广东省实验中学教育集团2018-2019学年(下)初二级期中四校联考数学试卷(无答案)
2023-2024学年广东省实验中学八年级(下)期中数学试卷(含解析)
2023-2024学年广东省实验中学八年级(下)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列二次根式中是最简二次根式的是( )A. 12B. x2+1C. 15D. a22.设a>0,b>0,则下列运算错误的是( )A. a+b=a+bB. ab=a⋅bC. (a)2=aD. ab =ab3.如图,平行四边形ABCD的对角线AC,BD相交于点O,则下列说法一定正确的是( )A. AO=OBB. AO⊥ODC. AO=OCD. AO⊥AB4.下列选项中y不是x的函数的是( )A. |y|=xB. y=−x−6C. D.5.如图,在Rt△ABC中,∠C=90°,∠A=30°,D是AC边的中点,E是AB的中点,若AB=4,则DE的长是( )A. 4B. 3C. 2D. 16.已知△ABC的三边分别为a,b,c,当三角形的边、角满足下列关系,不能判定△ABC是直角三角形的是( )A. a2−b2=c2B. ∠A:∠B:∠C=1:2:3C. a:b:c=1:2:3D. a=12b=33c7.下列命题:①对角线相等的菱形是正方形;②四个内角都相等的四边形是矩形;③一组对边平行,一组对角相等的四边形是平行四边形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有个( )A. 1B. 2C. 3D. 48.如图,菱形ABCD的两条对角线交于点O,BE⊥DC于点E,若AC=6,BD=8,则BE的长是( )A. 245B. 485C. 125D. 49.如图,在△ABC中,AC=6,BC=8,BA=10,P为边AB上一动点,PE⊥AC于点E,PF⊥BC于点F,点M为EF中点,则PM最小值为( )A. 2.4B. 2.5C. 4.8D. 510.如图,在正方形ABCD中,E、F分别是AB,BC的中点,CE,DF交于点G,连接AG,下列结论:①CE=DF;②CE⊥DF;③∠AGE=∠CDF;④∠EAG=30°,其中正确的结论是( )A. ①②B. ①③C. ①②④D. ①②③二、填空题:本题共6小题,每小题3分,共18分。
广东省深圳市南山实验教育集团南海中学2018-2019学年八年级下学期数学期中考试试卷
第1页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省深圳市南山实验教育集团南海中学2018-2019学年八年级下学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 下列四张扑克牌图案,属于中心对称的是( )A .B .C .D .2. 下列各式中,从左到右的变形是因式分解的是( ) A . (x+2y )(x -2y )=x 2-4y 2 B . 3(a+b )=3a+3b C . ax -ay=a (x -y ) D . 2a 2-2a=2a 2(1-)3. 下列四个不等式组中,解集在数轴上表示如图所示的是( )A .B .C .D .4. 如图,要测量被池塘隔开的A ,B 两点的距离,小明在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接DE ,现测得DE=45米,那么AB 等于( )答案第2页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 90米B . 88米C . 86米D . 84米5. 一个n 边形的内角和为540°,则n 的值为( ) A . 4 B . 5 C . 6 D . 76. 如图,AC⊥BD ,⊥1=⊥2,⊥D=40°,则⊥BAD 的度数是( )A . 85°B . 90°C . 95°D . 100°7. 如图,在⊥ABC 中,⊥B=50°,⊥C=30°,分别以点A 和点C 为圆心,大于 AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交BC 于点D ,连接AD ,则⊥BAD 的度数为( )A . 50°B . 60°C . 70°D . 80°8. 如图,在 ABCD 中,点E ,F 分别在边BC ,AD 上,有下列条件:①BE=DF ;②AE⊥CF ;③AE=CF ;④⊥BAE=⊥DCF .其中,能使四边形AECF 是平行四边形的条件有( )第3页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 1个B . 2个C . 3个D . 4个9. 用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中( ) A . 有一个内角大于60° B . 有一个内角小于60° C . 每一个内角都大于60° D . 每一个内角都小于60°10. 已知关于x 的不等式的解中有3个整数解,则m 的取值范围是( )A . 3<m≤4B . 4≤m<5C . 4<m ≤ 5D . 4≤m≤511. 如图,在⊥ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若⊥BAC=112°,则⊥EAF 为( )A . 38°B . 40°C . 42°D . 44°12. 如图,已知⊥ABC 是边长为3的等边三角形,点D 是边BC 上的一点,且BD=1,以AD 为边作等边⊥ADE ,过点E 作EF⊥BC ,交AC 于点F ,连接BF ,则下列结论中①⊥ABD⊥⊥BCF ;②四边形BDEF 是平行四边形;③S 四边形BDEF = ;④S ⊥AEF = .其中正确的有( )A . 1个B . 2个C . 3个D . 4个答案第4页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷 主观题第Ⅱ卷的注释评卷人得分一、填空题(共4题)1. 因式分解2x 2-4x= .2. 不等式组 的最大整数解是 .3. 如图所示,一次函数y=kx+3的图象经过点(2,0),则关于x 的不等式kx+3>0的解集是 .4. 如图,在⊥ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF=6cm ,BF=12cm ,⊥FBM=⊥CBM ,点E 是BC 的中点,若点P 以1cm/s 秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动,点P 运动到F 点时停止运动,点Q 也同时停止运动,当点P 运动 秒时,以P 、Q 、E 、F 为顶点的四边形是平行四边形.评卷人得分二、解答题(共3题)5. 解不等式组 ,把解集在所给数轴上表示出来,并写出其整数解。
广东省汕头市潮阳实验学校2018-2019学年八年级下学期期中考试数学试题(解析版)
2018-2019 学年广东省汕头市潮阳实验学校八年级(下)期中数学试卷一.选择题(每小题3 分,共30 分)1.使1 x有意义的x的取值范围是( ▲ )A. x>-1B. x≥-1C. x≠-1D. x≤-1【答案】B【解析】分析:让被开方数为非负数列式求值即可.解答:解:由题意得:x+1≥0,解得x≥-1.故选B.2.下列各组数中,能构成直角三角形的是()A. 4,5,6B. 1,3 C. 9,12,13 D. 12,16,20【答案】D【解析】【分析】根据勾股定理逆定理:a2+b2=c2,将各项选项逐一代入计算即可【详解】A、∵42+52≠62,∴不能构成直角三角形;B、∵12+)2≠32,∴不能构成直角三角形;C、∵92+122≠132,∴不能构成直角三角形;D、∵122+162=202,∴能构成直角三角形.故选:D.【点睛】此题考查勾股定理逆定理,难度不大.3.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A. 8B. 4C. 6D. 无法计算【答案】A【解析】利用勾股定理,由Rt△ABC中,BC为斜边,可得AB2+AC2=BC2,代入数据可得AB2+AC2+BC2=2BC2=2×22=8.故选:A.4.已知△ABC 中,AB=8cm,BC=15cm,AC=17cm,那么AC 边上的中线BD 的长为()cm.A. 8.5B. 8C. 9.5D. 9【答案】A【解析】【分析】由勾股定理的逆定理,判断三角形为直角三角形,再根据直角三角形的性质直接求解【详解】∵AB=8cm,BC=15cm,AC=17cm,152+82=172,由勾股定理的逆定理得△ABC 是直角三角形,∴BD=12AC=8.5cm.故选A.【点睛】此题考查勾股定理的逆定理和直角三角形斜边上的中线,难度不大,解题关键是知道运用勾股定理的逆定理5.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,AB =5,BC =3,则EC 的长( )A. 1B. 1.5C. 2D. 3【答案】C 【解析】试题分析:根据平行四边形的对边相等,得:CD=AB=5,AD=BC=3. 根据平行四边形的对边平行,得:CD∥AB , ∴∠AED=∠BAE , 又∠DAE=∠BAE , ∴∠DAE=∠AED . ∴ED=AD=3, ∴EC=CDED=53=2. 故选C .考点:平行四边形的性质.6.已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③AD BC //;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( ) A. 6种 B. 5种C. 4种D. 3种【答案】C 【解析】平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有: 1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、②③、①④.故选C7.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A. 1B. 2C. 3D. 4【答案】D【解析】在直角△ABC中,∵AB2=AC2+BC2.∴AB5=m.则少走的距离是AC+BC−AB=3+4-5=2m=4步,故答案为:D.8.若顺次连接某四边形四边中点所得的四边形是矩形,则原四边形一定是()A. 菱形B. 矩形C. 对角线互相垂直D. 对角线相等【答案】C【解析】【分析】根据中位线的与对角线平行的性质,因此顺次连接四边中点可以得到一个相邻的边互相垂直的四边形,根据矩形的定义,邻边垂直的四边形为矩形【详解】当对角线互相垂直,即:四边形ABCD 中,AC⊥BD 时,连接各边的中点E,F,G,H,则形成中位线EG∥AC,FH∥AC,EF∥BD,GH∥BD,又因为对角线AC⊥BD,所以GH⊥EG,EG⊥EF,EF⊥FH,FH⊥HG,根据矩形的定义可以判定该四边形为矩形.故选:C.【点睛】此题考查中点四边形,根据矩形的定义即可解答9. 如图,平行四边形ABCD的周长为20cm,AB≠AD,AC、BD相交于点0,EO⊥BD交AD于点E,则⊿ABE的周长为()A、4cmB、6cmC、8cmD、10cm【答案】D【解析】试题分析:∵四边形ABCD是平行四边形∴AB=CD ,AD=BC ,BO=CO 又∵EO⊥BD ∴BE=DE∴△ABE 的周长=AB+AE+BE=AB+AE+DE=AB+AD ∵AB+BC+CD+AD=20cm ∴△ABE 的周长=10cm考点:1、平行四边形的性质;2、中垂线的性质;3、三角形的周长10.将 n 个边长都为 1cm 的正方形按如图所示的方法摆放,点 A 1,A 2,…,A n 分别是正方形对角线的交点,则 6 个正方形重叠形成的重叠部分的面积和为( )cm 2.A.54B. 1C.23 D. (14)5 【答案】A 【解析】 分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为n-1阴影部分的和【详解】如图,过正方形 ABCD 的中心 O 作 OM ⊥CD 于 M ,作 ON ⊥BC 于N ,则∠EOM =∠FON ,∠OM =ON ,在△OEM 和△OFN 中,OME ONF OM ONEOM FON ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OEM ≌△OFN (ASA ),则四边形OECF 的面积就等于正方形OMCN 的面积,如正方形ABCD 的边长是1,则OMCN 的面积是14,∴得阴影部分面积等于正方形面积的14,即是14,5 个这样的正方形重叠部分(阴影部分)的面积和为14×4,∴n 个这样的正方形重叠部分(阴影部分)的面积和为14×(n﹣1),∴6 个正方形重叠形成的重叠部分的面积和为14×5=54.故选:A.【点睛】此题考查正方形的性质,关键在于求出阴影部分的面积二.填空题(每小题4 分,共计24 分)11._____.【解析】分析:先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.详解:原式.点睛:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.12.若4,则x+y= .【答案】7.【解析】试题解析:∵原二次根式有意义,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=7.考点:二次根式有意义的条件.13.若ab,且a、b 是两个连续的整数,则a b=___________.【答案】8.【解析】【分析】由被开方数7的范围,进而求出a与b的值,代入原式计算即可解答【详解】∵,∴2<3,∵a、b 是两个连续的整数,∴a=2,b=3,∴a b=23=8.故答案为:8.【点睛】此题考查估算无理数的大小,难度不大14.若直角三角形的两边长为a,b b﹣3|=0,则该直角三角形的第三边长为___________.【答案】4【解析】【分析】根据非负数的性质得到a,b的值,然后结合勾股定理求得斜边长即可【详解】∵直角三角形的两边长为a,b b﹣3|=0,∴a=5,b=3,∴该直角三角形的第三边长为:223-5=4 4【点睛】此题考查了勾股定理,绝对值和算术平方根,解题关键在于利用好勾股定理15.如图,点 E 为是正方形 ABCD 的边 DC 上一点,把△ADE 绕点 A 顺时针旋转 90°到△ABF 的位置,若四边形 AECF 的面积为 36,DE =2,则 AE 的长为______________.【答案】. 【解析】 【分析】根据旋转的性质和勾股定理即可解答【详解】∵把△ADE 顺时针旋转△ABF 的位置,∴四边形 AECF 的面积等于正方形 ABCD 的面积等于 36, ∴AD =DC =6, ∵DE =2,∴Rt △ADE 中,AE =【点睛】此题解题关键在于利用好旋转的性质和勾股定理,难度不大16.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .【答案】3或23。
2018-2019学年广东省深圳实验学校中学部八年级(下)期中数学试卷
2018-2019学年广东省深圳实验学校中学部八年级(下)期中数学试卷、选择题1.( 3分)如图,OA 是N BAC 的平分线,OM 丄AC 于点M , ON 丄AB 于点N ,若ON则OM 长为(于点D ,则下列结论一定正确的是(B . 5cmC . 8cmD . 20cm 2. (3分)如图,已知等腰 ABC , AB 二AC ,若以点 B 为圆心,BC 长为半径画弧,交腰ACA . 4 cmB . AD = BDC . ABD3.(3分)若x y ,则下列式子不成立的是 B . —2x :: -2yC . x 3 :: y 3即是轴对称图形又是中心对称图形的是(3分)下列多项式不能使用平方差公式的分解因式是" 2 2A . 「m — n2 24a —49 nA . x 「1 :: y —1 4 .)-ab 2 (6. ( 3分)把分式 込旦中的x 、y 的值同时扩大为原来的 2倍,则分式的值()xyB .扩大为原来的2倍7.( 3分)下列等式从左到右变形一定正确的是” a +3 a A .b +3 b2C bb (c 1) a a (c +1)& ( 3分)如果一个正多边形内角和等于1080,那么这个正多边形的每一个外角等于) A . 45B . 60C . 120D . 1359. ( 3分)要使四边形 ABCD 是平行四边形,则.A :. B:C :. D 可能为()A . 2:3:6:7B . 3: 4:5:6C . 3:3:5:5D . 4:5: 4:510 . (3分)已知a b =3 , ab =2,求代数式a 3b 2a 2b 2 ab 3的值为()11 . (3分)如图,在「ABC 中,BD 、CE 是角平分线, AM _ BD 于点M , AN _ CE 于点N . ABC 的周长为30, BC =12 .贝U MN 的长是()12 .( 3分)如图,平行四边形 ABCD 的顶点A 是等边■ EFG 边FG 的中点,.B =60 , EF = 2 ,C .扩大为原来的4倍D .缩小为原来的一半A •不变 4a 2bc 3 0.5a 2c 3= 8abcB . 18C . 28D . 50CB . 9、填空题规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果二_ •若经过2次运算就停止,则x可以取的所有值是_______ .2 3 214. (3 分)已知a ・a_1=0,则a 2a *2018= _________ .15. (3分)若关于x的分式方程m(X⑴-5二m 一3无解,则m二 .2x+116. (3分)如图,.MAN =90,点C在边AM上,AC =4,点B为边AN上一动点,连接BC , △ ABC与ABC关于BC所在直线对称,点D , E分别为AC , BC的中点,连接DE并延长交A B所在直线于点F ,连接A E .当△ AEF为直角三角形时,AB的长A r三、解答题17. (1 )求不等式2x 133x「2丁1的非负整数解;5x(2 )解方程:1 - 2x -2 x -418.先化简、再求值・菩空’(X -1-2^),其中x2 -1 X +11 x =一219.如图,ABC三个顶点的坐标分别为A(2,4), B(1,1), C(4,3).(1)请画出「ABC关于x轴对称的厶ABQ!,并写出点A、B的坐标; (2)请画出ABC绕点B逆时针旋转90后的△ A,BC2;(3)求出(2)中线段BC所扫过的面积(结果保留根号和二).13. (3分)按下面的程序计算,若开始输入的值x为正整数,。
2018-2019学年第二学期期中质量检测八年级数学试题(带答案)
姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
广东省2018-2019学年八年级(下)期中数学试卷(2份)
