铁磁材料的磁滞回线和基本磁化曲线
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,加深对铁磁材料磁滞回线和基本磁化曲线概念的理解。
2、学会使用示波器观察并测绘铁磁材料的磁滞回线和基本磁化曲线。
3、测定样品的一些基本磁化参数,如饱和磁感应强度 Bs、剩磁感应强度 Br、矫顽力 Hc 等。
二、实验原理1、铁磁材料的磁化特性铁磁物质具有很强的磁化能力,其磁导率远大于非铁磁物质。
铁磁材料的磁化过程是不可逆的,存在磁滞现象。
2、磁滞回线当磁场强度 H 从零开始逐渐增加时,磁感应强度 B 随之增加。
当H 增大到一定值时,B 不再增加,达到饱和值 Bs。
随后逐渐减小 H,B 并不沿原曲线减小,而是滞后于 H 的变化。
当 H 减小到零时,B 不为零,而是保留一定的值 Br,称为剩磁感应强度。
要使 B 减为零,必须加反向磁场,当反向磁场达到一定值 Hc 时,B 才为零,Hc 称为矫顽力。
继续增大反向磁场,B 达到反向饱和值Bs,再逐渐增大正向磁场,B 又沿原来的曲线变化,形成一个闭合的曲线,称为磁滞回线。
3、基本磁化曲线将一系列不同幅值的正弦交变磁场依次作用于铁磁材料样品,可得到一系列大小不同的磁滞回线。
连接各磁滞回线顶点的曲线称为基本磁化曲线。
三、实验仪器示波器、实验变压器、电阻箱、标准互感器、待测铁磁材料环形样品等。
四、实验步骤1、按实验电路图连接好线路,检查无误后接通电源。
2、调节示波器,使其能清晰显示磁滞回线。
3、逐渐增大交流电压,使磁场强度 H 逐渐增加,观察示波器上磁滞回线的变化,直至达到饱和。
4、逐点记录磁滞回线顶点的坐标(H,B)。
5、减小交流电压,重复上述步骤,测量多组数据。
6、根据测量数据绘制磁滞回线和基本磁化曲线。
五、实验数据记录与处理1、实验数据记录表|交流电压(V)|磁场强度 H(A/m)|磁感应强度 B(T)|||||||||2、根据实验数据,在坐标纸上绘制磁滞回线。
3、连接磁滞回线的顶点,得到基本磁化曲线。
铁磁材料的磁滞回线和基本磁化曲线实验报告
实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H曲线;计算样品的H c、B r、B m和(H m,B m)等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B为纵轴,H为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H开始增加时,B随之增加。
如右上图中a,称为起始磁化曲线。
当H从H m减小时,B沿滞后于H的曲线SR减小,这就是磁滞现象。
当H=0时,B=B r称为保留剩磁。
当B=0时,H=-H c,H c称为矫顽力。
当磁场沿H m→0→-H c→-H m→0→H c→H m次序变化时,相应的B沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至,测量铁磁质的磁滞回线;B3、将电压从逐渐调至,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=;H m=m;B r=;H c=m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
铁磁材料的磁滞回线和基本磁化曲线实验报告
实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V,测量铁磁质的磁滞回线;3、将电压从0.5V逐渐调至3.0V,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
铁磁材料的磁滞回线和基本磁化曲线
实验名称:软磁材料磁滞回线和基本磁化曲线的测量铁磁材料按特性分硬磁和软磁两大类.软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯.磁化曲线和磁滞回线是反映铁磁材料磁性的重要特征曲线.矫顽力和饱和磁感应强度B s 、剩磁B r .磁滞损耗P 等参数均可以从磁滞回线和磁化曲线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据.铁磁材料磁化时,其磁感强度随磁场强度的变化非常复杂.有如下特点:1.一块从未被磁化的软磁材料磁化时,当H 由0开始逐渐增加至某最大值H m ,B 也由0开始逐渐增加,由此画出的B -H 曲线o -a 称起始磁化曲线,如图1所示. 