高中数学参数方程知识点大全

合集下载

参数方程知识点整理

参数方程知识点整理

参数方程知识点整理参数方程是数学中一种常用的表示曲线形状的方法。

参数方程的形式为x=f(t),y=g(t),其中x和y分别是曲线上的点的横纵坐标,t为参数。

参数方程通常用于描述一些复杂的曲线,如圆、椭圆、双曲线等,它可以方便地描述出曲线上每一个点的位置。

下面结合一些具体的例子来整理参数方程的相关知识点。

1.直线的参数方程:当直线的斜率为k,截距为b时,可以通过参数方程表示为:x=ty=kt+b其中t为参数,t可以取任意实数。

2.圆的参数方程:一个圆可以通过参数方程表示为:x=R*cos(t)y=R*sin(t)其中R为圆的半径,t为参数,t的取值范围可以是[0,2π]。

3.椭圆的参数方程:一个椭圆可以通过参数方程表示为:x=a*cos(t)y=b*sin(t)其中a和b分别是椭圆的长轴长度和短轴长度,t为参数,t的取值范围可以是[0,2π]。

4.双曲线的参数方程:一个双曲线可以通过参数方程表示为:x=a*cosh(t)y=b*sinh(t)其中a和b分别是双曲线的参数,cosh(t)和sinh(t)分别表示双曲函数的余弦和正弦函数。

5.抛物线的参数方程:一个抛物线可以通过参数方程表示为:x=ty=at^2+bt+c其中a、b和c为抛物线的参数,t为参数,t可以取任意实数。

6.参数方程与命题方程的转化:有时候我们已经知道了一条曲线的命题方程,想要求出其参数方程。

这时可以通过代入一些特定的参数值,利用参数方程的定义解出x和y的值,从而得到参数方程。

例如,已知一条直线的命题方程为y=2x+3,我们可以任选一个参数值t,假设t=1,那么根据直线的参数方程可以得到:x=1y=2*1+3=5所以参数方程可以表示为:x=ty=2t+3参数方程在几何图形的研究中有着广泛的应用。

通过参数方程,我们可以方便地描述出复杂曲线的形状和特性,比如曲线的弧长、曲率、切线等。

参数方程能够将复杂的问题转化为简单的曲线方程的解析表达式,进而进行更深入的研究和分析。

高中数学参数方程知识点总结

高中数学参数方程知识点总结

高中数学参数方程知识点总结
高中数学参数方程知识点总结
导语:高中数学涉及的知识点很多,今天小编就来为广大高中同学们总结一下高中数学参数方程的知识点,参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。

例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

以下是小编为大家精心整理的高中数学参数方程知识点总结,欢迎大家参考!
高中数学知识点之参数方程定义
一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t的函数x=f(t)、y=g(t)
并且对于t的.每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

高中数学知识点之参数方程
圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数
椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数
双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数
抛物线的参数方程x=2pty=2ptp表示焦点到准线的距离t为参数直线的参数方程x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数
高中数学知识点之参数方程的应用。

(完整word版)高中数学参数方程知识点大全

(完整word版)高中数学参数方程知识点大全

高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t + 中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21) 解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==ty t x B.⎩⎨⎧==t y t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=tt 22sin 2cos 2=ctg 2t=2211x t tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x + ρcos θ=x ,代入上式,得 222y x +=2x-5. 平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 7.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x by a x ≠=-D.)(12222a x by a x -≠=- 8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1,-3π),r=2 9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21± C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A. 3πB.32πC.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pt y pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 .(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t| (三)20.(5154,558);21.;332 22.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

参数方程的知识点总结

参数方程的知识点总结

参数方程的知识点总结
参数方程虽然和函数很相似,但是却是与函数不同的。

下面请看小编带来的参数方程的知识点总结!欢迎大家参考!
参数方程的知识点总结一般在平面直角坐标系中,如果曲线上任意一点的坐标x,
y都是某个变数t的函数:x=f(t),y=g(t),
并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x,
y的变数t叫做参变数,简称参数。

圆的参数方程
x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径θ为参数
椭圆的参数方程
x=a cosθ y=b sinθ a为长半轴长 b为短半轴长θ为参数
双曲线的参数方程
x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长θ为参数
抛物线的参数方程
x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
直线的参数方程
x=x'+tcosa y=y'+tsina , x', y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.
分析
消去参数,把直线与圆的参数方程化为普通方程;
求出圆心到直线的距离d,再根据直线l与圆C有公共点d≤r即可求出.
参数方程问题,最重要的就是消参,但是消参的过程中一定要注意范围有没有变化!另外,需要记住常见的参数方程。