2018-2019学年广东省东莞市八年级(下)期中数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共30 分)1、(3分) 使√x−1有意义的x的取值范围是()A.x≠1B.x≥1D.x≥0C.x>12、(3分) 下列各式中,错误的是()A.(-√3)2=3B.-√32=-3C.(√3)2=3D.√(−3)2=-33、(3分) 化简√27+√48的结果是()A.-√3B.√−21C.√2D.7√34、(3分) 化简二次根式√(3.14−π)2,结果为()A.0B.3.14-πC.π-3.14D.0.15、(3分) 下列各组数为勾股数的是()A.6,12,13B.3,4,7C.8,15,16D.5,12,136、(3分) 在Rt△ABC中,∠C=90°,BC=12.AC=16,则AB的长为()A.26B.18C.20D.217、(3分) 若等腰三角形的腰长为13,底边长为10,则底边上的高为()A.6B.7C.9D.128、(3分) 在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A.36°B.108°C.72°D.60°9、(3分) 已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm210、(3分) 下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分二、填空题(本大题共6 小题,共24 分)11、(4分) 已知m=2+√2,n=2-√2,则代数式m2+2mn+n2的值为______.12、(4分) 已知一个三角形的三边分别是6cm、8cm、10cm,则这个三角形的面积是______.13、(4分) △ABC中,∠C=90°,a=8,c=10,则b=______.14、(4分) 计算√27-√1=______.315、(4分) 如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB 的中点.若OE=3cm,则AD的长是______cm.16、(4分) 如图,矩形A1B1C1D1的面积为4,顺次连接各边中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边中点得到四边形A3B3C3D3,依此类推,求四边形A n B n C n D n的面积是______.三、解答题(本大题共7 小题,共51 分)17、(6分) 计算:√27×√1-(√5+√3)(√5-√3)318、(6分) 已知:O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.试判断四边形OCED的形状,并说明理由.19、(7分) 计算:(√4+√12)(2−2√3)−(√3−√2)2.20、(7分) 如图,四边形ABCD中,AB=3cm,BC=4cm,CD=12cm,DA=13cm,且∠ABC=90°.求四边形ABCD的面积.21、(7分) 已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.22、(9分) 如图,Rt△ABC中,∠C=90°,AC=√3+√2,BC=√3−√2,求:(1)Rt△ABC的面积;(2)斜边AB的长.23、(9分) 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.四、计算题(本大题共2 小题,共15 分)24、(6分) Rt△ABC中,∠ACB=90°,AC=2√2cm,BC=√10cm,求AB上的高CD长度.25、(9分) 已知a、b、c满足(a-3)2+√b−4+|c-5|=0.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.2018-2019学年广东省东莞市八年级(下)期中数学试卷【第1 题】【答案】B解:∵√x−1有意义,∴x-1≥0,即x≥1.故选:B.先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.【第2 题】【答案】D【解析】解:A、(-√3)2=3,故A正确;B、-√32=-3,故B正确;C、(√3)2=3,故C正确;D、√(−3)2=3,故D错误;故选:D.根据算术平方根的意义,可得答案.本题考查了算术平方根,注意√a2=a(a≥0).【第3 题】D【解析】解:原式=3√3+4√3=7√3,故选:D.原式化简后,合并即可得到结果.此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.【第4 题】【答案】C【解析】解:∵π>3.14,即3.14-π<0,则原式=|3.14-π|=π-3.14.故选:C.原式利用二次根式的化简公式变形,再利用绝对值的代数意义化简即可得到结果.此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.【第5 题】【答案】【解析】解:A、62+122≠132,故此选项错误;B、32+42≠72,故此选项错误;C、因为82+152≠162,故此选项错误;D、常用勾股数有52+122=132,故此选项正确.故选:D.三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.【第6 题】【答案】C【解析】解:在Rt△ABC中,∠C=90°,BC=12.AC=16,∴AB=√AC2+BC2=√162+122=20,故选:C.根据勾股定理即可得到结论.本题考查了勾股定理,熟练掌握勾股定理是解题的关键.【第7 题】【答案】D【解析】解:如图:AB=AC=13,BC=10.△ABC中,AB=AC,AD⊥BC;BC=5;∴BD=DC=12Rt△ABD中,AB=13,BD=5;由勾股定理,得:AD=√AB2−BD2=√132−52=12.故选:D.在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.本题主要考查了等腰三角形的性质、勾股定理;熟练掌握等腰三角形的性质,由勾股定理求出AD是解决问题的关键.【第8 题】【答案】B【解析】解:在▱ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,设每份比为x,则得到2x+3x+2x+3x=360°,解得x=36°则∠D=108°.故选:B.利用平行四边形的内角和是360度,平行四边形对角相等,则平行四边形的四个角之比为,∠A:∠B:∠C:∠D=2:3:2:3,则∠D的值可求出.题考查四边形的内角和定理及平行四边形的性质,平行四边形的对角相等,邻角互补.【第9 题】【答案】B【解析】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,×8×6=24cm2,所以菱形的面积=12故选:B.设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x的值,最后根据菱形的面积公式求出面积的值.本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.【第10 题】【答案】D【解析】解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选:D.根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.本题主要考查学生对矩形的判定与性质这一知识点的理解和掌握,都是一些基础知识,要求学生应熟练掌握.【第11 题】【答案】16【解析】解:原式=(m+n)2,∵m=2+√2,n=2-√2,∴原式=42=16,故答案为:16根据二次根式的运算以及完全平方公式即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.【第12 题】【答案】24cm2解:∵62+82=102,∴此三角形是直角三角形,×6×8=24(cm2).∴此直角三角形的面积为:12故答案为:24cm2.先利用勾股定理的逆定理判断出三角形的形状,再利用三角形的面积公式即可求出其面积.本题考查了勾股定理的逆定理,能够根据具体数据运用勾股定理的逆定理判定该三角形是一个直角三角形是解决此类问题的关键.【第13 题】【答案】6【解析】解:∵在Rt△ABC中,∠C=90°,a=8,c=10,∴b=√c2−a2=√102−82=6,故答案是:6.根据勾股定理即可得到结论.本题考查了勾股定理,熟练掌握勾股定理(如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2)是解题的关键.【 第 14 题 】【 答 案 】8√3 【 解析 】解:原式=3√3-√33=83√3.故答案为:83√3.先进行二次根式的化简,然后合并.本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.【 第 15 题 】【 答 案 】6【 解析 】解:∵四边形ABCD 为平行四边形,∴BO =DO ,∵点E 是AB 的中点,∴OE 为△ABD 的中位线,∴AD =2OE ,∵OE =3cm ,∴AD =6cm .。
广东省2018-2019学年八年级(下)期中数学试卷(2份)
2018-2019学年广东省东莞市八年级(下)期中数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共30 分)1、(3分) 使有意义的x的取值范围是()A.x≠1B.x≥1D.x≥0C.x>12、(3分) 下列各式中,错误的是()A.(-)2=3B.-=-3C.()2=3D.=-33、(3分) 化简+的结果是()A.-B.C.D.74、(3分) 化简二次根式,结果为()A.0B.3.14-πC.π-3.14D.0.15、(3分) 下列各组数为勾股数的是()A.6,12,13B.3,4,7C.8,15,16D.5,12,136、(3分) 在Rt△ABC中,∠C=90°,BC=12.AC=16,则AB的长为()A.26B.18C.20D.217、(3分) 若等腰三角形的腰长为13,底边长为10,则底边上的高为()A.6B.7C.9D.128、(3分) 在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A.36°B.108°C.72°D.60°9、(3分) 已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm210、(3分) 下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分二、填空题(本大题共6 小题,共24 分)11、(4分) 已知m=2+,n=2-,则代数式m2+2mn+n2的值为______.12、(4分) 已知一个三角形的三边分别是6cm、8cm、10cm,则这个三角形的面积是______.13、(4分) △ABC中,∠C=90°,a=8,c=10,则b=______.14、(4分) 计算-=______.15、(4分) 如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是______cm.16、(4分) 如图,矩形A1B1C1D1的面积为4,顺次连接各边中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边中点得到四边形A3B3C3D3,依此类推,求四边形A n B n C n D n的面积是______.三、解答题(本大题共7 小题,共51 分)17、(6分) 计算:×-(+)(-)18、(6分) 已知:O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.试判断四边形OCED的形状,并说明理由.19、(7分) 计算:.20、(7分) 如图,四边形ABCD中,AB=3cm,BC=4cm,CD=12cm,DA=13cm,且∠ABC=90°.求四边形ABCD的面积.21、(7分) 已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.22、(9分) 如图,Rt△ABC中,∠C=90°,AC=,BC=,求:(1)Rt△ABC的面积;(2)斜边AB的长.23、(9分) 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.四、计算题(本大题共2 小题,共15 分)24、(6分) Rt△ABC中,∠ACB=90°,AC=2cm,BC=cm,求AB上的高CD长度.25、(9分) 已知a、b、c满足(a-3)2++|c-5|=0.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.2018-2019学年广东省东莞市八年级(下)期中数学试卷【第1 题】【答案】B【解析】解:∵有意义,∴x-1≥0,即x≥1.故选:B.先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.【第2 题】【答案】D【解析】解:A、(-)2=3,故A正确;B、-=-3,故B正确;C、()2=3,故C正确;D、=3,故D错误;故选:D.根据算术平方根的意义,可得答案.本题考查了算术平方根,注意=a(a≥0).【第3 题】【答案】D【解析】解:原式=3+4=7,故选:D.原式化简后,合并即可得到结果.此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.【第4 题】【答案】C【解析】解:∵π>3.14,即3.14-π<0,则原式=|3.14-π|=π-3.14.故选:C.原式利用二次根式的化简公式变形,再利用绝对值的代数意义化简即可得到结果.此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.【第5 题】【答案】D【解析】解:A、62+122≠132,故此选项错误;B、32+42≠72,故此选项错误;C、因为82+152≠162,故此选项错误;D、常用勾股数有52+122=132,故此选项正确.故选:D.三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.【第6 题】【答案】C【解析】解:在Rt△ABC中,∠C=90°,BC=12.AC=16,∴AB===20,故选:C.根据勾股定理即可得到结论.本题考查了勾股定理,熟练掌握勾股定理是解题的关键.【第7 题】【答案】D【解析】解:如图:AB=AC=13,BC=10.△ABC中,AB=AC,AD⊥BC;∴BD=DC=BC=5;Rt△ABD中,AB=13,BD=5;由勾股定理,得:AD===12.故选:D.在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.本题主要考查了等腰三角形的性质、勾股定理;熟练掌握等腰三角形的性质,由勾股定理求出AD是解决问题的关键.【第8 题】【答案】B【解析】解:在▱ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,设每份比为x,则得到2x+3x+2x+3x=360°,解得x=36°则∠D=108°.故选:B.利用平行四边形的内角和是360度,平行四边形对角相等,则平行四边形的四个角之比为,∠A:∠B:∠C:∠D=2:3:2:3,则∠D的值可求出.题考查四边形的内角和定理及平行四边形的性质,平行四边形的对角相等,邻角互补.【第9 题】【答案】B【解析】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选:B.设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x的值,最后根据菱形的面积公式求出面积的值.本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.【第10 题】【答案】D【解析】解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选:D.根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.本题主要考查学生对矩形的判定与性质这一知识点的理解和掌握,都是一些基础知识,要求学生应熟练掌握.【第11 题】【答案】16【解析】解:原式=(m+n)2,∵m=2+,n=2-,∴原式=42=16,故答案为:16根据二次根式的运算以及完全平方公式即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.【第12 题】【答案】24cm2【解析】解:∵62+82=102,∴此三角形是直角三角形,∴此直角三角形的面积为:×6×8=24(cm2).故答案为:24cm2.先利用勾股定理的逆定理判断出三角形的形状,再利用三角形的面积公式即可求出其面积.本题考查了勾股定理的逆定理,能够根据具体数据运用勾股定理的逆定理判定该三角形是一个直角三角形是解决此类问题的关键.【第13 题】【答案】6【解析】解:∵在Rt△ABC中,∠C=90°,a=8,c=10,∴b===6,故答案是:6.根据勾股定理即可得到结论.本题考查了勾股定理,熟练掌握勾股定理(如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2)是解题的关键.【第14 题】【答案】【解析】解:原式=3-=.故答案为:.先进行二次根式的化简,然后合并.本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.【第15 题】【答案】6【解析】解:∵四边形ABCD为平行四边形,∴BO=DO,∵点E是AB的中点,∴OE为△ABD的中位线,∴AD=2OE,∵OE=3cm,∴AD=6cm.故答案为6.根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE.本题考查了平行四边形的性质、三角形的中位线定理,是基础知识比较简单.【第16 题】【答案】【解析】解:∵四边形A1B1C1D1是矩形,∴∠A1=∠B1=∠C1=∠D1=90°,A1B1=C1D1,B1C1=A1D1;又∵各边中点是A2、B2、C2、D2,∴四边形A2B2C2D2的面积=S△A1A2D2+S△C2D1D2+S△C1B2C2+S△B1B2A2=•A1D1•A1B1×4=矩形A1B1C1D1的面积,即四边形A2B2C2D2的面积=矩形A1B1C1D1的面积;同理,得四边形A3B3C3D3=四边形A2B2C2D2的面积=矩形A1B1C1D1的面积;以此类推,四边形A n B n C n D n的面积=矩形A1B1C1D1的面积==.故答案是:.易得四边形A2B2C2D2的面积=4÷21;S四边形A3B3C3D3=4÷22,即可得到求四边形A nB nC nD n的面积规律.顺次连接各边中点得到四个全等的三角形,找到相应的规律是解决本题的关键.【第17 题】【答案】解:原式=-(5-3)=3-2=1.【解析】先根据二次根式的乘法法则和平方差公式计算得到原式=-(5-3),然后化简后进行减法运算.本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.【第18 题】【答案】解:四边形OCED是菱形,理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又在矩形ABCD中,OC=OD,∴四边形OCED是菱形,【解析】首先由CE∥BD,DE∥AC,可证得四边形OCED是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形OCED是菱形,此题考查了矩形的性质、菱形的判定与性质,熟练掌握菱形的判定方法是解题的关键.【第19 题】【答案】解:原式=(2+2)(2-2)-(3+2-2)=4-12-5+2=-13+2.【解析】直接利用公式法进行二次根式的乘法运算,进而合并得出答案.此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.【第20 题】【答案】解:连接AC,∵∠ABC=90°,AB=4,BC=3,∴根据勾股定理AC==5(cm),又∵CD=12cm,AD=13cm,∴AC2+DC2=52+122=169,AD2=132=169,根据勾股定理的逆定理:∠ACD=90°.∴四边形ABCD的面积=S△ABC+S△ACD=×3×4+×5×12=36(cm2).【解析】连接AC,得到直角三角形△ABC,利用勾股定理可以求出AC,根据数据特点,再利用勾股定理逆定理可以得到△ACD也是直角三角形,这样四边形的面积就被分解成了两个直角三角形的面积,代入面积公式就可以求出答案.本题主要考查勾股定理和勾股定理的逆定理.【第21 题】【答案】证明:(1)∵AE=CF,∴AE+EF=CF+FE,即AF=CE.又ABCD是平行四边形,∴AD=CB,AD∥BC.∴∠DAF=∠BCE.在△ADF与△CBE中,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.【解析】要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【第22 题】【答案】解:(1)Rt△ABC的面积×(+)×(-)=;(2)Rt△ABC中,∠C=90°,AC=,BC=,则斜边AB的长=.【解析】(1)根据三角形面积公式可求Rt△ABC的面积;(2)根据勾股定理可求斜边AB的长.考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了三角形面积公式.【第23 题】【答案】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC▪DF=×4×5=10.菱形ADCF【解析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.【第24 题】【答案】解:在Rt△ABC中,由勾股定理得:AB==3,由面积公式得:S△ABC=1AC•BC=AB•CD,∴CD==.【解析】先用勾股定理求出斜边AB的长度,再用面积就可以求出斜边上的高.利用勾股定理和直角三角形的面积相结合,求解斜边上的高是解直角三角形的重要题型之一,也是中考的热点.