起始磁化曲线大致分为三个阶段,第一阶段曲线平缓,第二阶段曲线很陡,第三阶段曲线又变得平缓.最后B 趋于不变,这种现象称为饱和.饱和时的磁感强度称为饱和磁感强度,记做B s .2.磁化过程中材料内部发生的过程是不可逆的,当磁场由饱和时的H m 减小至0,B 并非沿原来的磁化曲线返回,而是滞后于H 的变化.当H =0时,B =B r ,称为剩余磁感应强度.要想使B 为0,就必须施加一反向磁场-H c .H c 称为矫顽力. 继续加大反向磁场至-H m ,曲线到达a ',磁感应强度变为-B s .磁场再由-H m 变至H m ,曲线又回到a ,形成一条闭合曲线,叫磁滞回线.3.如果初始磁化磁场由0开始增加至一小于H m 的值H 1,然后磁场在- H 1与H 1之间变化,也可以得到一条磁滞回线.但这条曲线不是饱和的.逐渐增加磁场至H 2,H 3,H 4,…(H 2<H 3<H 4…),可以得到一系列磁滞回线.将这些磁滞回线的顶点连起来,就得到基本磁化曲线,如图2所示.H图2 磁滞回线和基本磁化曲线图1 起始磁化曲线和磁滞回线i 1 i 2U xU y N 2 N 1 R 2 隔离变压器示波器R 1220V【实验目的】1.了解有关铁磁性材料性质的知识;2.了解用示波器动态测量软磁材料磁滞回线和基本磁化曲线的原理; 3.学习并体会物理实验方法中的转换测量法;4.掌握用示波器动态测量软磁材料磁滞回线和基本磁化曲线的方法. 【实验器材】(1) GY-4隔离变压器; (2) CZ-2磁滞回线装置;(3) COS5020示波器.【实验原理】软磁材料的样品可做成闭合回路状(如图所示),在样品上绕N 1匝初级线圈和N 2匝次级线圈,初级线圈里通过电流i 1,在样品中产生磁场,其磁场强度为1111x N i N H u l R l== (1) 式中l 是初级线圈所绕样品的平均长度,R 1是与初级线圈串联的电阻,u x 是R 1两端的电压.采用动态测量法,初级线圈里需通过交流电(由隔离变压器提供).样品被磁化后产生变化的磁通量,进而在次级线圈中产生感应电动势:22d d d d d d BN N S t t tψφε=-=-=- S 是样品的截面积.次级线圈的电压正比于磁感强度B 随时间的变化率,必须积分后才能得到B .积分可由RC 电路来完成,电路中满足条件212R fCπ,忽略次级线圈的内阻后,可得:22y R CB u N S=(2) u y 是电容器两端的电压.由此可见u x 正比于H ,u y 正比于B ,将两信号分分别输入到双通道示波器的x 端和y 端,选择x -y 方式,就可以在示波器上得到间接的磁滞回线.定量测量时,记录每一步磁滞回线的定点坐标,由电压参数得到相应的电压值,再根据(1)、(2)计算对应的B 、H 值,从而可做出基本磁化曲线.在饱和磁滞回线上记录H c 、B s 、B r 的坐标,可算出相应的实验值.【实验内容及步骤】 实验内容:1.在坐标纸上做出基本磁化曲线和饱和磁滞回线. 2.给出H c 、B s 、B r 的实验结果. 步骤:1.正确连接线路,调节示波器,观察磁滞回线的形状.2.将隔离变压器电压调至80V 左右,调整磁滞回线至理想的大小和形状,确定实验所需的两通道电压参数.3.将电压缓慢调至零,实现对样品的退磁,并在示波器上调整坐标原点.4.将磁场由0(电压为0)开始,逐步(电压每10V 变化一步)增加至B 达到饱和,记下每一步磁滞回线定点的坐标.5.在饱和磁滞回线上记录H c 、B s 、B r 的坐标,测量时应在>0、<0两点进行测量,取平均值.【数据记录】表1 软磁材料基本磁化曲线绘制的测量数据两通道电压参数: X_____________ Y_____________表2 H c 、B s 、B r 的测量数据注意事项:1.测量前检查示波器两通道的垂直微调旋钮是否在校准位置.2.确定软磁材料饱和时对应隔离变压器的电压,饱和时示波器上类磁滞回线的尖端连接处的两条曲线变得重合. 思考题:1.如果测量前没有将材料退磁,会出现什么情况? 2.用磁路不闭合的样品进行测量会导致什么结果?3.测量时磁场H 是正弦变化的,磁感强度B 是否按正弦规律变化?反之,若磁感强度B 是正弦变化的,磁场H 是否也按正弦规律变化? 附录:磁滞回线装置参数20001=N 匝 1212=N 匝 Ω=121R 216k R =Ω0.132m L = 320.20810m S -=⨯ (100.05)F C μ=±。
铁磁材料的磁滞回线和基本磁化曲线
现磁滞回线。
操作指南(续1)
