外文翻译---机电一体化全自动横切机

合集下载

机电一体化技术中英文对照外文翻译文献

机电一体化技术中英文对照外文翻译文献

机电一体化技术中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:INTEGRATION OF MACHINERYABSTRACTMachinery was the modern science and technology development inevitable result, this article has summarized the integration of machinery technology basic outline and the development background .Summarized the domestic and foreign integration of machinery technology present situation, has analyzed the integration of machinery technology trend of development.Key word:integration of machinery ,technology,present situation ,product t,echnique of manufacture ,trend of development0. Introduction modern science and technology unceasing development, impelled different discipline intersecting enormously with the seepage, has caused the project domain technological revolution and the transformation .In mechanical engineering domain, because the microelectronic technology and the computer technology rapid development and forms to the mechanical industry seepage the integration of machinery, caused the mechanical industry the technical structure, the product organization, the function and the constitution, the production method and the management system has had the huge change, caused the industrial production to enter into "the integration of machinery" by "the machinery electrification" for the characteristic development phase.1. Integration of machinery outline integration of machinery is refers in the organization new owner function, the power function, in the information processing function and the control function introduces the electronic technology, unifies the system the mechanism and the computerization design and the software which constitutes always to call. The integration of machinery development also has become one to have until now own system new discipline, not only develops along with the science and technology, but also entrusts with the new content .But its basic characteristic may summarize is: The integration of machinery isembarks from the system viewpoint, synthesis community technologies and so on utilization mechanical technology, microelectronic technology, automatic control technology, computer technology, information technology, sensing observation and control technology, electric power electronic technology, connection technology, information conversion technology as well as software programming technology, according to the system function goal and the optimized organization goal, reasonable disposition and the layout various functions unit, in multi-purpose, high grade, redundant reliable, in the low energy consumption significance realize the specific function value, and causes the overall system optimization the systems engineering technology .From this produces functional system, then becomes an integration of machinery systematic or the integration of machinery product. Therefore, "integration of machinery" covering "technology" and "product" two aspects .Only is, the integration of machinery technology is based on the above community technology organic fusion one kind of comprehensive technology, but is not mechanical technical, the microelectronic technology as well as other new technical simple combination, pieces together .This is the integration of machinery and the machinery adds the machinery electrification which the electricity forms in the concept basic difference .The mechanical engineering technology has the merely technical to develop the machinery electrification, still was the traditional machinery, its main function still was replaces with the enlargement physical strength .But after develops the integration of machinery, micro electron installment besides may substitute for certain mechanical parts the original function, but also can entrust with many new functions, like the automatic detection, the automatic reduction information, demonstrate the record, the automatic control and the control automatic diagnosis and the protection automatically and so on .Not only namely the integration of machinery product is human's hand and body extending, human's sense organ and the brains look, has the intellectualized characteristic is the integration of machinery and the machinery electrification distinguishes in the function essence.2. Integration of machinery development condition integration of machinery development may divide into 3 stages roughly.20th century 60's before for the first stage, this stage is called the initial stage .In this time, the people determination not on own initiative uses the electronic technology the preliminary achievement to consummate the mechanical product the performance .Specially in Second World War period, the war has stimulated the mechanical product and the electronic technology union, these mechanical and electrical union military technology, postwar transfers civilly, to postwar economical restoration positive function .Developed and the development at that time generally speaking also is at the spontaneous condition .Because at that time the electronic technology development not yet achieved certain level, mechanical technical and electronic technology union also not impossible widespread and thorough development, already developed the product was also unable to promote massively. The 20th century 70~80 ages for the second stage, may be called the vigorous development stage .This time, the computer technology, the control technology, the communication development, has laid the technology base for the integration of machinery development . Large-scale, ultra large scale integrated circuit and microcomputer swift and violent development, has provided the full material base for the integration of machinery development .This time characteristic is :①A mechatronics word first generally is accepted in Japan, probably obtains the quite widespread acknowledgment to 1980s last stages in the worldwide scale ;②The integration of machinery technology and the product obtained the enormous development ;③The various countries start to the integration of machinery technology and the product give the very big attention and the support. 1990s later periods, started the integration of machinery technology the new stage which makes great strides forward to the intellectualized direction, the integration of machinery enters the thorough development time .At the same time, optics, the communication and so on entered the integration of machinery, processes the technology also zhan to appear tiny in the integration of machinery the foot, appeared the light integration of machinery and the micro integration of machinery and so on the newbranch; On the other hand to the integration of machinery system modeling design, the analysis and the integrated method, the integration of machinery discipline system and the trend of development has all conducted the thorough research .At the same time, because the huge progress which domains and so on artificial intelligence technology, neural network technology and optical fiber technology obtain, opened the development vast world for the integration of machinery technology .These research, will urge the integration of machinery further to establish the integrity the foundation and forms the integrity gradually the scientific system. Our country is only then starts from the beginning of 1980s in this aspect to study with the application .The State Council had been established the integration of machinery leading group and lists as "863 plans" this technology .When formulated "95" the plan and in 2010 developed the summary had considered fully on international the influence which and possibly brought from this about the integration of machinery technology development trend .Many universities, colleges and institutes, the development facility and some large and middle scale enterprises have done the massive work to this technical development and the application, does not yield certain result, but and so on the advanced countries compared with Japan still has the suitable disparity.3. Integration of machinery trend of development integrations of machinery are the collection machinery, the electron, optics, the control, the computer, the information and so on the multi-disciplinary overlapping syntheses, its development and the progress rely on and promote the correlation technology development and the progress .Therefore, the integration of machinery main development direction is as follows:3.1 Intellectualized intellectualizations are 21st century integration of machinery technological development important development directions .The artificial intelligence obtains day by day in the integration of machinery constructor's research takes, the robot and the numerical control engine bed intellectualization is the important application .Here said "the intellectualization" is to the machine behavior description, is in the control theory foundation, the absorption artificial intelligence, theoperations research, the computer science, the fuzzy mathematics, the psychology, the physiology and the chaos dynamics and so on the new thought, the new method, simulate the human intelligence, enable it to have abilities and so on judgment inference, logical thinking, independent decision-making, obtains the higher control goal in order to .Indeed, enable the integration of machinery product to have with the human identical intelligence, is not impossible, also is nonessential .But, the high performance, the high speed microprocessor enable the integration of machinery product to have preliminary intelligent or human's partial intelligences, then is completely possible and essential.In the modern manufacture process, the information has become the control manufacture industry the determining factor, moreover is the most active actuation factor .Enhances the manufacture system information-handling capacity to become the modern manufacture science development a key point .As a result of the manufacture system information organization and structure multi-level, makes the information the gain, the integration and the fusion presents draws up the character, information measure multi-dimensional, as well as information organization's multi-level .In the manufacture information structural model, manufacture information uniform restraint, dissemination processing and magnanimous data aspects and so on manufacture knowledge library management, all also wait for further break through.Each kind of artificial intelligence tool and the computation intelligence method promoted the manufacture intelligence development in the manufacture widespread application .A kind based on the biological evolution algorithm computation intelligent agent, in includes thescheduling problem in the combination optimization solution area of technology, receives the more and more universal attention, hopefully completes the combination optimization question when the manufacture the solution speed and the solution precision aspect breaks through the question scale in pairs the restriction .The manufacture intelligence also displays in: The intelligent dispatch, the intelligent design, the intelligentprocessing, the robot study, the intelligent control, the intelligent craft plan, the intelligent diagnosis and so on are variousThese question key breakthrough, may form the product innovation the basic research system. Between 2 modern mechanical engineering front science different science overlapping fusion will have the new science accumulation, the economical development and society's progress has had the new request and the expectation to the science and technology, thus will form the front science .The front science also has solved and between the solution scientific question border area .The front science has the obvious time domain, the domain and the dynamic characteristic .The project front science distinguished in the general basic science important characteristic is it has covered the key science and technology question which the project actual appeared.Manufacture system is a complex large-scale system, for satisfies the manufacture system agility, the fast response and fast reorganization ability, must profit from the information science, the life sciences and the social sciences and so on the multi-disciplinary research results, the exploration manufacture system new architecture, the manufacture pattern and the manufacture system effective operational mechanism .Makes the system optimization the organizational structure and the good movement condition is makes the system modeling , the simulation and the optimized essential target .Not only the manufacture system new architecture to makes the enterprise the agility and may reorganize ability to the demand response ability to have the vital significance, moreover to made the enterprise first floor production equipment the flexibility and may dynamic reorganization ability set a higher request .The biological manufacture view more and more many is introduced the manufacture system, satisfies the manufacture system new request.The study organizes and circulates method and technique of complicated system from the biological phenomenon, is a valid exit which will solve many hard nut to cracks that manufacturing industry face from now on currently .Imitating to living what manufacturing point is mimicry living creature organ of from the organization, from matchmore, from growth with from evolution etc. function structure and circulate mode of a kind of manufacturing system and manufacturing process.The manufacturing drives in the mechanism under, continuously by one's own perfect raise on organizing structure and circulating mode and thus to adapt the process of[with] ability for the environment .For from descend but the last product proceed together a design and make a craft rules the auto of the distance born, produce system of dynamic state reorganization and product and manufacturing the system tend automatically excellent provided theories foundation and carry out a condition .Imitate to living a manufacturing to belong to manufacturing science and life science of\"the far good luck is miscellaneous to hand over\", it will produce to the manufacturing industry for 21 centuries huge of influence .翻译:机电一体化摘要机电一体化是现代科学技术发展的必然结果,本文简述了机电一体化技术的基本概要和发展背景。

机电一体化的外文名词解释

机电一体化的外文名词解释

机电一体化的外文名词解释机电一体化(Mechatronics)是指机械工程、电气工程、电子工程和计算机科学等学科的交叉融合,旨在设计和制造一种集机械结构、传感器、执行器、电子控制和计算机控制于一体的智能系统。

