量、动量和力的性质,它们以波的形式传 播,其传播速度等于光速。
03
变化的电场会产生磁场,变化的磁场会产生电场,这是电磁 感应的基本原理。
麦克斯韦方程组的推导过程
麦克斯韦通过对电磁场的基本性质进行数学描述,推导出四个微分方程, 即麦克斯韦方程组的雏形。
这四个微分方程分别描述了电场和磁场在空间和时间的变化规律,以及它 们之间的相互转化关系。
应用
适用于具有周期性边界条件的问题,如电磁波在无限大均匀介质中 的传播。
有限差分法
原理
将连续的偏微分方程离散化为差 分方程,通过求解差分方程得到 原方程的近似解。
步骤
将麦克斯韦方程组中的时间和空 间坐标离散化,用差商代替导数, 将偏微分方程转化为差分方程, 通过迭代求解。
应用
适用于具有规则边界和初始条件 的问题,如电磁波在有限大小介 质中的传播。

大学物理II_第十章

大学物理II_第十章

第十章 静电场电荷守恒定律电荷守恒定律是物理学的基本定律之一. 它指出, 对于一个孤立系统, 不论发生什么变化, 其中所有电荷的代数和永远保持不变. 电荷守恒定律表明, 如果某一区域中的电荷增加或减少了, 那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种电荷, 那么必定有等量的异号电荷同时产生或消失. 库仑定律库仑定律(Coulomb's law), 法国物理学家查尔斯·库仑于1785年发现, 因而命名的一条物理学定律. 库仑定律是电学发展史上的第一个定量规律. 因此, 电学的研究从定性进入定量阶段, 是电学史中的一块重要的里程碑. 库仑定律阐明, 在真空中两个静止点电荷之间的相互作用力与距离平方成反比, 与电量乘积成正比, 作用力的方向在它们的连线上, 同号电荷相斥, 异号电荷相吸.0221041r rq q F πε= 21212010854187817.8---⋅⋅⨯=m N C ε, 真空电容率(真空介电常数)电场强度电场强度是用来表示电场的强弱和方向的物理量. 实验表明, 在电场中某一点, 试探点电荷(正电荷)在该点所受电场力与其所带电荷的比值是一个与试探点电荷无关的量. 于是以试探点电荷(正电荷)在该点所受电场力的方向为电场方向, 以前述比值为大小的矢量定义为该点的电场强度, 常用E 表示. 按照定义, 电场中某一点的电场强度的方向可用试探点电荷(正电荷)在该点所受电场力的电场方向来确定;电场强弱可由试探电荷所受的力与试探点电荷带电量的比值确定.0q F E =;02041r r q E πε=点电荷系在某点产生的电场的电场强度等于各点电荷单独在该点产生的电场强度的矢量和∑∑==02041iii i r r q E E πε 带电体在一点产生的电场强度等于所有电荷元产生的电场强度的矢量积分⎰⎰==0204r r dq E d E πε 高斯定理真空中的静电场中, 穿过任一闭合曲面的电通量, 在数值上等于该闭合曲面内所包围的电量的代数和乘以ε0的倒数.∑⎰=⋅insi Sq S d E 01ε⎰⎰=⋅VSdV S d E ρε01给予空间的某个区域内, 任意位置的电场. 原则上, 应用高斯定律, 可以很容易地计算出电荷的分布. 只要积分电场于任意区域的表面, 再乘以真空电容率, 就可以得到区域内的电荷数量.但是, 更常遇到的是逆反问题. 给予电荷的分布, 求算在某位置的电场. 这问题比较难解析. 虽然知道穿过某一个闭合曲面的电通量, 这资料仍旧不足以解析问题. 在闭合曲面任意位置的电场可能会是非常的复杂.假若, 问题本身显示出某种对称性, 促使在闭合曲面位置的电场大小变得均匀. 那么, 就可以借着这均匀性来计算电场. 像圆柱对称、平面对称、球对称等等, 这些空间的对称性, 都能帮助高斯定律来解析问题. 若想知道怎样利用这些对称性来计算电场, 请参阅高斯曲面(Gaussian surface). 静电场环路定理在静电场中, 电场强度沿任一闭合路径的线积分(即电场强度的环流)恒为零0=⋅⎰Ll d E电势能在静电学里, 电势能(Electric potential energy)是处于电场的电荷分布所具有的势能, 与电荷分布在系统内部的组态有关. 