观察基本磁化曲线。对样品进行退磁,从 U=0开始提高励磁电压,将在显示屏上得到 面积由小到大的一族磁滞回线。这些磁滞回 线的顶点就是样品的基本磁化曲线,长余辉 示波器,便可观察到该曲线的轨迹 。
观察比较样品1和2的磁化性能。 测绘曲线。接通实验仪和测试仪之间的连线。
基本磁化曲线。磁滞回线顶点的连线为铁
磁材料的基本磁化曲线,磁导率。
B
H
3,实验仪器
数码照片 磁滞回线实验组合分为实验仪和测试仪两大部
分。
4,操作指南
电路连接。选样品1按实验仪上所给的电路图 连接线路,令 R1 2.5,“U选择” 置于0 位。U 1 和 U 2 分别接示波器的“X输入”和 “Y输入”。
铁磁材料的磁滞回线 和基本磁化曲线
1,简介
铁磁材料(镍、钴、铁及其合金)在电力、通 讯等领域有着十分广泛的应用。磁滞回线磁滞 回线反映磁性材料在外磁场中的磁化特性。
2,实验原理
铁磁物质。在外磁场作用下,能被强烈磁化,磁导率很 高。磁场作用停止后,仍保持磁化状态,即磁滞。
磁化曲线。O点为磁中性状态,即BH0,当磁场H
结语谢谢大家!来自从0开始增加时,B随之缓慢上升,并当H到 H s 时,B达
到饱和值 B s ,到此为磁化曲线。当H减小到0时,B不
为0,而保留剩磁 B r 。 当磁场反向从0逐渐变为时,B消失,即要消除剩磁,必 须加反向磁场。H c 为矫顽力,反映保持剩磁状态的能力。
磁化曲线和磁滞回线
实验原理(续)
磁滞回线。当铁磁材料处于交变磁场中, 将沿磁滞回线反复运动,在此过程中要消 耗额外的能量,并以热的形式释放,为磁 滞损耗。可以证明,磁滞损耗与磁滞回线 所围面积成正比。
物理实验报告 铁磁材料的磁滞回线和基本磁化曲线
物理实验报告铁磁材料的磁滞回线和基本磁化曲线一、实验原理铁磁材料在磁场的作用下会发生磁化现象,而磁化程度随着磁场强度的变化而发生变化。
在一定的磁场范围内,铁磁材料的磁化程度与磁场的强度之间存在着一种函数关系,成为基本磁化曲线。
而铁磁材料在外磁场作用下,它的磁化状态会发生变化,在磁场强度逐渐增大时,磁矩也逐渐变大,这种变化的过程称为磁滞回线。
本实验旨在通过使用霍尔效应仪器和实验方法,实现对铁磁材料磁滞回线和基本磁化曲线的测定,探讨磁滞回线和基本磁化曲线之间的关系,并对实验结果进行分析和讨论。
二、实验装置实验仪器主要包括霍尔效应电路、锁相放大器、磁力计、线圈等实验器材。
三、实验步骤1、首先将磁力计放置在霍尔效应电路的输出端,然后将电路连接好。
2、在运行实验之前,需要先将霍尔效应电路进行调零操作,以保证实验的精度。
3、在调零之后,需要将待测物品即铁磁材料放置在磁力计的测量端。
4、接下来,可以利用锁相放大器对磁力计的输出信号进行检测,并进行相应的数据采集和处理。
5、在不同磁场强度下,可以对待测物品的磁化状态进行测量和记录,并记录相应的数据。
6、最终,可以将所得数据绘制成磁滞回线和基本磁化曲线图形,并对实验结果进行分析和讨论。
四、实验结果通过对铁磁材料的实验测量和数据处理,可以得到所得到的磁滞回线和基本磁化曲线图形如下:[图1] 铁磁材料的磁滞回线根据实验结果可知,铁磁材料的磁滞回线和基本磁化曲线之间存在着一定的关系,当外磁场逐渐增大时,铁磁材料的磁矩也逐渐增大,并随着磁场的逐渐增大而逐渐达到饱和状态。
当外磁场逐渐减小时,铁磁材料的磁矩也逐渐减小,并在磁场降低到一定程度时达到磁剩余状态。
五、实验分析此外,铁磁材料的基本磁化曲线也具有一定的特点,即其呈现S形曲线,表明在一定的磁场强度范围内,铁磁材料的磁化程度与磁场强度之间呈现一定的正比关系,但随着磁场强度的逐渐增大,铁磁材料的磁化程度将达到饱和状态,磁化度不再增大。
4.4 铁磁材料的磁滞回线和基本磁化曲线
开
电源开关
U ~ V
1.5 1.2 1.0 0.5 0 1.8 2.0 2.2 2.5 2.8 3.0
⊥ UH X C2
3.5 4.0
3.0
2.5 2.0 1.5 1.0 0.5
20F
4.5 5.0
∞ R1选择
U选择
4. 测试样品的磁滞回线和磁化参数 测试磁滞回线
TH-MHC型智能磁滞回线测试仪
实验内容和步骤
1.按电路图接线 先选样品2,按实验仪上的电路图连接线 路。UH 、UB 分别接测试仪上的U1 、U2 ,及 示波器X输入,Y输入,插孔⊥为公用端。
磁滞回线测试仪
UB(Y)
⊥
UH(X)
·
2.样品进行退磁 磁滞回线实验仪 开启测试仪、实验仪和示 样品 1 样品 2 波器的开关, 对样品进行退磁, 顺时针转动U选择旋扭,令U从 n N n N 0增至3V, 然后逆时针转动旋扭, 将U从3V降为0(目的是消除剩 R2 R1 () 磁,确保样品处于磁中性状态: Y H=0,B=0)。 10K U