答案。

高三数学参数方程知识点

高三数学参数方程知识点

高三数学参数方程知识点高中数学知识点之参数方程定义一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

高中数学知识点之参数方程圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数抛物线的参数方程x=2pt2y=2ptp表示焦点到准线的距离t为参数直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数高三数学复习建议第一:函数和导数。

这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:第一是化简与求值,重点掌握五组基本公式。

第二是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质。

第三是正弦定理和余弦定理来解三角形,难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

高中数学参数方程知识点大全

高中数学参数方程知识点大全

高中数学参数方程知识点大全一、参数方程的定义与表示参数方程是描述平面曲线的一种方法,它将曲线上的点用两个或多个参数表示。

参数方程的一般形式为:$$\begin{cases}x = x(t) \\y = y(t)\end{cases}$$其中,$t$ 是参数,$x(t)$ 和 $y(t)$ 分别是曲线上的点的横坐标和纵坐标。

二、参数方程与普通方程的转换1. 消去参数将参数方程中的参数消去,可以得到曲线的普通方程。

消去参数的方法主要有代数法和三角法。

2. 参数方程转换为普通方程将参数方程中的参数 $t$ 用普通方程中的变量 $x$ 或 $y$ 表示,可以得到曲线的普通方程。

三、参数方程的应用1. 描述运动轨迹参数方程可以用来描述物体的运动轨迹,例如抛体运动、圆周运动等。

2. 解决几何问题参数方程可以用来解决一些几何问题,例如求曲线的长度、面积、切线等。

3. 解决物理问题参数方程可以用来解决一些物理问题,例如求物体的速度、加速度、位移等。

四、常见参数方程1. 抛物线$$\begin{cases}x = at^2 \\y = bt^2 + ct + d\end{cases}$$2. 圆$$\begin{cases}x = a \cos t \\y = a \sin t\end{cases}$$3. 椭圆$$\begin{cases}x = a \cos t \\y = b \sin t\end{cases}$$4. 双曲线$$\begin{cases}x = a \sec t \\y = b \tan t\end{cases}$$5. 抛物线$$\begin{cases}x = a t^2 \\y = b t^2 + c t + d\end{cases}$$五、参数方程的优缺点优点可以方便地描述曲线的形状和运动规律。

可以解决一些普通方程难以解决的问题。

缺点需要找到合适的参数。

计算量可能较大。

参数方程是高中数学中一个重要的知识点,它可以帮助我们更好地理解曲线的形状和运动规律。

高中数学参数方程知识点大全

高中数学参数方程知识点大全

高中数学参数方程知识点大全一、参数方程的定义和基本概念参数方程是指用一个或多个参数表示一个点在平面或空间上的坐标,一般形式为x=f(t),y=g(t)或x=f(u,v),y=g(u,v),z=h(u,v)等形式。

1. 参数的取值范围参数的取值范围是指t,u,v等参数的取值范围,有些问题中可能要求特定的参数取值范围,例如0≤t≤1。

2. 参数方程的解析式参数方程的解析式是指将参数方程中的参数用其他变量(如x,y,z)表示出来的式子,通常要具体分析题目所求的内容,才能得到具体的解析式。

二、参数方程表示的图形及其性质参数方程表示的图形是指用参数方程所描述的点的集合,常见的有平面曲线、空间曲线和曲面。

1. 平面曲线的参数方程平面曲线的参数方程一般形式为x=f(t),y=g(t),t∈[a,b],其中a,b为常数。

2. 空间曲线的参数方程空间曲线的参数方程一般形式为x=f(t),y=g(t),z=h(t),t∈[a,b],其中a,b为常数。

3. 曲面的参数方程曲面的参数方程一般形式为x=f(u,v),y=g(u,v),z=h(u,v),u,v∈D,其中D为平面区域。

三、参数方程在计算机绘制图形中的应用在计算机绘制图形中,参数方程可以方便地表示出各种曲线和曲面,并通过计算机程序实现绘制,除此之外还可以进行各种变换和操作。

1. 坐标变换坐标变换是指通过参数方程的变换操作实现图形的变形、旋转、平移等操作。

2. 光照模拟通过参数方程计算表面法向量、光照强度和光照颜色,实现真实的光照模拟。

3. 碰撞检测通过参数方程计算图形的表面或体积信息,实现碰撞检测的功能,以及物体的相交等计算。

四、参数方程的求导1. 参数方程的一阶导数参数方程的一阶导数是指对参数t求导数得到的结果,常用来表示曲线的斜率和切线方向。

2. 参数方程的二阶导数参数方程的二阶导数是指对参数t进行二次求导得到的结果,常用来表示曲线的曲率和弧度的变化率。

五、参数方程的应用示例1. 斜抛运动斜抛运动的轨迹可以用参数方程表示,通过求解初始速度、角度等参数可以得到斜抛运动的轨迹方程,从而计算两点之间的距离和时间等参数。