【第25 题】【答案】解:(1)∵,又∵(a-3)2≥0,,|c-5|≥0,∴a-3=0,b-4=0,c-5=0,∴a=3,b=4,c=5;(2)∵32+42=52,∴此△是直角三角形,∴能构成三角形,且它的周长l=3+4+5=12.【解析】(1)根据已知条件,结合非负数的性质,易求a、b、c的值;(2)由于32+42=52,易知此三角形是直角三角形,故能够构成三角形,再利用三角形周长公式易求其周长.本题考查了非负数的性质、三角形三边之间的关系、勾股定理的逆定理.解题的关键是熟练掌握非负数的性质.2018-2019学年广东省阳江市阳东区八年级(下)期中数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共30 分)1、(3分) 的值是()A.2B.-2C.±2D.42、(3分) 若在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤9C.x≥-3D.x≤-93、(3分) 若△ABC的三边分别为5、12、13,则△ABC的面积是()A.30B.40C.50D.604、(3分) 如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DFB.BF=DEC.AE=CFD.∠1=∠25、(3分) 实数a在数轴上的位置如图所示,则化简后为()A.7B.-7C.2a-15D.无法确定6、(3分) 如图所示,一根树在离地面5米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.10mB.15mC.18mD.20m7、(3分) 若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°8、(3分) 如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,AD=1,则BD的长为()A.B.2C.D.39、(3分) 下列运算中正确的是()A.2•3=6B.===C.===3D.÷×=1=÷=110、(3分) 如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A.B.C.D.二、填空题(本大题共6 小题,共24 分)11、(4分) 如图,数轴上点A表示的实数是______.12、(4分) 比较大小:4______(填“>”或“<”)13、(4分) 若=6,则x=______.14、(4分) ▱ABCD中,已知点A(-1,0),B(2,0),D(0,1).则点C的坐标为______.15、(4分) 若直角三角形的两直角边的长分别为a、b,且满足+(b-4)2=0,则该直角三角形的斜边长为______.16、(4分) 如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为______.三、解答题(本大题共7 小题,共50 分)17、(6分) 计算:2÷×.18、(6分) 如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD 是直角吗?说明理由.19、(6分) 如图,平行四边形ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是平行四边形.20、(7分) 如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.21、(7分) 莫小贝在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)莫小贝所画的△ABC的三边长分别是AB=______,BC=______,AC=______;△ABC的面积为______.(2)已知△ABC中,AB=,BC=2,AC=5,请你根据莫小贝的思路,在图2中画出△ABC,并直接写出△ABC的面积______.22、(9分) 如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(2,3),B点坐标为(-2,0),C点坐标为(0,-1)(1)AC的长为______;(2)求证:AC⊥BC;(3)若以A、B、C及点D为顶点的四边形组成平行四边形,画出符合条件的所有平行四边形,并写出D点的坐标______.23、(9分) (1)如图(1),在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF;(2)如图(2),在平行四边形ABCD中,AC、BD是两条对角线,求证AC2+BD2=2(AB2+BC2)(3)如图(3),PQ是△PMN的中线,若PM=11,PN=13,MN=10,求出PQ 的长度.四、计算题(本大题共2 小题,共16 分)24、(7分) 已知x=2+,y=2-,求下列各式的值:(1)x2-y2;(2)x2+y2-3xy.25、(9分) 在进行二次根式化简时,我们有时会碰上如,,一样的式子,这样的式子我们可以将其进一步化简==,==,==-1以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:(1)化简:;(2)若a是的小数部分,求的值;(3)矩形的面积为3+1,一边长为-2,求它的周长.2018-2019学年广东省阳江市阳东区八年级(下)期中数学试卷【第1 题】【答案】A【解析】解:∵表示4的算术平方根,∴=2.故选:A.根据如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.此题主要考查了算术平方根的定义,其中算术平方根的概念易与平方根的概念混淆而导致错误.【第2 题】【答案】B【解析】解:∵9-x≥0∴x≤9故选:B.根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围.本题考查的是二次根式有意义的条件,即被开方数大于等于0.【第3 题】【答案】A【解析】解:∵△ABC的三边分别为5、12、13,且52+122=132,∴△ABC是直角三角形,两直角边是5,12,则S△ABC==30.故选:A.根据三边长度判断三角形为直角三角形.再求面积.本题主要考查了勾股定理的逆定理和直角三角形的面积公式,关键是根据三边长度判断三角形为直角三角形.【第4 题】【答案】C【解析】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.【第5 题】【答案】A【解析】解:从实数a在数轴上的位置可得,5<a<10,所以a-4>0,a-11<0,则,=a-4+11-a,=7.先从实数a在数轴上的位置,得出a的取值范围,然后求出(a-4)和(a-11)的取值范围,再开方化简.本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.【第6 题】【答案】C【解析】解:∵52+122=169,∴=13,∴13+5=18(米).∴树折断之前有18米.故选:C.根据图形,可以知道两直角边的长度,从而构造直角三角形,根据勾股定理就可求出斜边的长.此题考查了勾股定理的应用.培养同学们利用数学知识解决实际问题的能力,观察题目的信息是解题以及学好数学的关键.【第7 题】B【解析】解:设平行四边形中两个内角分别为x°,3x°,则x+3x=180,解得:x=45°,∴其中较小的内角是45°.故选:B.首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.此题考查了平行四边形的性质.注意平行四边形的邻角互补.【第8 题】【答案】C【解析】解:在△ABC中,∠A=45°,CD⊥AB,∴△ACD是等腰直角三角形,∴CD=AD=1,又∵∠B=30°,∴Rt△BCD中,BC=2CD=2,∴BD==,故选:C.先根据△ACD是等腰直角三角形,得出CD=AD=1,再根据∠B=30°,在Rt△BCD中,得到BC=2CD=2,最后利用勾股定理进行计算.本题主要考查了勾股定理,解题时注意:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.【第9 题】【答案】B【解析】解:A、2×3=6×7=42,故本选项不符合题意;B、===,故本选项,符合题意;C、=,故本选项不符合题意;D、÷×===3,故本选项不符合题意;故选:B.根据二次根式的乘除法则求出每个式子的值,再判断即可.本题考查了二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解此题的关键.【第10 题】【答案】B【解析】解:A、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项错误;B、∵AC2=12+32=10,BC2=12+22=5,AB2=12+42=17,∴△ABC不是直角三角形,故本选项正确;C、∵AB2=12+32=10,AC2=22+22=8,BC2=12+12=2,∴△ABC是直角三角形,故本选项错误;D、∵AC2=22+42=20,BC2=22=4,AB2=42=16,∴△ABC是直角三角形,故本选项错误.故选:B.根据勾股定理的逆定理对各选项进行逐一判断即可.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.【第11 题】【答案】-1【解析】解:由图形可得:-1到A的距离为=,则数轴上点A表示的实数是:-1.故答案为:-1.直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.此题主要考查了实数与数轴,正确得出-1到A的距离是解题关键.【第12 题】【答案】>【解析】解:4=,>,∴4>,故答案为:>.根据二次根式的性质求出=4,比较和的值即可.本题考查了二次根式的性质和实数的大小比较等知识点,关键是知道4=,题目较好,难度也不大.【第13 题】【答案】41【解析】解:原方程变形为x-5=62,即x-5=36,x=41,故答案为41.将原方程变形为以此方程,然后解之即可.本题考查了无理方程,将无理方程化为一元一次方程是解题的关键.【第14 题】【答案】(3,1)【解析】解:∵平行四边形ABCD中,已知点A(-1,0),B(2,0),D(0,1),∴AB=CD=2-(-1)=3,DC∥AB,∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,∴C的坐标是(3,1),故答案为:(3,1).画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案.本题考查了平行四边形的性质和坐标与图形性质的应用,能根据图形进行推理和求值是解此题的关键,本题主要考查学生的观察能力,用了数形结合思想.【第15 题】【答案】5【解析】解:∵+(b-4)2=0,∴a=3,b=4,∴该直角三角形的斜边长为:=5.故答案为:5.直接利用偶次方的性质以及二次根式的性质得出a,b的值,再利用勾股定理得出斜边长.此题主要考查了勾股定理以及偶次方的性质和二次根式的性质,正确得出a,b 的值是解题关键.【第16 题】【答案】79【解析】解:由图可知,(b-a)2=5,4×ab=42-5=37,∴2ab=37,(a+b)2=(b-a)2+4ab=5+2×37=79.故答案为79.根据图形表示出小正方形的边长为(b-a),再根据四个直角三角形的面积等于大正方形的面积减去小正方形的面积求出2ab,然后利用完全平方公式整理即可得解.本题考查了勾股定理的证明,完全平方公式的应用,仔细观察图形利用小正方形的面积和直角三角形的面积得到两个等式是解题的关键.【第17 题】【答案】解:原式=4÷×3=8×3=24.【解析】直接利用二次根式乘除运算法则计算得出答案.此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.【第18 题】【答案】解:∠BCD是直角,理由如下:连接BD,如图所示.BC==2,CD==,BD==5.∵BC2+CD2=25=BD2,∴∠BCD=90°.【解析】连接BD,根据勾股定理可求出BC、CD、BD的值,再由BC2+CD2=BD2利用勾股定理的逆定理,即可证出∠BCD=90°.本题考查了勾股定理及勾股定理的逆定理,牢记“如果三角形的三边长a,b,c 满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.【第19 题】【答案】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E、F、G、H分别是AO、BO、CO、DO的中点,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形.【解析】由平行四边形ABCD的对角线AC、BD相交于点O,可得OA=OC,OB=OD,点E、F、G、H分别是AO、BO、CO、DO的中点,即可得OE=OG,OF=OH,即可证得四边形EFGH是平行四边形.此题考查了平行四边形的判定与性质.此题比较简单,注意数形结合思想的应用.【第20 题】【答案】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD.又∵AN=CM,∴AB-AN=CD-CM,即BN=DM;(2)∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=50°,∴∠BCD=180°-50°=130°.由(1)知,四边形ABCD是平行四边形,∴∠D=∠B=50°,AB=CD,AD=BC.∵BC=3,CD=2,∴四边形ABCD的周长=2(BC+CD)=2×(3+2)=10.【解析】(1)首先判断四边形ABCD和四边形ANMD为平行四边形,然后由“平行四边形的对边相等”推知AB=CD,AN=CM,由等式的性质证得结论;(2)根据平行四边形的对边平行,平行线的性质以及平行四边形的对角相等进行解答.考查了平行四边形的性质,解题的关键是平行四边形的判定,与平行四边形的性质的综合应用.【第21 题】【答案】解:(1)AB==5,BC=,AC=,△ABC的面积为:4×4-×3×4-×1×4-×3×1=,故答案为:5;;;;。
2018-2019学年广东省实验中学四校联考八年级下学期期中考试数学试卷附解答
2018-2019学年广东省实验中学四校联考八年级下学期期中考试数学试卷一、选择题(共10小题,每小题3分)1.(3分)若式子有意义,则x需满足的条件是()A.x>4B.x≥4C.x<4D.x≤42.(3分)在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.(3分)下列图象中,y不是x的函数的是()A.B.C.D.4.(3分)下列命题中,其逆命题是真命题的是()A.如果a、b都是正数,那么它们的积也是正数B.如果,那么a=bC.菱形的对角线互相垂直D.平行四边形的对角线互相平分5.(3分)下列根式中属于最简二次根式的是()A.B.C.D.6.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米7.(3分)如图,在四边形ABCD中,点E,F,G,H分别是AD,BD,BC,CA的中点,若四边形EFGH是矩形,则四边形ABCD需满足的条件是()A.AB⊥DC B.AC=BD C.AC⊥BD D.AB=DC8.(3分)已知A(﹣,y1)、B(﹣,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1 9.(3分)如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3B.4C.5D.610.(3分)如图,点E是正方形ABCD外一点,连接AE、BE和DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB=3.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为;④S正方形ABCD=8+.则正确结论的个数是()A.1B.2C.3D.4二、填空题(共6小题,每小题3分)11.(3分)化简:=.12.(3分)张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=.13.(3分)如图,矩形ABCD中,AB<BC,AC、BD交于点O,若AB=AO=4,则S矩形ABCD=.14.(3分)已知关于x的一次函数y=(m﹣3)x+m+2的图象经过第一、二四象限,则关于x的一次函数y=(m+2)x﹣m+3必经过第象限.15.(3分)将一副直角三角板按如图所示的位置摆放,使点A、B、D在同一直线上,且EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,如果DE=2,则BD =.16.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t 的取值为.三、解答题(共9小题,共72分)17.(6分)计算(1)()÷(2)(3)2﹣()()18.(6分)已知直线l与直线y=2x﹣3平行,且经过点(2,7),求直线l的解析式并在坐标系中画出直线l的图象.19.(6分)如图,矩形纸片ABCD中,AB=4,BC=8,现把矩形纸片ABCD沿对角线BD 折叠,点C与C′重合,求AF的长.20.(8分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于点F,连接CF(1)求证:AD=CF;(2)如果AB=AC,四边形ADCF的形状为(直接写出结果);21.(8分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米300元,试问用该草坪铺满这块空地共需花费多少元?22.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2).(1)直线OA的解析式为;直线AB的解析式为(直接写出答案,不必写过程).(2)求△OAC的面积.(3)一动点M沿路线O→A→C运动,当S△OCM=3时,求点M的坐标.23.(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC 于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P在运动过程中,GH是否存在最小值?若存在,请求出,若不存在,请说明理由.24.(10分)如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s 的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t(s).(1)当t=3s时,连接AC与EF交于点G,如图①所示,则EF=cm;(2)当E、F分别在线段AD和AB上时,如图②所示,①求证:△CEF是等边三角形;②连接BD交CE于点G,若BG=BC,求EF的长和此时的t值.(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若EF=3cm,直接写出此时t的值.25.(12分)如图,正方形OABC的顶点O是坐标原点,边OA和OC分别在x轴、y轴上,点B的坐标为(4,4).直线l经过点C.(1)若直线l与边OA交于点M,过点A作直线l的垂线,垂足为D,交y轴于点E.①如图1,当OE=1时,求直线l对应的函数表达式;②如图2,连接OD,求证:OD平分∠CDE.(2)如图3,若直线l与边AB交于点P,且S△BCP=S四边形AOCP,此时,在x轴上是否存在点Q,使△CPQ是以CP为直角边的直角三角形?若存在,求点Q的坐标,若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分)1.(3分)若式子有意义,则x需满足的条件是()A.x>4B.x≥4C.x<4D.x≤4【分析】直接利用二次根式的定义分析得出答案.【解答】解:式子有意义,则x﹣4≥0,解得:x≥4.故选:B.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.(3分)在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(3分)下列图象中,y不是x的函数的是()A.B.C.D.【分析】函数的定义:在某变化过程中,有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照对应法则,y都有唯一确定的值和它对应,则x叫自变量,y是x 的函数.根据定义再结合图象观察就可以得出结论.【解答】解:A.此选项中在x<0的范围中取任意x的值时,y都有2个值与之对应,y 不是x的函数;B.