(2)计算机显示磁滞回线采样点
按功能键,将显示P.C SHOW 。
TH-MHC型智能磁滞回线测试仪 H [A/m ] B
UB(Y) UH(X)
[T]
功能
数位
数据
确认
复位
按确认键后,打开计算机桌面上的Hb36,观 察磁滞回线。
(3)显示H与B的最大值Hn与Bn
按功能键,将显示H与B的最大值Hn与Bn。
注意: 1.其中步骤(8)不进行数据采集,即不按确认键。 2.每次改变U时,都要对样品1进行退磁。
表1 基本磁化曲线与 r 曲线记录表
U(V) 0.5 1.0 1.2 H×103A/m B×10T
铁磁材料的磁滞回线及基本磁化曲线_实验报告
铁磁材料的磁滞回线及基本磁化曲线_实验报告摘要:本实验旨在从实验结果中观察到铁磁材料的磁滞回线及基本磁化曲线的特性。
根据实验观察,铁磁材料的磁滞回线及基本磁化曲线有一定的特性:当磁感应强度B在某一特定值Ming之后,磁滞回线开始放大;在磁滞回线和磁化曲线处,在较低的磁感应强度B下,磁通密度H值是较为均匀的,当磁感应强度B增大时,磁通密度H增大。
从实验结果看,随着磁感应强度的改变,磁通密度也随之变化。
关键词:铁磁材料;磁滞回线;磁化曲线1、实验目的本实验旨在探究铁磁材料的磁滞回线及基本磁化曲线,主要探究磁化曲线和磁滞回线特性,揭示铁磁材料磁性特性和应用基础。
2、实验原理铁磁性材料在一定范围内,随着外加磁场的强弱,由于内在磁介质的存在,响应磁场的强弱而产生的磁效应,可用磁化曲线来描述,磁化曲线横坐标为外加磁场B,纵坐标为磁通密度H,绘制磁化曲线时,可得到磁滞回线区和磁化曲线区,按假设,若满足磁滞回线的条件,虚部磁化曲线低于实部磁化曲线,磁通密度H随外加磁场B的增强而减弱。
3、实验材料(1)各类铁磁材料;(2)阳极小电流表;(3)变压器;(4)钳形线圈;(5)可调晶闸管及其他电路控制元件;(6)电子计算表等。
4、实验流程(1)实验电路图设计:根据实验要求,绘制实验电路图,电路中包括可调晶闸管、比较示波器和磁电路。
(2)测量磁滞回线:将晶闸管设置为半导体导通阶段,阳极小电流表与变压器连接,在钳形线圈中绕入样品,并加入磁电路及相关电路控制元件,应用变压设备,根据电路控制调节磁感应强度,测量磁滞回线的特性,进而得到磁滞回线参数。
(3)测量磁化曲线:将可调晶闸管设置为完全打开或全关闭,将变压器的输出电压稳定,调节比较示波器的控制参数,进而得到磁化曲线数据,从而得到铁磁材料的磁滞回线和磁化曲线参数。
5、实验结果分析通过上述实验,本实验求出了铁磁材料的磁滞回线及基本磁化曲线参数。
实验研究发现,当磁感应强度B增大时,磁通密度H增大,且随着磁感应强度的改变,磁通密度也随之变化。
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2、测定样品的基本磁化曲线,作μ—H 曲线。
3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。
4、了解磁性材料在工程技术中的应用。
二、实验原理1、铁磁物质的磁化特性铁磁物质具有很强的磁化特性,其磁感应强度 B 与磁场强度 H 之间不是简单的线性关系。
当 H 从零开始增加时,B 随之缓慢增加;当H 增加到一定值时,B 急剧增加,这种现象称为磁饱和。
当 H 从最大值逐渐减小时,B 并不沿原曲线返回,而是滞后于 H 的变化,这种现象称为磁滞。
2、磁滞回线当磁场强度 H 从最大值 Hm 逐渐减小到零,再反向增加到 Hm,然后再从 Hm 逐渐减小到零,最后又正向增加到 Hm 时,B 随 H 变化的闭合曲线称为磁滞回线。
磁滞回线所包围的面积表示在一个反复磁化的循环过程中单位体积的铁磁物质所消耗的能量。
3、基本磁化曲线对同一铁磁材料,选择不同的最大磁场强度 Hm 进行反复磁化,可得到一系列大小不同的磁滞回线。
连接这些磁滞回线顶点的曲线称为基本磁化曲线,它反映了铁磁材料在反复磁化过程中的平均磁化特性。
4、磁性材料的分类根据磁滞回线的形状,磁性材料可分为软磁材料和硬磁材料。
软磁材料的磁滞回线狭窄,剩磁 Br 和矫顽力 Hc 都很小,磁导率高,适用于制作变压器、电机的铁芯等;硬磁材料的磁滞回线宽阔,Br 和 Hc都很大,适用于制作永磁体。
三、实验仪器1、磁滞回线实验仪2、示波器四、实验步骤1、按实验仪的电路图连接好线路,确保线路连接正确无误。
2、将样品放入测试线圈中,调节示波器的灵敏度和扫描速度,使示波器上能显示出清晰的磁滞回线。
3、逐渐增加磁场强度 Hm,观察磁滞回线的变化,记录不同 Hm下的磁滞回线。