在机械工程发展的初期,使用的是纯机械系统。

随着科学技术的进步,人们逐渐认识到单纯的机械系统无法满足复杂生产和生活的需求。

为了提高生产效率和质量,人们开始将电气、电子和计算机技术应用于机械系统中。

因此,机械工程逐渐转向机电一体化领域的发展。

机电一体化的外文名词Mechatronics是由机械(Mechanical)、电子(Electronics)和计算机(Computer)三个单词构成。

这三个领域的技术结合在一起,使得智能机械系统具有更高的自动化水平和集成性能。

首先,机电一体化系统具有更高的自动化水平。

传统的机械系统需要人为干预才能运行,而机电一体化系统通过传感器和执行器的联动,可以自动感知和响应外部环境的变化,并实现自主控制。

这一特点使得机电一体化系统具有更高的生产效率和生产能力。

其次,机电一体化系统具有更强的集成性能。

机械、电气、电子和计算机技术的有机结合,使得智能机械系统的各个部分能够无缝地协同工作。

传感器可以实时感知机械系统的状态,控制器可以根据反馈信号对系统进行实时调整,执行器可以根据控制信号产生相应的动作。

这种集成性能可以使机电一体化系统更加智能和灵活。

最后,机电一体化在各个领域都得到了广泛的应用。

在制造业中,机电一体化系统可以改进生产线的工艺流程,提高产品质量和生产效率。

在汽车工业中,机电一体化技术可以实现自动驾驶和智能交通系统的发展。

在医疗设备领域,机电一体化系统可以实现医疗器械的自动化和智能化。

在航空航天领域,机电一体化技术可以实现飞行器的自主导航和飞行控制。

综上所述,机电一体化是机械工程、电气工程、电子工程和计算机科学的交叉融合产物,是智能机械系统的核心技术。

它的外文名词Mechatronics准确地表达了机电一体化领域的特点和意义,即将机械、电子和计算机技术有机地相结合,实现智能化、自动化和集成化。

机床专业英语大全

机床专业英语大全

机床专业英语大全发现机床行业专业英语词汇, 非常有用, 与各位共享!(1):按英文字母排序3-Jaws indexing spacers 三爪、分割工具头A.T.C.system 加工中心机刀库Aluminum continuous melting & holding furnaces 连续溶解保温炉Balancing equipment 平衡设备Bayonet 卡口Bearing fittings 轴承配件Bearing processing equipment 轴承加工机Bearings 轴承Belt drive 带传动Bending machines 弯曲机Blades 刀片Blades,saw 锯片Bolts,screws & nuts 螺栓,螺帽及螺丝Boring heads 搪孔头Boring machines 镗床Cable making tools 造线机Casting,aluminium 铸铝Casting, copper 铸铜Casting,gray iron 铸灰口铁Casting,malleable iron 可锻铸铁Casting,other 其他铸造Casting,steel 铸钢Chain drive 链传动Chain making tools 造链机Chamfer machines 倒角机Chucks 夹盘Clamping/holding systems 夹具/支持系统CNC bending presses 电脑数控弯折机CNC boring machines 电脑数控镗床CNC drilling machines 电脑数控钻床CNC EDM wire-cutting machines 电脑数控电火花线切削机CNC electric discharge machines 电脑数控电火花机CNC engraving machines 电脑数控雕刻机CNC grinding machines 电脑数控磨床CNC lathes 电脑数控车床CNC machine tool fittings 电脑数控机床配件CNC milling machines 电脑数控铣床CNC shearing machines 电脑数控剪切机CNC toolings CNC刀杆CNC wire-cutting machines 电脑数控线切削机Conveying chains 输送链Coolers 冷却机Coupling 联轴器Crimping tools 卷边工具Cutters 刀具Cutting-off machines 切断机Diamond cutters 钻石刀具Dicing saws 晶圆切割机Die casting dies 压铸冲模Die casting machines 压铸机Dies-progressive 连续冲模Disposable toolholder bits 舍弃式刀头Drawing machines 拔丝机Drilling machines 钻床Drilling machines bench 钻床工作台Drilling machines,high-speed 高速钻床Drilling machines,multi-spindle 多轴钻床Drilling machines,radial 摇臂钻床Drilling machines,vertical 立式钻床drills 钻头Electric discharge machines(EDM) 电火花机Electric power tools 电动刀具Engraving machines 雕刻机Engraving machines,laser 激光雕刻机Etching machines 蚀刻机Finishing machines 修整机Fixture 夹具Forging dies 锻模Forging,aluminium 锻铝Forging, cold 冷锻Forging, copper 铜锻Forging,other 其他锻造Forging,steel 钢锻Foundry equipment 铸造设备Gear cutting machines 齿轮切削机Gears 齿轮Gravity casting machines 重力铸造机Grinder bench 磨床工作台Grinders,thread 螺纹磨床Grinders,tools & cutters 工具磨床Grinders,ultrasonic 超声波打磨机Grinding machines 磨床Grinding machines,centerless 无心磨床Grinding machines,cylindrical 外圆磨床Grinding machines,universal 万能磨床Grinding tools 磨削工具Grinding wheels 磨轮Hand tools 手工具Hard/soft and free expansion sheet making plant 硬(软)板(片)材及自由发泡板机组Heat preserving furnaces 保温炉Heating treatment funaces 熔热处理炉Honing machines 搪磨机Hydraulic components 液压元件Hydraulic power tools 液压工具Hydraulic power units 液压动力元件Hydraulic rotary cylinders 液压回转缸Jigs 钻模Lapping machines 精研机Lapping machines,centerless 无心精研机Laser cutting 激光切割Laser cutting for SMT stensil 激光钢板切割机Lathe bench 车床工作台Lathes,automatic 自动车床Lathes,heavy-duty 重型车床Lathes,high-speed 高速车床Lathes,turret 六角车床Lathes,vertical 立式车床Lubricants 润滑液Lubrication Systems 润滑系统Lubricators 注油机Machining centers,general 通用加工中心Machining centers,horizontal 卧式加工中心Machining centers,horizontal & vertical 卧式及立式加工中心Machining centers,vertical 立式加工中心Machining centers,vertical double-column type 立式双柱加工中心Magnetic tools 磁性工具Manifolds 集合管Milling heads 铣头Milling machines 铣床Milling machines,bed type 床身式铣床Milling machines,duplicating 仿形铣床Milling machines,horizontal 卧式铣床Milling machines,turret vertical 六角立式铣床Milling machines,universal 万能铣床Milling machines,vertical 立式铣床Milling machines,vertical & horizontal 立式及卧式铣床Mold & die components 模具单元Mold changing systems 换模系统Mold core 模芯Mold heaters/chillers 模具加热器/冷却器Mold polishing/texturing 模具打磨/磨纹Mold repair 模具维修Molds 模具Nail making machines 造钉机Oil coolers 油冷却器Overflow cutting machines for aluminium wheels 铝轮冒口切断机P type PVC waterproof rolled sheet making plant P型PVC高分子防水PCB fine piecing systems 印刷电器板油压冲孔脱料系统Pipe & tube making machines 管筒制造机Planing machines 刨床Planing machines vertical 立式刨床Pneumatic hydraulic clamps 气油压虎钳Pneumatic power tools 气动工具Powder metallurgic forming machines 粉末冶金成型机Presses,cold forging 冷锻冲压机presses,crank 曲柄压力机Presses,eccentric 离心压力机Presses,forging 锻压机Presses,hydraulic 液压冲床Presses,knuckle joint 肘杆式压力机Presses,pneumatic 气动冲床Presses,servo 伺服冲床Presses,transfer 自动压力机Pressing dies 压模Punch formers 冲子研磨器Quick die change systems 速换模系统Quick mold change systems 快速换模系统Reverberatory furnaces 反射炉Rollers 滚筒Rolling machines 辗压机Rotary tables 转台Sawing machines 锯床Sawing machines,band 带锯床Saws,band 带锯Saws,hack 弓锯Saws,horizontal band 卧式带锯Saws,vertical band 立式带锯shafts 轴Shapers 牛头刨床Shearing machines 剪切机Sheet metal forming machines 金属板成型机Sheet metal working machines 金属板加工机Slotting machines 插床spindles 主轴Stamping parts 冲压机Straightening machines 矫直机Switches & buttons 开关及按钮Tapping machines 攻螺丝机Transmitted chains 传动链Tube bending machines 弯管机Vertical hydraulic broaching machine 立式油压拉床Vises 虎钳Vises,tool-maker 精密平口钳Wheel dressers 砂轮修整器Woven-Cutting machines 织麦激光切割机Wrenches 扳手铝轮冒口切断机Overflow cutting machines for aluminium wheels 离心压力机Presses,eccentric六角立式铣床Milling machines,turret vertical六角车床Lathes,turret螺栓,螺帽及螺丝Bolts,screws & nuts螺纹磨床Grinders,thread冷却机Coolers冷锻Forging,cold冷锻冲压机Presses,cold forging立式双柱加工中心Machining centers,vertical double-column type 立式铣床Milling machines,vertical立式油压拉床Vertical hydraulic broaching machine立式刨床Planing machines vertical立式车床Lathes,vertical立式带锯Saws,vertical band立式加工中心Machining centers,vertical立式及卧式铣床Milling machines,vertical & horizontal立式钻床Drilling machines,vertical联轴器Coupling连续溶解保温炉Aluminum continuous melting & holding furnaces 连续冲模Dies-progressive链传动Chain drive切断机Cutting-off machinesCNC刀杆CNC toolings曲柄压力机presses,crank修整机Finishing machines舍弃式刀头Disposable toolholder bits润滑系统Lubrication Systems润滑液Lubricants熔热处理炉Heating treatment funaces三爪、分割工具头3-Jaws indexing spacers伺服冲床Presses,servo输送链Conveying chains手工具Hand tools砂轮修整器Wheel dressers蚀刻机Etching machines外圆磨床Grinding machines,cylindrical搪磨机Honing machines搪孔头Boring heads卧式铣床Milling machines,horizontal卧式带锯Saws,horizontal band卧式加工中心Machining centers,horizontal卧式及立式加工中心Machining centers,horizontal & vertical万能铣床Milling machines,universal万能磨床Grinding machines,universal镗床Boring machines弯曲机Bending machines弯管机Tube bending machines通用加工中心Machining centers,general铜锻Forging,copper铣头Milling heads铣床Milling machines无心磨床Grinding machines,centerless无心精研机Lapping machines,centerless压模Pressing dies压铸冲模Die casting dies压铸机Die casting machines油冷却器Oil coolers造链机Chain making tools造线机Cable making tools造钉机Nail making machines印刷电器板油压冲孔脱料系统PCB fine piecing systems摇臂钻床Drilling machines,radial硬(软)板(片)材及自由发泡板机组Hard/soft and free expansion sheet making plant 辗压机Rolling machines液压元件Hydraulic components液压冲床Presses,hydraulic液压动力元件Hydraulic power units液压工具Hydraulic power tools液压回转缸Hydraulic rotary cylindersP型PVC高分子防水P type PVC waterproof rolled sheet making plant刨床Planing machines牛头刨床Shapers其他铸造Casting,other其他锻造Forging,other模芯Mold core模具Molds模具维修Mold repair模具打磨/磨纹Mold polishing/texturing模具单元Mold & die components模具加热器/冷却器Mold heaters/chillers 磨轮Grinding wheels磨削工具Grinding tools磨床Grinding machines磨床工作台Grinder bench平衡设备Balancing equipment气油压虎钳Pneumatic hydraulic clamps 气动冲床Presses,pneumatic气动工具Pneumatic power tools轴shafts轴承Bearings轴承配件Bearing fittings轴承加工机Bearing processing equipment 肘杆式压力机Presses,knuckle joint铸铝Casting,aluminium铸铜Casting,copper铸造设备Foundry equipment铸钢Casting,steel铸灰口铁Casting,gray iron织麦激光切割机Woven-Cutting machines 重力铸造机Gravity casting machines重型车床Lathes,heavy-duty主轴spindles扳手Wrenches拔丝机Drawing machines保温炉Heat preserving furnaces插床Slotting machines齿轮Gears齿轮切削机Gear cutting machines冲压机Stamping parts冲子研磨器Punch formers超声波打磨机Grinders,ultrasonic车床工作台Lathe bench磁性工具Magnetic tools传动链Transmitted chains床身式铣床Milling machines,bed type带传动Belt drive带锯Saws,band带锯床Sawing machines,band电脑数控镗床CNC boring machines电脑数控弯折机CNC bending presses电脑数控铣床CNC milling machines电脑数控线切削机CNC wire-cutting machines电脑数控磨床CNC grinding machines电脑数控车床CNC lathes电脑数控电火花线切削机CNC EDM wire-cutting machines 电脑数控电火花机CNC electric discharge machines电脑数控雕刻机CNC engraving machines电脑数控机床配件CNC machine tool fittings电脑数控剪切机CNC shearing machines电脑数控钻床CNC drilling machines电动刀具Electric power tools电火花机Electric discharge machines(EDM)雕刻机Engraving machines刀片Blades刀具Cutters倒角机Chamfer machines多轴钻床Drilling machines,multi-spindle锻铝Forging,aluminium锻压机Presses,forging锻模Forging dies仿形铣床Milling machines,duplicating粉末冶金成型机Powder metallurgic forming machines反射炉Reverberatory furnaces钢锻Forging,steel高速车床Lathes,high-speed高速钻床Drilling machines,high-speed管筒制造机Pipe & tube making machines滚筒Rollers工具磨床Grinders,tools & cutters攻螺丝机Tapping machines弓锯Saws,hack虎钳Vises换模系统Mold changing systems夹盘Chucks夹具Fixture夹具/支持系统Clamping/holding systems剪切机Shearing machines加工中心机刀库A.T.C.system激光切割Laser cutting激光雕刻机Engraving machines,laser激光钢板切割机Laser cutting for SMT stensil 集合管Manifolds矫直机Straightening machines金属板成型机Sheet metal forming machines 金属板加工机Sheet metal working machines 锯片Blades,saw锯床Sawing machines卷边工具Crimping tools晶圆切割机Dicing saws精密平口钳Vises,tool-maker精研机Lapping machines可锻铸铁Casting,malleable iron快速换模系统Quick mold change systems卡口Bayonet开关及按钮Switches & buttons钻石刀具Diamond cutters钻头drills钻模Jigs钻床Drilling machines钻床工作台Drilling machines bench自动压力机Presses,transfer。

机电专业论文英文文献及其中文译文

机电专业论文英文文献及其中文译文

毕业论文外文文献翻译译文题目:INTEGRATION OF MACHINERY外文资料翻译资料来源:文章名:INTEGRATION OF MACHINERY 《Digital Image Processing》书刊名:作者:Y. Torres J. J. Pavón I. Nieto and J. A.Rodríguez章节:2.4 INTEGRATION OF MACHINERYINTEGRATION OF MACHINERY (From ELECTRICAL AND MACHINERY INDUSTRY)ABSTRACT Machinery was the modern science and technology development inevitable resultthis article has summarized the integration of machinery technology basic outlineand the development background .Summarized the domestic and foreign integration ofmachinery technology present situation has analyzed the integration of machinerytechnology trend of development. Key word:integration of machinery ,technology,present situation ,productt,echnique of manufacture ,trend of development 0. Introduction modern science and technology unceasing development impelleddifferent discipline intersecting enormously with the seepage has caused the projectdomain technological revolution and the transformation .In mechanical engineeringdomain because the microelectronic technology and the computer technology rapiddevelopment and forms to the mechanical industry seepage the integration of machinerycaused the mechanical industry the technical structure the product organizationthe function and the constitution the production method and the management systemhas had the huge change caused the industrial production to enter into quottheintegration of machineryquot by quotthe machinery electrificationquot for the characteristicdevelopment phase. 1. Integration of machinery outline integration of machinery is refers in theorganization new owner function the power function in the information processingfunction and the control function introduces the electronic technology unifies thesystem the mechanism and the computerization design and the software whichconstitutes always to call. The integration of machinery development also has becomeone to have until now own system new discipline not only develops along with thescience and technology but also entrusts with the new content .But its basiccharacteristic may summarize is: The integration of machinery is embarks from thesystem viewpoint synthesis community technologies and so on utilization mechanicaltechnology microelectronic technology automatic control technology computertechnology information technology sensing observation and control technologyelectric power electronic technology connection technology information conversiontechnology as well as software programming technology according to the systemfunction goal and the optimized organization goal reasonable disposition and thelayout various functions unit in multi-purpose high grade redundant reliable inthe low energy consumption significance realize the specific function value andcauses the overall system optimization the systems engineering technology .From thisproduces functional system then becomes an integration of machinery systematic orthe integration of machinery product. Therefore quotintegration of machineryquot coveringquottechnologyquot and quotproductquot two aspects .Only is the integration of machinerytechnology is based on the above community technology organic fusion one kind ofcomprehensivetechnology but is not mechanical technical the microelectronictechnology as well as other new technical simple combination pieces together .Thisis the integration of machinery and the machinery adds the machinery electrificationwhich the electricity forms in the concept basic difference .The mechanicalengineering technology has the merely technical to develop the machineryelectrification still was the traditional machinery its main function still wasreplaces with the enlargement physical strength .But after develops the integrationof machinery micro electron installment besides may substitute for certainmechanical parts the original function but also can entrust with many new functionslike the automatic detection the automatic reduction information demonstrate therecord the automatic control and the control automatic diagnosis and the protectionautomatically and so on .Not only namely the integration of machinery product ishumans hand and body extending humans sense organ and the brains look has theintellectualized characteristic is the integration of machinery and the machineryelectrification distinguishes in the function essence. 2. Integration of machinery development condition integration of machinerydevelopment may divide into 3 stages roughly.20th century 60s before for the firststage this stage is called the initial stage .In this time the people determinationnot on own initiative uses the electronic technology the preliminary achievement toconsummate the mechanical product the performance .Specially in Second World Warperiod the war has stimulated the mechanical product and the electronic technologyunion these mechanical and electrical union military technology postwar transferscivilly to postwar economical restoration positive function .Developed and thedevelopment at that time generally speaking also is at the spontaneouscondition .Because at that time the electronic technology development not yetachieved certain level mechanical technical and electronic technology union alsonot impossible widespread and thorough development already developed the productwas also unable to promote massively. The 20th century 7080 ages for the second stagemay be called the vigorous development stage .This time the computer technologythe control technology the communication development has laid the technology basefor the integration of machinery development . Large-scale ultra large scaleintegrated circuit and microcomputer swift and violent development has provided thefull material base for the integration of machinery development .This timecharacteristic is :①A mechatronics word first generally is accepted in Japanprobably obtains the quite widespread acknowledgment to 1980s last stages in theworldwide scale ②The integration of machinery technology and the product obtainedthe enormous development ③The various countries start to the integration ofmachinery technology and the product give the very big attention and the support.1990s later periods started the integration of machinery technology the new stagewhich makes great strides forward to the intellectualized direction the integrationof machinery enters the thorough development time .At the same time optics thecommunication and so on entered the integration of machinery processes thetechnology also zhan to appear tiny in the integration of machinery the footappeared the light integration of machinery and the micro integration of machineryand so on the new branch On the other hand to the integration ofmachinery systemmodeling design the analysis and the integrated method the integration ofmachinery discipline system and the trend of development has all conducted thethorough research .At the same time because the hugeprogress which domains and so on artificial intelligence technology neural networktechnology and optical fiber technology obtain opened the development vast worldfor the integration of machinery technology .These research will urge theintegration of machinery further to establish the integrity the foundation and formsthe integrity gradually the scientific system. Our country is only then starts fromthe beginning of 1980s in this aspect to study with the application .The State Councilhad been established the integration of machinery leading group and lists as quot863plansquot this technology .When formulated quot95quot the plan and in 2010 developed thesummary had considered fully on international the influence which and possiblybrought from this about the integration of machinery technology developmenttrend .Many universities colleges and institutes the development facility and somelarge and middle scale enterprises have done the massive work to this technicaldevelopment and the application does not yield certain result but and so on theadvanced countries compared with Japan still has the suitable disparity. 3. Integration of machinery trend of development integrations of machinery arethe collection machinery the electron optics the control the computer theinformation and so on the multi-disciplinary overlapping syntheses its developmentand the progress rely on and promote the correlation technology development and theprogress .Therefore the integration of machinery main development direction is asfollows: 3.1 Intellectualized intellectualizations are 21st century integration ofmachinery technological development important development directions .Theartificial intelligence obtains day by day in the integration of machineryconstructors research takes the robot and the numerical control engine bedintellectualization is the important application .Here said quottheintellectualizationquot is to the machine behavior description is in the control theoryfoundation the absorption artificial intelligence the operations research thecomputer science the fuzzy mathematics the psychology the physiology and the chaosdynamics and so on the new thought the new method simulate the human intelligenceenable it to have abilities and so on judgment inference logical thinkingindependent decision-making obtains the higher control goal in order to .Indeedenable the integration of machinery product to have with the human identicalintelligence is not impossible also is nonessential .But the high performancethe high speed microprocessor enable the integration of machinery product to havepreliminary intelligent or humans partial intelligences then is completelypossible and essential. In the modern manufacture process the information has become the controlmanufacture industry the determining factor moreover is the most active actuationfactor .Enhances the manufacture system information-handling capacity to become themodern manufacture science development a key point .As a result of the manufacturesystem information organization and structure multi-level makes the information thegain the integration and the fusion presents draws up the character informationmeasuremulti-dimensional as well as information organizations multi-level .In themanufacture information structural model manufacture information uniform restraintdissemination processing and magnanimous data aspects and so on manufacture knowledgelibrary management all also wait for further break through. Each kind of artificial intelligence tool and the computation intelligence methodpromoted the manufacture intelligence development in the manufacture widespreadapplication .A kind based on the biological evolution algorithm computationintelligent agent in includes thescheduling problem in the combination optimization solution area of technologyreceives the more and more universal attention hopefully completes the combinationoptimization question when the manufacture the solution speed and the solutionprecision aspect breaks through the question scale in pairs the restriction .Themanufacture intelligence also displays in: The intelligent dispatch the intelligentdesign the intelligent processing the robot study the intelligent control theintelligent craft plan the intelligent diagnosis and so on are various These question key breakthrough may form the product innovation the basicresearch system. Between 2 modern mechanical engineering front science differentscience overlapping fusion will have the new science accumulation the economicaldevelopment and societys progress has had the new request and the expectation tothe science and technology thus will form the front science .The front science alsohas solved and between the solution scientific question border area .The front sciencehas the obvious time domain the domain and the dynamic characteristic .The projectfront science distinguished in the general basic science important characteristicis it has covered the key science and technology question which the project actualappeared. Manufacture system is a complex large-scale system for satisfies the manufacturesystem agility the fast response and fast reorganization ability must profit fromthe information science the life sciences and the social sciences and so on themulti-disciplinary research results the exploration manufacture system newarchitecture the manufacture pattern and the manufacture system effectiveoperational mechanism .Makes the system optimization the organizational structureand the good movement condition is makes the system modeling the simulation andthe optimized essential target .Not only the manufacture system new architecture tomakes the enterprise the agility and may reorganize ability to the demand responseability to have the vital significance moreover to made the enterprise first floorproduction equipment the flexibility and may dynamic reorganization ability set ahigher request .The biological manufacture view more and more many is introduced themanufacture system satisfies the manufacture system new request. The study organizes and circulates method and technique of complicated systemfrom the biological phenomenon is a valid exit which will solve many hard nut tocracks that manufacturing industry face from now on currently .Imitating to livingwhat manufacturing point is mimicry living creature organ of from the organizationfrom match more from growth with from evolution etc. function structure and circulatemode of a kind of manufacturing system and manufacturing process. The manufacturing drives in the mechanism under continuously by ones ownperfect raise on organizing structure and circulating modeand thus to adapt theprocess ofwith ability for the environment .For from descend but the last productproceed together a design and make a craft rules the auto of the distance born producesystem of dynamic state reorganization and product and manufacturing the system tendautomatically excellent provided theories foundation and carry out acondition .Imitate to living a manufacturing to belong to manufacturing science andlife science ofquotthe far good luck is miscellaneous to hand overquot it will produceto the manufacturing industry for 21 centuries huge of influence .机电一体化摘要机电一体化是现代科学技术发展的必然结果本文简述了机电一体化技术的基本概要和发展背景。