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

5.【答案】D
【解析】 x2 t, y2 1 t 1 x2, x2 y2 1,而t 0, 0 1 t 1,得0 y 2 .
4
4
6.【答案】D
【解析】圆
x=2 cos,
的圆心为原点,半径为
y =2 sin
2,
则圆心到直线 3x-4y-9=0 的距离为 9 ,小于半径 2,故直线与圆相交. 5
D.(1, 3)
2.已知某曲线的参数方程为 xy==ccooss2, +1,则该曲线是(

A.直线
B.圆
C.双曲线
3.若一直线的参数方程为
x
x0
1 2
t
(t 为参数),则此直线的倾斜Байду номын сангаас为(
y
y0
3t 2
A.30º
B. 60º
C.120º
4.若点
P(4,a)在曲线
x=
t 2
(t 为参数)上,点 F(2,0),则|PF|等于(
)
y=2 t
A.4
B.5
C.6
D.抛物线 ) D.150º
D.7
5.与参数方程为
x
t
(t为参数) 等价的普通方程为( )
y 2 1 t
A. x2 y2 1 4
B. x2 y2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D. x2 y2 1(0 x 1, 0 y 2) 4
y2 b2
1( a
0 , b 0 )的参数方程为:
x a sec
y
b
tan

为参数,
[0, 2 ) 且
, 2
3 2

人教版高二数学2-2第二章参数方程

人教版高二数学2-2第二章参数方程

4-4第二章 参数方程【知识点梳理】一、参数方程的概念:一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t )①,并且对于t 取的每一个允许值,由方程组①所确定的点P (x ,y )都在这条曲线上,那么方程组①就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称 参数 . 相对于参数方程,我们把直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程.说明:(1)一般来说,参数的变化范围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