电势能的单位是焦耳. 电势能与电势不同. 电势定义为处于电场的电荷所具有的电势能每单位电荷. 电势的单位是伏特.电势能的数值不具有绝对意义, 只具有相对意义. 所以, 必须先设定一个电势能为零的参考系统. 当物理系统内的每一个点电荷都互相分开很远(分开距离为无穷远), 都相对静止不动时, 这物理系统通常可以设定为电势能等于零的参考系统. 假设一个物理系统里的每一个点电荷, 从无穷远缓慢地被迁移到其所在位置, 总共所做的机械功为, 则这物理系统的电势能U 为.W U =⎰⋅='0'0aa l d E q W在这过程里, 所涉及的机械功W, 不论是正值或负值, 都是由这物理系统之外的机制赋予, 并且, 缓慢地被迁移的每一个点电荷, 都不会获得任何动能. 如此计算电势能, 并没有考虑到移动的路径, 这是因为电场是保守场, 电势能只跟初始位置与终止位置有关, 与路径无关. 电势在静电学里, 电势(electric potential)定义为处于电场中某个位置的单位电荷所具有的电势能. 电势又称为电位, 是标量. 其数值不具有绝对意义, 只具有相对意义, 因此为了便于分析问题, 必须设定一个参考位置, 称为零势能点. 通常, 一个明智的选择是将无穷远处的电势设定为零. 那么, 电势可以定义如下:假设检验电荷从无穷远位置, 经过任意路径, 克服电场力, 缓慢地移动到某位置, 则在这位置的电势, 等于因迁移所做的机械功与检验电荷量的比值.⎰⋅=='0'0aaa l d E q W u在国际单位制里, 电势的度量单位是伏特(V olt), 是为了纪念意大利物理学家亚历山德罗·伏打(Alessandro V olta)而命名.点电荷系产生的电场中, 某点的电势是各点电荷单独存在时, 在该点产生的电势的代数和∑==ni i a u u 1⎰∞⋅=aa l d E u电势与电场强度的积分和微分关系式⎰⋅='0'aa l d E udl duE l -=;⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=k z u j y u i xu E导体的静电平衡静电平衡是指导体中的自由电荷(通常为带负电荷电的电子)所受到的力达到平衡而不再做定向运动的状态. 处在静电平衡下的导体, 为一个等势体, 其表面为等势面. 导体内部的电场强度处处为零, 导体表面上任意一点场强的方向与表面垂直, 大小与该处的电荷面密度成正比.n E surface 0εσ=电容在电路学里, 给定电势差, 电容器储存电荷的能力, 称为电容(capacitance), 标记为C. 采用国际单位制, 电容的单位是法拉(farad), 标记为F.平行板电容器是一种简单的电容器, 是由互相平行、以空间或介电质隔离的两片薄板导体构成. 假设这两片导板分别载有负电荷与正电荷, 所载有的电荷量分别为-Q 、+Q, 两片导板之间的电势差为V , 则这电容器的电容为VQ C =1法拉等于1库仑每伏特, 即电容为1法拉的电容器, 在正常操作范围内, 每增加1伏特的电势差可以多储存1库仑的电荷.课后习题:10. 1 (1)(2)(3)(4)(5); 10. 2 (1)(2)(4)(5)(7); 建议作业题:10. 4;10. 8(此题为10. 4的延伸);10. 13(类似加深难度的有10. 21);10. 17(可作为填空);10. 18(类似加深难度的有10. 24);10. 33(此题为10. 13的延伸);10. 35(此题为10. 21的延伸);10. 41;10. 4210.1 选择题(1)真空中两平行带电平板相距为d , 面积为S , 且有d 2<<S , 带电量分别为q +和q -, 两板间的作用大小为[D](A)2204q F d πε= (B)20q F S ε= (C)202q F S ε= (D)202q F S ε=解析:平板电容器由两个彼此靠得很近的平行极板(设为A 和B )所组成,两极板的面积均为S ,设两极板分别带有q +,q -的电荷,于是每块极板的电荷密度为Sq=σ。