此选项中在全体实数的范围中取任意x的值时,y都有唯一的值与之对应,y是x的函数;C.此选项中在x≠0的范围中取任意x的值时,y都有唯一的值与之对应,y是x的函数;D.此选项中在全体实数的范围中取任意x的值时,y都有唯一的值与之对应,y是x的函数;故选:A.【点评】本题考查函数的定义,要熟练掌握函数的定义.4.(3分)下列命题中,其逆命题是真命题的是()A.如果a、b都是正数,那么它们的积也是正数B.如果,那么a=bC.菱形的对角线互相垂直D.平行四边形的对角线互相平分【分析】首先写出各个命题的逆命题,然后判断真假即可.【解答】解:A、逆命题为:积为正数的两个数都是正数,错误,如:(﹣2)×(﹣3)=6,为假命题;B、逆命题为:如果a=b,那么,错误,如当﹣2=﹣2时,为假命题;C、逆命题为:对角线互相垂直的四边形是平行四边形,错误,是假命题;D、逆命题为对角线互相平分的四边形是平行四边形,正确,是真命题,故选:D.【点评】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.5.(3分)下列根式中属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、该二次根式符合最简二次根式的定义,故本选项正确;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项错误;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项错误;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.7.(3分)如图,在四边形ABCD中,点E,F,G,H分别是AD,BD,BC,CA的中点,若四边形EFGH是矩形,则四边形ABCD需满足的条件是()A.AB⊥DC B.AC=BD C.AC⊥BD D.AB=DC【分析】根据“有一内角为直角的平行四边形是矩形”来推断.由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若FE⊥EH或者EG=FH就可以判定四边形EFGH是矩形.【解答】解:当AB⊥CD时,四边形EFGH是矩形,∵AB⊥CD,GH∥AB,EH∥CD,∴EH⊥GH,即∠EHG=90°,∴四边形EFGH是矩形;故选:A.【点评】此题考查了三角形的中位线定理和平行四边形的判定和矩形的判定等知识,熟练掌握中点四边形的判定是解题关键.8.(3分)已知A(﹣,y1)、B(﹣,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【分析】利用一次函数图象上点的坐标特征可求出y1,y2,y3的值,比较后可得出结论.【解答】解:∵A(﹣,y1)、B(﹣,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,∴y1=1+b,y2=+b,y3=﹣3+b.∵﹣3+b<1+b<+b,∴y3<y1<y2.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,求出y1,y2,y3的值是解题的关键.9.(3分)如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3B.4C.5D.6【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC 的周长为32,及BC=12,可得DE=8,利用中位线定理可求出PQ.【解答】解:∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=DE=4.故选:B.【点评】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.10.(3分)如图,点E是正方形ABCD外一点,连接AE、BE和DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB=3.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为;④S正方形ABCD=8+.则正确结论的个数是()A.1B.2C.3D.4【分析】①易知AE=AP,AB=AD,所以只需证明∠EAB=∠P AD即可用SAS说明△APD ≌△AEB;②易知∠AEB=∠APD=135°,则∠BEP=∠AEB﹣∠AEP=135°﹣45°=90°,所以EB⊥ED;③在Rt△BEP中利用勾股定理求出BE值为,根据垂线段最短可知B到直线AE的距离小于;则③错误;④要求正方形的面积,则需知道正方形一条边的平方值即可,所以在△AEB中,∠AEB =135°,AE=1,BE=,过点A作AH⊥BE交BE延长线于H点,在Rt△AHB中利用勾股定理AB2=BH2+AH2即可.【解答】解:∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°.∴∠DAP+∠BAP=90°.又∠EAP+∠BAP=90°,∴∠EAP=∠DAP.又AE=AP,∴△APD≌△AEB(SAS).所以①正确;∵AE=AP,∠EAP=90°,∴∠APE=∠AEP=45°,∴∠APD=180°﹣45°=135°.∵△APD≌△AEB,∴∠AEB=∠APD=135°,∴∠BEP=135°﹣45°=90°,即EB⊥ED,②正确;在等腰Rt△AEP中,利用勾股定理可得EP==,在Rt△BEP中,利用勾股定理可得BE=.∵B点到直线AE的距离小于BE,所以点B到直线AE的距离为是错误的,所以③错误;在△AEB中,∠AEB=135°,AE=1,BE=,如图所示,过点A作AH⊥BE交BE延长线于H点.在等腰Rt△AHE中,可得AH=HE=AE=.所以BH=+.在Rt△AHB中利用勾股定理可得AB2=BH2+AH2,即AB2=(+)2+()2=8+,所以S正方形ABCD=8+.所以④正确.所以只有①和②、④的结论正确.故选:C.【点评】本题主要考查了正方形的性质、全等三角形的判定和性质,解决复杂几何图形时要会分离图形,分离出对解决问题有价值的图形单独解决.二、填空题(共6小题,每小题3分)11.(3分)化简:=.【分析】根据二次根式的性质,算术平方根的值必须是正数,所以开方所得结果是|1﹣|,然后再去绝对值.【解答】解:因为>1,所以=﹣1故答案为:﹣1.【点评】本题主要考查二次根式的化简,其中必须符合二次根式的性质.12.(3分)张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=5x+10.【分析】总费用=成人票用钱数+学生票用钱数,根据关系列式即可.【解答】解:根据题意可知y=5x+10.故答案为:5x+10.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.关系为:总费用=成人票用钱数+学生票用钱数.13.(3分)如图,矩形ABCD中,AB<BC,AC、BD交于点O,若AB=AO=4,则S矩形ABCD=16.【分析】根据矩形的对角线互相平分可得AC=2AO,然后利用勾股定理求出BC,由矩形面积公式即可得出答案.【解答】解:∵矩形ABCD中,AO=4,∠ABC=90°,∴AC=2AO=2×4=8,在Rt△ABC中,BC===4,∴S矩形ABCD=BC×AB=16;故答案为:16.【点评】本题考查了矩形的性质,勾股定理,是基础题,熟记性质是解题的关键.14.(3分)已知关于x的一次函数y=(m﹣3)x+m+2的图象经过第一、二四象限,则关于x的一次函数y=(m+2)x﹣m+3必经过第一,二、三象限.【分析】函数经过第一、二、四象限,则m﹣3>0,m+2>0,即可求解.【解答】解:函数经过第一、二、四象限,则m﹣3<0,m+2>0,解得:﹣2<m<3,∴m+2>0,﹣m+3>0,∴关于x的一次函数y=(m+2)x﹣m+3经过第一,二、三象限;故答案为:一,二、三【点评】本题考查的是一次函数图象与系数的关系,解此类题目的关键通过图象经过的象限,确定k、b的值,进而求解绝对值的值.15.(3分)将一副直角三角板按如图所示的位置摆放,使点A、B、D在同一直线上,且EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,如果DE=2,则BD=3﹣.【分析】过点F作FM⊥AD于M,利用在直角三角形中,30°角所对的直角边等于斜边的一半和平行线的性质以及等腰直角三角形的性质即可求出BD的长.【解答】解:过点F作FM⊥AD于M,∵∠EDF=90°,∠E=60°,∴∠EFD=30°,∵DE=2,∴EF=4,∴DF===2,∵EF∥AD,∴∠FDM=30°,∴FM=DF=,∴MD===3,∵∠C=45°,∴∠MFB=∠B=45°,∴FM=BM=,∴BD=DM﹣BM=3﹣.故答案为:3﹣.【点评】本题考查了勾股定理的运用、平行线的性质以及等腰直角三角形的性质,解题的关键是作垂直构造直角三角形,利用勾股定理求出DM的长.16.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t 的取值为5或t=8或t=.【分析】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【解答】解:在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);①当AB=BP时,如图1,t=5;②当AB=AP时,如图2,BP=2BC=8cm,t=8;③当BP=AP时,如图3,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.故答案为:5或t=8或t=.【点评】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握勾股定理的应用,以及分情况讨论,注意不要漏解.三、解答题(共9小题,共72分)17.(6分)计算(1)()÷(2)(3)2﹣()()【分析】(1)先化简各二次根式,再计算括号内的加减,最后计算除法即可得;(2)利用完全平方公式和平方差公式计算可得.【解答】解:(1)原式=(5+4﹣3)÷2=6÷2=3;(2)原式=19﹣6﹣3+4=20﹣6.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.18.(6分)已知直线l与直线y=2x﹣3平行,且经过点(2,7),求直线l的解析式并在坐标系中画出直线l的图象.【分析】所求直线与直线y=2x﹣3平行,可得k=2,再将点(2,7)代入即可求解.利用“两点确定一条直线”作出函数图象.【解答】解:设所求直线方程为:y=kx+b,∵y=kx+b与直线y=2x﹣3平行,∴k=2,又y=kx+b经过点(2,7),所以有7=2×2+b,解得b=3,∴所求直线为:y=2x+3.由于该直线经过点(0,3)、(﹣,0),则其函数图象如图所示:【点评】本题考查了两条直线相交或平行问题,难度较小,关键细心运算.19.(6分)如图,矩形纸片ABCD中,AB=4,BC=8,现把矩形纸片ABCD沿对角线BD 折叠,点C与C′重合,求AF的长.【分析】由矩形的性质可得,AB﹣CD=4,BC=AD=8,∠A=∠ABC=∠C=∠CDA=90°,由折叠得:CD=C′D=4,BC=BC′=8,∠CBD=∠C′BD,进而得到FB=FD,设未知数,将问题转化到直角三角形ABF中,由勾股定理建立方程求解即可.【解答】解:∵ABCD是矩形,∴AB﹣CD=4,BC=AD=8,∠A=∠ABC=∠C=∠CDA=90°,由折叠得:CD=C′D=4,BC=BC′=8,∠CBD=∠C′BD,∵∠CBD=∠ADB,∴∠ADB=∠C′BD,∴FB=FD,设AF=x,则FC′=x,FB=FD=8﹣x,在Rt△ABF中,由勾股定理得,42+x2=(8﹣x)2,解得,x=3,即AF=3.答:AF的长为3.【点评】考查矩形的性质,折叠轴对称的性质,以及直角三角形勾股定理等知识,通过折叠将问题转化到一个直角三角形中是解决问题的关键,于是此类问题的常用方法.20.(8分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于点F,连接CF(1)求证:AD=CF;(2)如果AB=AC,四边形ADCF的形状为正方形(直接写出结果);【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF.(2)当AB=AC时,四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,且AD=AF∴四边形ADCF是菱形,∵AB=AC,AD是中线,∴AD⊥BC,∴四边形ADCF是正方形.故答案为正方形【点评】此题考查了全等三角形的判定与性质,正方形的判定,平行四边形的判定与性质,此题难度适中,注意掌握数形结合思想的应用.21.(8分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米300元,试问用该草坪铺满这块空地共需花费多少元?【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.【解答】解:连结AC,如图所示:在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC==10(米),∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴∠ACB=90°,∴该区域面积S=S△ACB﹣S△ADC=×10×24﹣×6×8=96(平方米),∴铺满这块空地共需花费=96×300=28800元.【点评】本题考查了勾股定理的应用,三角形面积,勾股定理的逆定理等知识,解此题的关键是求出区域的面积.22.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2).(1)直线OA的解析式为y=x;直线AB的解析式为y=﹣x+6(直接写出答案,不必写过程).(2)求△OAC的面积.(3)一动点M沿路线O→A→C运动,当S△OCM=3时,求点M的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线OA的解析式为y=kx,把A(4,2)代入得,2=4k,解得k=,∴直线OA的解析式为y=x;设直线AB的解析式是y=ax+b,把A(4,2),B(6,0)代入得,解得:,则直线AB的解析式是:y=﹣x+6;故答案为y=x;y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,∴C(0,6),S△OAC=×6×4=12;(3)设M的横坐标为m,∵S△OCM=3,∴S△OCM==3,∴m=1,当M在y=x时,把x=1代入y=得y=×1=,则M的坐标是(1,);当M在在y=﹣x+6上时,把x=1代入y=﹣x+6得y=﹣1+6=5,则M的坐标是(1,5).综上所述:M的坐标是:(1,)或(1,5)【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为1分别求出是解题关键.23.(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC 于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P在运动过程中,GH是否存在最小值?若存在,请求出,若不存在,请说明理由.【分析】(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【解答】(1)证明∵AC=9 AB=12 BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=.【点评】本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.24.(10分)如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s 的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t(s).(1)当t=3s时,连接AC与EF交于点G,如图①所示,则EF=3cm;(2)当E、F分别在线段AD和AB上时,如图②所示,①求证:△CEF是等边三角形;②连接BD交CE于点G,若BG=BC,求EF的长和此时的t值.(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若EF=3cm,直接写出此时t的值.【分析】(1)由条件可知△ADC,△ABC都是等边三角形,证明CE=CF,AE=AF,可得出AC垂直平分线段EF,由30°直角三角形的性质即可解决问题;(2)①只要证明△DCE≌△ACF,得出CE=CF,∠DCE=∠ACF,可得出∠ECF=60°,则结论得证;②连接AC,交BD于点O,过点E作EN⊥CD,垂足为N,由BD=2BO求出BD长,证明DE=DG,可求出DE长,则t的值可求出,在Rt△DEN中,由EN=DE•sin60°,可求出EN=9﹣3,在Rt△ECN中可得∠ECN=45°,求出CE的长,则CE=EF可求出;(3)作CH⊥AB于H.先求出BH=3,CH=3,在Rt△CFH中,由勾股定理HF=可求出,则BF和AF可求出.【解答】(1)解:如图①中,∵四边形ABCD是菱形,∠ADC=60°,∴DA=DC=AB=BC,∴△ADC,△ABC都是等边三角形,当t=3时,AE=DE=3cm,AF=BF=3cm,∵CA=CD=CB,∴CE⊥AD,CF⊥AB,∵∠CAB=∠CAD,∴CF=CE,∵AE=AF,∴AC垂直平分线段EF,∴∠AGF=90°,∵∠F AG=60°,∴∠AFG=30°,∴AG=AF=cm,∴==cm,∴cm;故答案为:3.(2)①证明:由(1)知△ADC,△ABC都是等边三角形,∴∠D=∠ACD=∠CAF=60°,DC=AC,∵DE=AF,∴△DCE≌△ACF(SAS),∴CE=CF,∠DCE=∠ACF,∴∠ECF=∠ACD=60°,∴△ECF是等边三角形.②如图②中,连接AC,交BD于点O,过点E作EN⊥CD,垂足为N,∵,BC=6cm,∴BO=BC•sin60°=6×cm,∴cm,∴cm,∵BG=BC,∴∠BGC=∠BCG=75°,∵∠BGC=∠DGE,∴∠BCG=∠DGE,∵AD∥BC,∴∠DEG=∠BCG,∴∠DEG=∠DGE,∴DG=DE=(6)cm,∵∠BCD=120°,∴∠DCE=∠BCD﹣∠BCG=120°﹣75°=45°,∴EN=DE•sin60°=(6×=(9﹣3)cm,∴=(9﹣3)×=(9)cm,∴EF=CE=(9)cm,t=(6﹣6)s.(3)解:如图③,作CH⊥AB于H,由(2)可知:△EFC是等边三角形,∴CF=EF=3cm,在Rt△BCH中,∵BC=6,∠CBH=60°,∴BH=3,CH=3cm,在Rt△CFH中,HF==3cm,∴cm,AF=(3+3)cm,∵运动速度为1cm/s,∴s.【点评】本题是四边形综合题,考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形和直角三角形解决问题.25.(12分)如图,正方形OABC的顶点O是坐标原点,边OA和OC分别在x轴、y轴上,点B的坐标为(4,4).直线l经过点C.(1)若直线l与边OA交于点M,过点A作直线l的垂线,垂足为D,交y轴于点E.①如图1,当OE=1时,求直线l对应的函数表达式;②如图2,连接OD,求证:OD平分∠CDE.(2)如图3,若直线l与边AB交于点P,且S△BCP=S四边形AOCP,此时,在x轴上是否存在点Q,使△CPQ是以CP为直角边的直角三角形?若存在,求点Q的坐标,若不存在,请说明理由.【分析】(1)①由题意可求点A,点C坐标,用待定系数法可求直线AE解析式,由AE ⊥直线l,可设直线l的解析式为y=﹣4x+m,将点C坐标代入,可求直线l的解析式;②连接AC,由∠AOC=∠ADC=90°,可得点C,点A,点D,点O四点共圆,可得∠CAO=∠ODC=45°,即OD平分∠CDE;(2)分∠PCQ=90°和∠CPQ=90°两种情况讨论,根据全等三角形的性质和相似三角形的性质可求点Q的坐标.【解答】解:(1)①∵四边形OABC是正方形,点B(4,4)∴点A(4,0),点C(0,4),∴AO=CO=AB=BC=4,∵OE=1∴点E(0,﹣1)设直线AE解析式为:y=kx+b,∴解得:k=,b=﹣1,∴直线直线AE解析式为y=x﹣1,∵AE⊥直线l,∴设直线l的解析式为y=﹣4x+m,且过点C(0,4)∴m=4,∴直线l的解析式为y=﹣4x+4②如图,连接AC,∵四边形OABC是正方形,∴∠COA=90°,∠CAO=45°,∵∠COA=∠CDA=90°,∴点C,点A,点D,点O四点共圆,∴∠CAO=∠ODC=45°∴∠ODC=∠CDE∴OD平分∠CDE(2)存在∵S△BCP=S四边形AOCP,∴S△BCP=S正方形OABC,∴×4×BP=×4×4,∴BP=2,∴AP=AB﹣BP=2,如图,若∠PCQ=90°,∴∠QCO+∠OCP=90°,又∵∠BCO=∠BCP+∠OCP=90°,∴∠QCO=∠BCP,且BC=CO,∠COQ=∠B=90°,∴△BCP≌△OCQ(ASA)∴BP=OQ=2∴点Q(﹣2,0)如图,若∠CPQ=90°,∴∠APQ+∠BPC=90°,又∵∠BPC+∠BCP=90°,∴∠BCP=∠APQ,且∠B=∠P AQ=90°,∴△APQ∽△BCP∴∴∴AQ=1,∴OQ=AO﹣AQ=3,∴点Q(3,0)综上所述:点Q(3,0)或(﹣2,0)【点评】本题是四边形综合题,考查了正方形的性质,待定系数法求一次函数解析式,全等三角形的判定和性质,相似三角形的判定和性质,以及圆的有关知识,灵活运用相关的性质定理、综合运用知识是解题的关键,注意分情况讨论思想的应用.。