二、几种常见的参数方程1.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 0≤α<π.2.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).3.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,0≤θ≤2π).(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =btan θ(θ为参数,0≤θ≤2π且2π3θ,2πθ≠≠).,则{,有sec 2θ-tan 2θ=1(3)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).三、参数方程与普通方程的互化将参数方程化成普通方程的常用方法有: (1)代数法消去参数①代入法:从参数方程中选出一个方程,解出参数,然后把参数的表达式代入另一个方程,消去参数,得到曲线的普通方程.②代数运算法:通过乘、除、乘方等运算把参数方程中的方程适当地变形,然后把参数方程中的两个方程进行代数运算,消去参数,得到曲线的普通方程. (2)利用三角恒等式消去参数如果参数方程中的x ,y 都表示为参数的三角函数,那么可以考虑用三角函数公式中的恒等式消去参数,得到曲线的普通方程. (3)注意事项① 互化中必须使,x y 的取值范围保持一致. ② 同一个普通方程可以有不同形式的参数方程.几种常见的参数方程例1:(1)过点(0,0)且倾斜角为60°的直线的参数方程是________.【答案】 (1)⎩⎨⎧x =12t ,y =32t【解析】⎩⎪⎨⎪⎧x =t cos 60°,y =t sin 60°,即⎩⎨⎧x =12t ,y =32t(t 为参数).(2)过点P (-4,0),倾斜角为5π6的直线的参数方程为________.【答案】 ⎩⎨⎧x =-4-32t ,y =t2【解析】∵直线l 过点P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎨⎧x =-4+t cos 5π6,y =0+t sin 5π6,即(t 为参数)⎩⎨⎧x =-4-32t ,y =t2.(3)参数方程⎩⎪⎨⎪⎧x =1+t cos 20°,y =2+t sin 20°(t 为参数)表示的直线的倾斜角是________. 【解析】方程符合直线参数方程的标准形式,易知倾斜角为20°.(4)直线⎩⎪⎨⎪⎧x =-2+t cos 50°,y =3-t sin 40°(t 为参数)的倾斜角α等于( ) A.40° B.50° C.-45° D.135°【答案】 D 【解析】 根据tan α=-sin 40°cos 50°=-1,因此倾斜角为135°.例2:(1)圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A.(0,2)B.(0,-2)C.(-2,0)D.(2,0)【答案】 D 【解析】 由圆的参数方程知,圆心为(2,0). (2)圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π) B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π) C.⎩⎪⎨⎪⎧ x =-1+5cos θ,y =2+5sin θ(0≤θ<π) D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 【答案】 D 圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).例3:(1)椭圆⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ的长轴长和短轴长分别为( )A.3 2B.6 2C.3 4D.6 4【答案】 D 【解析】 由方程可知a =3,b =2,∴2a =6,2b =4.(2)曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为________.【答案】 23 【解析】由曲线C 的参数方程可以看出a =3,b =5,得a 2=9,b 2=5,⇒c 2=4,所以e=c a =23. 例4:双曲线C :⎩⎪⎨⎪⎧x =3sec φ,y =4tan φ(φ为参数)的焦点坐标为________.【答案】 (-5,0),(5,0)【解析】 曲线C 的普通方程为x 29-y 216=1,得焦点坐标为F 1(-5,0),F 2(5,0)参数方程与普通方程的互化例1:(1)将参数方程⎩⎪⎨⎪⎧x =t ,y =2t(t 为参数)化为普通方程是________.【解析】 把t =x 代入②得y =2x 即普通方程为y =2x .(2)将参数方程⎩⎪⎨⎪⎧x =2t 2,y =t +1(t 为参数)化为普通方程是________.【解析】由②得t =y -1,代入①得x =2(y -1)2.(3)将参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)化为普通方程是________.【解析】由sin 2 θ+cos 2 θ=1得x 2+y 2=1.(4)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数)化为普通方程是________【解析】由y =-1+cos 2θ,可得y =-2sin 2θ, 把sin 2θ=x -2代入y =-2sin 2θ,可得y =-2(x -2), 即2x +y -4=0. 又∵2≤x =2+sin 2θ≤3,∴所求的方程是2x +y -4=0(2≤x ≤3),它表示的是一条线段. (5)将(x -2)2+y 2=1化为参数方程是 【解析】令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).【练一练】1.曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的一条对称轴的方程为( )A.y =0B.x +y =0C.x -y =0D.2x +y =0【答案】 D 【解析】 曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的普通方程为(x +1)2+(y -2)2=4,圆心C的坐标为(-1,2),过圆心的直线都是圆的对称轴,故选D.2.与普通方程x 2+y -1=0等价的参数方程为( )A.⎩⎪⎨⎪⎧x =sin t ,y =cos 2t (t 为参数) B.⎩⎪⎨⎪⎧ x =cos t ,y =sin 2t (t 为参数) C.⎩⎨⎧x =1-t ,y =t(t 为参数) D.⎩⎪⎨⎪⎧x =tan t ,y =1-tan 2t (t 为参数) 【答案】 D【解析】 A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1]. D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈(-∞,1].参数方程的应用【例1】(1)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________. 【答案】 (1,1) 【解析】 C 1的普通方程为y 2=x (x ≥0,y ≥0),C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,(x ≥0,y ≥0),x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1).(2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【答案】 3 【解析】 直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.【例2】已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.【解】 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1. (2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝⎛⎭⎫x -122,即(x -1)2=4y 为所求.【例3】已知直线l 的参数方程:⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数)和圆C 的极坐标方程:ρ=22sin ⎝⎛⎭⎫θ+π4(θ为参数). (1)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.解:(1)消去参数t ,得直线l 的直角坐标方程为y =2x +1;ρ=22sin ⎝⎛⎭⎫θ+π4即ρ=2(sin θ+cos θ).两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ), 消去参数θ,得圆C 的直角坐标方程为:(x -1)2+(y -1)2=2. (2)圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和圆C 相交.【例4】在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 1:ρ2-4ρcos θ+3=0,θ∈[0,2π],曲线C 2:ρ=34sin ⎝⎛⎭⎫π6-θ,θ∈[0,2π].(1)求曲线C 1的一个参数方程;(2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB |的值. 解 (1)由ρ2-4ρcos θ+3=0,可得x 2+y 2-4x +3=0. ∴(x -2)2+y 2=1.令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).(2)C 2:4ρ⎝⎛⎭⎫sin π6cos θ-cos π6sin θ=3, ∴4⎝⎛⎭⎫12x -32y =3,即2x -23y -3=0.∵直线2x -23y -3=0与圆(x -2)2+y 2=1相交于A ,B 两点,且圆心到直线的距离d =14,∴|AB |=2× 1-⎝⎛⎭⎫142=2×154=152.。