大学物理电磁学第十章电磁感应PPT课件

大学物理电磁学第十章电磁感应PPT课件
d Idq n2Rd 2 R R dR
dI在圆心处产生的磁场
16
dB20R dI120 dR
由于整个带电园盘旋转,在圆心产生的B为
BR2d R1
B 1 20( R2R 1)
穿过导体小环的磁通
R2
Bd 1 2 S 0( R 2R 1)r2
r R1
R
导体小环中的感生电动势
d d t1 20 (R 2R 1)r2d d t
本质 :能量守恒定律在电磁感应现象上的具体体现
影响感生电流的因素 dm i
6
相对运动
dt R
B
切割磁力线
磁通量m变化
m变化的数量和方向 m变化的快慢
I感
I

v
感生电流
3. 电动势
Q
-Q
7
(1)电源
++ ++
仅靠静电力不能维持稳恒电流。
+ +
+ +
维持稳恒电流需要非静电力。
++ ++
F非
____________
r nˆ
B
o
d0
x
13
这是一个磁场非均匀且
随时间变化的题目。
h
r nˆ
1、求通过矩形线圈磁通 o
B
dBd cso s2 0rIbdx rx
d0
x
d d 0 0 a 2 a 2Bc do s sd d 0 0 a 2 a 22 0Ibx2 x h d 2 x
0Ibln 4
例1 有一水平的无限长直导线,线中通有交变电流 12
II0cost,导线距地面高为 h,D点在通电导线的

大学物理 第10章练习答案

大学物理 第10章练习答案

第十章 稳 恒 磁 场10-1 两根无限长直导线相互垂直地放置在两正交平面内,分别通有电流I 1=2A ,I 2=3A ,如图所示。

求点M 1和M 2处的磁感应强度。

图中AM 1=AM 2=lcm ,AB=2cm.。

解:无限长电流的磁感应强度为dIB πμ=20,两无限长 电流在点M 1和M 2处的磁感应强度相互垂直,合磁感 应强度为)3(10232221201I I I B M +⨯πμ=-T 551047.414102--⨯+⨯= )(1022221202I I I B M +⨯πμ=-T 551021.794102--⨯+⨯= 10-2一无限长的载流导线中部被弯成圆弧形,圆弧半径R=3cm ,导线中的电流I=2A , 如图所示,求圆弧中心O 点的磁感应强度。

解:两半无限长电流在O 点产生的磁感应强度 方向相同,叠加为•πμ⨯=方向 4201RIB O 3/4圆电流在O 点产生的磁感应强度为⊗μ⨯=方向 24302RI B O O 点的合磁感应强度为⊗⨯=⨯⨯⨯⨯⨯π=πμ=+=-方向 T 101.80.43 10322104 ) 1- 43( 25-27-021R I B B B O O O 10-3图中三棱柱面高h =1.0m ,底面各边长分别为ab=0.6m ,bc=0.4m ,ac=0.3m ,沿ad 边有直长导线,导线申通有电流I=4A 。