2018-2019学年广东省深圳实验学校中学部八年级(下)期中数学试卷
2018-2019学年广东省深圳实验学校中学部八年级(下)期中数学试卷副标题题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A. 4cmB. 5cmC. 8cmD. 20cm2.如图,已知等腰△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点D,则下列结论一定正确的是()A. AD=CDB. AD=BDC. ∠DBC=∠BACD. ∠DBC=∠ABD3.若x<y,则下列式子不成立的是()A. x−1<y−1B. −2x<−2yC. x+3<y+3D. x2<y24.下列图形中,即是轴对称图形又是中心对称图形的是()A. B. C. D.5.下列多项式不能使用平方差公式的分解因式是()A. −m2−n2B. −16x2+y2C. b2−a2D. 4a2−49n26.把分式3x−3yxy中的x、y的值同时扩大为原来的2倍,则分式的值()A. 不变B. 扩大为原来的2倍C. 扩大为原来的4倍D. 缩小为原来的一半7.下列等式从左到右变形一定正确的是()A. a+3b+3=abB. b−aa2−b2=1a+bC. ba=b(c2+1)a(c2+1)D. 4a2bc30.5a2c3=8abc8.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. 45∘B. 60∘C. 120∘D. 135∘9.要使四边形ABCD是平行四边形,则∠A:∠B:C:∠D可能为()A. 2:3:6:7B. 3:4:5:6C. 3:3:5:5D. 4:5:4:510.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A. 6B. 18C. 28D. 5011.如图,在△ABC中,BD、CE是角平分线,AM⊥BD于点M,AN⊥CE于点N.△ABC的周长为30,BC=12.则MN的长是()A. 15B. 9C. 6D. 312.如图,平行四边形ABCD的顶点A是等边△EFG边FG的中点,∠B=60°,EF=2,则阴影部分的面积为()A. 3√34B. 34C. 3√32D. 32二、填空题(本大题共4小题,共12.0分)13.按下面的程序计算,若开始输入的值x为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果=______.若经过2次运算就停止,则x可以取的所有值是______.14.已知a2+a-1=0,则a3+2a2+2018=______.=m−3无解,则m=______.15.若关于x的分式方程m(x+1)−52x+116.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为______.三、解答题(本大题共7小题,共56.0分)17.(1)求不等式2x+13≤3x−25+1的非负整数解;(2)解方程:1−xx−2=5xx2−418.先化简、再求值x2−2xx2−1÷(x-1-2x−1x+1),其中x=12.19.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1、B1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中线段BC所扫过的面积(结果保留根号和π).20.随着人们环保意识的增强,越来越多的人选择低碳出行,各种品牌的山地自行车相继投放市场.顺风车行五月份A型车的销售总利润为4320元,B型车的销售总利润为3060元.且A型车的销售数量是B型车的2倍,已知销售B型车比A型车每辆可多获利50元.(1)求每辆A型车和B型车的销售利润;(2)若该车行计划一次购进A、B两种型号的自行车共100台且全部售出,其中B型车的进货数量不超过A型车的2倍,则该车行购进A型车、B型车各多少辆,才能使销售总利润最大?最大销售总利润是多少?21.如图,在平行四边形纸片ABCD中,AB=3cm,将纸片沿对角线AC对折,BC边的对应边B′C与AD边交于点E,此时△CDE恰为等边三角形中,求:(1)AD的长度.(2)重叠部分的面积.22.如图,在四边形ABCD中,M,N分别是CD,BC的中点,且AM⊥CD,AN⊥BC.(1)求证:∠BAD=2∠MAN;(2)连接BD,若∠MAN=70°,∠DBC=40°,求∠ADC.23.如图,在Rt△ABC中,∠B=90°,AC=10,∠C=30°,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(t>0)秒,过点D作DF⊥BC于点F,连接DE、EF.(1)求证:四边形AEFD是平行四边形;(2)当t为何值时,△DEF是等边三角形?说明理由;(3)当t为何值时,△DEF为直角三角形?(请直接写出t的值)答案和解析1.【答案】C【解析】解:∵OA是∠BAC的平分线,OM⊥AC,ON⊥AB,∴OM=ON=8cm,故选:C.根据角平分线的性质解答.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点D,∴BD=BC,∴∠ACB=∠BDC,∴∠BDC=∠ABC=∠ACB,∴∠BAC=∠DBC,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.3.【答案】B【解析】解:由x<y,可得:x-1<y-1,-2x>-2y,x+3<y+3,,故选:B.各项利用不等式的基本性质判断即可得到结果.此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.4.【答案】A【解析】解:A、是轴对称图形,是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.根据轴对称图形与中心对称图形的概念判断,得到答案.本题考查的是中心对称图形与轴对称图形的概念,掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合是解题的关键..5.【答案】A【解析】解:-m2-n2不能利用平方差公式分解,故选:A.利用平方差公式的结构特征判断即可.此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.6.【答案】D【解析】解:原式==,故选:D.根据分式的基本性质即可求出答案.本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.7.【答案】C【解析】解:A、≠,错误;B、=-,错误;C、=,正确;D、=8b,错误;故选:C.根据分式的基本性质即可判断.本题考查分式的基本性质,属于基础题型,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.8.【答案】A【解析】解:设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选:A.首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.9.【答案】D【解析】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选:D.根据两组对角分别相等的四边形是平行四边形,∠A和∠C是对角,∠B和∠D 是对角,对角的份数应相等.只有选项D符合.本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.10.【答案】B【解析】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值为18.故选:B.先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其它方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.【答案】D【解析】证明:∵△ABC的周长为30,BC=12.∴AB+AC=30-BC=18.延长AN、AM分别交BC于点F、G.如图所示:∵BN为∠ABC的角平分线,∴∠CBN=∠ABN,∵BN⊥AG,∴∠ABN+∠BAN=90°,∠G+∠CBN=90°,∴∠BAN=∠AGB,∴AB=BG,∴AN=GN,同理AC=CF,AM=MF,∴MN为△AFG的中位线,GF=BG+CF-BC,∴MN=(AB+AC-BC)=(18-12)=3.故选:D.延长AM、AN分别交BC于点F、G,根据BN为∠ABC的角平分线,AN⊥BN 得出∠BAN=∠G,故△ABG为等腰三角形,所以BN也为等腰三角形的中线,即AN=GN.同理AM=MF,根据三角形中位线定理即可得出结论.本题考查了等腰三角形的判定与性质、三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.12.【答案】A【解析】解:如图作AM⊥EF于E,AN⊥EG于N,连接AE.∵△EFG是等边三角形,AF=EG,∴∠AEF=∠AEN,∵AM⊥EF,AN⊥EG,∴AM=AN,∵∠MEN=60°,∠EMA=∠ENA=90°,∴∠MAN=120°,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠DAB=180°-∠B=120°,∴∠MAN=∠DAB,∴∠MAH=∠NAL,∴△AMH≌△ANL,∴S阴=S四边形AMEN,∵EF=2,AF=1,∴AE=,AM=,EM=,∴S四边形AMEN=2ו×=,∴S阴=S四边形AMEN=.故选:A.如图作AM⊥EF于E,AN⊥EG于N,连接AE.只要证明△AMH≌△ANL,即可推出S阴=S四边形AMEN;本题考查平行四边形的性质、等边三角形的性质、全等三角形的判定和性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.13.【答案】11 2或3或4【解析】解:当x=2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x=2时,输出结果=11,若运算进行了2次才停止,则有,解得:<x≤4.5.∴x可以取的所有值是2或3或4,故答案为:11,2或3或4.由运算程序可计算出当x=2时,输出结果,由经过1次运算结果不大于10及经过2次运算结果大于10,即可得出关于x的一元一次不等式组,解之即可得出结论.本题考查了一元一次不等式组的应用以及有理数的混合运算,根据运算程序找出关于x的一元一次不等式组是解题的关键.14.【答案】2019【解析】解:∵a2+a-1=0,∴a2=1-a、a2+a=1,∴a3+2a2+2018,=a•a2+2(1-a)+2018,=a(1-a)+2-2a+2018,=a-a2-2a+2020,=-a2-a+2020,=-(a2+a)+2020,=-1+2020,=2019.故答案为:2019.将已知条件变形为a2=1-a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.【答案】6,10【解析】解:∵关于x的分式方程无解,∴x=-,原方程去分母得:m(x+1)-5=(2x+1)(m-3)解得:x=,m=6时,方程无解.或=-是方程无解,此时m=10.故答案为6,10.关键是理解方程无解即是分母为0,由此可得x=-,再按此进行计算.本题考查了分式方程无解的条件,是需要识记的内容.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.16.【答案】4√3或4【解析】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2-AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.17.【答案】解:(1)去分母得:10x+5≤9x-4+15,移项合并得:x≤6,则不等式的非负整数解为0,1,2,3,4,5,6;(2)去分母得:x2-4-x2-2x=5x,解得:x=-4,7是分式方程的解.经检验x=-47【解析】(1)不等式去分母,去括号,移项合并,把x系数化为1,求出解集,确定出非负整数解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【答案】解:x 2−2x x 2−1÷(x -1-2x−1x+1) =x(x−2)(x+1)(x−1)÷x 2−1−2x+1x+1 =x(x−2)(x+1)(x−1)•x+1x(x−2)=1x−1,∵x =12,∴原式=112−1=-2. 【解析】根据分式的运算法则先化简原式,然后将x 的值代入化简后的式子求值即可. 此题考查分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.19.【答案】解:(1)根据关于x 轴对称点的坐标特点可知:A 1(2,-4),B 1(1,-1),C 1(4,-3),如图,连接A 1、B 1、C 1即可得到△A 1B 1C 1.(2)如图,△A 2BC 2即为所求:(3)由题可得BC =√22+32=√13,∠CBC 2=90°,∴线段BC 所扫过的面积=90×π×13360=13π4.【解析】(1)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接即可得;(2)分别作出点A 、C 绕点B 逆时针旋转90°后所得对应点,再顺次连接可得; (3)根据扇形面积公式计算可得线段BC 所扫过的面积.本题主要考查作图-轴对称变换、旋转变换,解题的关键是根据轴对称变换和旋转变换,得到变换后的对应点.20.【答案】解:(1)设每台A 型车的利润为x 元,则每台B 型车的利润为(x +50)元, 根据题意得4320x =3060x+50×2,解得x =120.经检验,x =120是原方程的解,则x +50=170.答:每辆A 型车的利润为120元,每辆B 型车的利润为170元.(2)设购进A 型车a 台,这100辆车的销售总利润为y 元,据题意得,y =120a +170(100-a ),即y =-50a +17000,100-a ≤2a ,解得a ≥3313,∵y =-50a +17000,∴y 随a 的增大而减小,∵a 为正整数,∴当a =34时,y 取最大值,此时y =-50×34+17000=15300. 即商店购进34台A 型车和66台B 型车,才能使销售总利润最大,最大利润是15300元.【解析】(1)设每台A 型车的利润为x 元,则每台B 型车的利润为(x+50)元,然后根据销售A 型车数量是销售B 型车的2倍列出方程,然后求解即可;(2)设购进A 型车a 台,这100台车的销售总利润为y 元.根据总利润等于两种车的利润之和列式整理即可得解;根据B 型车的进货量不超过A 型车的2倍列不等式求出a 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.21.【答案】解:(1)∵△CDE 为等边三角形,∴DE =DC =EC ,∠D =60°,根据折叠的性质,∠BCA =∠B ′CA ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =6cm ,AB =CD ,∴∠EAC =∠BCA ,∴∠EAC =∠ECA ,∴EA =EC ,∴∠DAC =30°,∴∠ACD =90°,∴AD =2CD =6cm ;(2)∵CD =3cm ,∠ACD =90°,∠DAC =30°,∴AC =3√3cm ,∴S △ACE =12×AC ×12CD =9√34cm 2. 【解析】(1)首先根据等边三角形的性质可得DF=DC=EC ,∠D=60°,根据折叠的性质,∠BCA=∠B′CA ,再利用平行四边形的性质证明∠DAC=30°,∠ACD=90°,利用直角三角形30°角所对的边等于斜边的一半可得CD 长,进而可得AB 的长; (2)利用三角函数值计算出AC ,然后根据三角形的中线平分三角形的面积可得S △ACE =S △ACD ,进而可得答案.此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.22.【答案】(1)证明:连接AC,∵M是CD的中点,AM⊥CD,∴AM是线段CD的垂直平分线,∴AC=AD,又AM⊥CD,∴∠3=∠4,同理,∠1=∠2,∠BAD,即BAD=2∠MAN;∴∠2+∠3=12(2)∵AM⊥CD,AN⊥BC.∠MAN=70°,∴∠BCD=360°-90°-90°-70°=110°,∴∠BDC=180°-∠DBC-∠BCD=30°,∠BAD=2∠MAN=140°,∵AB=AC,AD=AC,∴AB=AD,∴∠ADB=∠ABD=20°,∴∠ADC=∠ADB+∠BDC=50°.【解析】(1)连接AC,根据线段垂直平分线的性质得到AC=AD,根据等腰三角形的三线合一得到∠3=∠4,同理得到∠1=∠2,证明结论;(2)根据四边形的内角和等于360°求出∠BCD,根据三角形内角和定理、等腰三角形的性质计算,得到答案.本题考查的是线段垂直平分线的判定和性质、三角形内角和定理、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.23.【答案】(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF,∵AE∥DF,∴四边形AEFD是平行四边形.(2)∵四边形AEFD是平行四边形,∴当△DEF是等边三角形时,△EDA是等边三角形.∵∠A=90°-∠C=60°,∴AD=AE.∵AE=t,AD=AC-CD=10-2t,∴t=10-2t,∴t=10,3∴当t为10时,△DEF是等边三角形.3(4)∵四边形AEFD是平行四边形,∴当△DEF为直角三角形时,△EDA是直角三角形.当∠AED=90°时,AD=2AE,即10-2t=2t,解得:t=5;2当∠ADE=90°时,AE=2AD,即t=2(10-2t),解得:t=4.或4时,△DEF为直角三角形.综上所述:当t为52【解析】(1)在Rt△CDF中,利用30度角的对边等于斜边的一半,即可得出DF的长,此题得解;(2)易知当△DEF是等边三角形时,△EDA是等边三角形,由∠A=60°可得出AD=AE,进而可得出关于t的一元一次方程,解之即可得出结论;(3)易知当△DEF为直角三角形时,△EDA是直角三角形,分∠AED=90°和∠ADE=90°两种情况考虑,利用30度角的对边等于斜边的一半,可得出关于t 的一元一次方程,解之即可得出结论.本题考查了解含30度角的直角三角形、全等三角形的判定、等边三角形的性质以及解一元一次方程,解题的关键是:(1)在Rt△CDF中,利用30度角的对边等于斜边的一半找出DF的长;(2)利用全等三角形的判定定理SAS证出△AED≌△FDE;(3)利用全等三角形的性质及等边三角形的性质,找出关于t 的一元一次方程;(4)分∠AED=90°和∠ADE=90°两种情况,利用30度角的对边等于斜边的一半找出关于t的一元一次方程。
【精品】2017-2018学年广东省深圳实验中学初中部八年级(下)期中数学试卷
B、∵ BE=DF,
∴四边形 BFDE是等腰梯形,
∴本选项不一定能判定 BE∥DF;
C、∵ AD∥ BC,
∴∠ BED+∠EBF=180°,∠ EDF+∠ BFD=180°,
∵∠ EBF=∠ FDE,
∴∠ BED=∠BFD,
∴四边形 BFDE是平行四边形,
第 8 页(共 22 页)
∴ BE∥DF,故本选项能判定 BE∥DF;
C.