自动化生产线--外文翻译

自动化生产线--外文翻译

English Translation Material1. Transfer MachineThe highest degree of automation with special-purpose, multifunction machines is achieved by using transfer machines. Transfer machine are essentially a combination of individual workstations arranged in the required sequence, connected by work transfer devices, and integrated with interlocked controls. Workplaces are automatically transferred between the stations, which are equipped with horizontal, vertical, or angular units to perform machining , gaging ,workplace repositioning, assembling, washing, or other operation. The two major classes of transfer machines are rotary and in-line types.An important advantage of transfer machines is that they permit the maximum number of operations to be performed simultaneously. There is relatively no limitation on the number of workplace surface or planes that can be machined, since devices can be interposed in transfer machines at practically any point for inverting, rotating, or orienting the workplace, so as to complete the machining operations. Work repositioning also minimizes the need for angular machining heads and allows operations to be performed in optimum time. Complete processing from rough casting or forging to finished parts is often possible.One or more finished parts are produced on a transfer machine with each index of the transfer system that moves the parts from stations to stations. Production efficiencies of such machines generally range from 50% for a machine variety of different parts to 85% for a machine producing one part, in high production, depending upon the workplace and how the machine is operated(material handling method, maintenance procedures, etc. )All types of machining operations, such as drilling, tapping, reaming, boring, and milling, are economically combined on transfer machines. Lathe-type operations such as turning and facing are also being performed on in-line transfer machine, with the workplace being rotated in selectedmachining stations. Turning operations are performed in lathe-type segments in which toolholders are fed on slides mounted on tunnel-type bridge units. Workplace are located on centers and rotated by chucks at each turning station. Turning stations with CNC are available for use on in-line transfer machine. The CNC units allow the machine cycles to be easily altered to accommodate changes in workplace design and can also be used for automatic tool adjustments.Maximum production economy on transfer lines is often achieved by assemblingparts to the workplaces during their movement through the machine. such items as bushings, seals, welch plugs, and heat tubes can be assembled and then machine or tested during the transfer machining sequence. Automatic nut torquing following the application of part subassemblies can also be carried out.Gundrilling or reaming on transfer machines is an ideal application provided that proper machining units are employed and good bushing practices are followed. Contour boring and turning of spherical seats and other surface can be done with tracer-controlled single-point inserts, thus eliminating the need for costly special form tools. In-process gaging of reamed or bored holes and automatic tool setting are done on transfer machines to maintain close tolerances.Less conventional operations sometimes performed on transfer machines include grinding, induction heating of ring gears for shrink-fit pressing on flywheels, induction hardening of valve seats, deep rolling to apply compressive preloads, and burnishing.Transfer machines have long been used in the automotive industry for production rates with a minimum of manual part handling. In addition to decreasing labor requirements, such machines ensure consistently uniform, high-quality parts at lower cost. They are no longer confined just to rough machining and now often eliminate the need for subsequent operations such as grinding and honing.More recently, there has been an increasing demand for transfer machines to handle lower volumes of similar or even different parts in smaller sizes, with means for quick changeover between production runs. Built-in flexibility, the ability to rearrange and interchange machine units, and the provision of idle stations increases the cost of any transfer machine, but such feature are economically feasible when product redesigns are common. Many such machines are now being used in nonautomotive applications for lower production requirements.Special feature now available to reduce the time required for part changeover include standardized dimensions, modular construction, interchangeable fixtures mounted on master pallets that remain on the machine, interchangeable fixture components, the ability to lock out certain stations for different parts by means of selector switches, and programmable controllers. Product design is also important, and common transfer and clamping surfaces should be provided on different parts whenever possible.2. Programmable Logic ControllersA programmable logic controller (PLC) is a solid-state device used to control machine motion or process operation by means of a stored program. The PLC sends output control signals output and receive input signals through input/output (I/O) devices. A PLC controls output in response to stimuli at the inputs according to the logic prescribed by the stored program. The inputs are made up of limit switches, pushbuttons, thumbwheels, switches, pulses, analog signal, ASCII serial data, and binary or BCD data from absolute position encoders. The output are voltage or currentlevel to drive end devices such as solenoids, motor starters, relays, lights, and so on. Other output device include analog devices, digital BCD displays, ASCII compatible devices, servo variable-speed drives, and even computers.Programmable controllers were developed (circa in 1968) when General Motors Corps, and other automobile manufacturers were experimenting to see if there might be an alternative to scrapping all their hardwired control panel of machine tools and other production equipment during a model changeover. This annual tradition was necessary because rewriting of the panels was more expensive than buying new ones. The automotive companies approached a number of control equipment manufacturers and asked them to develop a control system that would have a longer productive life without major rewriting, but would still be understandable to and repairable by the plant personnel. The new product was named a “programmable controller”.The processor part of the PLC contains a central processing unit and memory. The central processing unit (CPU) is the “traffic direction” of the processor, the memory stores information. Coming into the processor are the electrical signals from the input devices, as conditioned by the input module to voltage levels acceptable to processor logic. The processor scans the state of I/O and updates outputs stored in the memory of the PLC. For example, the processor may be programmed so that if an input connected to a limit switch is true (limit switch closed), then a corresponding output wired to an output module is to be energized. This processor remembers this command through its memory and compares on each scan to see if that limit switch is, in fact, closed. If it is closed ,the processor energizes the solenoid by turning on the output module.The output device, such as a solenoid or motor starter, is wired to an output module’s terminal, and it receives its shift signal from the processor, in effect, the processor is performing a long and complicated series of logic decisions. The PLC performs such decisions sequentially and in according with the stored program. Similarly, analog I/O allows the processor to make decisions based on the magnitude of a signal, rather than just if it is on or off. For example, the processor may be programmed to increase or decrease the steam flow to a boiler (analog output) based on a comparison of the actual temperature in the boiler (analog input ) This is often performed by utilizing the built-in PID (proportional, integral, derivative) capabilities of the processor.Because a PLC is “software based”, its control logic functions can be changed by reprogramming its memory. Keyboard programming devices facilitate entry of the revised program, which can be design to cause an existing machine or process to operate in a different sequence or to different level of, or combinations of stimuli. Hardware modifications are needed only if additional, changed, or relocated input/output device are involved.3. Automated AssemblyAssembly in the manifacturing process consists of putting together all the component parts and sub-assemblies of a given product, fastening, performing inspections and function tests, labeling, separating good assembly from bad, and packaging and or preparing them for final use. Assembly is unique compared to the methods of manufacturing such as machining, grinding, and welding in that most of these processes invovle only a few disciplines and possibly only one. Most of these nonassembly operations cannot be performed weithout the aid of equipment; thus the development of automatic methods has been necessary rather than optional. Assembly, on the other hand, may involve in one machine many of the fastening methods,such as riveting, welding, screwdriving,and adhesive application,as well as automatic parts seletion, proding, gaging, functional testing, labeling,and packaging. The state of the art in assembly operations has not reached the level of standardization; much manual work is stillbeing performed in this area.Assembly has traditionally been one of the highest areas of direct labor costs. In some cases, assembly accounts for 50% or more of manufacturing csosts and typically 20% ~50%. However, closer cooperation between design and manufacturing engineers has resulted in reducing and in a few cases eliminating altogether the need for assembly. When asssembly is required, improved design or products has simplified automated (semiautomatic or automatic) assembly.Considerations for Automated AssemblyBefore automated assembly is adopted, several factors should be considerd. These include practicality of the process for automation, simulation for economic considerations and justification, management involvement, and labor relations. Determining the practicality of automated assembly required careful evaluation of the following:a)The number of parts in assembly.b)Design of the parts with respect to producibility, assembility, automatic handling, and testability (materials, forms, dimensional tolerances, and weights).c)Quality of parts to be assembled. Out-of-tolerance or defective parts can cause production losses and increase costs because of stoppages.d)Availablity of qualiyied, technically competent personal to be responsible for equipment operation.e) Total production and production-rate requipments.Product variations and frequency of design changes.f)Joining methods required.g)Assembly times and costs.h)Assembly lines or system configuration, using simulation, including material handling.译文1. 自动生产线使用自动生产线可以利用专用、多功能机床来实现最大程度的自动化。

机床行业中英文对照

机床行业中英文对照

机床行业中英文对照下面是机床行业中常见的英文对照:- 机床行业:Machine tool industry- 机床:Machine tool- 数控机床:Computer Numerical Control (CNC) machine tool - 金属切削机床:Metal cutting machine tool- 金属加工机床:Metal processing machine tool- 金属成型机床:Metal forming machine tool- 车床:Lathe- 铣床:Milling machine- 钻床:Drilling machine- 磨床:Grinding machine- 塑料加工机床:Plastic processing machine tool- 精密机床:Precision machine tool- 自动化机床:Automated machine tool- 机床控制系统:Machine tool control system- 数控系统:Numerical control system- 机床加工能力:Machine tool processing capacity- 加工精度:Processing accuracy- 切削速度:Cutting speed- 进给速度:Feed rate- 主轴转速:Spindle speed- 工件夹紧:Workpiece clamping- 工件定位:Workpiece positioning- 刀具选择:Tool selection- 刀具更换:Tool change- 冷却液:Coolant- 刀柄:Tool holder- 加工中心:Machining center- 排屑:Chip removal- 刀具磨损:Tool wear- 折弯机:Bending machine- 冲床:Punching machine- 压力机:Press machine- 剪板机:Shearing machine- 抛光机:Polishing machine- 螺纹机床:Thread cutting machine tool - 铸造机床:Casting machine tool- 灰铁:Gray iron- 球墨铸铁:Ductile iron- 铝合金:Aluminum alloy- 不锈钢:Stainless steel- 最大加工尺寸:Maximum processing size - 机床设计:Machine tool design- 机床制造:Machine tool manufacturing - 机床市场:Machine tool market- 机床出口:Machine tool export- 机床进口:Machine tool import- 机床行业协会:Machine tool industry association。

机电一体化全自动横切机

机电一体化全自动横切机

适 合最 大原 板 宽度 :0 0mm 5 0 适 合玻 璃板 厚 度 :. ~1 1 5 9mm
切 割直 线度 精 度 : 。 ±0 5mm 切 割对 角线 精 度 :
< 3 m 板 长 : 1mm ± 3 6 m 板 长 : 1 5mm ~ ± .
切割 直 线度 精度 : . ±0 5mm
第 6期 总 15期 - 9 第
调 节 冷却 水 量 , 制 温度 , 分方 便 , 控 十 效果 很 好 。设
而 且对 部 分在 并不 理想 的工作 环境 下使 用 的设 备如 何 提高 其适 应性 , 高 生产效 率 , 有借 鉴作 用 。 提 极
R e o t u to fS r w r Co p e s r c nsr c i n o c e Ai m r s o
最大 回刀速 度 :0 0mm/ 30 s
3 设 备 功 能
3 1 优 化 的 切 割 功 能 .
在现 场操 作 台 的触摸 屏 上 ( 控制 箱 中) 以设 或 可 定 几种 常 用产 品 和 一 种废 板 规 格 , 当使 用 优 化 切 割 时 , 切 机 可 以 根 据 人 工 检 测 ( 在 线 检 测 设 备 检 横 或
种 机 电 一体 化 的 全 自动 玻 璃 横 切 机 。 关 键 词 浮 法 玻 璃 全 自动 横 切 机
文 章 编 号 : 0 3 1 8 ( 0 7 0 —0 2 —0 10 — 9 7 2 0 )6 0 7 2
图分 类 号 : Q1 1 文 献 标 识 码 : T 7 A
1 概
维普资讯
全 国性 建 材 科 技 期 刊 — — 《 璃 》 2 0 年 玻 07
第 6期
总第 15 9 期

