近三年中考数学考点分析
2024年中考数学试卷分析报告河南
2024年中考数学试卷分析报告河南介绍本文对2024年河南省中考数学试卷进行了细致的分析,旨在总结试卷内容、难度和重点考点,为学生和教师提供参考和指导,帮助他们更好地备考和讲授数学知识。
试卷概述2024年河南省中考数学试卷总分为120分,包含选择题、填空题和解答题三个部分。
本次试卷共有8个选择题、8个填空题和4个解答题,涵盖了各个知识点和技能要求。
选择题分析难度与出题思路本次试卷的选择题整体难度适中。
其中,有一道题目是通过填空的方式,考查学生对均值和方差的理解和计算能力。
另外,还有几道题目考查了学生对几何形状的认识和计算能力。
考点归纳选择题主要涵盖了以下几个考点:1.代数运算:包括整数的运算、代数式的简化等。
2.几何形状:包括平行线、直角三角形、相似三角形等的性质和计算。
3.统计与概率:包括平均数、方差、样本调查等的计算和分析。
填空题分析难度与出题思路本次试卷的填空题整体难度适中。
填空题从各个知识点中选取了一些典型题型进行考查,涵盖了代数、几何和统计等多个领域。
其中,一道填空题考查了学生对代数方程的解的理解和求解能力,另外一道题考查了学生对三角形的性质和计算能力。
考点归纳填空题主要涵盖了以下几个考点:1.代数方程的解:包括一元一次方程和一元二次方程的解的求解。
2.几何形状计算:包括三角形的性质、面积和周长的计算等。
3.统计与概率:包括样本调查和统计指标的计算等。
解答题分析难度与出题思路本次试卷的解答题整体难度适中。
解答题从代数、几何和统计等多个领域选取了一些典型题型进行考查,要求学生运用所学的知识和方法进行解答和计算。
其中,有一道解答题考查了学生对图形的对称性和平移的理解和应用能力,另外一道题考查了学生对统计图表的分析和解读能力。
考点归纳解答题主要涵盖了以下几个考点:1.几何形状计算:包括三角形的性质、面积和周长的计算等。
2.图形的对称性与平移:包括图形的对称性和平移的理解和应用能力。
3.统计与概率:包括统计图表的分析和解读、样本调查等。
近五年中考数学考点分析
考查空间几何图形的组合与镶嵌
详细描述
空间几何图形的组合与镶嵌是中考数学几何部分的难点, 主要涉及空间几何图形的组合方式、镶嵌方法和技巧等知 识点。常见题型包括解答题,难度高。
04
概率与统计考点分析
概率初步
01
02
03
概率定义
概率初步主要考察概率的 基本定义、概率的取值范 围以及概率的基本性质。
函数的性质、图像识别、实际应用题 等。
详细描述
函数部分主要涉及一次函数、二次函 数、反比例函数等函数的性质、图像 和解析式。图像部分则主要考查函数 图像的绘制、识别和应用。
代数运算与证明
总结词
代数运算与证明是代数部分的基 础,主要考查学生的数学运算能
力和逻辑推理能力。
详细描述
代数运算部分主要涉及整式的加减 乘除、分式的化简求值等基本运算 。证明部分则主要考查命题的证明 和数学归纳法的应用。
空间几何初步
总结词
重点考查空间几何图形的认知
详细描述
空间几何图形的认知是中考数学几何部分的重要考点,主 要涉及空间几何图形的分类、性质和判定等知识点。常见 题型包括填空题、选择题和解答题,难度中等。
总结词
考查空间几何图形的展开与折叠
详细描述
空间几何图形的展开与折叠是中考数学几何部分的常见考 点,主要涉及展开与折叠的方法、步骤和技巧等知识点。 常见题型包括选择题和解答题,难度较高。
和逻辑思维能力。
02 03
详细描述
方程部分主要涉及一元一次方程、一元二次方程和分式方程的解法,以 及方程组的求解。不等式部分则主要考查一元一次不等式的解法和不等 式组的解法。
考查重点
方程与不等式的解法、实际应用题、综合题等。
专题01 有理数篇(解析版)-2023年中考数学必考考点总结
知识回顾微专题专题01有理数2023年中考数学必考考点总结考点一:有理数之正数和负数1.正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。
0既不是正数也不是负数。
2.正数和负数的意义:表示具有相反意义的两个量。
3.正负号的化简:同号为正,异号为负。
1.(2022•西宁)下列各数是负数的是()A .0B .21C .﹣(﹣5)D .﹣5【解答】解:A .0既不是正数也不是负数,故A 不符合题意;B.>0,故B 不符合题意;C .﹣(﹣5)=5>0,故C 不符合题意;D .﹣<0,故D 符合题意.故选:D .2.(2022•贵阳)下列各数为负数的是()A .﹣2B .0C .3D .5【分析】根据小于0的数是负数即可得出答案.【解答】解:A .﹣2<0,是负数,故本选项符合题意;B .0不是正数,也不是负数,故本选项不符合题意;C .3>0,是正数,故本选项不符合题意;D .>0,是正数,故本选项不符合题意;故选:A .3.(2022•益阳)四个实数﹣2,1,2,31中,比0小的数是()A .﹣2B .1C .2D .31【分析】利用零大于一切负数来比较即可.【解答】解:根据负数都小于零可得,﹣<0.故选:A .4.(2022•雅安)在﹣3,1,21,3中,比0小的数是()A .﹣3B .1C .21D .3【分析】比0小的是负数.【解答】解:∵﹣<0,故选A .5.