D.
3.(3 分)要使分式
的值为 0,你认为 x 可取得数是(
)
A.9
B.± 3
C.﹣ 3
D.3
4.(3 分)下列多项式中,能分解因式的是(
)
A.﹣ a2+4b2
B.﹣ a2﹣ b2
C.x4﹣ 4x2﹣ 4
D.a2﹣ ab+b2
5.( 3 分)边长为 a,b 的长方形周长为 12,面积为 10,则 a2b+ab2 的值为( )
【分析】 根据因式分解的意义求解即可.
D.a2﹣ ab+b2
【解答】 解: A、原式 =(2b+a)(2b﹣a),故 A 符合题意;
B、不能把一个多项式转化成几个整式积的形式,故 B 不符合题意;
C、不能把一个多项式转化成几个整式积的形式,故 C 不符合题意;
D、不能把一个多项式转化成几个整式积的形式,故 D 不符合题意;
∠EBF=∠FDE,∠ BED=∠BFD均可判定四边形 BFDE是平行四边形,则可证得
BE∥ DF,利用排除法即可求得答案.
【解答】 解:∵四边形 ABCD是平行四边形,
∴ AD∥BC,AD=BC,
A、∵ AE=CF,
∴ DE=BF,
精编广东省广州市海珠区2018-2019学年八年级(下)期中数学试卷(含解析)
2018-2019学年广东省广州市海珠区八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个符合题意)1.下列运算正确的是()A.+=B.•=C.=D.=32.若,则()A.b>3 B.b<3 C.b≥3D.b≤33.若的整数部分为x,小数部分为y,则(x+)y的值是()A.B.3 C.D.﹣34.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BC D.AB=CD,AD=BC5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.6.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2 C.D.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20 B.16 C.12 D.88.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°9.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤10.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线1于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…依此规律,则A2017A2018=()A.()2017B.()2018C.2()2017D.2()2018二、填空题:(本大题共6小题,每小题3分,共18分,只要求写出最后的结果11.若式子+有意义,则x的取值范围是.12.若x,y满足+|3x+y+m|=0且y<0,则m的取值范围是.13.在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=.14.一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为20cm,则该矩形的面积为.15.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为cm.16.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.三、解答题(本大题共7小题,共62分,作答时应写出文字说明、推理依据、演算步骤)17.(8分)(1)÷2﹣×+4;(2)(+)2﹣(3+2)(3﹣2)18.(6分)已知实数m,n满足n=,求的值.19.(8分)如图,在△ABC中,∠A=45°,∠B=30°,BC=8,求∠ACB及AC、AB的长.20.(7分)如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.21.(9分)已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?23.(12分)如图1,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA =PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC;(3)如图2把正方形ABCD改为菱形ABCD,其它条件不变,当∠ABC=120°时,连接CE,∠BAP 与∠DCE有何数量关系?证明你的结论.2018-2019学年广东省广州市海珠区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个符合题意)1.下列运算正确的是()A.+=B.•=C.=D.=3【分析】利用二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、原式==2,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.若,则()A.b>3 B.b<3 C.b≥3D.b≤3【分析】等式左边为非负数,说明右边3﹣b≥0,由此可得b的取值范围.【解答】解:∵,∴3﹣b≥0,解得b≤3.故选D.【点评】本题考查了二次根式的性质:≥0(a≥0),=a(a≥0).3.若的整数部分为x,小数部分为y,则(x+)y的值是()A.B.3 C.D.﹣3【分析】先估算出的范围,再求出x、y的值,最后代入求出即可.【解答】解:∵2<<3,∴x=2,y=﹣2,∴(x+)y=(2+)×(﹣2)=7﹣4=3,故选:B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.4.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BC D.AB=CD,AD=BC【分析】直接根据平行四边形的判定定理判断即可.【解答】解:平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴C能判断,平行四边形判定定理1,两组对角分别相等的四边形是平行四边形;∴B能判断;平行四边形判定定理2,两组对边分别相等的四边形是平行四边形;∴D能判定;平行四边形判定定理3,对角线互相平分的四边形是平行四边形;平行四边形判定定理4,一组对边平行相等的四边形是平行四边形;故选:A.【点评】此题是平行四边形的判定,解本题的关键是掌握和灵活运用平行四边形的5个判断方法.5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选:B.【点评】本题考查的是点与圆的位置关系,根据火车行驶的方向,速度,以及它在以A为圆心,200米为半径的圆内行驶的BD的弦长,求出对A处产生噪音的时间,难度适中.6.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2 C.D.【分析】本题只要根据矩形的性质,利用面积法来求解.【解答】解:因为BC=4,故AD=4,AB=3,则S△DBC=×3×4=6,又因为BD==5,S△ABD=×5AE,故×5AE=6,AE=.故选:A.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20 B.16 C.12 D.8【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=8.故选:D.【点评】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.8.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.【点评】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.9.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.10.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线1于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…依此规律,则A2017A2018=()A.()2017B.()2018C.2()2017D.2()2018【分析】由四边形ABCB1是正方形,得到AB=AB1=1,AB∥CB1,于是得到AB∥A1C,根据平行线的性质得到∠CA1A=30°,解直角三角形得到A1B1=,AA1=2,同理:A2A3=2()2,A3A4=2()3,找出规律A n A n+1=2()n,答案即可求出.【解答】解:∵四边形ABCB1是正方形,∴AB=AB1=1,AB∥CB1,∴AB∥A1C,∴∠CA1A=30°,∴A1B1=AB1=,AA1=2AB1=2,∴A1B2=A1B1=,∴A1A2=2A1B2=2,同理:A2A3=2()2,A3A4=2()3,…∴A n A n+1=2()n,∴A2017A2018=2()2017,故选:C.【点评】本题考查了正方形的性质,含30°直角三角形的性质,平行线的性质,熟记各性质并求出后一个正方形的边长是前一个正方形的边长的倍是解题的关键.二、填空题:(本大题共6小题,每小题3分,共18分,只要求写出最后的结果11.若式子+有意义,则x的取值范围是x>﹣2且x≠1.【分析】直接利用二次根式有意义的条件以及分式有意义的条件分析得出答案.【解答】解:若式子+有意义,则x+2≥0,且(x﹣1)(x+2)≠0,解得:x>﹣2且x≠1.故答案为:x>﹣2且x≠1.【点评】此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确把握相关定义是解题关键.12.若x,y满足+|3x+y+m|=0且y<0,则m的取值范围是m>6.【分析】根据非负数的性质列方程求出x的值并表示出y,再根据y<0列出关于m的不等式,然后求解即可.【解答】解:由题意得,x+2=0,3x+y+m=0,解得x=﹣2,y=6﹣m,∵y<0,∴6﹣m<0,∴m>6.故答案为:m>6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=50°.【分析】首先根据两组对边分别平行的四边形是平行四边形可判定出四边形ABCD是平行四边形,再根据平行四边形两组对角相等可得∠B=∠D=50°.【解答】解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠B=∠D=50°,故答案为:50°.【点评】此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形的判定定理与性质定理.14.一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为20cm,则该矩形的面积为400cm2.【分析】本题首先求证由两条对角线的所夹锐角为60°的角的为等边三角形,易求出短边边长.【解答】解:∵已知矩形的两条对角线所夹锐角为60°,矩形的对边平行且相等.∴根据矩形的性质可求得由两条对角线所夹锐角为60°的三角形为等边三角形.又∵这个角所对的边长为20cm,所以矩形短边的边长为20cm.∴对角线长40cm.根据勾股定理可得长边的长为20cm.∴矩形的面积为20×20=400cm2.故答案为400cm2.【点评】本题考查的是矩形的性质(对角线相等),先求出短边边长后根据勾股定理可求出长边边长,最后可求出矩形的面积.15.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为 4.8cm.【分析】直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.【解答】解:∵菱形的两条对角线分别为6cm和8cm,∴菱形的边长为:=5(cm),设菱形的高为:xcm,则5x=×6×8,解得:x=4.8.故答案为:4.8.【点评】此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.16.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为4.【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BND 中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BND中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故答案为:4.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.三、解答题(本大题共7小题,共62分,作答时应写出文字说明、推理依据、演算步骤)17.(8分)(1)÷2﹣×+4;(2)(+)2﹣(3+2)(3﹣2)【分析】(1)先把二次根式化为最简二次根式,再利用二次根式的乘除法则运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=4÷2﹣3×+2=2﹣3+2=2﹣;(2)原式=2+2+3﹣(18﹣12)=5+2﹣6=2﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(6分)已知实数m,n满足n=,求的值.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m=﹣2,∴n==0∴=0【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.19.(8分)如图,在△ABC中,∠A=45°,∠B=30°,BC=8,求∠ACB及AC、AB的长.【分析】根据三角形的内角和定理可得出∠ACB的度数,过点C作CD⊥AB与点D,在RT△CDB 中先求出CD、BD的长,然后在RT△ACD中可求出AD的长,继而根据AB=AD+DB可求出AB 的长.【解答】解:∠ACB=180°﹣∠A﹣∠B=105°,过点C作CD⊥AB于点D,在RT△ACD中,CD=BC sin∠B=4,BD=BC cos∠B=4,在RT△ACD中,AD=CD tan∠A=4,AC==4,∴AB=AD+BD=4+4.综上可得∠ACB=105°,AC=4,AB=4+4.【点评】本题考查解直角三角形的应用,对于此类题目一般要先构造直角三角形,作高是最直接的手段,难点在于找到过度线段CD的长.20.(7分)如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.【分析】根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形.【解答】解:四边形AODE是矩形.∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD∴∠AOD=90°,∴四边形AODE是矩形.【点评】本题考查了菱形的性质及矩形的判定,解答本题的关键是掌握菱形对角线互相垂直的性质及矩形的判定定理.21.(9分)已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.【分析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【解答】解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,∴S△==.【点评】本题考查了勾股定理的逆定理,非负数的性质,求三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.22.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【分析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.【解答】(1)证明:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.【点评】本题主要考查证两条线段相等往往转化为证明这两条线段所在三角形全等的思想,在第二问中也是考查了通过全等找出和GE相等的线段,从而证出关系是不是成立.23.(12分)如图1,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA =PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC;(3)如图2把正方形ABCD改为菱形ABCD,其它条件不变,当∠ABC=120°时,连接CE,∠BAP 与∠DCE有何数量关系?证明你的结论.【分析】(1)欲证明PC=PE,只要证明△ADP≌△CDP即可.(2)只要证明∠BPC=∠BCP即可.(3)结论:∠BAP=∠DCE,只要证明△PCE是等边三角形即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP∴PA=PC,∵PA=PE,∴PC=PE.(2)证明:四边形ABCD为正方形,∴∠ADC=∠CDE=90°,∴∠E+∠DFE=90°,∵PA=PE,∴∠PAD=∠E,由(1)知△ADP≌△CDP,∴∠PAD=∠PCD,∴∠PCD=∠E,∵∠PFC=∠DFE,∴∠PCD+∠PFC=∠E+∠DFE=90°,∴∠CPE=90°,∴∠BPC+∠DPE=90°,∵PD=DE,∴∠DPE=∠E,∴∠DPE=∠PCD,∵∠BCP+∠PCD=90°,∴∠BPC=∠BCP,∴BP=BC.(3)∠BAP=∠DCE,∵四边形ABCD是菱形,BD是对角线,∴AB=BC,∠ABP=∠PBC,∠BAD=∠BCD,在△ABP和△CBP中,,∴△ABP≌△CBP,∴PA=PC,∠BAP=∠BCP,∴∠PAD=∠PCD∵PA=PE,∴PC=PE,∠PAE=∠PEA,∴∠PEA=∠PCD,∵∠EFC=∠CPE+∠PCD=∠CDE+∠PEA,∴∠CPE=∠CDE,∵四边形ABCD为菱形,∠ABC=120°,∴∠BCD=60°,∠ADC=120°,∴∠CDE=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴∠PCE=60°,∴∠BCP=∠DCE,∴∠BAP=∠DCE........【点评】本题考查四边形综合题、正方形、菱形的性质、全等三角形的判定和性质,勾股定理等知识,正确寻找全等三角形是解题的关键,属于中考常考题型........。
2019-2020学年实验中学等四校联考八年级(下)期中数学试卷(含解析)