全自动激光切割设备使用手册英文版

全自动激光切割设备使用手册英文版

全自动激光切割设备使用手册英文版Full Automatic Laser Cutting Equipment User ManualWelcome to the user manual for our full automatic laser cutting equipment. This manual will provide you with all the necessary information to operate the equipment efficiently and effectively.Safety Precautions- Always wear appropriate safety gear such as goggles and gloves when operating the equipment.- Keep the work area clean and free from any obstacles.- Do not operate the equipment near flammable materials.- Familiarize yourself with the emergency stop button in case of any emergencies.Equipment Overview- The laser cutting equipment is equipped with a high-power laser beam for precision cutting.- It has a user-friendly control panel for easy operation.- The equipment is designed for cutting various materials such as metal, acrylic, and wood.Operating Instructions1. Power on the equipment using the main switch.2. Set the desired cutting parameters on the control panel.3. Place the material to be cut on the cutting bed.4. Press the start button to initiate the cutting process.5. Monitor the cutting process and make any adjustments as needed.6. Once the cutting is complete, power off the equipment and remove the cut material.Maintenance and Troubleshooting- Regularly clean the laser cutting lens and cutting bed to ensure optimal performance.- Check for any loose parts or damaged components before each use.- In case of any malfunctions, refer to the troubleshooting section of the manual for solutions.Technical Specifications- Laser power: [insert laser power]- Cutting speed: [insert cutting speed]- Cutting thickness: [insert cutting thickness]- Dimensions: [insert dimensions]- Weight: [insert weight]Warranty Information- The equipment comes with a [insert warranty period] warranty for any manufacturing defects.- Contact our customer service department for any warranty claims or technical support.ConclusionWe hope this user manual provides you with all the necessary information to operate our full automatic laser cutting equipment effectively. If you have any further questions or need assistance, feel free to contact our customer service department. Happy cutting!。

自动横切机操作规程全自动横切机

自动横切机操作规程全自动横切机

自动横切机操作规星全自动横切机
自动横切机操作规程1:先检查无纺布的质量,把无纺布穿进轴芯安装在机座上,把外包装拆除,再把无纺布按顺序摆设整齐,然后把轴芯充满气。

2:打开纠偏控制器电源,适当调节张力输出电流大小,把光电纠偏器安好,光电与无纺布间有10 毫米距离,光电纠偏器阵动表示调好。

3:根据无纺布的颜色选择相应的纠偏极性,电眼跟踪内深色外浅色极性为“一丨”,电眼跟踪内浅色外深色极性为
“丨O
4 :根据无纺布的质量选择相应的单电眼或双电眼工作模式,按主刀切断速度调节光电纠偏器的纠偏速度,0最慢9最快。

5:合上微电脑开关,数码显示正常,等待15秒,听到步进电机发出声响后再进行下一步操作。

6 :将光标移到显示屏“长度”上,按数据键“ +、- ”,调节无纺布切割的长度,适当调节主刀横切速度,放料速度调节到与主刀横切速度大至相同。

7:设定好无纺布切割张数,倒数第五张会报警,按下“工作键或运行键”开始工作。

8:工作过程中根据无纺布的偏差,按“停止键”停机,调节无纺布的长度或胶棍送料的长度,再进行切割工作。

9:无纺布需中间切割,先把圆刀向卡槽下压2〜3毫米,圆刀弹簧的一边紧靠卡槽边侧,工作过程中根据无纺布的偏差,调节光电纠偏器光电的位置。

10:工作完毕后,关上光电纠偏控制器电源,关上微电脑电源。

机电一体化中英文互译

机电一体化中英文互译

,.机械专业中英文对照英语词汇陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint 曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering,.调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheel后角clearance angle龙门刨削planing主轴spindle主轴箱headstock卡盘chuck加工中心machining center车刀lathe tool车床lathe钻削镗削bore车削turning磨床grinder基准benchmark钳工locksmith锻forge压模stamping焊weld拉床broaching machine拉孔broaching装配assembling铸造found流体动力学fluid dynamics流体力学fluid mechanics加工machining液压hydraulic pressure切线tangent机电一体化mechanotronics mechanical-electrical integration 气压air pressure pneumatic pressure稳定性stability介质medium液压驱动泵fluid clutch液压泵hydraulic pump阀门valve失效invalidation强度intensity载荷load应力stress安全系数safty factor可靠性reliability螺纹thread螺旋helix 键spline销pin滚动轴承rolling bearing滑动轴承sliding bearing弹簧spring制动器arrester brake十字结联轴节crosshead联轴器coupling链chain皮带strap精加工finish machining粗加工rough machining变速箱体gearbox casing腐蚀rust氧化oxidation磨损wear耐用度durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor集成电路integrate circuit挡板orifice plate残余应力residual stress套筒sleeve扭力torsion冷加工cold machining电动机electromotor汽缸cylinder过盈配合interference fit热加工hotwork摄像头CCD camera倒角rounding chamfer优化设计optimal design工业造型设计industrial moulding design 有限元finite element滚齿hobbing插齿gear shaping伺服电机actuating motor铣床milling machine钻床drill machine镗床boring machine步进电机stepper motor丝杠screw rod导轨lead rail,.组件subassembly可编程序逻辑控制器Programmable Logic Controller PLC 电火花加工electric spark machining电火花线切割加工electrical discharge wire - cutting相图phase diagram热处理heat treatment固态相变solid state phase changes有色金属nonferrous metal陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear斜齿圆柱齿轮helical-spur gear 直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy 动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening,.回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheelAssembly line 组装线Layout 布置图Conveyer 流水线物料板Rivet table 拉钉机Rivet gun 拉钉枪Screw driver 起子Pneumatic screw driver 气动起子worktable 工作桌OOBA 开箱检查fit together 组装在一起fasten 锁紧(螺丝)fixture 夹具(治具)pallet 栈板barcode 条码barcode scanner 条码扫描器fuse together 熔合fuse machine热熔机repair修理operator作业员QC品管supervisor 课长ME 制造工程师MT 制造生技cosmetic inspect 外观检查inner parts inspect 内部检查thumb screw 大头螺丝lbs. inch 镑、英寸EMI gasket 导电条front plate 前板rear plate 后板chassis 基座bezel panel 面板power button 电源按键reset button 重置键Hi-pot test of SPS 高源高压测试Voltage switch of SPS 电源电压接拉键sheet metal parts 冲件plastic parts 塑胶件SOP 制造作业程序material check list 物料检查表work cell 工作间trolley 台车carton 纸箱sub-line 支线left fork 叉车personnel resource department 人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |plein|刨床miller铣床grinder磨床linear cutting线切割electrical sparkle电火花welder电焊机staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vice manager副理section supervisor课长deputy section supervisor =vice section superisor副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检,.to connect material接料to reverse material 翻料wet station沾湿台Tiana天那水cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |\\'skr?pid|报废scrape ..v.刮;削deficient purchase来料不良manufacture procedure制程deficient manufacturing procedure制程不良oxidation |\\' ksi\\'dei?n|氧化scratch刮伤dents压痕defective upsiding down抽芽不良defective to staking铆合不良embedded lump镶块feeding is not in place送料不到位stamping-missing漏冲production capacity生产力education and training教育与训练proposal improvement提案改善spare parts=buffer备件forklift叉车trailer=long vehicle拖板车compound die合模die locker锁模器pressure plate=plate pinch压板bolt螺栓administration/general affairs dept总务部automatic screwdriver电动启子thickness gauge厚薄规gauge(or jig)治具power wire电源线buzzle蜂鸣器defective product label不良标签identifying sheet list标示单location地点present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheet PCE组装厂生产排配表model机锺work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门stock age analysis sheet 库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked 待验或重工total合计cause description原因说明part number/ P/N 料号type形态item/group/class类别quality品质prepared by制表notes说明year-end physical inventory difference analysis sheet 年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板,.tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸,.convex凹short射料不足nick缺口speck瑕??shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机阿基米德蜗杆Archimedes worm安全系数safety factor; factor of safety安全载荷safe load凹面、凹度concavity扳手wrench板簧flat leaf spring半圆键woodruff key变形deformation摆杆oscillating bar摆动从动件oscillating follower摆动从动件凸轮机构cam with oscillating follower 摆动导杆机构oscillating guide-bar mechanism 摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile摆线运动规律cycloidal motion摆线针轮cycloidal-pin wheel包角angle of contact保持架cage背对背安装back-to-back arrangement背锥back cone ;normal cone背锥角back angle背锥距back cone distance比例尺scale比热容specific heat capacity闭式链closed kinematic chain闭链机构closed chain mechanism臂部arm变频器frequency converters变频调速frequency control of motor speed变速speed change变速齿轮change gear change wheel变位齿轮modified gear变位系数modification coefficient标准齿轮standard gear,.标准直齿轮standard spur gear表面质量系数superficial mass factor表面传热系数surface coefficient of heat transfer表面粗糙度surface roughness并联式组合combination in parallel并联机构parallel mechanism并联组合机构parallel combined mechanism并行工程concurrent engineering并行设计concurred design, CD不平衡相位phase angle of unbalance不平衡imbalance (or unbalance)不平衡量amount of unbalance不完全齿轮机构intermittent gearing波发生器wave generator波数number of waves补偿compensation参数化设计parameterization design, PD残余应力residual stress操纵及控制装置operation control device槽轮Geneva wheel槽轮机构Geneva mechanism ;Maltese cross槽数Geneva numerate槽凸轮groove cam侧隙backlash差动轮系differential gear train差动螺旋机构differential screw mechanism差速器differential常用机构conventional mechanism; mechanism in common use 车床lathe承载量系数bearing capacity factor承载能力bearing capacity成对安装paired mounting尺寸系列dimension series齿槽tooth space齿槽宽spacewidth齿侧间隙backlash齿顶高addendum齿顶圆addendum circle齿根高dedendum齿根圆dedendum circle齿厚tooth thickness齿距circular pitch齿宽face width齿廓tooth profile 齿廓曲线tooth curve齿轮gear齿轮变速箱speed-changing gear boxes齿轮齿条机构pinion and rack齿轮插刀pinion cutter; pinion-shaped shaper cutter 齿轮滚刀hob ,hobbing cutter齿轮机构gear齿轮轮坯blank齿轮传动系pinion unit齿轮联轴器gear coupling齿条传动rack gear齿数tooth number齿数比gear ratio齿条rack齿条插刀rack cutter; rack-shaped shaper cutter齿形链、无声链silent chain齿形系数form factor齿式棘轮机构tooth ratchet mechanism插齿机gear shaper重合点coincident points重合度contact ratio冲床punch传动比transmission ratio, speed ratio传动装置gearing; transmission gear传动系统driven system传动角transmission angle传动轴transmission shaft串联式组合combination in series串联式组合机构series combined mechanism串级调速cascade speed control创新innovation creation创新设计creation design垂直载荷、法向载荷normal load唇形橡胶密封lip rubber seal磁流体轴承magnetic fluid bearing从动带轮driven pulley从动件driven link, follower从动件平底宽度width of flat-face从动件停歇follower dwell从动件运动规律follower motion从动轮driven gear粗线bold line粗牙螺纹coarse thread大齿轮gear wheel,.打包机packer打滑slipping带传动belt driving带轮belt pulley带式制动器band brake单列轴承single row bearing单向推力轴承single-direction thrust bearing单万向联轴节single universal joint单位矢量unit vector当量齿轮equivalent spur gear; virtual gear当量齿数equivalent teeth number; virtual number of teeth当量摩擦系数equivalent coefficient of friction当量载荷equivalent load刀具cutter导数derivative倒角chamfer导热性conduction of heat导程lead导程角lead angle等加等减速运动规律parabolic motion; constant acceleration and deceleration motion等速运动规律uniform motion; constant velocity motion等径凸轮conjugate yoke radial cam等宽凸轮constant-breadth cam等效构件equivalent link等效力equivalent force等效力矩equivalent moment of force等效量equivalent等效质量equivalent mass等效转动惯量equivalent moment of inertia等效动力学模型dynamically equivalent model底座chassis低副lower pair点划线chain dotted line(疲劳)点蚀pitting垫圈gasket垫片密封gasket seal碟形弹簧belleville spring顶隙bottom clearance定轴轮系ordinary gear train; gear train with fixed axes动力学dynamics动密封kinematical seal动能dynamic energy动力粘度dynamic viscosity 动力润滑dynamic lubrication动平衡dynamic balance动平衡机dynamic balancing machine动态特性dynamic characteristics动态分析设计dynamic analysis design动压力dynamic reaction动载荷dynamic load端面transverse plane端面参数transverse parameters端面齿距transverse circular pitch端面齿廓transverse tooth profile端面重合度transverse contact ratio端面模数transverse module端面压力角transverse pressure angle锻造forge对称循环应力symmetry circulating stress对心滚子从动件radial (or in-line ) roller follower对心直动从动件radial (or in-line ) translating follower对心移动从动件radial reciprocating follower对心曲柄滑块机构in-line slider-crank (or crank-slider) mechanism 多列轴承multi-row bearing多楔带poly V-belt多项式运动规律polynomial motion多质量转子rotor with several masses惰轮idle gear额定寿命rating life额定载荷load ratingII 级杆组dyad发生线generating line发生面generating plane法面normal plane法面参数normal parameters法面齿距normal circular pitch法面模数normal module法面压力角normal pressure angle法向齿距normal pitch法向齿廓normal tooth profile法向直廓蜗杆straight sided normal worm法向力normal force反馈式组合feedback combining反向运动学inverse ( or backward) kinematics反转法kinematic inversion反正切Arctan范成法generating cutting,.仿形法form cutting方案设计、概念设计concept design, CD防振装置shockproof device飞轮flywheel飞轮矩moment of flywheel非标准齿轮nonstandard gear非接触式密封non-contact seal非周期性速度波动aperiodic speed fluctuation非圆齿轮non-circular gear粉末合金powder metallurgy分度线reference line; standard pitch line分度圆reference circle; standard (cutting) pitch circle 分度圆柱导程角lead angle at reference cylinder分度圆柱螺旋角helix angle at reference cylinder分母denominator分子numerator分度圆锥reference cone; standard pitch cone分析法analytical method封闭差动轮系planetary differential复合铰链compound hinge复合式组合compound combining复合轮系compound (or combined) gear train复合平带compound flat belt复合应力combined stress复式螺旋机构Compound screw mechanism复杂机构complex mechanism杆组Assur group干涉interference刚度系数stiffness coefficient刚轮rigid circular spline钢丝软轴wire soft shaft刚体导引机构body guidance mechanism刚性冲击rigid impulse (shock)刚性转子rigid rotor刚性轴承rigid bearing刚性联轴器rigid coupling高度系列height series高速带high speed belt高副higher pair格拉晓夫定理Grashoff`s law根切undercutting公称直径nominal diameter高度系列height series功work 工况系数application factor工艺设计technological design工作循环图working cycle diagram工作机构operation mechanism工作载荷external loads工作空间working space工作应力working stress工作阻力effective resistance工作阻力矩effective resistance moment公法线common normal line公共约束general constraint公制齿轮metric gears功率power功能分析设计function analyses design共轭齿廓conjugate profiles共轭凸轮conjugate cam构件link鼓风机blower固定构件fixed link; frame固体润滑剂solid lubricant关节型操作器jointed manipulator惯性力inertia force惯性力矩moment of inertia ,shaking moment 惯性力平衡balance of shaking force惯性力完全平衡full balance of shaking force惯性力部分平衡partial balance of shaking force 惯性主矩resultant moment of inertia惯性主失resultant vector of inertia冠轮crown gear广义机构generation mechanism广义坐标generalized coordinate轨迹生成path generation轨迹发生器path generator滚刀hob滚道raceway滚动体rolling element滚动轴承rolling bearing滚动轴承代号rolling bearing identification code 滚针needle roller滚针轴承needle roller bearing滚子roller滚子轴承roller bearing滚子半径radius of roller滚子从动件roller follower,.滚子链roller chain滚子链联轴器double roller chain coupling滚珠丝杆ball screw滚柱式单向超越离合器roller clutch过度切割undercutting函数发生器function generator函数生成function generation含油轴承oil bearing耗油量oil consumption耗油量系数oil consumption factor赫兹公式H. Hertz equation合成弯矩resultant bending moment合力resultant force合力矩resultant moment of force黑箱black box横坐标abscissa互换性齿轮interchangeable gears花键spline滑键、导键feather key滑动轴承sliding bearing滑动率sliding ratio滑块slider环面蜗杆toroid helicoids worm环形弹簧annular spring缓冲装置shocks; shock-absorber灰铸铁grey cast iron回程return回转体平衡balance of rotors混合轮系compound gear train积分integrate机电一体化系统设计mechanical-electrical integration system design 机构mechanism机构分析analysis of mechanism机构平衡balance of mechanism机构学mechanism机构运动设计kinematic design of mechanism机构运动简图kinematic sketch of mechanism机构综合synthesis of mechanism机构组成constitution of mechanism机架frame, fixed link机架变换kinematic inversion机器machine机器人robot机器人操作器manipulator 机器人学robotics技术过程technique process技术经济评价technical and economic evaluation技术系统technique system机械machinery机械创新设计mechanical creation design, MCD机械系统设计mechanical system design, MSD机械动力分析dynamic analysis of machinery机械动力设计dynamic design of machinery机械动力学dynamics of machinery机械的现代设计modern machine design机械系统mechanical system机械利益mechanical advantage机械平衡balance of machinery机械手manipulator机械设计machine design; mechanical design机械特性mechanical behavior机械调速mechanical speed governors机械效率mechanical efficiency机械原理theory of machines and mechanisms机械运转不均匀系数coefficient of speed fluctuation机械无级变速mechanical stepless speed changes基础机构fundamental mechanism基本额定寿命basic rating life基于实例设计case-based design,CBD基圆base circle基圆半径radius of base circle基圆齿距base pitch基圆压力角pressure angle of base circle基圆柱base cylinder基圆锥base cone急回机构quick-return mechanism急回特性quick-return characteristics急回系数advance-to return-time ratio急回运动quick-return motion棘轮ratchet棘轮机构ratchet mechanism棘爪pawl极限位置extreme (or limiting) position极位夹角crank angle between extreme (or limiting) positions计算机辅助设计computer aided design, CAD计算机辅助制造computer aided manufacturing, CAM计算机集成制造系统computer integrated manufacturing system, CIMS,.计算力矩factored moment; calculation moment 计算弯矩calculated bending moment加权系数weighting efficient加速度acceleration加速度分析acceleration analysis加速度曲线acceleration diagram尖点pointing; cusp尖底从动件knife-edge follower间隙backlash间歇运动机构intermittent motion mechanism 减速比reduction ratio减速齿轮、减速装置reduction gear减速器speed reducer减摩性anti-friction quality渐开螺旋面involute helicoid渐开线involute渐开线齿廓involute profile渐开线齿轮involute gear渐开线发生线generating line of involute渐开线方程involute equation渐开线函数involute function渐开线蜗杆involute worm渐开线压力角pressure angle of involute渐开线花键involute spline简谐运动simple harmonic motion键key键槽keyway交变应力repeated stress交变载荷repeated fluctuating load交叉带传动cross-belt drive交错轴斜齿轮crossed helical gears胶合scoring角加速度angular acceleration角速度angular velocity角速比angular velocity ratio角接触球轴承angular contact ball bearing角接触推力轴承angular contact thrust bearing 角接触向心轴承angular contact radial bearing 角接触轴承angular contact bearing铰链、枢纽hinge校正平面correcting plane接触应力contact stress接触式密封contact seal阶梯轴multi-diameter shaft 结构structure结构设计structural design截面section节点pitch point节距circular pitch; pitch of teeth节线pitch line节圆pitch circle节圆齿厚thickness on pitch circle节圆直径pitch diameter节圆锥pitch cone节圆锥角pitch cone angle解析设计analytical design紧边tight-side紧固件fastener径节diametral pitch径向radial direction径向当量动载荷dynamic equivalent radial load径向当量静载荷static equivalent radial load径向基本额定动载荷basic dynamic radial load rating 径向基本额定静载荷basic static radial load tating径向接触轴承radial contact bearing径向平面radial plane径向游隙radial internal clearance径向载荷radial load径向载荷系数radial load factor径向间隙clearance静力static force静平衡static balance静载荷static load静密封static seal局部自由度passive degree of freedom矩阵matrix矩形螺纹square threaded form锯齿形螺纹buttress thread form矩形牙嵌式离合器square-jaw positive-contact clutch 绝对尺寸系数absolute dimensional factor绝对运动absolute motion绝对速度absolute velocity均衡装置load balancing mechanism抗压强度compression strength开口传动open-belt drive开式链open kinematic chain开链机构open chain mechanism可靠度degree of reliability,.可靠性reliability可靠性设计reliability design, RD空气弹簧air spring空间机构spatial mechanism空间连杆机构spatial linkage空间凸轮机构spatial cam空间运动副spatial kinematic pair空间运动链spatial kinematic chain空转idle宽度系列width series框图block diagram雷诺方程Reynolds‘s equation离心力centrifugal force离心应力centrifugal stress离合器clutch离心密封centrifugal seal理论廓线pitch curve理论啮合线theoretical line of action隶属度membership力force力多边形force polygon力封闭型凸轮机构force-drive (or force-closed) cam mechanism 力矩moment力平衡equilibrium力偶couple力偶矩moment of couple连杆connecting rod, coupler连杆机构linkage连杆曲线coupler-curve连心线line of centers链chain链传动装置chain gearing链轮sprocket sprocket-wheel sprocket gear chain wheel联组V 带tight-up V belt联轴器coupling shaft coupling两维凸轮two-dimensional cam临界转速critical speed六杆机构six-bar linkage龙门刨床double Haas planer轮坯blank轮系gear train螺杆screw螺距thread pitch螺母screw nut 螺旋锥齿轮helical bevel gear螺钉screws螺栓bolts螺纹导程lead螺纹效率screw efficiency螺旋传动power screw螺旋密封spiral seal螺纹thread (of a screw)螺旋副helical pair螺旋机构screw mechanism螺旋角helix angle螺旋线helix ,helical line绿色设计green design design for environment马耳他机构Geneva wheel Geneva gear马耳他十字Maltese cross脉动无级变速pulsating stepless speed changes脉动循环应力fluctuating circulating stress脉动载荷fluctuating load铆钉rivet迷宫密封labyrinth seal密封seal密封带seal belt密封胶seal gum密封元件potted component密封装置sealing arrangement面对面安装face-to-face arrangement面向产品生命周期设计design for product`s life cycle, DPLC 名义应力、公称应力nominal stress模块化设计modular design, MD模块式传动系统modular system模幅箱morphology box模糊集fuzzy set模糊评价fuzzy evaluation模数module摩擦friction摩擦角friction angle摩擦力friction force摩擦学设计tribology design, TD摩擦阻力frictional resistance摩擦力矩friction moment摩擦系数coefficient of friction摩擦圆friction circle磨损abrasion wear; scratching末端执行器end-effector,.目标函数objective function耐腐蚀性corrosion resistance耐磨性wear resistance挠性机构mechanism with flexible elements挠性转子flexible rotor内齿轮internal gear内齿圈ring gear内力internal force内圈inner ring能量energy能量指示图viscosity逆时针counterclockwise (or anticlockwise)啮出engaging-out啮合engagement, mesh, gearing啮合点contact points啮合角working pressure angle啮合线line of action啮合线长度length of line of action啮入engaging-in牛头刨床shaper凝固点freezing point; solidifying point扭转应力torsion stress扭矩moment of torque扭簧helical torsion spring诺模图NomogramO 形密封圈密封O ring seal盘形凸轮disk cam盘形转子disk-like rotor抛物线运动parabolic motion疲劳极限fatigue limit疲劳强度fatigue strength偏置式offset偏( 心) 距offset distance偏心率eccentricity ratio偏心质量eccentric mass偏距圆offset circle偏心盘eccentric偏置滚子从动件offset roller follower偏置尖底从动件offset knife-edge follower偏置曲柄滑块机构offset slider-crank mechanism 拼接matching评价与决策evaluation and decision频率frequency平带flat belt 平带传动flat belt driving平底从动件flat-face follower平底宽度face width平分线bisector平均应力average stress平均中径mean screw diameter平均速度average velocity平衡balance平衡机balancing machine平衡品质balancing quality平衡平面correcting plane平衡质量balancing mass平衡重counterweight平衡转速balancing speed平面副planar pair, flat pair平面机构planar mechanism平面运动副planar kinematic pair平面连杆机构planar linkage平面凸轮planar cam平面凸轮机构planar cam mechanism平面轴斜齿轮parallel helical gears普通平键parallel key其他常用机构other mechanism in common use起动阶段starting period启动力矩starting torque气动机构pneumatic mechanism奇异位置singular position起始啮合点initial contact , beginning of contact气体轴承gas bearing千斤顶jack嵌入键sunk key强迫振动forced vibration切齿深度depth of cut曲柄crank曲柄存在条件Grashoff`s law曲柄导杆机构crank shaper (guide-bar) mechanism曲柄滑块机构slider-crank (or crank-slider) mechanism 曲柄摇杆机构crank-rocker mechanism曲齿锥齿轮spiral bevel gear曲率curvature曲率半径radius of curvature曲面从动件curved-shoe follower曲线拼接curve matching曲线运动curvilinear motion。