求通过cbef 面的磁通量。

解:通过cbef 面的磁通量应与通过gbje 面的磁通量相当 ag=ac=0.3m ,有 hdx x 2I d 6.03.00⎰⎰πμ=⋅φSS B =0.30.6ln20πμ=Ih Wb 1054.5n2 21104 7--7⨯=π⨯⨯π=l10-4两根平行直长导线载有电流I 1=I 2=20A 。

试求(1)两导线所在平面内与两导线等距的一点A 处的磁感应强度;(2)通过图中矩形面积的磁通量。

图中r 1=r 3=10cm ,r 2=20cm ,l =25cm 。

大学物理学 第十章 静电场中的电介质

大学物理学 第十章 静电场中的电介质

2021/8/10
8
单位矢若量面元en
dS
endS
取在电介质的表面上,面元法线方向
由电介质指向真空,则电介质表面上的极化电
荷面密度为
d q出 dS
P
en
P cos
Pn
即 P • en P cos Pn
讨论 1)当θ = 0 0 时,P与n同向,σ 最大(正电荷)。
2)当θ< 90 0 时, 介质表面上将出现一层正极化电荷。
D4r 2 q
D
q

E
D
0 r
4r 2
4
q
0
r
r
2

-+
q' +q
-+ +-
-+
R
+
-
+r
+-
+
-
P E
D
r
E
q
4 0 r r 2
E0
q
4 0r 2
2021/8/10
为什么?
16
P 0(r 1)E
0 ( r
1)
q
4 0 r
r
2

(1
1
r
)
q
4 r
2

-
q' +q
-+
+
+-
-
+
E0
F
F
③在外电场作用下,分子固有电矩不同程度地转向和外电
场方向一致而发生的极化,称为取向极化 。
2021/8/10
5
3)极化结果 ①电介质从原来处处电中性变成出现了宏观的极化电荷。

大学物理课件:第十章

大学物理课件:第十章

大学物理课件:第十章第十章变化电磁场的基本规律一、基本要求1.掌握法拉第电磁感应定律。

2.理解动生电动势及感生电动势的概念,本质及计算方法。

3.理解自感系数,互感系数的定义和物理意义,并能计算一些简单问题。

4.了解磁能密度的概念5.了解涡旋电场、位移电流的概念,以及麦克斯韦方程组(积分形式)的物理意义,了解电磁场的物质性。

二、基本内容1.电源的电动势在电源内部,把单位正电荷由负极移到正极时,非静电力所做的功为作用于单位正电荷上的非静电力,电动势方向为电源内部电势升高的方向。

2.法拉第电磁感应定律当闭合回路面积中的磁通量随时间变化时,回路中即产生感应电动势:方向由式中负号或楞次定律确定。

该定律是电磁感应的基本规律,无论是闭合回路还是通过作辅助线形成闭合回路,只要能够求出该回路所围面积的磁通量,就可以应用定律得到该回路中的感应电动势。

自感、互感电动势也是该定律的直接结果。

3..动生电动势动生电动势是导体在稳恒磁场中运动而产生的感应电动势,它的起源是非静电场力——洛伦兹力,其数学表达式为i或ab式中,动生电动势方向沿()方向。

如ab>0,则Va0,由楞次定律i>0,回路感应电流的方向为顺时针方向(俯视)。

10-5如图所示,一个半径为,电阻为的刚性线圈在匀强磁场中绕轴以转动,若忽略自感,当线圈平题10-5图面转至与平行时,求:(1)AB、AC各等于多少?(注意)(2)确定两点哪点电势高?两点哪点电势高?解:(1)在圆弧CA某点上取一线元,方向如图,与的夹角为,线元因切割磁力线而产生的动生电动势i所以I-间任一段由~的圆弧的动生电动势题10-5图i故BACA(2)由(1)知CA0,则i方向为ADCBA顺时针绕向。