4、测量磁滞回线的顶点坐标,计算出相应的 Bm、Hm、Br 和 Hc 等参数。
5、绘制基本磁化曲线,即 B—H 曲线。
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验题目:铁磁材料的磁滞回线和基本磁化曲线 实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至,测量铁磁质的磁滞回线;3、将电压从逐渐调至,依次得到Bm 、Hm,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:Bm=;Hm=m;Br=;Hc=m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
铁磁材料的磁滞回线和基本磁化曲线实验报告
实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V,测量铁磁质的磁滞回线;3、将电压从0.5V逐渐调至3.0V,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
铁磁材料的磁滞回线圈和基本磁化曲线
铁磁材料的磁滞回线圈和基本磁化曲线铁磁材料是指具有较高磁铁石性的材料,比如铁、镍、钴等。
在外加磁场的作用下,铁磁材料会产生自发磁化现象,磁滞回线和基本磁化曲线是研究铁磁材料磁性的重要工具。
下面我们来详细讲解一下它们的概念和性质。
1. 磁滞回线圈磁滞回线是指铁磁材料在交变磁场或直流磁场作用下,磁化强度随磁场强度变化的曲线。
当外加磁场逐渐升高时,铁磁材料会自发磁化,直到达到饱和磁化强度,此时材料的磁化强度不再随磁场强度的增加而增加,形成了一个磁致饱和的状态。
如果磁场继续增加,铁磁材料的磁化强度会逐渐减小,直到归零,这个过程称为磁降淬。
如果再减小磁场强度,铁磁材料的磁化强度又会逐渐增加,直至达到反向饱和磁化强度,完成一个磁滞回线的闭合。
磁滞回线圈是通过测量铁磁材料在交变磁场或直流磁场作用下的磁化强度,来得到磁滞回线的一种实验手段。
它由两个线圈组成,一个线圈提供外加磁场,另一个线圈用于测量铁磁材料的磁化强度。
在实验中,我们通常使用示波器来观察磁滞回线的形状,进一步研究铁磁材料的磁性质。
2. 基本磁化曲线基本磁化曲线是指铁磁材料在磁场作用下,磁化强度随磁场强度变化的曲线。
与磁滞回线不同的是,基本磁化曲线不考虑磁滞回线的闭合,而是研究铁磁材料的磁性质在一定范围内的变化趋势。
基本磁化曲线通常包含三个阶段:(1)线性阶段:在小磁场范围内,铁磁材料的磁化强度与磁场强度呈线性变化,其斜率称为初始磁导率。
(2)饱和阶段:随着外加磁场的增加,铁磁材料的磁化强度逐渐增加,直至达到饱和磁化强度。
此时,铁磁材料的磁化强度不再随磁场强度的增加而增加。
基本磁化曲线是研究铁磁材料磁化特性的重要工具。
通过测量不同铁磁材料在不同磁场条件下的基本磁化曲线,可以得到多种材料的磁滞特性和磁化特性,用于制备和应用磁性材料。
铁磁材料的磁滞回线和基本磁化曲线
铁磁材料的磁滞回线和基本磁化曲线铁磁材料具有独特的磁化性质,我们在一块未磁化的铁磁材料(铁、镍、钴或其他铁磁合金)的外面密绕线圈,但流过线圈的磁化电流从零逐渐增大时,铁磁材料的磁感应强度B是沿起始磁化曲线随线圈的磁场强度H变化的。
当H增大到最大值后,继续减小到-,然后回复到初始0值时,我们发现:B 是按照 0→→→0→-→-→0→的规律变化,我们称B按照这个变化过程所描绘的曲线为磁滞回线。
对同一铁磁材料且开始时不带磁性,如果取一系列的磁化电流值 0﹤﹤﹤﹤……﹤我们会得到一系列逐渐增大的磁滞回线,如果将每一条磁滞回线的顶点(、)在同一坐标图上标出并光滑连接,我们就得到了铁磁材料的基本磁化曲线。
本实验的主要学习内容为:1、实验原理:a、认识铁磁材料的磁化规律b、了解示波器法显示磁滞回线的基本原理2、实验方法:a、掌握用磁滞回线测试仪测绘磁滞回线的方法。
b、掌握用5703A型示波器测绘基本磁化曲线的方法。
这是一个扩展性的电磁学实验,难度系数1.10较适合理工科各专业学生选做,对非物理、电子专业学生,实验原理理解有一定的困难,实验方法难度适中,本实验的实验思想很有开创性,值得其他专业借鉴。
实验具体内容与要求1、样品退磁开启电源后,顺时针转动“U选择”旋钮,使U从0逐渐增大到3V,然后逆时针旋转使U从3V降到0,清除剩磁。
2、观察磁滞回线,测定基本磁化曲线开启示波器电源,调节好示波器的初始预备状态,对示波器的使用方法应参照实验十一。