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作()A .﹣2℃B .+2℃C .﹣3℃D .+3℃【分析】根据上升与下降表示的是一对意义相反的量进行表示即可.【解答】解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C .6.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A .+20元B .﹣20元C .+30元D .﹣30元【分析】根据正数与负数时表示具有相反意义的量直接得出答案.【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B .7.(2022•桂林)在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km ”,那么向西走1km 应记做()A .﹣2kmB .﹣1kmC .1kmD .+2km知识回顾微专题【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若把向东走2km 记做“+2km ”,那么向西走1km 应记做﹣1km .故选:B .8.(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .﹣10℃D .﹣20℃【分析】根据正数和负数可以用来表示具有相反意义的量解答即可.【解答】解:∵零上10℃记作+10℃,∴零下10℃记作:﹣10℃,故选:C .9.(2022•柳州)如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作.【分析】根据正负数的意义求解.【解答】解:由题意,水位上升为正,下降为负,∴水位下降2m 记作﹣2m .故答案为:﹣2m .10.(2022•百色)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.【分析】利用正负数可以表示具有相反意义的量.【解答】解:因为向东和向西是具有相反的意义,向东记作正数,则向西就记作负数.故正确答案为:﹣5.考点二:有理数之相反数1.相反数的定义:只有符号不同的两个数互为相反数。
安徽省近五年中考数学试卷知识点分析与总结
安徽省近五年中考数学试卷知识点分析与总结数学作为中考的必考科目,对于考生来说是一个重要的考察点。
掌握数学的知识点和解题技巧能够有效提升考试成绩。
本文将对安徽省近五年数学中考试卷的知识点进行分析,并总结出一些备考策略。
一、整数运算在近五年的数学中考试卷中,整数运算是一个经常出现的知识点。
这一部分主要包括整数的加减乘除法、正数与负数的相互关系等内容。
学生在备考时要熟练掌握整数运算的基本法则,尤其是负数的加减法以及乘除法的规则。
二、比例与百分数比例与百分数是近五年中考试卷中的另一个重要知识点。
考生需要了解比例的定义、常见问题的解决方法,掌握百分数与小数之间的转换关系。
备考时,可通过大量的例题来练习比例与百分数的计算,提高解题速度和准确度。
三、图形的性质与计算数学中考试卷中图形的性质与计算也是一个常见的知识点。
这一部分主要涉及直角三角形、平行四边形、梯形等各类多边形的性质与计算方法。
备考时,需要掌握各类多边形的面积计算公式,了解各类多边形的性质与判定方法,通过大量的练习来提高解题能力。
四、方程与不等式方程与不等式是中考数学试卷中的另一个重要知识点。
考生需要熟练掌握一元一次方程、一元一次不等式的解法,特别是带绝对值符号的方程与不等式的解法。
备考时,可以通过大量的练习来加深对方程与不等式解法的理解,熟练掌握解题技巧。
五、函数与图像函数与图像是数学中考试卷中的重要知识点之一。
考生需要了解函数的定义、性质以及函数图像的特点与表示方法。
备考时,可以通过绘制函数图像、分析函数的变化趋势等方式来加深对函数与图像的理解。
六、统计与概率统计与概率是中考数学试卷中的另一个常见知识点。
考生需要了解统计中的频数、频率、平均数等概念,掌握概率计算的方法。
备考时,可以通过实际生活中的统计问题来加强对统计与概率的理解,提高解题能力。
综上所述,安徽省近五年中考数学试卷的知识点主要包括整数运算、比例与百分数、图形的性质与计算、方程与不等式、函数与图像以及统计与概率等内容。
中考数学必考题型分析及解题策略总结
中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
盐城市近三年中考数学试题分析328
2013年
6.某公司10名职工的5月份工资统计如下,该公司10名职工5月份 工资的众数和中位数分别是 工资(元) 人数(人) 2000 1 2200 3 2400 4 2600 2
A.24元、2400元 B.2400元、2300元 C.2200元、2200元 D.2200元、2300元
考点:统计中相关概念
2011年
11.“任意打开一本200页的数学书,正好是第35 页”,这是 ▲ 事件(选填“随机”或“必 然”). 13.小勇第一次抛一枚质地均匀的硬币时正面向上,他 第二次再抛这枚硬币时,正面向上的概率是 ▲ .