2019-2020学年实验中学等四校联考八年级(下)期中数学试卷2018-2019学年广东省实验中学等四校联考八年级(下)期中数学试卷(202104181704模拟)一、选择题(本大题共10小题,共30.0分)1.在实数范围内,√2−x有意义,则x的取值范围是()A. x≥2B. x≥−2C. x<2D. x≤22.如图,在等腰直角△ABC内一点P,满足∠PAC=∠PBA=∠PCB,∠ABC=90°,BP=1,则AP+PC=()A. 3B. 4C. 3+√2D. 2+√23.下图中表示y是x的函数的图象是()A. B. C. D.4.下列命题是假命题的是()A. 平行四边形的对角线互相平分B. 平行四边形的对角相等C. 平行四边形是轴对称图形D. 平行四边形是中心对称图形5.下列根式中,是最简二次根式的是()A. √3a2B. √18C. √abcD. √236.园丁住宅小区有一块草坪如图所示,已知AB=1.5米,BC=2米,DA=6.5米,DC=6米,且AB⊥BC,这块草坪的面积是()A. 24米 2B. 36米 2C. 18米 2D. 9米 27.检查一个门框是否为矩形,下列方法中正确的是()A. 测量两条对角线,是否相等B. 测量两条对角线,是否互相平分C. 测量门框的三个角,是否都是直角D. 测量两条对角线,是否互相垂直8.点A(1,)在函数的图像上,则的值是()A. 1B.C. 2D. 09. 2.如图,AB,CD分别为两圆的弦,AC,BD为两圆的公切线且相交于P点。
若PC=2,CD=3,DB=6,则△PAB的周长为何()A. 6B. 9C. 12D. 1410.将两副三角板如右图摆放在一起,连结,则的正切值为()A. ()/2B.C. 2D. 3二、填空题(本大题共6小题,共18.0分)11.把−a√1a根号外的因式移入根号内得______.12.某商场利用“五一”开展促销活动:一次性购买某品牌服装3件,每件仅售80元,如果超过3件,则超出部分可享受8折优惠,顾客所付款y(元)与所购服装x(x≥3)件之间的函数解析式为______.13.如图,已知双曲线y=kx(x>0)经过矩形OABC的边AB、BC上的点F、E,其中CE=13CB,AF=13AB,且四边形OEBF的面积为6,则k的值为______.14.一次函数y=mx+|m−1|的图象过点(0,3),且y随x的增大而增大,则m=______.15.如图是一台起重机的工作简图,前后两次吊杆位置OP1、OP2与线绳的夹角分别是30°和70°,则吊杆前后两次的夹角∠P1OP2=______°.16.如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60∘.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).三、解答题(本大题共9小题,共72.0分)17.计算:(1)2−x÷(x2−2x);x(2)(3√5+2√3)×(3√5−2√3).x+3与y轴交18.已知一次函数y=kx+b的图象经过点(−2,5),并且与y轴交于点P,直线y=12于点Q,点Q恰与点P关于x轴对称,求这个一次函数的解析式.19.如图,在直角坐标系中,长方形OABC有3个顶点在坐标轴上,顶点B的坐标为(6,m),将△ABC沿AC折叠,得到△ADC,DC与OA交于点E.(1)求证:△ACE是等腰三角形.(2)当∠1=∠2时,求点E的坐标.20.已知:如图,▱ABCD的对角线AC、BD相交于点O,∠BDC=45°,过点B作BH⊥DC交DC的延长线于点H,在DC上取DE=CH,延长BH至F,使FH=CH,连接DF、EF.(1)若AB=2,AD=√10,求BH的值;(2)求证:AC=√2EF.21.如图,在△ABC中,AB=7,BC=8,AC=5,求:△ABC的面积和∠C的度数.22.如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.23.小明在课间用橡皮筋将两支规格相同的铅笔垂直放置在桌面上(如图).小明发现:当铅笔左右平行移动时,橡皮筋的交点到桌面的距离保持不变.于是该班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ=______,P1Q1=______.(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB//CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB//CD,∠ABC=60°,AC、BD交于点P,过点P作PQ//CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1//CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2//CD交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为______点P n的纵坐标为______(直接用含a、b、n 的代数式表示)24.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.25.如图,已知△ABC和△FED,B,D,C,E在一条直线上,∠B=∠E,AB=FE,BD=EC.证明AC//DF.【答案与解析】1.答案:D解析:解:在实数范围内,√2−x有意义,∴2−x≥0,解得x≤2.故选:D.根据二次根式有意义的条件,被开方数为非负数,列不等式求x的取值范围.考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.答案:D解析:解:∵△ABC是等腰直角三角形,∴∠BAC=∠BCA=45°,∵∠PAC=∠PCB,∴∠PAB=∠PCA,∵∠PAC=∠PBA,∴△ACP∽△BAP,∴PAPB =ACAB=PCPA=√2,∵PB=1,∴PA=√2,PC=2,∴AP+PC=2+√2,故选:D.根据等腰三角形的性质得到∠BAC=∠BCA=45°,等量代换得到∠PAB=∠PCA,根据相似三角形的性质列方程得到PA=√2,PC=2,于是得到结论.本题考查了等腰直角三角形的性质,相似三角形的判定和性质,正确的识别图形是解题的关键.3.答案:C解析:解:根据函数的定义,表示y是x函数的图象是C.故选C.函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x 的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.理解函数的定义,是解决本题的关键.4.答案:C解析:解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.故选C.根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.本题考查的是命题与定理,熟知平行四边形的性质是解答此题的关键.5.答案:C解析:解:A、√3a2=√3a,被开方数含能开得尽方的因数,不是最简二次根式;B、√18=3√2,被开方数含能开得尽方的因数,不是最简二次根式;D、√23=√63,被开方数含分母,不是最简二次根式;故选:C.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.答案:D解析:解:连接AC.在Rt△ABC中,由勾股定理得AC=√AB2+BC2=√(1.5)2+22=2.5(米),∵AC2+DC2=(2.5)2+62=42.25。
2018-2019学年广东省广州市八年级下期中数学试卷含答案解析
2018-2019学年广东省广州市八年级下期中数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列式子中,属于最简二次根式的是()A.B.C. D.2.下列式子中,表示y是x的正比例函数的是()A.y=2x B.y=x+2 C.D.y=x23.下列计算正确的是()A.B.C.D.4.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有()A.2条 B.4条 C.5条 D.6条5.下列命题的逆命题是假命题的是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.两三角形全等,三对对应边相等D.两三角形全等,三对对应角相等6.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC=BD时,它是正方形C.当AC⊥BD时,它是菱形D.当∠ABC=90°时,它是矩形7.在三边分别为下列长度的三角形中,哪些不是直角三角形()A.5,13,12 B.2,3,C.4,7,5 D.1,,8.下列各曲线中,表示y是x的函数的是()A.B.C.D.9.如图所示,数轴上点A所表示的数为a,则a的值是()A.﹣1 B.﹣+1 C. +1 D.10.如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为2,L2、L3的距离为4,则正方形的边长是()A.B.C.D.二、填空题(本题共6小题,每小题3分,满分18分)11.函数中,自变量x的取值范围是.12.如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=6,BC=10,则AB=.13.实数a,b在数轴上的位置如图所示,则+a的化简结果为.14.在△ABC中,∠ABC=90°,AB=3,BC=6,D、E分别为AB、AC的中点,则BE+DE=.。
2018-2019学年八年级(下)期中数学试卷1 解析版
2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。
2018-2019学年广东省深圳市龙岗区联考八年级(下)期中数学试卷 解析版
2018-2019学年广东省深圳市龙岗区联考八年级(下)期中数学试卷一、选择题(共12小题:共36分)1.(3分)已知a>b,则下列不等式中正确的是()A.﹣3a>﹣3b B.a﹣3>b﹣3C.3﹣a>3﹣b D.﹣>﹣2.(3分)下列等式从左到右变形中,属于因式分解的是()A.a(x+y)=ax+ay B.x2﹣2x+1=x(x﹣2)+1C.(x+1)(x﹣1)=x2﹣1D.x2﹣1=(x+1)(x﹣1)3.(3分)下图所表示的不等式组的解集为()A.x>3B.﹣2<x<3C.x>﹣2D.﹣2>x>3 4.(3分)点M(2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A.(5,1)B.(﹣1,1)C.(﹣1,2)D.(5,﹣3)5.(3分)如图,下面四个汽车图标中既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列各式中能用完全平方公式分解因式的是()A.a2+2ax+4x2B.﹣a2﹣4ax+4x2C.x2+4+4x D.﹣1+4x27.(3分)如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.△ABC三条中线的交点处B.△ABC三条角平分线的交点处C.△ABC三条高线的交点处D.△ABC三条边的垂直平分线的交点处8.(3分)直线l1:y=kx+b与直线l2:y=k2x的图象如图所示.则关于x的不等式k2x>k1x+b 的解集是()A.x<﹣1B.x>﹣1C.x<3D.x>39.(3分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°10.(3分)如图,在△ABC中,∠ACB=90°,过点C作CD⊥AB于D,∠A=30°,BD =1,则AB的值是()A.1B.2C.3D.411.(3分)如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论,①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,∠BFC=105°;④BF=CF.其中正确的有()A.1个B.2个C.3个D.4个12.(3分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△AB1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,2).则点B2019的坐标是()A.(6052,0)B.(6054,2)C.(6058,0)D.(6060,2)二、填空题(共4小题;共12分)13.(3分)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则线段BB′=.14.(3分)不等式5x+10≤18+2x的正整数解为.15.(3分)如图,在△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C旋转,使点A 的对应点A'在AB边上,则此时∠ACA′=.16.(3分)如图,在平面直角坐标系xOy中,O为坐标原点,直线y=x+12与x轴交于点A,与y轴交于点B,若点C在坐标轴上,且△ABC是以∠ABC为顶角的等腰三角形,则点C的坐标为.三、解答题(共7小题;共52分)17.(8分)将下列各式进行因式分解.(1)8a3﹣12a2b+4a(2)2x3﹣8x18.(8分)解下列不等式(组)(1)﹣≥1(2)19.(7分)如图,点C是∠AOB角平分线上一点,过点C作CF⊥OA,CG⊥OB,垂足分别为F,G,点D为OA上的点,点E为OB上一点,若点C刚好又是线段DE垂直平分线上的点.求证:∠FDC=∠CEG.20.(6分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.21.(7分)某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为4000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.(1)设该学校所买的电脑台数是x台,选择甲商场时,所需费用为y1元,选择乙商场时,所需费用为y2元,请分别写出y1,y2与x之间的关系式;(2)该学校如何根据所买电脑的台数选择到哪间商场购买,所需费用较少?22.(7分)如图,在△ABC中,∠C=90°,∠BAD=∠BAC,过点D作DE⊥AB,DE 恰好是∠ADB的平分线,求证:(1)AD=BD;(2)CD=DB23.(9分)如图1.△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E,F作射线GA的垂线,垂足分别为P,Q.(1)求证:△EP A≌△AGB:(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2.若连接EF交GA的延长线于H,由(2)中的结论你能判断EH与FH的大小关系吗?并说明理由:(4)在(3)的条件下,若BC=10,AG=12.请直接写出S△AEF=.2018-2019学年广东省深圳市龙岗区联考八年级(下)期中数学试卷参考答案与试题解析一、选择题(共12小题:共36分)1.(3分)已知a>b,则下列不等式中正确的是()A.﹣3a>﹣3b B.a﹣3>b﹣3C.3﹣a>3﹣b D.﹣>﹣【分析】根据不等式的性质,逐项判断即可.【解答】解:∵a>b,∴﹣3a<﹣3b,∴选项A不符合题意;∵a>b,∴a﹣3>b﹣3,∴选项B符合题意;∵a>b,∴3﹣a<3﹣b,∴选项C不符合题意;∵a>b,∴﹣<﹣,∴选项D不符合题意.故选:B.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.(3分)下列等式从左到右变形中,属于因式分解的是()A.a(x+y)=ax+ay B.x2﹣2x+1=x(x﹣2)+1C.(x+1)(x﹣1)=x2﹣1D.x2﹣1=(x+1)(x﹣1)【分析】将多项式分解为几个整式的乘积形式成为多项式的因式分解.【解答】解:根据因式分解的定义:D正确故选:D.【点评】本题考查因式分解的意义,注意等式的左边是多项式,等式的右边是几个整式的乘积,本题属于基础题型.3.(3分)下图所表示的不等式组的解集为()A.x>3B.﹣2<x<3C.x>﹣2D.﹣2>x>3【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分.【解答】解:不等式组的解集是两个不等式的解集的公共部分,公共部分是3右边的数,即大于3的数.故选:A.【点评】不等式组解集在数轴上的表示方法:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)点M(2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A.(5,1)B.(﹣1,1)C.(﹣1,2)D.(5,﹣3)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:点M(2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是(2﹣3,﹣1+2),即(﹣1,1),故选:B.【点评】此题主要考查了坐标与图形的变化﹣平移,关键是掌握点的坐标的变化规律.5.(3分)如图,下面四个汽车图标中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)下列各式中能用完全平方公式分解因式的是()A.a2+2ax+4x2B.﹣a2﹣4ax+4x2C.x2+4+4x D.﹣1+4x2【分析】利用完全平方公式判断即可.【解答】解:x2+4+4x=(x+2)2,故选:C.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.7.(3分)如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.△ABC三条中线的交点处B.△ABC三条角平分线的交点处C.△ABC三条高线的交点处D.△ABC三条边的垂直平分线的交点处【分析】要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C 小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,又因为三角形三边的垂直平分线相交于一点,所以答案可得.【解答】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在△ABC三条边的垂直平分线的交点处.故选:D.【点评】本题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;此题是一道实际应用题,做题时,可分别考虑,先满足到两个小区的距离相等,再满足到另两个小区的距离相等,交点即可得到.8.(3分)直线l1:y=kx+b与直线l2:y=k2x的图象如图所示.则关于x的不等式k2x>k1x+b 的解集是()A.x<﹣1B.x>﹣1C.x<3D.x>3【分析】直接利用一次函数的交点为(﹣1,3),进而得出不等式k2x>k1x+b的解集.【解答】解:如图所示:关于x的不等式k2x>k1x+b的解集是:x<﹣1.故选:A.【点评】此题主要考查了一次函数与一元一次不等式,正确数形结合是解题关键.9.(3分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故选:A.【点评】该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.10.(3分)如图,在△ABC中,∠ACB=90°,过点C作CD⊥AB于D,∠A=30°,BD =1,则AB的值是()A.1B.2C.3D.4【分析】在直角三角形ABC中,由∠A的度数求出∠B的度数,在直角三角形BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC的长,在直角三角形ABC中,同理得到AB=2BC,由BC的长即可求出AB的长.