(2)回路沿轴正向运动,,时,时,矩形回路在时刻的磁通量==ii方向为ADCBA(3)回路绕轴以匀速转动。

设回路平面与轴夹角为,在回路中取面积元,与轴相距为,通过面积元的磁通量题10-6(b)图矩形回路的磁通量感应电动势i=方向为ABCDA10-7如图所示,一长直导线通有电流,其附近有正方形线圈,线圈绕轴以匀角速旋转,转轴与导线平行,二者题10-7图相距为,且在线圈平面内与其一边平行并过中心,求任意时刻线圈中的感应电动势。

大学物理第十章 气体动理论

大学物理第十章 气体动理论

分子间的相互作用力,
f
称分子力。此力为短程力,
引力、斥力视距离而定


当 r = r0(r0 10-10 m)时 f = 0
当 r < r0 时 f 为斥力 当 r > r0 时 f 为引力 当 r > 10-9 m 时,分子力可忽略。
o
引 r0

r
§6-2气体的状态参量、平衡状态、理想气体状态方程
p
F A1

F l2l3

m l1 l 2 l 3
N
v
2 ix
i 1
1 mN V
v
2 ix
N
1 V

mN
v
2 x

v
2 x

1 v2
3
1

N
mv 2
3V
分子数密度n
理想气体压强公式
p 1 nmv 2 3
p 1 nmv 2 3

2 3
1 n(
2
mv2 )

2 3

得 P M RT Nm RT N R T nkT
V
VN 0 m
V N0
N0m
波尔兹曼常数
由压强公式
p nkT
p

2 3
n
k
k

3 kT 2
可见:从微观角度看,温度是分子

大小的量度,表征大
k
量气体分子热运动剧烈程度,是一统计平均值,对个别分子无
意义。
§6—5 能量按自由度均分原则、理想气体的内能
一、运动自由度:
确定运动物体在空间位置所需要的独立坐标数目,称为 该物体的自由度

大学物理知识总结习题答案(第十章)量子物理基础

大学物理知识总结习题答案(第十章)量子物理基础
·定态薛定谔方程的非相对论形式为
其中,m为粒子的质量,U为粒子在外力场中的势能函数,E是粒子的总能量。
·在无限深方势阱中的粒子能量为
整数n称为量子数。每一个可能的能量值称为一个能级。
·在势垒有限的情况下,粒子可以穿过势垒到达另一侧,这种现象叫做势垒贯穿。
7.电子运动状态
·量子力学给出的原子中电子的运动状态由以下四个量子数决定
·在不同的热力学温度T下,单色辐射本领的实验曲线存在一个峰值波长 ,维恩从热力学理论导出T和 满足如下关系
其中b是维恩常量。
3.斯忒藩—玻尔兹曼定律
·斯忒藩—玻尔兹曼定律表明黑体的辐射出射度 与温T的关系
其中 为斯忒藩—玻尔兹曼常量。对于一般的物体
称发射率。
4.黑体辐射
·黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率 成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量 被称为一个量子。黑体辐射的能量为 ,其中n=1,2,3,…,等正整数,h为普朗克常数。
解:每个光子能量为 ,其中 为普朗克常量且
则,100个波长为550nm的光子的光功率为
10-5(1)广播天线以频率1MHz、功率1kW发射无线电波,试求它每秒发射的光子数;(2)利用太阳常量I0=1.3kW/m2,计算每秒人眼接收到的来自太阳的光子数(人的瞳孔面积约为 ,光波波长约为550nm)。
解:(1)每个光子能量为 ,由
10-7“光的强度越大,光子的能量就越大”,对吗?
答:不对,光的强度是单位时间内照射在单位面积上的光的总能量。一定频率的光强度越大,表明光子数量越多,但每个光子的能量是一定的,只与频率有关,与光子数目无关。
10-8什么是康普顿效应?
答:考察X射线通过物质时向各个方向的散射现象发现,在散射的X射线中,除了存在波长与原有射线相同的成分外,还有波长较长的成分,这种波长改变的散射称为康普顿散射,也称康普顿效应。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S
l
L1L2
2 0
N12
N
2 2
S
2
l2
M2
M L1L2
一般情况: M k L1L2 k 称为“耦合系数”
0 k 1
例4、有一无限长直导线,与一边长分别为 b 和 l 的矩形线圈在同一平面内,求它们的互感系数。
解:
B 0I
2 r
dΦ BdS 0I ldr 2 r
I r
Φ ab 0Il dr 0Il ln a b
j E
四、 麦克斯韦方程组(微分形式)
哈密顿算符
ex x e y y ez z
S D dS q
L
E dl
S
B t
dS
S B dS
L H dl I
0
S
D t
dS
D
0
B
E
t
B0
H
j
0
D t
I
B μ0 I
I 2
2πr
Oa
r
B L
0 I 4a
解:
B I
2 r
dΦ BdS Bldr
Φ R2 I ldr Il ln R2
R1 2 r
2 R1
L Φ l ln R2 I 2 R1
rl
2、互感
K
R
(1) 互感现象
G
1
B1 I1
2
B2 I2
一个载流回路中电流变化,引起邻近另一回路中 产生感生电动势的现象 — 互感现象。
互感电动势
D t
(2) 位移电流
I位 S j位 dS
I I(t)
D
dS
S t
~
4. 位I移位 电流S与传Dt导 d电S流的关t系S
Dd
S
D
t
I传
q t
( S) (D S ) D
t
t
t
I位