示波器选择合适档位,使显示器出现大小合适的磁滞回线图形。
在样品退磁的前提下,励磁电压从0开始逐档升高,记录下每档U所显示的磁滞回线的顶点(、)在坐标值上描点,用一条光滑曲线连接各点,得到基本磁化曲线。
3、B—H曲线测绘选择合适的U值,在仔细阅读本实验附录上磁滞回线测试仪使用说明的基础上,按步骤操作测试仪,取得各采样点的H、B值,作图。
实验仪器简介1、磁滞回线实验仪:主要由试样、励磁电源、电路组成,用于产生基本磁化曲线和磁滞回线各H、B量值。
铁磁材料的磁滞回线和基本磁化曲线实验报告
实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V ,测量铁磁质的磁滞回线;3、将电压从0.5V 逐渐调至3.0V ,依次得到B m 、H m ,从而得到铁磁质的基本磁化曲线。
实验数据: 磁滞回线: 表一:磁滞回线数据基本磁化曲线: B表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
铁磁材料的磁滞回线和基本磁化曲线实验报告
实验题目:铁磁材料的磁滞回线和基本磁化曲线 实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。
实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。
以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。
如右上图中a ,称为起始磁化曲线。
当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。
当H=0时,B=B r 称为保留剩磁。
当B=0时,H=-H c ,H c 称为矫顽力。
当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。
若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。
磁滞回线的顶点的连线称为基本磁化曲线(右下图)。
B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至,测量铁磁质的磁滞回线;3、将电压从逐渐调至,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。
实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=;H m=m;B r=;H c=m。
基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。
铁磁材料的磁滞回线和基本磁化曲线
铁磁材料的磁滞回线和基本磁化曲线实验讲义铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性,也是设计选用材料的重要依据。
一:实验目的:1...认识铁磁材料的磁化规律,比较两种典型铁磁物质的动态磁特性。
2...测定样品的基本磁化特性曲线(B m-H m曲线),并作μ—H曲线。
3...测绘样品在给定条件下的磁滞回线,以及相关的H c,B r,B m,和[H B ]等参数。
二:实验原理:铁磁物质是一种性能特异,在现代科技和国防上用途广泛的材料。
铁,钴,镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,磁导率μ 很高。
另一特性是磁滞,即磁场作用停止后,铁磁材料仍保留磁化状态。
图一为铁磁物质的磁感应强度Β与磁场强度HH图一铁磁物质的起始磁化曲线和磁滞回线图中的原点。
表示磁化之前铁磁物质处于磁中性状态,即B=H=O 。
当外磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段落0a所示;继之B随H迅速增长,如ab段所示;其后,B的增长又趋缓慢;当H值增至Hs 时,B 的值达到Bs ,在S点的B s和H s,通常又称本次磁滞回线的B m和H m。
曲线oabs段称为起始磁化曲线。
当磁场从H s逐渐减少至零时,磁感应强度B并不沿起始磁化曲线恢复到o点,而是沿一条新的曲线sr下降,比较线段os和sr,我们看到:H减小,B也相应减小,但B的变化滞后于H的变化,这个现象称为磁滞,磁滞的明显特征就是当H=0时,B不为0,而保留剩磁B r。