参数方程知识点总结

参数方程知识点总结

千里之行,始于足下。

参数方程知识点总结
参数方程是指将一个曲线或者曲面的坐标用参数表示的方式。

参数方程常用于描述复杂的曲线和曲面,同时也可以方便地进行计算和分析。

以下是参数方程的一些基本知识点总结:
1. 参数方程的定义:参数方程是一组函数,用参数表示曲线或曲面上的坐标点,通常用向量形式表示。

例如,对于二维曲线,可以表示为 x = f(t), y = g(t),其中 t 是参数,x 和 y 是曲线上的点的坐标。

2. 参数化空间曲线:参数化空间曲线是指通过参数方程定义的曲线。

通过改变参数 t 的取值范围,可以得到曲线上的不同点。

3. 参数方程的参数选择:参数的选择通常可以根据具体的问题和需求进行灵活选择。

常见的参数选择可以是距离、时间、角度等。

不同参数选择可能会产生不同的参数方程,因此要根据具体问题确定合适的参数。

4. 参数方程和函数方程的关系:参数方程和函数方程是可以相互转化的。

对于简单的函数方程,可以化简为参数方程;而对于参数方程,可以将其通过消元等方法转化为函数方程。

5. 参数方程的图像表示:参数方程可以通过计算不同参数下的坐标点来绘制曲线或曲面的图像。

常见的绘图方法包括使用计算机软件、手工绘图等。

6. 参数方程的应用:参数方程在计算几何、物理学、工程学等领域有广泛的应用。

例如,参数方程可以用于描述曲线的弧长、速度、加速度等性质,并进行相关计算和分析。

第1页/共2页
锲而不舍,金石可镂。

总而言之,参数方程是一种描述曲线或曲面的坐标表示方法,具有灵活性和计算简便性,并在不同领域中起到重要的应用作用。

高中数学全参数方程知识点大全

高中数学全参数方程知识点大全

高中数学全参数方程知识点大全一、全参数方程的概念全参数方程是指带有n个参数的方程,分别为a1, a2, a3, …… an。

它可以表达成:ai xi + a2 x2 + a3 x3 + …… + an xn = 0其中xi(i=1,2,3…n)为未知数。

二、常见的全参数方程全参数方程可以分为几何全参数方程、数论全参数方程和分析函数全参数方程。

1.几何全参数方程几何全参数方程也被称为n次全参数方程,它以n次根式的形式表示,它具有如下形式:a1x1 + a2x2 + a3x3 + …… + anxn = 0其中a1,a2,a3……an为实数,x1,x2,x3……xn为未知数。

2.数论全参数方程数论全参数方程的定义与几何全参数方程相似,只是其中的系数a1,a2,a3……an不再只有实数,而是可以是任意位数的整数。

数论全参数方程的形式如下:a1x1 + a2x2 + a3x3 + …… + anxn = 0其中a1,a2,a3……an为任意位数的整数,x1,x2,x3……xn为未知数。

3.分析函数全参数方程分析函数全参数方程也是一种带有多个参数的方程,它的形式如下:a1f1(x,y,z…) + a2f2(x,y,z…) + a3f3(x,y,z…) +…… +anfn(x,y,z…) = 0其中a1,a2,a3……an是任意实数,f1,f2,f3……fn是函数,x,y,z…..是未知数。