2012年
2013年
13.如图所示是一飞镖游戏板,大圆的 直径把组同心圆分成四等份,假设击中圆面上每个点都 等可能的,则落在黑色区域的概率 ▲ .
1 x ,下列说法正确的是
B.图象位于第二、四象限
D.当x<0时,y随x的增大而增大
2012年
14.若反比例函数的图象经过点 P(1, 4) ,则它的函数 关系式是 ▲ .
2013年
15.写出一个过点(0,3),且函数值y随自变量x的增 大而减小的一次函数关系式: ▲ .(填上一个答案 即可)
考点:函数的图像性质
7.某市6月上旬前5天的最高气温如下(单位:℃):28,29, 31,29,32.对这组数据,下列说法正确的是 A.平均数为30 B.众数为29 C.中位数为31 D.极差为5
7.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩 恰好都是9.4环,方差分别是,,,.在本次射击测试中,成绩最稳定 的是 A.甲 B.乙 C.丙 D.丁
考点:科学记数法—表示较大的数
2011年 2012年 9.若二次根式 是 . 2013年
安徽省近五年中考数学试题分析
安徽省近五年中考数学试题分析安徽省中考数学试题总体上坚持稳中求变,变中求新,下面结合近5年我省中考数学试题,试谈我的管窥之见.一、试卷形式和内容时间120分钟,总分150分.考试内容为数与代数、空间与图形、统计与概率三个部分,数与代数约占50%、空间与图形约占38%、统计与概率约占12%.10道选择题,4题填空,9个大题共23题.(一)考点分析1.数与代数(1)数与式本部分属于基础题,约占20分,主要考概念与计算.实数、数轴、相反数、绝对值、倒数、算术平方根这些概念要很好掌握.科学记数法除2009年没考外,其余四年每年都考;化简求值2010年、2011年连续两年都在15题中出现;因式分解几乎年年都考,2009年第12题,2010年第15题,2011年第11题,2012年第4题,2013年第12题中均考了因式分解,对于数与式不要钻偏题、怪题.(2)方程与不等式安徽卷对方程的考查多以列方程解应用题形式出现,除了2012年的12题直接是解方程,2009年第19题,2010年第19题,2011年16题,2013年的第7题都是考列方程解应用题.而对不等式的考查则会以直接考解不等式(组)题型为主,如2010年第12题,或者考查不等式(组)与数轴相结合,如2013年第5题。
当然方程与不等式有时在函数题里也有所体现.(3)函数中考对函数的考查属重头戏,2009年考了23分,2010年考了28分,2011年考了30分,2012年考了30分,2013年考了38分.一次函数是初中学习的第一个函数,其基础性和重要性不言而喻,各地中考对一次函数都十分关注,既有客观题,也有解答题.反比例函数多以填空、选择、简答题为主.对反比例函数的复习难度不宜过大,要注意反比例函数的增减性.二次函数常以压轴题形式出现,重点考查函数图象和性质、确定函数解析式和求函数的最值.一般都是一题客观题一题解答题,题型较稳定,客观题重在考图象和性质,主观题作为区分度题,重在考确定函数解析式和求函数的最值,放在后三题中.2.空间与图形(1)平行线的性质和判定多以选择填空为主,难度不大.(2)三角形的边角关系多以基础题为主.解直角三角形问题,近几年考查的都是涉及测量的应用问题,难度不大,如2009年13题;2010年16题;2011年第19题,2012年的19题,2013年的19题年年都考,要引起重视.全等和相似三角形也是考查的重头戏,多以解答题形式出现.题号偏后,其难度和重要性都比较大,估计2014年将延续下去。
中考数学必考知识点归纳
中考数学必考知识点归纳一、数与代数。
1. 有理数。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。
若a与b互为相反数,则a + b=0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
2. 实数。
- 无理数:无限不循环小数叫做无理数,如√(2)、π等。
- 实数的概念:有理数和无理数统称为实数。
实数与数轴上的点一一对应。
- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。
3. 代数式。
- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
2023武汉中考数学解析
2023武汉中考数学解析一、考情总览2023年武汉中考数学试卷在整体上保持了稳定,难度适中,着重考查了学生的数学基础知识和基本技能。