当磁场反向从o逐渐变为-H c时,磁感应强度B=O,这就说明要想消除剩磁,必须施加反向磁场,H c称为矫顽力。
它的大小反映铁磁材料保持剩磁状态的能力,线段rc称为退磁曲线。
图一还表明,当外磁场按H s →0→-H c→-H s→0 → H c→ H s次序变化时,相应的磁感应强度则按闭合曲线srcs’r’c’s变化时,这闭合曲线称为磁滞回线。
铁磁材料的磁滞回线和基本磁化曲线
铁磁材料的磁滞回线和基本磁化曲线(动态磁滞回线实验)磁性材料在科研和工业中有着广泛的应用,种类也相当繁多,因此各种材料的磁特性测量,是电磁学实验中一个重要内容。
磁特性测量分为直流磁特性测量和交流磁特性测量。
本实验用交流正弦电流对磁性材料进行磁化,测得的磁感应强度与磁场强度关系曲线称为动态磁滞回线,或者称为交流磁滞回线,它与直流磁滞回线是有区别的。
可以证明:磁滞回线所包围的面积等于使单位体积磁性材料反复磁化一周时所需的功,并且因功转化为热而表现为损耗。
测量动态磁滞回线时,材料中不仅有磁滞损耗,还有涡流损耗,因此,同一材料的动态磁滞回线的面积要比静态磁滞回线的面积稍大些。
本实验重点学习用示波器显示和测量磁性材料动态磁滞回线和基本磁化曲线的方法,了解软磁材料和硬磁材料交流磁滞回线的区别。
一.实验目的1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。
2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度m B 、剩磁r B 和矫顽力c H 。
3. 学习示波器的X 轴和Y 轴用于测量交流电压时,各自分度值的校准。
4. 用示波器显示硬铁磁材料(模具钢12Cr )的交流磁滞回线,并与软磁材料进行比较。
二. 实验原理(一)铁磁物质的磁滞现象铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。
一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。
如左图所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在H B 图中则相当于坐标原点O 。
随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。
当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。
m H 和m B 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。
如果再使H 逐步退到零,则与此同时B 也逐渐减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁磁材料的磁滞回线和基本磁化曲线
【实验目的】
1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2. 测定样品的基本磁化曲线,作μ-H曲线。
3. 测定样品的H D、B r、B S和(H m·B m)等参数。
4. 测绘样品的磁滞回线,估算其磁滞损耗。
【实验仪器】
DH4516型磁滞回线实验仪,数字万用表,示波器。
【实验原理】
铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至H S时,B到达饱和值B S,oabs称为起始磁化曲线。
图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=O时,B不为零,而保留剩磁Br。
当磁场反向从O逐渐变至-H D时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。
图1还表明,当磁场按H S→O→H D→-H S→O→H D´→H S次序变化,相应的磁感应强度B则沿闭合曲线'变化,这闭合曲线称为磁滞回线。
所以,当铁磁材料处于交变磁场中时(如变压器中的铁S
R'
D
SRD'S
心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。
应该说明,当初始态为H =B =O 的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图2所示,这些磁滞回线顶点的连线称为铁磁材料的基本磁化曲线,由此可近似确定其磁导率
H
B
μ
=
,因B 与H 非线性,故铁磁材料的μ不是常数而是随H 而变化(如图3所示)。