机电一体化专业介绍及前景

机电一体化专业介绍及前景
电工技术基础实训、金工实习、电子技术基础实训、液压传动实训、 电力拖动控制线路实训、毕业实训、职业生涯规划、大学生涯规划、 职业环境认知、成功素养拓展、工作能力提升等。
专业软件
设计制图:AUTO CAD、solidworks、3ds max等
培养目标与就业方向
1
培养学生具有机、电、液一定的理论知识和较强的实践技能。
80% 60% 40% 20%
0% 百分比
2008 49%
国内塑机市场国产塑机占比
2009 71%
2010 72%
2011 72%
2012 73%
2013 77%
百分比
(二)中国塑料机械专业社会背景:
单击此处添加小标题
中国塑料机械专业社会背景 我国大型工业逐渐在复苏,社会对于精通现代机械设计与
机电一体化(塑料机械)
专业介绍及其前景
单击此处添加副标题
一、关于机电一体化
简介
机电一体化又称机械电子工程 ,是机械工程与自动化的一种 ,英语称Mechatronics,它 是由英文机械学Mechanics 的前半部分与电子学 Electronics的后半部分组合 而成。
研究目的
机械电子学主要研究目的是把 机械技术与微电子技术和信息 技术有机地结合为一体,实现 整个系统的最优化。
我国近年塑料机械总产值情况(亿元)
600 500 400 300 200 100
0
年产值
2006 2007 2008 2009 2010 2011 2012 2013 221.33 267.73 280.43 258.48 421.06 464.51 463.06 503.23
年产值
(一)中国塑料机械行业社会背景:

机械类外文文献及翻译大全

机械类外文文献及翻译大全
机械类的外文翻译机械类外文文献机械类外文翻译外文文献翻译外文文献翻译格式外文文献翻译网站外文文献翻译要求外文文献翻译软件
外文文献及其翻译 机械/数控/模具/PLC数控编程/机电一体化毕业设计外文文献及其翻译(联系 QQ:2947387549)
15号规格自动挖掘机的线性、非线性和经典的控制器--中文翻译.doc 15号规格自动挖掘机的线性、非线性和经典的控制器--外文文献.pdf 20.9 可机加工性.doc 20.9 可机加工性——外文文献.doc 20世纪到21世纪水性涂料面临的技术挑战-中文翻译.doc 20世纪到21世纪水性涂料面临的技术挑战-外文文献.pdf 5-氟尿嘧啶、阿霉素和柔红霉素在医院废水中的去向和通过活性污泥法的ห้องสมุดไป่ตู้除以及通过膜生物反应系 5-氟尿嘧啶、阿霉素和柔红霉素在医院废水中的去向和通过活性污泥法的去除以及通过膜生物反应系 5轴数铣中心下注塑模具自动抛光过程-中文翻译.doc 5轴数铣中心下注塑模具自动抛光过程-外文文献.pdf 781型铣边机维修-中文翻译.doc 781型铣边机维修-外文文献.doc AISI 304 不锈钢基体ZrN涂层的抗腐蚀性-中文翻译.doc AISI 304 不锈钢基体ZrN涂层的抗腐蚀性-外文文献.pdf ALGORYTHMS控制速度和斯特雷奇-中文翻译.doc ALGORYTHMS控制速度和斯特雷奇-外文文献.pdf AT89C51单片机-中文翻译.doc AT89C51单片机-外文文献.pdf Catia-UG-Proe 的比较与前景-中文翻译.doc Catia-UG-Proe 的比较与前景-外文文献.doc CVT--外文文献.pdf CVT.doc C型搅拌摩擦焊的现状与发展-中文翻译.doc C型搅拌摩擦焊的现状与发展-外文文献.doc DS1302时钟芯片-中文翻译.doc DS1302时钟芯片-外文文献.doc MASTERDRIVES-独一无二而范围完全的驱动器-中文翻译.doc MASTERDRIVES-独一无二而范围完全的驱动器-外文文献.doc MS Access MRP(制造资源计划)小企业的MRP-小企业的ERP基于微软的Access数据库ERPMRP ERP.MRP 制造软件项目-中文翻译.doc MS Access MRP(制造资源计划)小企业的MRP-小企业的ERP基于微软的Access数据库ERPMRP ERP.MRP 制造软件项目-外文文献.doc PAC——新一代工业控制系统, 可编程自动化控制发展的未来-中文翻译.doc PAC——新一代工业控制系统, 可编程自动化控制发展的未来-外文文献.doc PLC、工业PC与DCS的特点与趋势--中文翻译.doc PLC、工业PC与DCS的特点与趋势-外文文献.doc PLC安装须知--中文翻译.doc PLC安装须知-外文文献.doc PLC的最新发展趋势.doc PLC的最新发展趋势——外文文献.pdf PLC的特点.doc PLC的特点——外文文献.pdf PLC简介-外文文献.doc PLC简介.doc Wincc在供热站恒压供水监控系统中的应用-中文翻译.docx Wincc在供热站恒压供水监控系统中的应用-外文文献.docx 一个合理的解决多种应用-外文文献.doc 一个合理的解决多种应用.doc 一种实用的办法--带拖车移动机器人的反馈控制-中文翻译.doc 一种实用的办法--带拖车移动机器人的反馈控制-外文文献.doc

机床——机械类外文文献翻译、中英文翻译

机床——机械类外文文献翻译、中英文翻译

毕业设计(论文)外文资料翻译系部:专业:姓名:学号:外文出处:English For Electromechanical(用外文写)Engineering附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文机床机床是用于切削金属的机器。