试卷结构由选择题、填空题和解答题三部分组成,总分为120分,考试时间为120分钟。
二、考点分析今年的中考数学试卷主要考查了以下知识点:数的运算:包括实数的混合运算、代数式的化简求值等。
函数与方程:包括一次函数、反比例函数、二次函数的图象与性质,一元二次方程的解法等。
三角形与四边形:包括三角形的基本性质、全等三角形、相似三角形、多边形的内角和等。
圆与扇形:包括圆的性质、扇形的面积等。
概率与统计:包括概率的基本概念、统计图表等。
三、题型解析选择题:主要考查基础知识的理解和应用,难度适中。
填空题:包括简单的计算和推理,难度适中。
解答题:涉及知识面广,综合性强,难度较大。
其中第25题为压轴题,主要考查学生的综合应用能力和数学思维能力。
四、考情预测根据近年来的命题趋势,预计2024年武汉中考数学的考点和题型结构将保持稳定,难度可能会有所提高,更加注重对知识点的综合运用和数学思维能力的考查。
五、备考策略针对以上考情分析,建议学生在备考过程中注重以下几点:巩固基础知识,掌握基本技能,提高运算能力。
强化对知识点的理解和应用,注重解题思路和方法的训练。
培养学生的数学思维能力和综合运用能力,提高解题速度和准确性。
关注题型的变化和趋势,针对性地进行模拟练习。
注意答题规范和时间管理,避免因粗心或时间安排不当而失分。
六、真题回顾与模拟试题在本部分,我们将回顾2023年武汉中考数学的部分真题,并给出几道模拟试题,以帮助学生更好地了解考试形式和难度,检验自己的备考水平。
七、结语中考数学是初中数学的重要考试之一,对学生的数学学习和未来的发展具有重要意义。
希望通过本篇解析,能对2023年武汉中考数学试卷进行全面而深入的剖析,为学生提供有针对性的备考策略和建议。
祝愿所有参加中考的学生能够在数学考试中取得优异的成绩!。
近三年广东省中考数学试题考点分析(WORD版)
近三年广东省中考数学试题考点分析(WORD版)题型题号2017年2016年2015年选择题1相反数相反数绝对值2科学记数法数轴科学记数法3求补角中心对称图形中位数4一元二次方程求参数的值(代入法)科学记数法平行求角度5众数正方形的性质对称图形6对称图形(轴对称和中心对称图形)中位数整式计算7用函数图象求点坐标点坐标最大数8整式计算锐角三角函数方程根的个数9圆的基本性质整体思想求值扇形面积10正方形性质、相似几何问题分段函数图像几何问题分段函数图像填空题11因式分解算术平方根多边形外角和12多边形内角和因式分解四边形计算13数轴、比较大小求不等式组的解集分式方程14概率弧长公式相似性质15整式运算(整体代入)矩形与勾股定理找规律16矩形中的折叠问题圆周角与三角函数阴影部分面积解答题一17实数的计算(绝对值、0指数幂,负整数指数幂)实数的计算(绝对值、0指数幂,负整数指数幂)解一元二次方程18分式化简求值分式化简求值分式化简求值19二元一次方程组应用题(1)作垂直平分线(2)利用中位线求边长(1)作垂线(2)利用三角函数求边长解答题二20(1)作垂直平分线(2)利用外角求角度分式方程的应用(1)画树状图(2)求概率21几何证明与计算(菱形的性质、等腰三角和等边三角形的性质)解直角三角形几何证明与计算(折叠)22数据分析(频数分布图、扇形、估算)数据分析(条形、扇形、估算)(1)二元一次方程组应用(2)一元一次不等式应用解答题三23函数小综合(一次函数、二次函数、锐角三角函数)函数小综合(反比例函数、一次函数、二次函数)反比例函数与一次函数(最短路径问题)24(1)圆切线的性质、圆的基本性质、角平分线(2)切线的性质、平行和等腰三角形(3)全等、相似的证明和性质、求弧长(1)相似证明(2)三角形的性质(3)圆的切线的证明(1)角(圆的垂径定理)(2)特殊四边形的证明(3)垂直25图形变换,动态的问题、数形结合(1)求点的坐标(2)等腰三角形存在性讨论(3)二次函数、分类讨论、数形结合等求面积的最小值图形变换,动态的问题、数形结合(1)平行四边形的判定(2)全等三角形的性质和判定(3)二次函数、分类讨论、数形结合等求面积的最大值动点问题,数形结合(1)几何基本计算(2)三角函数计算边长(3)积,解直角三角形应用,二次函数求最值,二次根式计算。
中考数学试卷考纲考点分析
中考数学试卷考纲考点分析中考数学试卷考纲考点分析基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。
从那时开始,其发展便持续不断地有小幅度的进展。