铁磁材料的相对磁导率可高达数千乃至数万,这一特点是它用途广泛的主要原因之一。
可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据,图4为常见的两种典型的磁滞回线,其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小,是制造变压器、电机、和交流磁铁的主要材料。
而硬磁材料的磁滞回线较宽,矫顽力大,剩磁强,可用来制造永磁体。
观察和测量磁滞回线和基本磁化曲线的线路如图五所示。
待测样品为EI 型矽钢片,N 为励磁绕组,n 为用来测量磁感应强度B 而设置的绕组。
R 1为励磁电流取样电阻,设通过N 的交流励磁电流为i ,根据安培环路定律,样品的磁化场强 L
i
N H 1=
L 为样品的平均磁路 图2 同一铁磁材料的 一簇磁滞回线
图1 铁磁质起始磁化 曲线和磁滞回线
图 3 铁磁材料µ与H 并系曲
图 4 不同铁磁材料的磁滞回线
图5 实验线路
∵ 1
1R U i =
H 1
1
U LR N H •=
∴ (1) (1)式中的N 1、L 、1R 均为已知常数,所以由H U 可确定H 。
在交变磁场下,样品的磁感应强度瞬时值B 是测量绕组n 和C R 2电路给定的,根据法拉第电磁感应定律,由于样品中的磁通φ的变化,在测量线圈中产生的感生电动势的大小为
(2)
S 为样品的截面积。
如果忽略自感电动势和电路损耗,则回路方程为
B U R i ε222+=
式中2i 为感生电流,U B 为积分电容C 两端电压,设在Δt 时间内,i 2向电容2C 的充电电量为Q ,则
C Q U B =
C
Q
R i ε222+=∴ 如果选取足够大的R 2和C ,使i 2R 2>>Q/C ,则
222R i =ε
∵ dt
dU C dt dQ
i B 2
2== dt
dU R C εB
222=∴ (3)
由(2)、(3)两式可得
B 22
U S
N CR B =
(4)
上式中C 、R 2、n 和S 均为已知常数。
所以由U B 可确定B 0
综上所述,将图5中的U H 和U B 分别加到示波器的“X 输入”和“Y 输入”便可观察样品的B -H 曲线;如将U H 和U B 加到测试仪的信号输入端可测定样品的饱和磁感应强度B S 、剩磁R r 、矫顽力H D 、磁滞损耗〔WBH 〕以及磁导率µ等参数。
dt
d n ϕε=2⎰=
dt n 21
εϕ⎰==dt
nS S B 21εϕ
【实验内容与步骤】
1. 电路连接:选样品1按实验仪上所给的电路图连接线路,并令R1=
2.5Ω,“U选择”置于O位。
U H和U B分别接示波器的“X输入”和“Y输入”,插孔⊥为公共端。
2. 样品退磁:开启实验仪电源,对试样进行退磁,即顺时针方向转动“U选择”旋钮,令U从0增至3V,然后逆时针方向转动旋钮,将U从最大值降为O,其目的是消除剩磁,确保样品处于磁中性状态,即B=H=0,如图6所示。
3. 观察磁滞回线:开启示波器电源,令光点位于坐标网格中心,令U=2.2V,并分别调节示波器x 和y轴的灵敏度,使显示屏上出现图形大小合适的磁滞回线(若图形顶部出现编织状的小环,如图7所示,这时可降低励磁电压U予以消除)。
4. 观察基本磁化曲线,按步骤2对样品进行退磁,从U=0开始,逐档提高励磁电压,将在显示屏上得到面积由小到大一个套一个的一簇磁滞回线。
这些磁滞回线顶点的连线就是样品的基本磁化曲线,借助长余辉示波器,便可观察到该曲线的轨迹。
5. 观察、比较样品1和样品2的磁化性能。
6. 测绘μ-H曲线:仔细阅读测试仪的使用说明,接通实验仪和测试仪之间的连线。
开启电源,对样品进行退磁后,依次测定U=0.5,1.0…3.0V时的十组H m和B m值,作μ~H曲线。
7. 令U=3.0V,R1=2.5Ω测定样品1的B S,R r,H D,W BH,等参数。
8. 取步骤7中的H和其相应的B值,用坐标纸绘制B-H曲线(如何取数?取多少组数据?自行考虑),并估算曲线所围面积。
【数据记录及处理】
电容C(μF):20 电阻R1(Ω):2.5 电阻R2(kΩ):10 截面S(mm2): 120
励磁绕组N1(砸):150 测量绕组N2(砸):150 平均磁路L(mm):75
表一基本磁化曲线与µ-H曲线
U(V)H×104安/米B×102特斯拉µ=B/H享利/米
0.5
0.9
1.2
1.5
1.8
2.1
图6 退磁示意图图7 U B和B的相位差等因素引起的畸变
表二.
D r S BH
B
H
0 磁滞回线
B
H
μ
H
磁化曲线
磁导率与H 的关系。