工业上使用的机床要数车床、钻床和铣床最为重要。

其它类型的金属切削机床在金属切削加工方面不及这三种机床应用广泛。

车床通常被称为所有类型机床的始祖。

为了进行车削,当工件旋转经过刀具时,车床用一把单刃刀具切除金属。

用车削可以加工各种圆柱型的工件,如:轴、齿轮坯、皮带轮和丝杠轴。

镗削加工可以用来扩大和精加工定位精度很高的孔。

钻削是由旋转的钻头完成的。

大多数金属的钻削由麻花钻来完成。

用来进行钻削加工的机床称为钻床。

铰孔和攻螺纹也归类为钻削过程。

铰孔是从已经钻好的孔上再切除少量的金属。

攻螺纹是在内孔上加工出螺纹,以使螺钉或螺栓旋进孔内。

铣削由旋转的、多切削刃的铣刀来完成。

铣刀有多种类型和尺寸。

有些铣刀只有两个切削刃,而有些则有多达三十或更多的切削刃。

铣刀根据使用的刀具不同能加工平面、斜面、沟槽、齿轮轮齿和其它外形轮廓。

牛头刨床和龙门刨床用单刃刀具来加工平面。

用牛头刨床进行加工时,刀具在机床上往复运动,而工件朝向刀具自动进给。

在用龙门刨床进行加工时,工件安装在工作台上,工作台往复经过刀具而切除金属。

工作台每完成一个行程刀具自动向工件进给一个小的进给量。

磨削利用磨粒来完成切削工作。

根据加工要求,磨削可分为精密磨削和非精密磨削。

精密磨削用于公差小和非常光洁的表面,非精密磨削用于在精度要求不高的地方切除多余的金属。

车床车床是用来从圆形工件表面切除金属的机床,工件安装在车床的两个顶尖之间,并绕顶尖轴线旋转。

车削工件时,车刀沿着工件的旋转轴线平行移动或与工件的旋转轴线成一斜角移动,将工件表面的金属切除。

车刀的这种位移称为进给。

车刀装夹在刀架上,刀架则固定在溜板上。

溜板是使刀具沿所需方向进行进给的机构。

机械制造及自动化专业外文翻译--螺旋输送机

机械制造及自动化专业外文翻译--螺旋输送机

外文原文:AbstractA screw conveyor composed of a plurality of modules mated end to end and of identical integrally molded construction. Each module is molded of a suitable plastic material and has integrally formed therewith a cylindrical body, a coaxially disposed tube within the body, and a web helically disposed between the coaxial tube and the cylindrical body. The module includes ends mateable with corresponding ends of like modules to provide a screw conveyor of intended length and which is rotatable as a single unitary structure. Each module may have a sheave integrally molded thereon for mating with a V-belt drive. Alternatively, the modules can be of open form each having a helical web molded on a central tube preferably having a non-circular and adapted for end to end mating with like modules to provide a screw conveyor of desired length. This open type of screw conveyor can be readily retrofitted to systems havingconventional metal conveyor screws.MODULAR SCREW CONVEYOR.FIELD OF THE INVENTIONThis invention relates to screw conveyors, and more 10 particularly to an integrally constructed modular screw conveyor molded of a plastic material.BACKGROUND OF THE INVENTIONScrew conveyors are well known for the transport of bulk material. Such conveyors generally include a helical screw disposed within housing, often of trough like form, and rotatable about its longitudinal axis to cause propulsion of bulk material along the length of the screw. Conveyors of known construction are usually fabricated of metal and are constructed to an intended finished size to provide a conveyor of intended length. Screw conveyors have also been constructed of modular or segmented form to provide sections which can be assembled into a complete conveyor of a desired length. Examples of segmented or modular conveyors are shown in U.S. Pat. Nos. 349,233; 525,194; 1,867,573; 2,394,163; 2,492,915 and 3,178,210.SUMMARY OF THE INVENTIONThe present invention provides a screw conveyor composed of identical end to end mated modules, each module being of integral plastic molded construction. Each module includes a body of cylindrical configuration, a tube coaxially disposed within the cylindrical body and having an opening extending there through, with a web helically disposed between the coaxial tube and cylindrical body. The ends of the body and coaxial tube are configured to seemingly engage like ends of mated modules, and the respective ends of the helical web include surfaces mateable with corresponding surfaces of the modules. The modules are axially mated to form a conveyor of desired length, the mated modules being retained in engagement by a tensile member such as a rod disposed through the aligned openings of the coaxial tubes and operative to provide an intended compressive force on the engaged modules. Alternatively, the modules can be secured in engagement by other means such as flanges on the ends of the body. The module body, coaxial tube, and helical web are integrally molded of a suitable plastic material, typically by an injection molding process. Each module may include a sheave integrally formed with the body which is composed of a plurality of spaced segments todefine a V-groove configured to mate with a V-belt of an exterior drive. Alternatively, sprocket teeth may be integrally formed with the module body to mate with a chain drive, or other driving means can be employed.In the embodiment described above, the helical web is integrally formed within a surrounding tube which provides a self-enclosure for the helical screw. The conveyor of the present invention can also be embodied in open form in which the module comprises a central tube preferably having a non-circular opening, about which the helical web is integrally molded. The ends of the central tube and ends of the web are mateable with the ends of the modules to provide a conveyor of desired length.The modules are retained in compressive engagement by a tensile member such as a shaft of non- circular cross-section extending through the aligned non-circular openings of the central tubes, the rod also serving as a tensional drive shaft for the mated modules. This open type of screw conveyor driven by a central shaft is adapted to be readily retrofitted to existing conveyor systems which presently employ conventional metal conveyor screws.The molded plastic conveyor of this invention offers major benefits over screw conveyors of conventional construction. The assembled modules offer smooth effectively continuous surfaces throughout the length of the conveyor with no hardware or other obstructions along the conveying surfaces. The novel conveyor is easily cleaned and can be molded of a variety of materials compatible with and suitable for particular operational purposes. The conveyor is not subject to rust or corrosion, as with many conveyors, and is of much less weight than a metal conveyor of the same size. The modular construction allows a single unitary module to be manufactured and stocked for assembly as necessary to achieve conveyors of different lengths. The modules can be easily shipped to an installation site and assembled on site for use. The conveyor can also be readily disassembled into its component modules such as for cleaning, shipping, or repair.DESCRIPTION OF THE DRAWINGSThe invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. 1 is a pictorial view of a screw conveyor module embodying the invention; FIG. 2 is an end view of the module of FIG. 1; FIG. 3 is a sectional view taken along lines 3—3 of FIG. 2; FIG. 4 is a pictorial view of an embodiment similar to that of FIG. 1 and including an integrally molded sheave thereon; FIG. 5 is an end view of the module of FIG. 4; FIG. 6 is a sectional view taken along lines 6—6 of FIG. 5; FIG. 7 is a sectional side view of a screw conveyor embodying the invention and composed of the modules of FIGS. 1-3; FIG. 8 is a cutaway side view of a module having alternative mounting means; FIG. 9 is a sectional elevation view of a further embodiment of a screw conveyor module of the invention; FIG. 10 is an end view of the module of FIG. 9; FIG.11 is a side view of a screw conveyor embodying the invention and composed of the modules of FIGS. 9 and 10; and FIG. 12 is a pictorial view of a further embodiment of a screw conveyor module of the invention.DETAILED DESCRIPTION OF THEINVENTIONReferring to FIGS. 1-3 of the drawing, there is shown an integrally molded module which is mated with like modules to form a screw conveyor of intended length. The module is molded of a suitable plastic material such as polyethylene, polypropylene or polyurethane and has integrally formed therewith all essential constituents of the screw conveyor. The module includes a body of tubular configuration having on the ends thereof circular grooves 12 and 16, respectively, for accommodation of an O-ring seal between mated modules. A tube 16 is coaxially disposed within body 10 and having an opening 18 extending there through, with a web 20 helically disposed between the inner surface of body 10 and outer surface of tube 16. The tube 16 includes on the respective ends thereof circular grooves 5 17 for accommodation of an O-ring seal. The web 20 is slightly less than one helical pitch length terminating in respective ends 22 and 24 which include radically parallel surfaces 26 adapted to confront corresponding surfaces of like modules. Thus, the surface 26 of helix end 10 22 is adapted to confront the oppositely facing edge of end 24 of an adjacent module. The web ends extend outward of the confronting ends of body 10 typically by approximately 1/2 the wall thickness of the web, as illustrated. By having the length of the helical web 15 slightly less than the helical pitch it is possible to injection mold the module by conventional molding techniques since as seen from FIG. 2 the two halves of an injection mold can open axially of the module which, because its helical length is slightly less than one helical pitch, presents no undercuts to the mold halves. Typically, the web length is about one percent less than the pitch length to provide sufficient clearance for mold tooling.An embodiment similar to that of FIGS. 1-3 is shown in FIGS. 4-6 and includes a sheave integrally molded with the conveyor module. The sheave isprovided around the body centrally disposed between the respective ends of the body, the sheave being composed of alternating segments. A first array of segments is disposed around the body in spaced circumferential arrangement.A second array of segments is axially spaced from the segments and is circumferentially disposed about body in spaced position staggered from the position of the segments, as illustrated. The confronting surfaces and of respective segments and define a V-groove, best seen in FIG. 6, configured to mate with a V-belt of an exterior drive. The module is otherwise the same as described above with respect to FIGS. 1-3. The staggered arrangement of the segments and allow injection molding by conventional injection molding techniques since the staggered arrangement as seen from FIGS. 4-5 permits the mold halves to open axially of the module and presents no undercuts to the mold halves.The module of FIGS. 1-3 is axially mated with like modules, as shown in FIG. 7, to form a conveyor of desired length. Each of the modules is aligned with the ends of adjacent bodies in engagement with an interposed O-ring, and with the ends of adjacent tubes in engagement with an interposed O-ring. The helical webs have their edges confronting to provide an effectively continuous helical screw disposed within the continuous tubular body formed by the mated modules. Since the web is slightly less than one helical pitch length, small spaces exist between the confronting web ends of mated modules. Typically, the gap between confronting web ends is about 0.1 inch for a web of eight inch diameter. The small spaces between the confronting ends of the helical web are of little consequence to the ability of the assembled screw to convey most products.The small spaces may be filled in with material which is the same as or compatible with that of the module. For example, molded strips of plastic material can be inserted into the small spaces between web ends and fusedtherein, such as by hot gas welding, to produce a helical web having fully continuous surfaces. The elimination of the small gaps is useful in some applications such as where sanitary conditions require. For most conveying purposes, the small spaces are not of any consequence.The mated modules are maintained in engagement by a tensile member disposed within the openings of tubes. This member typically is a metal rod 41 having threaded ends 42 and fasteners 44 which are tightened to provide an intended compressive force on the engaged modules. Alternatively, the tensile member can be a wire, plastic, or other rope disposed within the openings 18 of tubes 16 and tensioned by appropriate fasteners on the respective ends of the rope. In cases where the conveyor is subject to changes in temperature, it would be preferable to have a tensile member which allows for expansion and contraction of the conveyor while maintaining the axial compressive force on the mated modules. The tensile member should be of a material having thermal expansion and contraction characteristics in relation to those of the modules to maintain a compressive load on the mated modules even during temperature cycling.The modules can alternatively be secured together by means other than a tensile member. One such alternative is illustrated in FIG. 8 in which the body 10 includes on each end thereof an integral flange 45 having openings 47 disposed about the circumference of the flange and through which fasteners are insert able for securing mated ends together.The mated modules may be supported for rotation on rollers 46. Typically, an array of three circumferentially spaced rollers is provided near each end of the conveyor body. Additional rollers can be provided as necessary, depending upon the length of the particular conveyor. Axial positioning of the conveyor body is maintained by horizontally disposed rollers 48 at each end of the body, these rollers being circumferentially spaced about the periphery ofthe body. A flange 50 is attached to the end modules of the conveyor and includes a circular surface 52 which is cooperative with the rollers 48 to maintain the axial position of the rot able body. A slip seal can be machined or otherwise formed in the outer end of the outermost module. In the illustrated embodiment, the slip seal is in the form of an annular groove 54 into which an end of a feed tube 56 is inserted, and with respect to which the conveyor body is rotatable. The feed tube 56 is typically connected to a hopper 58 into which a product is fed (as shown by the arrow) for conveyance.The drive assembly 60 includes sheaves 62 carried by and rotatable with a shaft 64 which is supported on bearing blocks 66 and which is driven by a motor (not shown). The shaft 64 is spaced from and parallel to the conveyor body, and each sheave 62 may be in association with a respective conveyor module. V-belts 68 couple the drive sheaves 62 to the conveyor modules and by which power is transmitted to the conveyor body for rotation thereof. In the illustrated embodiment, each of the modules is driven by an associated conveyor belt coupled to the drive assembly. All of the conveyor modules need not be driven, and the driven number will be determined in accordance with the motive force necessary to rotate the conveyor for particular applications.If the modules of FIGS. 4-6 are employed, the sheaves 28 are operative to engage the V-belts 68 for driving the conveyor. It is appreciated that the conveyor can be driven by other than V-belts. For example, chain sprockets can be formed on or attached to the modules for cooperation with a chain drive.Another embodiment of the invention is shown in FIGS. 9 and 10 and includes a screw conveyor module having a central tube 70 of cylindrical exterior form, 5 with a non-circular opening there through and with a web 72 helically disposed about the central tube. The helical web is slightly less in length than one helical pitch length, as described, and terminates at edges 74and 76, these edges being adapted to confront corresponding edges of adjacent modules. The opening 78 through the central tube is of non-circular cross-section at end portions 80 and tapers to a non-circular cross-section at a central portion 82. This tapering is slight and is provided as "draft angle" to facilitate removal of the 15 module from axially separable molds. The opening is configured to mate with a non-circular shaft which serves as a tensile member to lock the modules into axial engagement and which also serves as a positive drive shaft for rotation of the conveyor. In the embodiment of FIGS. 9 and 10, the opening is illustrated as hexagonal, although other noncircular shaped openings can be provided in tube for use with a correspondingly shaped shaft to prevent rotation of the engaged modules relative to the shaft.A screw conveyor composed of the modules of FIGS. 9 and 10 is shown in FIG. 11. Each of the modules is aligned with the ends of adjacent central tubes 70 in engagement with an interposed O-ring 84, and with the helical webs 72 having their ends confronting to 35 provide an effectively continuous helical screw. A shaft 86 is fitted through the openings 80 through the tubes 70 and is secured by end fasteners, such as nuts 88 threaded onto threaded ends of shaft 86, which are tightened to provide an intended compressive force on the interconnected modules, as described above. This embodiment of FIG. 11 can be employed to retrofit existing metal screw conveyors without material change to the drive system.中文译文:摘要螺旋输送机由多个首尾相连的组件和同一的整体塑造构件组成。