5.
全结电论流:传导I电全流中I断传处有I位位 移电I流,两S 者D相t 等 d并S构成闭合电路。
I
L
S
t
S2
D(t )
D L S1
t
B
B I I(t)
~
三、麦克斯韦方程组(积分形式)
S
L
D dS q
E dl S
B
dS
t
S
L
B
H
dS 0
dl I
S
D t
dS
辅助方程:D 0 r E ;
B 0r H ;
洛仑兹力方程:
F
q
(
E
v
B
)
(1) (2) (3) (4)
1861年,麦克斯韦提出了感生电场的假设
变化的磁场在周围空间要激发电场, 称为感生电场。感生电流的产生就是这一电 场作用于导体中的自由电荷的结果。
B 增加 I
周围空间都有激发电场, 导线圈只起探测器作用。
E
电场线闭合
sE dS 0
正向磁通
B
增加
L dΦ 0 dt
0
正向磁通
B
减少
L dΦ 0 dt
6. 安培环路定理的推广
H dl
L
I全
I
D
d S
S t
矛盾得到解决。
全电流安培环路定理
7. 位移电流的性质
(1) I位 并非电荷定向运动产生,其本质是电位移通量的变化率,
即指随时间变化的电场:
I位 S j位 dS
D
dS
S t
(2) 低频时, I位 不产生焦尔热(无热效应)。
ln
R2 R1
L 0l ln R2 2 R1
解:法2 H B L Wm
dS= ldr HB
0I I 22r
R1 r R2
0 (其 他 )
d
B dS
0I
l
dr
2 r
I l
R2 0 I l dr 0 Il ln R2
R1 2r
2 R1
L 0 l ln R2
I 2 R1
D
Ψ
r2 R2
Q
Id
dΨ dt
r2 R2
dQ dt
Q Q
Ic
R P*r
Ic
Id
dΨ dt
r2 R2
dQ dt
H dl
l
Ic Id
Id
r 2 dQ H (2π r) R2 dt
计算得 H r dQ 2π R2 dt
B
0r
2π R2
dQ dt
代入数据计算得 Id 1.1A B 1.11105T
§10 -1 位移电流 安培环路定理的推广
一、位移电流
安培环路定理 :
L H d l I
1. 问题的提出
L
H
d l
I
j
S1
d
S
L H d l S2 0d S 0
电流密度
L
矛盾 ?!
S2
D(t )
S1
产生矛盾的要害:
I I(t)
~
传导电流在电容器内中断了。
但电容器中有随时间变化的电场: D D(t )
L n2V
L n2V 增大 V
提高 L 的途径
提高 n
实用
放入 值高的介质
求 L 的步骤:
1、设线圈中通L Ψm / I
例2、有一电缆,由两个“无限长”的同轴圆桶状导体
组成,其间充满磁导率为 的磁介质,电流 I 从内桶
流进,外桶流出。设内、外桶半径分别为 R1 和 R2 , 求长为 l 的一段电缆的自感系数。
0
0
B2 d
B1 B2
利用高斯定理
B d S 0 S
B1S B2 S 0