三、全参数方程的解法1.待定系数法这种方法是将要求解的全参数方程中的系数和未知数中的其中一个参数留下来,然后将其化为低阶未知参数方程,再求解出其它参数的值。

参数方程知识点总结

参数方程知识点总结

千里之行,始于足下。

参数方程学问点总结参数方程是描述曲线的一种方法,它使用一个参数变量来表示曲线上的点的位置。

参数方程广泛应用于数学、物理、工程等领域,对于描述简单的几何外形以及曲线运动具有很大的优势。

本文将对参数方程的基本概念、性质、应用以及参数方程与直角坐标系的转化等方面进行总结。

一、参数方程的基本概念参数方程是一种将自变量$t$与变量$x$、$y$相关联的函数表示曲线上点的位置的方法。

设函数$x=f(t)$和$y=g(t)$在区间$I$上有定义,其中$f$和$g$是定义在$I$上的连续函数。

那么由$x=f(t)$和$y=g(t)$确定的点$(x,y)$称为参数方程的一个解。

曲线的参数方程通常表示为 $(x=f(t), y=g(t)), t\\in I$。

二、参数方程与直角坐标系的关系参数方程经常与直角坐标系的方程相关,通过转化可在两者之间进行切换。

设直角坐标系中的方程为$y=f(x)$,通过将$x$和$y$分别表示为$t$的函数,可以得到参数方程。

由于参数方程存在多种表示形式,因此通过不同的参数方程也可以得到相同的直角坐标系的方程。

三、参数方程的性质1. 参数方程是表示曲线上任意一点的方法,因此可以用参数方程来描述简单的几何外形,如椭圆、双曲线等。

2. 参数方程具有较强的机敏性,可以通过对参数的变化来描述曲线的不同性质,如曲线的方向、速度、加速度等。

3. 参数方程能够表示曲线上的无穷多个点,因此对于描述曲线上的点的分布、密度等性质具有很大的优势。

四、参数方程的图形表示与分类第1页/共2页锲而不舍,金石可镂。

1. 参数方程的图形可以通过给定参数的取值范围来确定。

可以通过转变参数的取值范围来对曲线进行缩放、平移等操作。

2. 参数方程可以通过给定参数的函数表达式来确定曲线的外形。

例如,当$x(t) = a\\cos(t)$,$y(t) = b\\sin(t)$时,参数方程描述了一个椭圆外形的曲线。

高三关于参数方程的知识点

高三关于参数方程的知识点

高三关于参数方程的知识点参数方程是解决平面几何问题中一种常见的数学工具,它通过引入参数变量来描述曲线的运动轨迹或者点的位置。

在高三数学学习中,参数方程是一个重要的知识点,下面将详细介绍参数方程相关的内容。

一、参数方程的基本概念参数方程是指使用参数变量表示出曲线上每个点的坐标,常见的参数变量有t、θ等。

一条曲线的参数方程一般为:x = f(t),y =g(t),其中f(t)和g(t)是关于参数t的函数。

通过给定不同的参数值,就可以确定曲线上的各个点的坐标。

二、平面曲线的参数方程表示1. 直线的参数方程直线的参数方程常常选择一个点作为起点,然后给出直线的方向向量,并以参数t确定直线上其他点的位置。

设直线过点P(x₁,y₁),方向向量为v(a, b),则直线的参数方程可以表示为:x = x₁+ at, y = y₁ + bt,其中t为参数。

2. 圆的参数方程对于圆,其参数方程可以通过将x和y表示为两个函数的关系得到。

设圆的圆心为(h, k),半径为r,则圆的参数方程可以表示为:x = h + rcos(t), y = k + rsin(t),其中t为参数,t的取值范围通常为[0, 2π)。

3. 椭圆的参数方程椭圆的参数方程与圆类似,只是在计算x和y的时候引入了椭圆的长轴和短轴。

设椭圆的中心为(h, k),半长轴长为a,半短轴长为b,则椭圆的参数方程可以表示为:x = h + acos(t),y = k + bsin(t),其中t为参数,t的取值范围通常为[0, 2π)。