机电一体化技术及其应用研究外文文献翻译、中英文翻译

机电一体化技术及其应用研究外文文献翻译、中英文翻译

附录一外文译文Electromechanical integration technology and its application1.Anelectromechanical integration technology developmentMechatronics is the machinery, micro-, control, aircraft, information processing, and other cross-disciplinary integration, and its development and progress depends on the progress of technology and development, the main direction of development of a digital, intelligent, modular, and human nature , miniaturization, integration, with source and green.1.1 DigitalMicrocontroller and the development of a number of mechanical and electrical products of the base, such as the continuous development of CNC machine tools and robots, and the rapid rise of the computer network for the digital design and manufacturing paved the way for, such as virtual design and computer integrated manufacturing. Digital request electromechanical integration software products with high reliability, easy operability, maintainability, self-diagnostic capabilities, and friendly man-machine interface. Digital will facilitate the realization of long-distance operation, diagnosis and repair.Intelligent 1.2Mechanical and electrical products that require a certain degree of intelligence, it is similar to the logical thinking, reasoning judgement, autonomous decision-making capabilities. For example, in the CNC machine increase interactive features, set up Intelligent I / O interface and intelligent database technology, will use, operation and maintenance of bring great convenience. With fuzzy control, neural network, gray, wavelet theory, chaos and bifurcation, such as artificial intelligence and technological progress and development and the development of mechanical and electrical integration technology has opened up a vast world.Modular 1.3As electromechanical integration products and manufacturers wide variety of research and development of a standard mechanical interface, dynamic interface, the environment interface modules electromechanical integration products is a complex and promising work. If the development is set to slow down. VVVF integrated motor drive unit with vision, image processing, identification and location of the motorfunctions, such as integrated control unit. Thus, in product development, design, we can use these standards modular unit quickly develop new products.1.4 NetworkAs the popularity of the network, network-based remote control and monitoring of various technical ascendant. The remote control device itself is the integration of mechanical and electrical products, fieldbus technology to household appliances and LAN network possible, use a home network to connect various home appliances into a computer as the center of computer integrated appliances system, so that people in the home can be full enjoyment of the benefits of various high-tech, therefore, electromechanical integration products should be no doubt North Korea networks.1.5 humanityElectromechanical integration of the end-use product is targeted, how to give people electromechanical integration of intelligent products, emotion and humanity is becoming more and more important, electromechanical integration products in addition to improving performance, it also urged the color, shape and so on and environmental coordination, the use of these products, or for a person to enjoy, such as home robot is the highest state of human-machine integration.1.6 miniaturizationMicro-fine processing technology is a necessity in the development, but also the need to improve efficiency. MEMS (Micro Electronic Mechanical Systems, or MEMS) refers to quantities can be produced by the micro-collection agencies, micro-sensors, micro actuators and signal processing and control circuit until interface, communication and power is one of the micro-devices or systems . Since 1986 the United States at Stanford University developed the first medical microprobe, 1988 at the University of California, Berkeley developed the first micro-motor, both at home and abroad in MEMS technology, materials and micro-mechanism much progress has been made, the development of all sorts MEMS devices and systems, such as the various micro-sensors (pressure sensors, micro-accelerometer, micro-tactile sensor), various micro-component (micro-film, micro-beam, microprobes, micro-link, micro-gear, micro-bearings, micro-pump , microcoil and micro-robot, etc.).1.7 IntegrationIntegration includes a mutual penetration of various technologies, and integration of various products of different structural optimization and composite, and included in the production process at the same time processing, assembly, testing, management,and other processes. In order to achieve more variety, small batch production of automation and high efficiency, the system should have a more extensive flexible. First system can be divided into several levels, allowing the system to function dispersed, and security and coordination with other parts of the operation, and then through software and hardware at various levels will be organically linked to its optimal performance, the most powerful.1.8 with source ofElectromechanical integration refers to the product itself with energy, such as solar cells, fuel cells and large-capacity battery. As on many occasions not be able to use electricity, which campaigns for the mechanical and electrical integration products, has a unique power source comes with the benefits. Sources with the integration of mechanical and electrical product development direction of.Green 1.9The development of technology in people's lives brought great changes in the material at the same time has also brought rich resources, deterioration of the ecological environment consequences. Therefore, people calling for the protection of the environment, regression, and achieving sustainable development in the concept of green products such calls have emerged. Green products is low-power, low-wood consumption, clean, comfortable, coordination and utilization of renewable products. In its design, manufacture, use and destruction of human beings should be in line with environmental protection and health requirements, electromechanical integration of green products is mainly refers to the use of time is not pollute the ecological environment, at the end of product life, and regeneration of decomposition products.2.electromechanical integration in the application of technology in the iron and steelIn the iron and steel enterprises, the integration of mechanical and electrical systems are at the core microprocessor, the computer, industrial computer, data communications, display devices, meters and the combination of technologies such as organic, assembled by the merger means for the realization of a large-scale integrated system create conditions for effective integration, enhanced system control precision, quality and reliability. Electromechanical integration technology in the iron and steel enterprises in the mainly used in the following areas:2.1 Intelligent Control Technology (IC)As a large-scale iron and steel, high-speed continuous and the characteristics of the traditional control technologies encountered insurmountable difficulties, it is necessary to adopt very intelligent control technology. Control technologies include intelligent expert system, neural and fuzzy control, intelligent control techniques in steel product design, manufacturing, control, product quality and diagnostic equipment, and other aspects, such as blast furnace control system, electric furnace and continuous casting plant, steel rolling system , steelmaking - Casting integrated scheduling system - rolling, cold rolling, etc..2.2 Distributed Control System (DCS)Distributed control system uses a central command for the control of a number of Taiwan-site monitoring and intelligent computer control unit. Distributed control systems can be two, three or more levels. Using computers to concentrate on the production process monitoring, operation, management and decentralized control. With monitoring and control technologies, and the functions of distributed control system more and more. Not only can be achieved control of the production process, but also can be achieved online optimization, the production process real-time scheduling, production planning statistical management functions, as a measurement, control, integration of the integrated system. DCS control functions with diverse features and easy operation, the system can be extended, easy maintenance and high reliability characteristics. DCS is decentralized and centralized control monitoring, fault-minor, and the system has the chain protection features, the use of manual control system failure operational measures, the system is highly reliable. Distributed control system and centralized control system compared to their more functional, with a higher level of security. Is the large-scale integration of mechanical and electrical systems main trend.2.3 Open Control System (OCS)Open Control System (Open Control System) is the development of computer technology led by the new structure concept. "Open" means a standard for the exchange of information in order consensus and support this standard design systems, different manufacturers products can be compatible and interoperable, and the sharing of resources. Industrial control systems through open communication network so that all control equipment, management, computer interconnections, to achieve control and management, administration, integrated decision-making, through fieldbus to thescene and control room instrumentation control equipment interconnected to achieve integrated measurement and control of.2.4 Computer Integrated Manufacturing System (CIMS)CIMS is the iron and steel enterprises will be and the production and operation, production management and process control connecting to achieve from raw materials into the plant, production and processing of shipments to the entire production process and the overall integration process control. Currently iron and steel enterprises have basically achieved process automation, but this kind of "automated island" of single automation lack of information resources and the sharing of the unified management of the production process, can hardly meet the requirements of the iron and steel production. Future competition iron and steel enterprises is the focus of many varieties, small batch production, cheap and of good quality, timely delivery of goods. In order to improve productivity, saving energy, reducing staff and the existing inventory, accelerate cash flow, production, operation and management of the overall optimization, the key is to strengthen the management, access to the benefits of raising the competitiveness of businesses. The United States, Japan and some other large-scale iron and steel enterprises in the 1980s has been widely realization of CIMS.2.5 Fieldbus Technology (FBT)Fieldbus Technology (Fied Bus Technology) is the connection settings in the field of instrumentation installed in the control room and control devices for digital, bi-directional, multi-station communication link. Fieldbus technology used to replace the existing signal transmission technology (such as 4 to 20 mA, DCDC transmission), it will enable more information in the field of Intelligent Instrumentation devices and higher-level control system in the joint between the communications media on the two-way transmission. Fieldbus connection can be through save 66% or more on-site signal connecting wires. Fieldbus lead to the introduction of the reform and the new generation of DCS around open fieldbus automation system of instruments, such as intelligent transmitter, intelligent, fieldbus detection instruments, fieldbus of PLC (Programmable Logic Controller) local control stations and field development.2.6 AC drive technologyTransmission technology in the iron and steel industry plays a crucial role. With power technology and the development of microelectronics technology, the development of AC variable speed very quickly. The AC drive to the advantages ofelectric drive technology in the near future from AC drive completely replace DC transmission, the development of digital technology, complex vector control technologies to achieve practical, AC variable speed system speed and performance has reached more than DC converter level. Now whether small or large-capacity electrical motor capacity synchronous motor can be used to achieve reversible induction motor or smoothing governor. AC drive system in the production of steel rolling emerged as a welcome users, applications continues to expand.附录二外文原文机电一体化技术及其应用研究1 .机电一体化技术发展机电一体化是机械、微、控制、机、信息处理等多学科的交叉融合,其发展和进步有赖于相关技术的进步与发展,其主要发展方向有数字化、智能化、模块化、化、人性化、微型化、集成化、带源化和绿色化。