今天在这给大家整理了一些中考数学试卷考纲考点分析,我们一起来看看吧!中考数学试卷考纲考点分析对于任意一个实数x,都对应着的角(弧度制中等于这个实数),而这个角又对应着确定的余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。
记作f(x)=cscxf(x)=cscx=1/sinx相信同学们看过上述的初中数学余割函数的基础公式定理内容之后,有所感悟了吧。
其实和正弦型函数的解析式差不多,余弦型函数的解析式各常数值对函数图像的影响很大。
余弦型函数余弦型函数解析式:y=Acos(ωx+φ)+h各常数值对函数图像的影响:φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)ω:决定周期(最小正周期T=2π/|ω|)A:决定峰值(即纵向拉伸压缩的倍数)h:表示波形在Y轴的位置关系或纵向移动距离(上加下减) 作图方法运用“五点法”作图“五点作图法”即取ωx+φ当分别取0,π/2,π,3π/2,2π时y的值.在考试当中,余弦型函数的解析式经常运用在函数的综合大题中,是拿分的关键。
在直角坐标系中定义的余弦函数图像,我们相对更容易分析其的对称性特点。
图象性质1)对称轴:关于直线x=kπ,k∈Z对称2)中心对称:关于点(π/2+kπ,0),k∈Z对称作法一、运用五点法做出图象。
二、利用正弦函数导出余弦函数。
①可以由诱导公式六:sin(π/2-α)=cosα导出y=cosx=sin(π/2+x)②因此,y=cosx的图像就相对sinx左移π/2个单位(上增下减是y值的变化,左增右减是x值的变化)初中数学余弦函数的图象的作法有上述两大要点,图像为解题提供了直观的思路。
性质(1)定义域:{x|x≠kπ,k∈Z}(2)值域:实数集R(3)奇偶性:奇函数,可由诱导公式cot(-x)=-cotx推出图像关于(kπ/2,0)k∈z对称,实际上所有的零点和使cotx无意义的点都是它的对称中心(4)周期性是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;(5)单调性在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具有单调性。
2023福州中考数学考点分析
2023福州中考数学考点分析学习是每个一个学生的职责,而学习的动力是靠自己的梦想,也可以这样说没有自己的梦想就是对自己的一种不责任的表现,同时知识也不是也不是随意的摘取。
要通过自己的努力,要把我自己生命的钥匙。
今天小编在这给大家整理了一些福州中考数学考点分析,我们一起来看看吧!福州中考数学考点分析1一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...及a都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!_(x-a)+f''(a)/2!_(x-a)2+...f(n)(a)/n!_(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
2.直角三角形的三条高交点在一个顶点上。
3.勾股定理:两直角边平方和等于斜边平方四、利用三角函数测高1、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.福州中考数学考点分析21.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
中考数学知识内容考点及分值分析
数学知识内容考点及分值分析一、教材设置初中数学共学习6册书,中考数学难易比例5:3:2。
数学授课方式:先讲后练(基础差型学生)先练后讲(基础好型学生)初一:1、上册:主要包括四章内容,第一章有理数、第二章整式的加减、第三章一元一次方程和第四章图行的初步认识。
前三章属于数与代数的内容,最后一章属于空间与图形的内容。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3—6分,多以选择题,填空题,计算题的形式出现,难易度属于简单.考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空).(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
考察内容:①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式发和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。