4. 抛物线的参数方程抛物线的参数方程可以通过将x表示为关于y的函数得到。

常见的抛物线方程为y = ax² + bx + c,通过解这个方程得到x与y之间的关系,可以得到抛物线的参数方程。

三、参数方程在几何问题中的应用参数方程在解决几何问题中具有广泛的应用,例如曲线的切线和曲率、曲线的长度、曲线的弧长等。

1. 曲线的切线和曲率通过参数方程,可以求出曲线上任一点处的切线方程和曲率。

高考参数方程知识点讲解

高考参数方程知识点讲解

高考参数方程知识点讲解高考数学中,参数方程是一个比较重要的知识点。

参数方程是一种以参数形式表示的函数,通过引入一个或多个参数,可以更灵活地描述图形在坐标平面上的运动轨迹。

接下来,我们将对参数方程的相关知识点进行讲解。

1. 参数方程的概念及表示方式在解析几何中,参数方程是用参数表示一个集合点的位置所满足的运算关系。

一般来说,参数方程通过引入独立变量(或称为参数),从而将平面上的点与参数之间建立起一种对应关系。

参数方程的标准形式可以写作:x = f(t),y = g(t),其中x和y是平面上的坐标,t是参数,f(t)和g(t)是定义在参数域上的函数。

2. 参数方程的图形表示参数方程可以用于描述一条曲线在平面上的运动轨迹。

以二维平面为例,我们可以通过改变参数t的取值范围,使得曲线上的点在平面上运动。

通过适当地选择参数的取值范围,可以得到曲线的各个特点,例如曲线的形状、方向等。

3. 参数方程与直角坐标方程的转换在解题时,有时我们需要将参数方程转换为直角坐标方程,或者将直角坐标方程表示为参数方程。

这种转换可以帮助我们更好地理解和分析问题。

将直角坐标方程转换为参数方程时,我们可以通过引入适当的参数,将曲线上的点与参数建立起一一对应的关系,从而得到参数方程的表示式。

相反地,将参数方程转换为直角坐标方程时,我们需要通过消元法或代数运算将参数方程表示为关于x和y的等式。

这样,在直角坐标系下,我们可以得到曲线的方程。

4. 参数方程的应用参数方程在物理学、力学等领域有着广泛的应用。

通过引入参数,我们可以更好地描述和分析运动过程中物体的位置、速度、加速度等物理量。

在几何学中,参数方程可以用于描述曲线的性质和形状。

例如,通过引入角度参数,我们可以得到单位圆的参数方程,进而分析圆的性质。

参数方程也可以用于描述曲线的运动轨迹、曲率等特征。

此外,参数方程还可以用于解决几何题。

在解题过程中,我们可以通过构造合适的参数方程,将问题转化为方程组求解或参数边界求解等数学问题。

高中数学选修4-4-参数方程

高中数学选修4-4-参数方程

参数方程知识集结知识元参数方程知识讲解1.参数方程的概念【知识点的认识】参数方程的定义在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数,即,并且对于t的每一个允许值,由该方程组所确定的点M(x,y)都在这条曲线上,那么此方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫做普通方程.2.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.4.圆的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M0M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.直线l的参数方程为(t为参数).圆C的参数方程为(θ为参数),则直线l被圆C截得的弦长为___.例2.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是___.例3.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=___.当堂练习填空题练习1.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).圆C的参数方程是=(θ为参数),直线l与圆C交于两个不同的点A、B,当点P在圆C上运动时,△PAB面积的最大值为___练习2.参数方程(θ∈R)所表示的曲线与x轴的交点坐标是_______练习3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为2,若该直线的参数方程改写成(t为参数),则在这个方程中P点对应的t值为____.练习4.设a∈R,直线ax-y+2=0和圆(θ为参数)相切,则a的值为___。

高中数学《参数方程》精华知识点汇总

高中数学《参数方程》精华知识点汇总

高中数学《参数方程》精华知识点汇总1.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O,叫做极点,自极点O引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.)(2)极坐标设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的角∠XOM叫做点M的极角,记为.有序数对()叫做点M的极坐标,记作M().(注:一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点M在极点时,它的极坐标为(0,)(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标()表示;同时,极坐标()表示的点也是唯一确定的.)2.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是(x,y),极坐标()(),于是极坐标与直角坐标的互化公式如表:点M 直角坐标(x,y) 极坐标()互化公式)在一般情况下,由确定角时,可根据点M所在的象限判断.例:把极坐标(6,转换为直角坐标。

例:将直角坐标(﹣,3)转换为极坐标。

点M 普通坐标(x,y) 极坐标()互化公式 =4.参数方程转化为普通坐标①相等代换:曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.例:②模型代换:例:。

高考参数方程归纳总结

高考参数方程归纳总结

高考参数方程归纳总结一、参数方程的基本概念参数方程是指使用参数表示自变量和因变量之间的关系。

在数学中,参数方程常用于描述曲线、曲面或其他几何体的运动和变化规律。

在高考中,参数方程也是一道经典的考题类型,要求考生对参数方程的性质和特点进行分析和应用。

二、常见的参数方程类型1. 二维平面曲线的参数方程二维平面曲线的参数方程常用于描述平面上的曲线轨迹。

常见的参数方程类型有:- 抛物线的参数方程:x = t, y = at²- 圆的参数方程:x = rcos(t), y = rsin(t)- 椭圆的参数方程:x = acos(t), y = bsin(t)- 双曲线的参数方程:x = asec(t), y = btan(t)2. 三维空间曲线的参数方程三维空间曲线的参数方程常用于描述空间中的曲线轨迹。

常见的参数方程类型有:- 直线的参数方程:x = x₀ + at, y = y₀ + bt, z = z₀ + ct- 空间曲线的参数方程:x = f(t), y = g(t), z = h(t)3. 二维平面曲面的参数方程二维平面曲面的参数方程常用于描述平面上的曲面形状。

常见的参数方程类型有:- 圆柱面的参数方程:x = acos(t), y = asin(t), z = bt- 双曲抛物面的参数方程:x = at, y = bt², z = ct4. 三维空间曲面的参数方程三维空间曲面的参数方程常用于描述空间中的曲面形状。