机电一体化专业外文翻译--电力系统

机电一体化专业外文翻译--电力系统

外文原文:Electric power system1 Technical Characteristics of Electric PowerThe electric power has unique technical characteristics which give the power industry certain unique characteristics.1Intangibility. The customer cannot directly detect a kilowatt-hour with any of his physical senses.2Quality. The quality of service can be measured by service continuity or reliability, uniformity of voltage at the proper level, proper and uniformfrequency of the alternating voltage.3Product storage. Unlike most businesses, the electric power utility must create its product simultaneously with its use because there is no storage ofelectricity.4Responsibility for power service. Because the utility delivers its product to the customer’s premises it must assume responsibility for the safe andreliable delivery of its product.5Public Safety. The utility must provide reasonably adequate protection for the public and its own skilled workers.2 Power System PlanningIn anticipation of continued growth in the loads served by the electric utilities, power systems must be continually expanded in capability. Long-range planning is essential to assure that necessary additions are technically adequate, reasonable in cost and fit into a growth pattern.The difficulties encountered by the long-range planner include: uncertainty of load growth with respect to both geography and time, the probability of new invention or technological development.Good system planning strives for optimum design on a system-wide basis, not necessarily for minimum cost in one part of the system without regard to the effect on the other parts.In recent years, there has been an emphasis on economy in planning andoperation.Now there is increased emphasis on reliability and environmental factors.Before planning decisions are made, many factors must be carefully considered:(1)Equipment decision have long-term effects requiring a forecast and study period of 15-25 years.(2)There are many alternate means of generating electric power nuclear, base-load fossil, mid-range combustion turbines or hydro, and in large-medium or small-size plants, and different forms of energy storage.(3)There are several alternate means of transmitting electric power, for example, by alternating or direct current, overhead or underground cable, and all over a wide range of voltages.(4)The planning decisions are affected by load management techniques and the load patterns.(5)Uncertainty exists concerning the factors, such as future fuel cost, interest rates on money and capital availability, equipment forced-outage rates, new technologies and environmental restrictions.3 Electrical Distribution3.1 Primary Distribution SystemsThe wiring between the generating station and the final distribution point is called the primary distribution systems. There are several methods used for transmitting the power between these two points. The two most common methods are the radial system and the loop system.(1)The Radial SystemsThe term radial comes from the word radiate, which means to send out or emit from one central point. A radiate system is an electrical transmission system which begins at a central station and supplies power to various substations.In its simplest from, a radial system consists of a generating station which produces the electrical energy. This energy is transmitted from the generator(s) to thecentral station, which is generally part of, or adjacent to, the generating station. At the central station the voltage is stepped up to a higher value for long-distance transmission.From the central station, several lines carry the power to various substations. At the substations the voltage is usually lowered to a value more suitable for distribution in populated areas. From the substations, lines carry the power to distribution transformers. These transformers lower the voltages to the value required by the consumer.(2)The loop systemThe loop system starts from the central station or a substation and makes a complete loop through the area to be served, and back to the starting point. This results in the area being supplied from both ends, allowing sections to be isolated in case of a breakdown. An expanded version of the loop system consists of several central stations joined together to from a very large loop.(3)Consumer Distribution SystemsThe type of distribution system that the consumer uses to transmit power within the premises depends upon the requirements of the particular installation. Residential occupancies generally use the simplest type. Commercial and industrial systems vary widely with load requirements.3.2 Single-phase SystemsMost single-phase systems are supplied from a three-phase primary. The primary of a single-phase transformer is connected to one phase of the three-phase system. The secondary contains two coils connected in series with a midpoint tap to provide a single-phase, three-wire system. This arrangement is generally used to supply power to residential occupancies and some commercial establishments.For residential occupancies, the service conductors are installed either overhead or underground. Single-family and small multifamily dwellings have the kilowatt-hour metes installed on the outside of the building. From the kilowatt-hourmeter, the conductors are connected to the main disconnect.Three separate disconnecting means are used with one common ground.From the main disconnect, the conductors supply power to the branch circuit panels. For dwelling occupancies there are three basic types of branch circuits: general lighting circuits, small appliance and laundry circuits, and individual branch circuits. The individual branch circuits are frequently used to supply central heating and/or air-conditioning system, water heaters, and other special loads.(1)Grounding RequirementsAll AC services are required to be grounded on the supply side of the service disconnecting means. This grounding conductor runs from the combination system and equipment ground to the grounding electrode. For multifamily occupancies it is permitted to use up to six service disconnecting means. A single grounding conductor of adequate size should be used for the system ground.(2)Commercial and Industrial InstallationsCommercial and industrial installations are more complex than small residential installations. Large apartment complexes and condominiums, although classified as residential occupancies, often use commercial-style services .A single-phase, three-wire service or a three-phase, four-wire service may be brought into the building, generally from underground. The service-entrance conductors terminate in a main disconnects. From this point, the conductors are connected to the individual kilowatt-hour meters for each apartment and then to smaller disconnecting means and over-current protective devices. Branch-circuit panels are generally installed in each apartment. Feeder conductors connect the individual disconnecting means to the branch-circuit panels. Commercial and/or industrial buildings may have more than one kilowatt-hour meter, depending upon the number of occupancies. The service is usually a three-phase, four-wire system. The available voltages may be 120/208V or 277/480v. If the system provides 277/480V, a transformer must be installed in order to obtain 120V. If the building covers a largearea, it is recommended that the service be installed near the center of the building. This arrangement minimizes line loss on feeder and branch-circuit conductors. Some utilities supply a three-phase, three-wire or three-phase, four-wire delta system. The common voltages that may be obtained from the three-wire delta system are 240V, 440V, or 550V. With this arrangement, a transformer must be used to obtain 120V. The usual voltages supplied from the four-wire delta system are 240V, three phase and 120V, single phase.Many large consumers purchase the electrical energy at the primary voltage, and transformers are installed on their premises. Three-phase voltages up to 15 KV are often used.The service for this type of installation generally consists of metal cubicles called a substation unit. The transformers are either installed within the cubicle or adjacent to it. Isolation switches of the drawer type are installed within the cubicle. These switches are used to isolate the main switch or circuit breaker from the supply during maintenance or repair.3.3 Consumer Loop SystemsAlthough the radial system of distribution is probably the most commonly used system of transmitting power on the consumer’s property, the loop system is also employed.When installing any system, over-current protection and grounding must be given primary consideration. Electrical personnel who design and install these systems must comply with the NEC and local requirements.3.4 Secondary High-voltage DistributionLarge industrial establishments may find it more economical to distribute power at voltages higher than 600V. Depending upon the type of installation and the load requirements, voltages as high as 2300V may be used. Step-down transformers are installed in strategic locations to reduce the voltage to a practical working value.Sometimes the high-voltage system may be radial, and the low-voltage systemmay be connected into a loop. Another method is to have both the primaries and secondary connected to from a loop.(1)Secondary Ties Loop SystemIt is frequently convenient to connect loads to the secondary conductors at points between transformers. These conductors are called secondary ties. Article 450 of the NEC gives specific requirements regarding the conductor sizes and over-current protection.(2)Grounding of Electrical SystemsIn general, most electrical systems must be grounded. The purpose of grounding is to limit the magnitude of voltage caused by lightning, momentary surges, and accidental contact with higher voltages. System grounds must be arranged to provide a path of minimum impedance in order to ensure the operation of over-current devices when a ground fault occurs. Current should not flow though the grounding conductor during normal operation.Direct-current systems generally have the grounding conductor connected to the system at the supply station, and not at the individual service. Alternation-current system, on the other hand, must be grounded on the supply side of the main disconnect at each individual service. For specific information on the location and method of grounding, refer to NEC Article 250.3.5 Grounding of Electrical EquipmentMetal conduit and cases which enclose electrical conductors must be grounded. If the ungrounded conductor comes in contact with a metal enclosure which is not grounded, a voltage will be present between the enclosure and the ground. This presents a potential hazard. Persons coming in contact with the enclosure and ground will complete a circuit.All non-current-carrying metal parts of electrical installations should be tightly bonded together and connected to a grounding electrode. Good electrical continuity should be ensured though all metal enclosures. The current caused byaccidental grounds will be conducted though the enclosures, the grounding electrode to the earth.If the current is large enough, it will cause the over-current device to open. (1)Ground-Fault ProtectionA ground-fault protector is a device which senses ground faults and opens the circuit when the current to ground reaches a predetermined value. A ground-fault circuit interrupter is a device which opens the circuit when very small currents flow to ground.There is no way to determine in advance the impedance of an accidental ground. Most circuits are protected by 15A or larger over-current devices. If the impedance of a ground fault is low enough, such devices will open the circuit. What about currents of less than 15A? It has been proven that currents as small as 50mA though the heart, lungs, or brain can be fatal.Electrical equipment exposed to moisture or vibration may develop high-impedance grounds. Arcing between a conductor and the frame of equipment may cause a fire, yet the current may be less than 1 ampere. Leakage current caused by dirt and/or moisture may take place between the conductor and the frame. Portable tools are frequently not properly grounded, and the only path to ground is through the body of the operator.The ground-fault circuit interrupter was developed to provide protection against ground-fault currents of less than 15A. The GFCI is designed to operate on two-wire circuits in which one of the two wires is grounded. The standard circuit voltages are 120V and 277V .The time it takes to operate depends upon the value of the ground-fault current. Small currents of 10mA or less may flow for up to 5s before the circuit is opened. A current of 20mA will cause the GFCI to operate in less than 0.04s. This time/current element provides a sufficient margin of safety without nuisance tripping.The GFCI operates on the principle that an equal amount of current is flowingthrough the two wires. When a ground fault occurs, some of the current flowing though the ungrounded wire; it completes the circuit though the accidental ground. The GFCI senses the difference in the value of current between the values of current between the two wires and opens the circuit. GFIC s may be incorporated into circuit breaks, installed in the line, or incorporated into a receptacle outlet or equipment.Ground-fault protectors are generally designed for use with commercial and/or industrial installations. They provide protection against ground-fault currents from 2A up to 2000A.GFPs are generally installed on the main, submain, and/or feeder conductors. GFCIs are installed in the branch circuits.A ground-fault protector installed on supply conductors must enclose all the circuit conductors, including the neutral, if present. When the operating is under normal conditions, all the current to and from the load flows though the circuit conductors. The algebraic sum of the flux produced by these currents is zero. When a phase-to-ground fault occurs, the fault current returns though the grounding conductor. Under this condition an alternating flux is produced within the sensing device. When the fault current reaches a predetermined value, the magnetic flux causes a relay to actuate a circuit breaker.Sometimes the GFP is installed on the grounding conductor of the system. Under this condition, the unit senses the amount of phase-to-ground current flowing in the grounding conductor. When the current exceeds the setting of the GFP, it will cause the circuit breaker to open.The ground-fault protector is actually an especially design current transformer connected to a solid-state relay.(2)Three-phase SystemsThe various three-phase systems in normal use will be described. Under ideal conditions, these systems operate in perfect balance, and if a neutral conductor is present it carries zero current. In actual practice, perfectly balanced systems areseldom encountered. The electrical worker, therefore, must be able to calculate values of current and voltage in unbalanced systems. Single-phase loads are frequently supplied from three-phase systems. The single-phase load requirements vary considerably, making it virtually impossible to maintain a perfect balance.To calculate the line currents in an unbalanced three-phase system, the method in the following example may be used.4 Selection of Power TransformerThe selection of the transformer can have a major impact on the cost of a substation, since the transformer represents the major cost plate rating is only a aide to transformer application, and should only be used as a first step in the selection process.The selection of the transformer should involve a careful evaluation of a number of other factors:(1)Impedances should be selected considering their effects on short-circuitduties and low-side breaker ratings both for initial and future stationdevelopments.In addition, impedance is important to achieve a proper loaddivision in the parallel operation of transformers.(2)No load tap ranges should be selected to provide an adequate low-side busvoltage.(3)If the high-side or low-side voltages vary over a wide range during the load cycle, it may be necessary to provide bus regulation.The actual regulation can be calculated using the system and load characteristics.5 SwitchgearSwitchgear is a general term covering switching and interrupting devices, also associated devices with control, metering, protective and regulatory equipment.Switchgear mainly includes circuit breaker, disconnecting switch, load-break switch and fuse.The disconnect switch is the simplest switch on the basis of function, operating only in the absence of appreciable current.This switch cannotopen normal load current and its function is to disconnect or connect transformers, circuit breakers, other pieces of equipment and short length of high voltage conductors only after current through them has been interrupted by opening a circuit breaker or load-break switch. A load-break switch will switch normal load currents but will not interrupt short circuit currents. However, circuit breakers will perform the switching functions of the above two classes, but will, if applied within rating, interrupt all short circuit currents that may occur on the system. Fuses consist essentially of a fusible element and an arc-extinguishing means.C ircuit breakers and disconnect switches should not be blown open or otherwise damaged by short circuit currents within their short time ratings.The circuit breakers and disconnecting switches should be designed or protected to withstand normal operating voltages across the device in the open position.6 Means of Reactive Power CompensationT he capacitance of a line has two related voltage effects.One is the rise in voltage along the line resulting from the capacitive current of the line flowing through the line inductance.The second effect is the rise in voltage resulting from the capacitive current of the line flowing through the source impedance.These effects are corrected by the generator voltage regulators.If the line delivers too much charging current, the generator field excitation will become very low which reduces the stability limit and is unacceptable.These voltages can be reduced by the application of shunt reactors.The degree of compensation provided by a reactor is usually quantified by the percentage of the line capacitance that is compensated.The percent shunt compensation of EHV lines in service ranges from 0% to 90% with the reactors located in the substations at one or both ends of the line.The basic purpose of a shunt capacitor bank is to increase the local circuit voltage or improve the load power factor carried by the circuit.Many large capacitor banks are switched on and off as the system need for reactive kilovolt amperes changes.System requirements govern whether a certain bank should or should notbe switched.If the voltage at the capacitor would be too high during knight load, some or all of the capacitors are switched off.Very large banks are usually switched in steps.This procedure has the disadvantage of requiring more switches and thus increasing the total equipment cost per kilovar. It, however, provide a means of keeping the voltage change per step within permissible limits.A synchronous condenser is nothing more than a synchronous machine running at synchronous speed witch no mechanical load.The condenser has a control circuit that controls the field excitation to provide voltage control.When the system voltage starts to fall below the desired values, the control circuit will automatically increase the field excitation which causes the synchronous condenser to supply vats to the system. This will increase the system voltage at the point.7 Overvoltage and Insulation CoordinationA n area of critical importance in the design of power system is the consideration of the insulation requirements for lines, cables and stations.W hen lightning strikes a phase conductor of transmission line, the current of the lightning stroke will encounter the surge impedance of the conductor so that overvoltage will be built up and propagate to the substation along the transmission line in wave form.This type of overvoltage is called lightning incoming wave.It will danger electric equipment in substations.Insulation coordination is the process of determining the proper impulse insulation level and switching insulation level required in various electrical equipments together with the proper surge arrester. This process is determined from the known surge characteristics of equipment and the characteristics of surge arresters.8 GroundingGrounding in power system is for the purpose of operation consideration, lightning proof and safety of personnel and equipment. Grounding means connecting to a low resistance earth electrode or an excellent earthing system. Theearthing installations must have a current-carrying capacity sufficient to deal with the maximum fault currents, and a grounding resistance low enough to prevent a dangerous voltage appearing between any points which a man could reach simultaneously. The earthing arrangements should also be such as to ensure that, under fault conditions, the lowest practical voltage appears between earthed points of the equipment and the main body of the earth, so that insulation breakdown or burning does not occur on equipment which is earthed. During a fault, the flow of current to earth will result in voltage gradients on the surface within and around a substation. Unless proper precautions are taken, the voltage differences along the ground may be great enough to endanger a person walking there. In addition, such voltage differences can sometimes exist.Between“grounded” structures or equipment frames and the nearby earth. As a result of these concerns, it is common practice for substations to have an electrical ground system consisting of a gird of horizontal and buried conductor.中文译文:电力系统1 电力的技术特点电力具有独特的技术特点,这使得电力工业具有独特的行业特点。

浅论机电一体化技 术

浅论机电一体化技 术

浅论机电一体化技术发表时间:2020-08-13T10:06:17.880Z 来源:《建筑实践》2020年39卷8期作者:倪志刚[导读] “机电一体化”在国外被称为Mechatronics,是日本人在20世纪70年代初提出来的,摘要:“机电一体化”在国外被称为Mechatronics,是日本人在20世纪70年代初提出来的,用英文Mechanics的前半部分和Electronics的后半部分构成的一个新词,意思是机械技术和电子技术的有机结合。

这一名称已得到包括我国在内的世界各国的承认,我国的工程技术人员把它译为机电一体化技术。

使用机电技术应用名称时,注意不要与机电公司的机电相混,因为机电公司经营的水泵、电机等不属于机电一体化技术的范围。

由于科学技术在不断发展,机电一体化产品或设备也在不断更新,并不断采用更先进的技术。

因此,在理解机电一体化的含义时,可以将“机电”一词模糊为“先进技术”。

关键词:机电;机电工程;技术随着科学技术的快速发展,对于不同技术而言,均出现了相互交叉渗透情况。

机电一体化技术是基于信息技术以及微电子技术和机械工业领域技术相互结合到一起的新型技术,合理的应用该项技术,对于我国机械工程稳定发展起到了重要的作用。

1机电一体化技术的概述1.1工程机械工程机械作为工程建设的主要部分,只有在其中科学合理的运用机电一体化技术,才能够保证工程机械的顺利进行。

在时代不断进步的背景下,我国的工业模式发生了质的变化,从传统的人力施工发展成为现如今的机械施工,这不但在一定程度上降低了成本的支出,而且还保证了工程的建设效率。

在此基础上,为了保证工程的工作效率能够得到提升,将机电一体化技术融入到工程机械中是一项有效的措施。

1.2机电一体化如今,工程机械的发展正在处于过渡阶段,但随着机电一体化技术的应用,工程机械的发展进程得到了很大的提升。

机电一体化技术在很大程度上推动着工程机械能够多方面的发展,不但提高了工程机械的整体性能,而且还提升了工程机械使用后的效果以及经济性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

An Automatic MechanotronicsHorizontal Cutter机电一体化全自动横切机1.Say after 70's in 20 centuries the our country sun float the method glass technique invention, our country of float method glass, the industry develops quickly.Currently, the our country is the world is the biggest to float the method glass production country, 2006 our country of float method glass, the production line has more than 160s totally, adopting among them our country the sun float method glass to float method glass technically, the production line has more than 130s totally, floating the method glass total yield already more than 454,000,000, and yield annually all significant increment.But our country the 洛sun float the method glass technique material and other nations to compare automation degree still very low, has been being placed in the half auto half artificial appearance, raise completely our country the 洛sun float method glass a technique a material level, developing whole lineses allied lock follow produce the technique have already forced in the eyebrow .Currently, our country the sun float method glass a technique a material to mainly be placed in a single machine dispersion control stage(or part of llied lock control), rush through super nations float method glass a technique a material level, have to raise first our country the automation function of the single machine equipments.Horizontal slice machine conduct and actions to float method glass cold carry to produce one of the on-line important equipmentses, its automation degree and incise accuracy will influence the finished product rate that the glass produces, we introduce a kind of machine electricity integral whole to turn here full-automatichorizontal slice machine1、述自20世纪70年代我国洛阳浮法玻璃技术发明之后,我国的浮法玻璃工业迅速发展。

目前,我国是世界最大浮法玻璃生产国,2006年我国的浮法玻璃生产线共有160多条,其中采用我国洛阳浮法玻璃技术的浮法玻璃生产线共有130多条,浮法玻璃总产量已超过4.54亿重量箱,而且产量每年都大幅度增加。

但我国洛阳浮法玻璃技术装备与其它国家相比自动化程度还很低,一直处在半自动半人工状态,全面提高我国洛阳浮法玻璃技术装备水平,开发全线联锁跟踪生产技术已迫在眉捷。

目前,我国洛阳浮法玻璃技术装备主要处于单机分散控制阶段(或部分联锁控制) ,要赶超国际浮法玻璃技术装备水平,首先必须提高我国单机设备的自动化功能。

横切机作为浮法玻璃冷端生产线上的重要设备之一,其自动化程度及切割精度将影响玻璃生产的成品率,在此我们介绍一种机电一体化全自动横切机(见图1)。

1The equipments accuracy is in keeping with, the biggest original plank width:the 5000 mms suit glass plate thickness: the 1.5~19 mms incise a straight line degree accuracy: the ± 0.5 mms incise diagonal line accuracy:<3 m the plank is long: the ± 1 mm 3~6 m plank long:the ± 1.5 mms incise a straight line degree accuracy: the ±0.5 mm the knife press to regulate scope: the 0~100 Ns is the biggest to return to knife speed:3000 mms/s1 设备精度适合,最大原板宽度:5000 mm适合玻璃板厚度:1.5~19 mm切割直线度精度:±0.5 mm切割对角线精度:<3 m板长:±1 mm3~6 m板长:±1.5 mm切割直线度精度:±0.5 mm刀压调节范围:0~100 N最大回刀速度:3000 mm/sExcellent turn of incise function to operate the touch of pedestal to hold on thespot up(or control box in) can set a few in common use products and 1 kind to discardplank specification, be an usage excellent turn to incise, horizontal slice machine canaccording to artificial examination(or on-line examination equipments examination)of the blemish position chooses reasonable enactment specification and discards plankspecification to carry on incising automatically, incising an information to pass alliedthe net deliver to transport a way behind.There is excellent a few the following to turna way generally:the ①press grade excellent turn to incise, press different grade toincise, the biggest limit slices to take high-quality glass;The ②presses productspecification excellent turn to incise, incise the glass of Chengkong University,medium and small different specification according to the heap 垛circumstance ofdifferent quality and heap 垛area; The ③ carries on according to the market sale'scircumstance excellent turn to incise, can have the initiative and incise the productspecification that the market needs with maximum limit2设备功能Equipments function2.1优化的切割功能在现场操作台的触摸屏上(或控制箱中)可以设定几种常用产品和一种废板规格,当使用优化切割时,横切机可以根据人工检测(或在线检测设备检测)的缺陷位置自动选择合理的设定规格和废板规格进行切割,切割信息通过联网传送给后面输送辊道。

一般有以下几种优化方式:①按等级优化切割,按不同等级切割,最大限度切取优质玻璃;②按产品规格优化切割,根据不同质量及堆垛区的堆垛情况切割成大、中、小不同规格的玻璃; ③按市场销售情况进行优化切割,可优先及最大限度地切割市场急需的产品规格。

The flower slices function to set several floricultures to slice a specification comparison, slicing machine with allied lock completion, produce the glass of different specification in the meantime.So can satisfy a production line to produce the request of various specificationses in the meantime, if adopt mechanization heap , the heap then canned resolve a heap of the machine problem with not enough period,can also reduce a heap of machine amount, economical investment2.2花切功能设定几种花切规格比例,与纵切机联锁完成,同时生产不同规格的玻璃。

相关文档
最新文档