中考分值约为1—3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
考察内容:①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程.题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础2、下册:主要包括六章内容,分别是:相交线和平行线、平面直角坐标系、三角形、二元一次方程组、不等式和不等式组和数据库的收集整理与描述.(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。
通常以填空,选择题形式出现。
分值为3—4分,难易度为易。
考察内容:①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
考察主要内容:①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。
近五年深圳中考数学各考点分析及稳定性对比
近五年深圳中考数学各考点分析及稳定性对比2016年中考考点归纳一、数与式代数式部分,要抓准定义和原理,如:相反数、倒数、绝对值、分母有理化、幂的运算、因式分解、分式的化简。
数与式部分考查的重点还是基础知识,基本计算,难度较低。
分值在20分左右。
这部分是所有学生都应该做对的。
二、方程与不等式组方程与不等式的复习,要以基础为主,不要只研究难题,要注重过程以及方法的总结。
从试卷这部分考题来看,难度都不大,关键是学生能否有明确的思路,良好的解题过程。
因此我们在复习的时候,加强对以下内容的复习:一元一次方程、二元一次方程组、一元一次不等式、不等式组、一元二次方程。
注意整体思想,换元法的训练。
方程(组)与不等式(组)部分考查方程和方程组的解法及一元二次方程的根的判断,还有方程在应用题中的应用。
不等式主要考查不等式的解法及性质。
该部分难度适中,分值在15分左右。
三、图形的认识几何部分的考查内容主要是:相交线与平行线、全等三角形、相似三角形、等腰三角形、等腰梯形、直角三角形、平行四边形、圆的有关问题。
三角形部分主要会考查三角形中的三线、三角形全等的性质及判定。
分值在15分左右,该部分考题一般较为简单。
四边形部分会延续对平行四边形、矩形、菱形、正方形判定及性质与应用的考查。
分值为9分左右,难度中等。
圆是必考内容,课本上对圆的内容设置难度较低,所以在中考中出现的试题考查的知识点主要集中在垂径定理、切线判定与性质、面积计算的部分。
分值在13分左右,难度中等。
四、空间与图形几何部分的难点在于初中数学中三大变换(平移、旋转、轴对称)与以及与上述三类图形结合的几何综合题,这部分要求学生熟练掌握三大变换的概念和性质,分值一般在8分左右。
在平时的复习中要注重对数学思想的理解,在练习中要有意识地训练我们的数学思维,这样对我们以后的学习是有很大好处的主要包括如下几个数学思想:①分类讨论的思想;如在等腰三角形中对角的讨论,对边的讨论很重要。
数学中考重难点知识点归纳
数学中考重难点知识点归纳数学中考是中学阶段的重要考试之一,它不仅考察学生对数学基础知识的掌握,还考察学生运用数学知识解决问题的能力。
以下是数学中考中的一些重难点知识点归纳:1. 数与代数:- 有理数的运算法则,包括加、减、乘、除和乘方。
- 代数式的简化,包括合并同类项、幂的运算法则等。
- 一元一次方程和一元二次方程的解法,包括直接开平方法、因式分解法、配方法和公式法。
- 不等式的性质和解法,包括不等式的解集表示、基本不等式解法等。
2. 几何:- 平面几何中的图形性质,如三角形、四边形、圆的性质。
- 相似三角形和全等三角形的判定与性质。
- 圆的切线性质、圆周角定理、垂径定理等。
- 空间几何中的立体图形,如长方体、圆柱、圆锥、球的体积和表面积计算。
3. 函数与图象:- 一次函数、二次函数的图象与性质,包括函数的增减性、对称性等。
- 反比例函数的图象与性质,理解其在不同象限内的变化趋势。
- 函数的解析式,包括如何根据图象或实际问题写出函数的解析式。
4. 统计与概率:- 数据的收集、整理与描述,包括条形统计图、折线统计图、饼图等。
- 算术平均数、中位数、众数的计算方法。
- 概率的基本概念,包括事件的独立性、互斥性,以及概率的计算公式。
5. 综合应用题:- 将数学知识应用于实际问题,如行程问题、工程问题、经济问题等。