常见的参数方程类型有:- 球面的参数方程:x = rsinθcosφ, y = rsinθsinφ, z = rcosθ- 椭球面的参数方程:x = a sinφcosθ, y = b sinφsinθ, z = c cosφ- 椭圆抛物面的参数方程:x = at², y = bt, z = ct三、参数方程的性质和应用1. 曲线的方向性在参数方程中,通过参数的增加方向可以确定曲线的运动方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)(2)一般式过定点P 0(x 0,y 0)斜率k=tgα=ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 不参数)②在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时,|t|表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t|.直线参数方程的应用设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则(1)P 1、P 2两点的坐标分别是(x 0+t 1cosα,y 0+t 1sinα)(x 0+t 2cosα,y 0+t 2sinα);(2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t,则t=221t t +中点P 到定点P 0的距离|PP 0|=|t|=|221t t +|(4)若P 0为线段P 1P 2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆椭圆12222=+b y a x (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数)3.极坐标极坐标系在平面内取一个定点O,从O 引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x y tg y x θρ三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1在圆x 2+y 2-4x-2y-20=0上求两点A 和B,使它们到直线4x+3y+19=0的距离分别最短和最长.解:将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数)则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2极坐标方程ρ=θθcos sin 321++所确定的图形是()A.直线B.椭圆C.双曲D.抛物线解:ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析例3椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ()A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5).应选B.例4参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sinθ=2y(x>0)即y=21x 2(x>0).∴应选B.例5在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是()A.(2,-7)B.(31,32) C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2将x=21代入,得y=21∴应选C.例6下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是()A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty tx 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgt x 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t ty tgt x 2cos 12cos 1解:普通方程x 2-y 中的x∈R,y≥0,A.中x=|t|≥0,B.中x=cost∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C.∴应选D.例7曲线的极坐标方程ρ=4sinθ化成直角坐标方程为()A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4解:将ρ=22y x +,sinθ=22y x y +代入ρ=4sinθ,得x 2+y 2=4y,即x 2+(y-2)2=4.∴应选B.例8极坐标ρ=cos(θπ-4)表示的曲线是()A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ,∴普通方程为2(x 2+y 2)=x+y,表示圆.应选D.例9在极坐标系中,与圆ρ=4sinθ相切的条直线的方程是()A.ρsinθ=2 B.ρcosθ=2C.ρcosθ=-2 D.ρcosθ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sinθ,CO⊥OX,OA 为直径,|OA|=4,l 和圆相切,l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有cosθ=ρ2=OPOB ,得ρcosθ=2,∴应选B.例104ρsin 22θ=5表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x +ρcosθ=x,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线.∴应选D.例11极坐标方程4sin 2θ=3表示曲线是()A.两条射线 B.两条相交直线 C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3x 2,y=±x 3,它表示两相交直线.∴应选B.四、能力训练(一)选择题1.极坐标方程ρcosθ=34表示()A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲线:①θ=6π和sinθ=21;②θ=6π和tgθ=33,③ρ2-9=0和ρ=3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为()A.1 B.2 C.3 D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0,θ1+θ2=0,则M,N 两点位置关系是()A.重合B.关于极点对称C.关于直线θ=2π D.关于极轴对称5.极坐标方程ρ=sinθ+2cosθ所表示的曲线是()A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是()A.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab≠0)化为普通方程是()A.)(12222a xb y a x ≠=+ B.)(12222a x b y a x -≠=+C.)(12222a x by a x ≠=- D.)(12222a x by a x -≠=-8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为()A.(1,3π),r=2 B.(1,6π),r=1 C.(1,3π),r=1D.(1,-3π),r=29.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是()A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方程为()A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±x D.y+1=)2(2-±x 11.若直线⎩⎨⎧=+=bty at x 4((t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为()A.3π B.32π C.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M,N 间的距离为()A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│D.2p(t 1-t 2)213.若点P(x,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy,y 2-x 2)也在单位圆上运动,其运动规律是()A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcosθ+25+3sinθ-25sin 2θ与x 轴两个交点距离的最大值是()A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是()A.θθρsin cos 23-=B.θθρcos cos 23-=C.θθρsin 2cos 3-=D.θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为.18.极坐标方程ρ=tgθsecθ表示的曲线是.19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为;直线上一点P(x ,y)与点M(-1,2)的距离为.(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数)上一点P,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p>0,t 为参数),当t∈[-1,2]时,曲线C 的端点为A,B,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD,与椭圆的左半部分交于C、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G,H 两点.(1)试判断满足│BC│·│BD│=3│GF 2│·│F 2H│成立的直线BD 是否存在?并说明理由.(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离.24.A,B 为椭圆2222by a x +=1,(a>b>0)上的两点,且OA⊥OB,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l∶812yx +=1,P 是l 上一点,射线OP 交椭圆于点R,又点Q 在OP 上且满足│OQ│·│OP│=│OR│2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D3.C4.C5.B6.A7.A8.C9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x≤21);18.抛物线;19.135°,|32t|(三)20.(5154,558);21.;33222.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

相关文档
最新文档