B1 B2
一、位移电流
安培环路定理 :
L H d l I
1. 问题的提出
L
H
d l
I
j
S1
d
S
L H d l S2 0d S 0
电流密度
L
矛盾 ?!
S2
D(t )
S1
产生矛盾的要害:
I I(t)
其充电,使电路上的传导电流 Ic dQ dt 2.5A,
若略去边缘效应, 求(1)两极板间的位移电流;(2)两
极板间离开轴线的距离为 r 2.0cm 的点 P 处的磁
感应强度 .
解 如图作一半径
Q Q
为 r平行于极板的圆形
回路,通过此圆面积的 电位移通量为
Ic
R P*r
Ic
Ψ D(π r 2 )
五、 磁场的能量
以RL电路为例:
自感电动势:
L
L
di dt
回路方程: L di Ri
i
dt
idt Lidi Ri2dt
R L
K
t
idt
I
Lidi
t Ri 2dt
0
0
0
t
idt
t Ri2dt 1 LI 2
0
0
2
t
idt
电源所作的功
0
t Ri2dt 消耗在电阻上的焦耳热 0
自感系数 描述线圈电磁惯性的大小
L越大回路中电流越难改变。
例1、长为 l 的螺线管,横断面为 S ,线圈总匝数
为 N ,管中磁介质的磁导率为 ,求自感系数。
解: Ψm LI
BN I
l
Ψ NBS N 2 IS
l
L Ψ N 2 S N 2 lS
Il
l2
l
线圈体积: V lS
n N l
(3) I位 的磁效应与 I传 的等效,即:随时间变化的电场在周围
激发磁场 。
D(t )
H (t )
二、电磁场
电荷 激 发
电场
运动
变化 变化
电流 激 发
磁场
★ 随时间变化的电场激发时变磁场; ★ 随时间变化的磁场激发时变电场;
在空间形成电磁场,以电磁波的形式传播。
D t
B
H t
E涡
例1 有一圆形平行平板电容器, R 3.0cm.现对
SBt
dS
dS
(2)
L
S t
B 增加
+
I
E
二、描述磁场性质的方程
1. 高斯定理
稳总2恒磁.磁稳总环场场恒磁路::磁场定H场:理L:HHB1S1Bd1lBHd1S2I ;,B0涡2 ,;旋磁涡H场旋:磁dl场SL:HBI2 dSdSBl2D0dSSdS(D3t(0)4d)S
1 LI 2 2
电源力反抗自感电动势做 的功转化为磁场的能量
Wm
1 2
LI 2
长直螺线管为例: L n2V
I B
n
Wm
1 2
LI
2
1 2
n2V
B
n
2
1 2
B2
V
磁场的能量密度:
wm
Wm V
1 2
B2
BH
wm
1 2
B2
1 2
BH
1 2
H 2
例6、一根长直电缆,由半径为 R1 和 R2 的两同 轴圆筒组成,稳恒电流 I 经内层流进外层流出。 试计算长为 l 的一段电缆内的磁场能量。
§10-2 麦克斯韦方程组
一、描述电场性质的方程
1. 高斯定理
静电场:
S
D1
dS
q
;
涡旋电场:
SD2
dS
0
总电场: D D1 D2 ,
相关文档
最新文档