- 解决问题时需要运用多种数学知识,如方程、不等式、函数等。
结束语:掌握这些重难点知识点是数学中考取得好成绩的关键。
学生应该在平时的学习中注重基础知识的积累,通过大量的练习来提高解题能力。
同时,培养良好的思维习惯和解题策略,以便在考试中能够迅速准确地解决问题。
希望每位学生都能在数学中考中取得优异的成绩。
中考数学数据分析知识点归纳及真题解析
数据分析知识点归纳及真题解析【知识归纳】一、统计调查1、数据处理的过程(1)数据处理一般包括—数据、—数据、—数据和—数据等过程。
(2)收集数据的方法:a、民意调查:如投票选举b、实地调查:如现场进行观察、收集、统计数据c、媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
注意:选择收集数据的方法,要掌握两个要点:①,②蔓0数据处理可以帮助我们了解生活中的现象,对未知的事情作出合理的推断和预测。
2、统计调查的方式及其优点(1)全面调查:考察的调查叫做全面调查.(2)划计法:整理数据时,用的每一划(笔画)代表一个数据,这种记录数据的方法叫划计法。
(3)百分比:每个对象出现的次数与总次数的o注意:①调杳方式有两种:一种是全面调查,另一种是抽样调查.②^计之和为总次数,百分比之和为lo③划计法是记录数据常用的方法,根据个人的习惯也可改用其他方法。
全面调查的优点是可靠,、真实,抽样调查的优点是省时、省力,减少破坏性。
3、抽样调查(0抽样调查是这样的一种主法同,它只抽取一部分对象进行调查,然后根据调查数拥推断全体对象的情况。
(2)为了获得较为准确的调查结果,抽样时要注意样本的广泛性和代表性,即采取随机抽查的方法。
4、总体和样本总体:要考查的对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:从当中抽出的所有实际被调查的对象组成一个样本。
样本容量:样本中叫样本容量(不带单位)。
二、直方图1、数据频数(数据表格)数据的频数分布表反映了一组数据中的每个败据出现的,从而反映了在数据组中各数据的分布情况。
要全面地掌握一组数据,必须分析这蛆数据中各个数据的分布情况。
2、(频教)直方图(统计各个数据出现的次数,即频数,并用图像展示出来)为了直观地表示一组数据的分布情况,可以以—为基础,绘制分布直方图。
(I)频数分布直方图简称直方图,它是条形统计图的一种。
⑵直方图的结构:宜方图、—、—三部分组成。
(3)作直方图的步骤:①-(即极差,为II大值与II小值的差);②—(每个小组的两个端点之间的距离)与组敷(用极差。
初三数学重点难点考点归纳
初三数学重点难点考点归纳一份耕耘,一份收获,上苍从来不会忘记努力学习的人!尽量去考,因为天道酬勤。
大胆去考,没必要杞人忧天、患得患失,天生我才必有用!下面是小编给大家带来的初三数学重点难点考点,欢迎大家阅读参考,我们一起来看看吧!初三数学重要知识点总结1.二次根式:一般地,式子叫做二次根式.注意:(1)若这个条件不成立,则不是二次根式;(2) 是一个重要的非负数,即; ≥0.2.重要公式:(1) ,(2) ;3.积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积;4.二次根式的乘法法则: .5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1) ;(2) ;(3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第22章一元二次方程1. 一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、c; 其中a 、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;4.平均增长率问题--------应用题的类型题之一 (设增长率为x):(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和.第23章旋转1、概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.