【解答】解:∵△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,BD=1,可得BC=2BD=2,在Rt△ABC中,∠A=30°,BC=2,则AB=2BC=4.故选:D.【点评】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.11.(3分)如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论,①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,∠BFC=105°;④BF=CF.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质解答.【解答】解:∵DE∥BC,∴∠DFB=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠DBF=∠DFC,∴△BDF是等腰三角形,故①正确;∴BD=DF,同理可得:EC=FE,∴DE=BD+CE,故②正确;∵∠A=50°,∴∠BFC=90°+∠A=90°+25°=115°,故③错误;无法得出BF=FC,故④错误;故选:B.【点评】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.12.(3分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△AB1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,2).则点B2019的坐标是()A.(6052,0)B.(6054,2)C.(6058,0)D.(6060,2)【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2019的坐标.【解答】解:∵AO=,BO=2,∴AB===,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=6054.∴点B2018的纵坐标为:2.∴点B2018的坐标为:(6054,2),∴B2019的横坐标为6054++=6058,∴点B2017的坐标为(6058,0),故选:C.【点评】此题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.二、填空题(共4小题;共12分)13.(3分)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则线段BB′=1.【分析】根据平移的性质得出平移后坐标的特点,进而解答即可.【解答】解:因为点A与点O对应,点A(﹣1,0),点O(0,0),所以图形向右平移1个单位长度,所以线段BB′=OC=OA=1,故答案为:1.【点评】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.14.(3分)不等式5x+10≤18+2x的正整数解为1,2.【分析】由不等式5x+10≤18+2x,可以求得该不等式的解集,从而可以得到该不等式组的正整数解.【解答】解:由不等式5x+10≤18+2x,得x≤,则不等式5x+10≤18+2x的正整数解为:1,2,故答案为:1,2.【点评】本题考查一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式的方法.15.(3分)如图,在△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C旋转,使点A 的对应点A'在AB边上,则此时∠ACA′=60°.【分析】根据三角形的内角和得到∠A=60°,根据旋转的性质得到AC=A′C,推出△ACA′是等边三角形,根据等边三角形的性质即可得到结论.【解答】解:在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵将△ABC绕点C旋转,使点A的对应点A'在AB边上,∴AC=A′C,∴△ACA′是等边三角形,∴∠ACA′=60°,故答案为:60°.【点评】本题考查了旋转的性质,等边三角形的判定和性质,正确的识别图形是解题的关键.16.(3分)如图,在平面直角坐标系xOy中,O为坐标原点,直线y=x+12与x轴交于点A,与y轴交于点B,若点C在坐标轴上,且△ABC是以∠ABC为顶角的等腰三角形,则点C的坐标为(5,0)或(0,﹣1)或(0,25).【分析】根据题意画出直线AB,根据勾股定理求出AB的长,再根据AB=BC即可得出结论.【解答】解:∵直线y=x+12与x轴交于点A,与y轴交于点B,∴点A、点B的坐标分别为(﹣5,0)、(0,12),∴AB==13.∴C(5,0)或(0,﹣1)或(0,25).故答案为:(5,0)或(0,﹣1)或(0,25).【点评】本题考查的是一次函数图象上点的坐标特征,等腰三角形的判定,熟知等腰三角形的判定定理是解答此题的关键.三、解答题(共7小题;共52分)17.(8分)将下列各式进行因式分解.(1)8a3﹣12a2b+4a(2)2x3﹣8x【分析】(1)原式提取公因式即可;(2)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=4a(2a2﹣3ab+1);(2)原式=2x(x2﹣4)=2x(x+2)(x﹣2).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.(8分)解下列不等式(组)(1)﹣≥1(2)【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)3x﹣2(x﹣1)≥6,3x﹣2x+2≥6,3x﹣2x≥6﹣2,x≥4;(2)解不等式(1)得:x>2.5,解不等式(2)得:x≥4,则不等式组的解集为x≥4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(7分)如图,点C是∠AOB角平分线上一点,过点C作CF⊥OA,CG⊥OB,垂足分别为F,G,点D为OA上的点,点E为OB上一点,若点C刚好又是线段DE垂直平分线上的点.求证:∠FDC=∠CEG.【分析】由角平分线的性质可得CF=CG,由线段垂直平分线的性质可得CD=CE,由“HL”可证Rt△DCF≌Rt△ECG,可得结论.【解答】证明:∵OC平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG,∵点C刚好又是线段DE垂直平分钱上的点.∴CD=CE,且CF=CG,∴Rt△DCF≌Rt△ECG(HL)∴∠FDC=∠CEG【点评】本题考查了全等三角形的判定和性质,角平分线的性质,线段垂直平分线的性质,熟练运用这些性质进行推理是本题的关键.20.(6分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.【分析】(1)分别作出点A、B、C沿x轴方向向左平移6个单位得到对应点,再顺次连接可得;(2)分别作出点B、C绕着点A顺时针旋转90°所得对应点,再顺次连接可得;(3)根据以上作图可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求;(3)由以上作图知,A2的坐标为(1,1)、C2的坐标为(1,﹣3).【点评】本题主要考查作图﹣平移变换、旋转变换,解题的关键是熟练掌握平移变换和旋转变换的定义和性质.21.(7分)某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为4000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.(1)设该学校所买的电脑台数是x台,选择甲商场时,所需费用为y1元,选择乙商场时,所需费用为y2元,请分别写出y1,y2与x之间的关系式;(2)该学校如何根据所买电脑的台数选择到哪间商场购买,所需费用较少?【分析】(1)商场的收费的收费等于电脑的台数乘以每台的单价,则甲商场的收费y1=4000+(1﹣25%)×4000(x﹣1),乙商场的收费y2=(1﹣20%)×4000x,然后整理即可;(2)学校选择哪家商场购买更优惠就是比较y的大小,①当甲商场购买更优惠,可得y1<y2,解此不等式,即可求得答案;②当乙商场购买更优惠,可得y1>y2,解此不等式,即可求得答案;③当两家商场收费相同,可得y1=y2,解此方程,即可求得答案.【解答】解:(1)根据题意得:甲商场的收费为:y1=4000+(1﹣25%)×4000(x﹣1),即y1=3000x+1000,乙商场的收费为:y2=(1﹣20%)×4000x,即y2=3200x,(2)①当y1<y2时,即3000x+1000<3200x,解得:x>5,∴当购买电脑台数大于5时,甲商场购买更优惠;②当y1>y2时,即3000x+1000>3200x,解得:x<5,∴当购买电脑台数小于5时,乙商场购买更优惠;③当y1=y2时,即3000x+1000=3200x,解得:x=5,∴当购买电脑5台时,两家商场收费相同.【点评】此题考查了一次函数的实际应用问题以及不等式与方程的解法.此题难度适中,解题的关键是理解题意,根据题意求得函数解析式,然后利用函数的性质求解.22.(7分)如图,在△ABC中,∠C=90°,∠BAD=∠BAC,过点D作DE⊥AB,DE 恰好是∠ADB的平分线,求证:(1)AD=BD;(2)CD=DB【分析】(1)根据垂直的定义得到∠AED=∠BED=90°,由角平分线的定义得到∠ADE =∠BDE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠B,等量代换得到∠CAD=∠BAD=∠B,求得∠B=∠BAD=∠CAD=30°,根据直角三角形的性质即可得到结论.【解答】证明:(1)∵DE⊥AB,∴∠AED=∠BED=90°,∵DE恰好是∠ADB的平分线,∴∠ADE=∠BDE,∵DE=DE,∴△ADE≌△BDE(ASA),∴AD=BD;(2)∵△BED≌△AED,∴∠BAD=∠B,∵∠BAD=∠BAC,∴∠CAD=∠BAD=∠B,∵AD=BD,∠CAD+∠BAD+∠B=90°,∴∠B=∠BAD=∠CAD=30°,在直角三角形ACD中,∠CAD=30°,∴CD=AD=BD.【点评】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了全等三角形的判定和性质,直角三角形两锐角和为90°的性质.23.(9分)如图1.△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E,F作射线GA的垂线,垂足分别为P,Q.(1)求证:△EP A≌△AGB:(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2.若连接EF交GA的延长线于H,由(2)中的结论你能判断EH与FH的大小关系吗?并说明理由:(4)在(3)的条件下,若BC=10,AG=12.请直接写出S△AEF=60.【分析】(1)根据等腰Rt△ABE的性质,求出∠EP A=∠EAB=∠AGB=90°,∠PEA =∠BAG,根据AAS推出△EP A≌△AGB.(2)根据全等三角形的性质推出EP=AG,同理可得△FQA≌△AGC,即可得出AG=FQ,最后等量代换即可得出答案.(3)求出∠EPH=∠FQH=90°,根据AAS推出△EPH≌△FQH,即可得出EH与FH 的大小关系.(4)根据全等三角形△EPH≌△FQH,△EP A≌△AGB,△FQA≌△AGC,推出S△FQA =S△AGC,S△FQH=S△EPH,S△EP A=S△AGB,即可求出S△AEF=S△ABC,根据三角形面积公式求出即可.【解答】解:(1)如图1,∵∠EAB=90°,EP⊥AG,AG⊥BC,∴∠EP A=∠EAB=∠AGB=90°,∴∠PEA+∠EAP=90°,∠EAP+∠BAG=90°,∴∠PEA=∠BAG,在△EP A和△AGB中,,∴△EP A≌△AGB(AAS),(2)结论:EP=FQ,证明:由(1)可得,△EP A≌△AGB,∴EP=AG,同理可得,△FQA≌△AGC,∴AG=FQ,∴EP=FQ;(3)结论:EH=FH,理由:如图,∵EP⊥AG,FQ⊥AG,∴∠EPH=∠FQH=90°,在△EPH和△FQH中,,∴△EPH≌△FQH(AAS),∴EH=FH.(4))∵△EPH≌△FQH,△EP A≌△AGB,△FQA≌△AGC,∴S△FQA=S△AGC,S△FQH=S△EPH,S△EP A=S△AGB,∴S△AEF=S△EP A+S△FQA=S△AGB+S△AGC=S△ABC=×BC×AG=×10×12=60故答案为:60.【点评】本题属于三角形综合题,主要考查了全等三角形的性质和判定以及等腰直角三角形的性质的综合应用,解题时注意:全等三角形的对应边相等,对应角相等.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
省实教育集团2018-2019学年(下)初二级期中四校联考
数学试卷
(考试试卷:120分钟)
命题:章伟娜 许征 梅穗芬 苏华冰 审核:张婕 校对:张勇胜
注意:1.考试时间为120分钟,满分120分;
2.选择题答案必须用2B 铅笔在答题卡上填涂;
3.不能使用计算器
一、选择题(共10小题,每小题3分)
1.若式子4-x 有意义,则x 需满足的条件是( )
A.4>x
B.4≥x
C.4<x
D.4≤x 2.在Rt △ABC 中,∠B=90°,BC=1,AC=2,则AB 的长是( )
A.1
B.3
C.2
D.5 3.下列图象中,y 不是x 的函数的是( )
A. B. C. D.
4.下列命题中,其逆命题是真命题的是( )
A.如果a 、b 都是正数,那么它们的积也是正数
B.如果b a =
,那么a=b
C.菱形的对角线互相垂直
D.平行四边形的对角线互相平分 5.下列根式中属于最简二次根式的是( )
A.12+a
B.
2
1
C.8
D.x 27
6.如图所示,小巷左右两侧是竖直的墙,一梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )米.
A.0.7
B.1.5
C.2.2
D.2.4
第6题图 第7题图
7.如图,在四边形ABCD 中,点E 、F 、G 、H 分别是AD 、BD 、BC 、AC 的中点,若四边形EFGH 是矩形,则四边形ABCD 需满足的条件是( )
A.AB ⊥CD
B.AC=BD
C.AC ⊥BD
D.AB=CD 8.已知A ),31
(1y -,B ),2
1
(2y -
,C ),1(3y 是一次函数y=-3x+b 的图像上三点,则321,,y y y 的大小关系是( ) A.321y y y << B.312y y y << C.213y y y << D.123y y y <<
9.如图,△ABC 的周长为32,点D 、E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平
分线垂直于AD ,垂足为P ,若BC=12,则PQ 的长为( )
A .3
B .4
C .5
D .6
第9题图
10.如图,点E 是正方形ABCD 外一点,连接AE 、BE 和DE ,过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =3.下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为7;④148+=ABCD S 正方形.则正确结论的个数是( )
A.1
B.2
C.3
D.4
二、填空题(共6小题,每小题3分)
11.化简=
-2)31(
12.张老师带领x 名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y 元,则y =
13.如图,矩形ABCD 中,AB <BC ,AC 、BD 交于点O ,若AB=AO=4,则=
ABCD S 矩形
14.已知关于x 的一次函数2)3(++-=m x m y 的图象经过第一、二四象限,则关于x 的一次函数
3)2(+-+=m x m y 必经过第 象限.
15.将一副直角三角板按如图所示的位置摆放,使点A 、B 、D 在同一直线上,且EF ∥AD ,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,如果DE=22,则BD=
16.如图,在Rt △ABC 中,∠ACB=90°,AB=5cm ,AC=3cm ,动点P 从点B 出发沿射线BC 以1cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为
三、解答题(共9小题,共72分)
17.(6分)计算
(1)8)633250(÷⨯-+ (2))23)(23()123(2
-+--
18.(6分)已知直线l 与直线y=2x-3平行,且经过点(2,7),求直线l 的解析式并在坐标系中画出直线l 的图像。
19.(6分)如图,矩形纸片ABCD中,AB=4,BC=8,现把矩形纸片ABCD沿对角线BD折叠,点C与C 重合,求AF的长。
20.(8分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF
(1)求证:AD=CF;
(2)如果AB=AC,四边形ADCF的形状为(直接写出结果);
21.(8分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,就在空地上铺草坪,已知草坪每平方米300元,试问用该草坪铺满这块空地共需要花费多少元?
22.(8分)如图,在平面直角坐标系中,过点B (6,0)的直线OA 相交于点A (4,2). (1)直线OA 的解析式为 ;
直线AB 的解析式为 (直接写出答案,不必写过程). (2)求△OAC 的面积.
(3)一动点M 沿路线O →A →C 运动,当3=∆OCM S 时,求点M 的坐标.
23.(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,FH⊥AB于点
H.
(1)求证:四边形AGPH是矩形;
(2)在点P在运动过程中,GH是否存在最小值?若存在,请求出,若不存在,请说明理由.
24.(10分)如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t(s).
(1)当t=3s时,连接AC与EF交于点G,如图①所示,则EF= cm;
(2)当E 、F 分别在线段AD 和AB 上时,如图②所示, ①求证:△CEF 是等边三角形;
②连接BD 交CE 于点G ,若BG=BC ,求EF 的长和此时的t 值.
(4)当E 、F 分别运动到DA 和AB 的延长线上时,如图③所示,若EF=cm 63,直线写出此时t 的值为 .
25.(12分)如图,正方形OABC 的顶点O 是坐标原点,边OA 和OC 分别在x 轴、y 轴上,点B 的坐标为(4,4),直线l 经过点C.
(1)若直线l 与边OA 交于点M ,过点A 作直线l 的垂线,垂足为D ,交y 轴与点E. ①如图1,当OE=1时,求直线l 对应的函数表达式; ②如图2,连接OD ,求证:OD 平分∠CDE. (2)如图3,若直线l 与边AB 交于点P ,且AOCP
BCP S S 四边形31
=
∆,此时,在x 轴上是否存在点Q ,使△CPQ 是以CP 为直角边的直角三角形?若存在,求点Q 的坐标,若不存在,请说明理由.。