压电陶瓷性能参数解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ε11T,ε33T,ε11S,ε11S。
(2)介质损耗
介质损耗是包括压电陶瓷在内的任何介质
材料所具有的重要品质指标之一。在交变电场下,
介质所积蓄的电荷有两部分:一种为有功部分(同
相),由电导过程所引起的;一种为无功部分(异相),
是由介质弛豫过程所引起的。介质损耗的异相分量
与同相分量的比值如图1-1所示,Ic为同相分量,
IR为异相分量,Ic与总电流I的夹角为δ,其正切
值为
(
1-4)
式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由
式(1-4)可以看出,I
R 大时,tanδ也大;I
R
小时tanδ也小。通常用
tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。
处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。
(3)弹性常数
压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的应变为S,则根据胡克定律,应力T与应变S之间有如下关系
S=sT
(1-5)
T=cS
式中,S为弹性顺度常数,单位为m2/N;C为弹性劲度常数,单位为N/m2。
但是,任何材料都是三维的,即当
施加应力于长度方向时,不仅在长度
方向产生应变,宽度与厚度方向上也
产生应变。设有如图1-2所示的薄长
片,其长度沿1方向,宽度沿2方向。
沿1方向施加应力T1,使薄片在1方
向产生应变S1,而在方向2上产生应
变S2,由(1-5)式不难得出
S
1
=S
11
T
1
(1-7)
S
2
=S
12
T
1
(1-8)
上面两式弹性顺度常数S
11
和S
12
之比,称为迫松比,即
(1-9)
它表示横向相对收缩与纵向相对伸长之比。
同理,可以得到S
13
,S
21
,S
22
,其中,S
22
=S
11
,S
12
=S
21
。极化过的
压电陶瓷,其独立的弹性顺度常数只有5个,即S
11
,S
12
,S
13
,S
33
和S
44
。
独立的弹性劲度常数也只有5个,即C
11
,C
12
,C
13
,C
33
和C
44
.
由于压电陶瓷存在压电效应,因此压电陶瓷样品在不同的电学条件下具有不同的弹性顺度常数。在外电路的电阻很小相当于短路,或电场强度E=0的条件下测得的称为短路弹性顺度常数,记作S E。在外电路的电阻很大相当于开路,或电位移D=0的条件下测得的称为开路弹性顺度常数,记作S D。由于压电陶瓷为各向异相性体,因此共有下列10个弹性顺度常数:
S E
11
,S E
12
,S E
13
,S E
33
,S E
44
,S D
11
,S D
12
,S D
13
,S D
33
,S D
44
。
同理,弹性劲度常数也有10个:
C E
11
,C E
12
,C E
13
,C E
33
,C E
44
,C D
11
,C D
12
,C D
13
,C D
33
,C D
44
。
(4)机械品质因数
机械品质因数也是衡量压电陶瓷的一个重要参数。它表示在振动转换时材料内部能量消耗的程度。机械品质因数越大,能量的损耗越小。产生损耗的原因在于内摩擦。机械品质因数可以根据等效电路计算而得:
(1-10) 式中,R1为等效电阻,ωS为串联谐振角频率,C1为振子谐振时的等效电容,其值为
(1-11) 其中,ωp为振子的并联谐振角频率,Co为振子的静电容。以此值代入式1-10,得到
(1-12)
(1-13)
当△f=fp-fs很小时,式1-13可简化为
(1-14) 不同的压电陶瓷元器件对压电陶瓷的Qm值有不同的要求,多数陶瓷滤波器要求压电陶瓷的Qm要高,而音响元器件及接收型换能器则要求Qm要低。
(5)压电常数
对于一般的固体,应力T只引起成比例的应变S,用弹性模量联系起来,即T=YS;压电陶瓷具有压电性,即施加应力时能产生额外的电荷。其所产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,用介质电位移D(单位面积的电荷)和应力T (单位面积所受的力)表示如下:
D=Q/A=dT (1-15)
式中,d的单位为库仑/牛顿(C/N)
这正是正压电效应。还有一个逆压电效应,既施加电场E时成比例地产生应变S,其所产生的应变为膨胀或为收缩取决于样品的极化方向。
S=dE (1-16)