旋转三要素:旋转中心、旋转方面、旋转角2、旋转的性质:(1) 旋转前后的两个图形是全等形;(2) 两个对应点到旋转中心的距离相等(3) 两个对应点与旋转中心的连线段的夹角等于旋转角3、中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.4、中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.5、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、坐标系中的中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P′(-x,-y).初中数学三年重难点知识点1、构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近三年中考数学考点分析 2011年 1AB考察负数的减法乘法运算 实数的性质 C幂的运算 D绝对值的运算 2考察基本几何体的三视图给出四种 视图 几何体的名称,考察对几何体的熟悉度。 科学记数法 3给出已知数,用科学记数法表示 4平行线与三角形结合考其中一个内角大小考 平行线 平行线同位角相等,对顶角以及三角形内角和 为180度,计算角的大小。 6二次函数与一次函数图象结合问题,给出二次 函数图象 函数图象判断ab的正负,再由一次函数表达式 确定一次函数的图象 7对新定义概念的计算,利用等边三角形正方形12 几何图形运算 正六边形,圆的基本性质进行计算,主要考察 这几种图形的边角关系 5根据折线图的走势判断极差,中位数,平均数 统计 以及方差的大小解决实际问题,主要考察折线 图走势与极差,中位数,平均数,方差的关系。 8利用等边三角形和菱形的边长之间的关系求 归纳题 出组合图形的周长,从周长值推断规律。 分式化简 12利用分式的通分化简,简化分式,代值 19考点:(1)全等三角形的判定方法 (2)等腰三角形的性质 等腰三角形顶角的角平分线与底边中线,高 互相重合,利用1,2证明边相等以及图形中的 几何 两条直线的关系。 20考点:三角形中边长的计算 三角函数实际应用:仰角,俯角,方向角,本 题考查仰角时三角形三边运算,解决实际问题 22用三角形的边长探究证明不等式 23考点:反比例函数,二次函数,圆以及三角 形的图象的综合运用。 通过函数上的点使其组成要求的图形,即把 函数与几何结合函数图象上的点与图象以及组成的图形联系 起来。 就是用函数上的点加条件拼成要求的图形, 即函数与几何相结合的应用题。 18由统计扇形图所提供的信息以及文字信息 统计概率题 来推断未给出的数据,结合概率求出扇形图中 的未知数,并推测大样本中的部分数据。 考点
近三年中考数学考点分析 2012年 1A算数平方根的运算BCD分别考察 指数幂的基本运算 6根据视图考察几何体的展开与折叠 相对更注重空间想象力,难度稍大
8反比例函数的图象与三角形的综合运用 运用反比例函数的特点表示出三角形的 面积表达式进而求解,数形结合思想 12利用正三角形,圆的弧等性质对新图 形的周长的计算,主要考察正三角形,圆 及角之间的计算方法。 14根据统计图表中的数据计算出未知数据 15根据表格数据及所给已知平均数值来判断 并确定总体样本中的中位数,进而解答, 两者的方差大小。 比上一年容易。 利用等腰直角三角形的性质及坐标轴上的 12利用折射性质及角之间的关系,找出P点 规律变化求出点坐标。 运动规律从而求出P点的坐标。 10分式化简考察同底数幂的运算,简化分式 16对分式通分,再代入已知数值 21(1)利用圆,三角形,四边形之间的 20考点:圆,直角三角形,平行四边形的 联系选择辅助线,使我们所要求的线段位 性质与2012年21题辅助线的做法一致,选好 于特殊图形如正三角形,正方形,菱形中, 辅助线,使问题简化。 这是做辅助线的原则。 23考点:等边三角形的性质,正方形的性质 (2)利用三角形相似来解决难做辅助线的 以及综合运用 19考点:(1)线的垂直平分线的性质 涉及全等三角形的判定与性质 (2)角:角的平分线的性质 以及发掘直角三角形等简化所求问题 利用这两点性质画图 利用结论解决实际应用问题。 注意规范画图 23考点:(1)正方形,直角三角形以及折 24考点:二次函数与三角形之间的联系来确 叠图形的边与角的关系。 定三角形面积的最大值 (2)二次函数与几何相结合,先用几何知识 主要考察相似三角形的判定及性质应用三角 将所求的值用函数表示出来,再利用一元 形面积的公式应用,二次函数顶点式的运用 二次函数最值得大小判定来解出函数最值 用函数关系式表示出三角形PCD的面积, 利用函数来解决几何中的最值问题 由顶点式求出最大值。 20概率题:用树状图表示出所有的可发生 情况,并根据题意求出要求的概率,注意 仔细。 19统计题:根据所给的所有数据,以及直方 图填出频数分布图中不完整部分,根据题意推断出 推断出题中的可得信息。