北京大学数学科学学院期末试题-高等代数-2012
03-04学年《高等代数》第二学期期末考试卷
1一 选择题(6题×4分)1. 和矩阵1001M ⎛⎫=⎪-⎝⎭正交相似的矩阵是( )。
A.⎪⎪⎭⎫⎝⎛0110B. ⎪⎪⎭⎫⎝⎛-0011C. ⎪⎪⎭⎫⎝⎛-1111D. ⎪⎪⎭⎫⎝⎛-0110 2. 实数域上阶实对称阵按合同关系分类, 共有( )类A. n +1B.2)1(nn - C.2)1(nn + D.2)2)(1(++n n3. 设*V 是数域F 上三维线性空间V 的对偶空间. 123,,v v v 是V 的一组基, ***123,,v v v 是其对偶基, 则V 中基12233,,v v v v v --的对偶基是( )A. *3*2*2*1*1*3,,v v v v v v +++B. *3*2*1*2*1*1,,v v v v v v +++C. *3*3*2*2*1,,v v v v v --D. *1*2*3*2*2,,v v v v v -+4. 设21,V V 是n 维欧氏空间V 的子空间, ϕ是正交变换, 则下列命题中正确的有( )项.① 若21V V ⊆,则⊥⊥⊆21V V② 若⊥⊥=21V V ,则21V V =③ 若1V 是ϕ不变子空间,则⊥1V 也是ϕ不变子空间 ④ 11)V (V =⊥⊥A. 1B. 2C. 3D. 45. 设,ϕψ是n 维欧氏空间V 的线性变换, **,ϕψ分别是,ϕψ的伴随变换, 则下列命题中错误的是( ).①ϕ是单的线性变换,则*ϕ是满的线性变换 ②*Im dim Im dim ϕϕ=③)),(()),((*αβϕβαϕ=,对任意的V ∈βα, ④ϕ是同构变换,则*ϕ也是同构变换 A. 0B. 1C. 2D. 36. 已知二次型222123123121323(,,)()444f x x x a x x x x x x x x x =+++++经正交变换X = TY 化为标准形21231(,,)6f y y y y =,则( )a =.A. 0B. 2C. 4D. 62二 填空题(6题×4分)1. 在欧氏空间3R (标准内积)中, 设(2,2,0),(1,2,3)αβ==, 则β的长度是( ), α与β的距离是( ), α与β的夹角是( ).2. 设V 是数域K 上n 维线性空间, 则线性映射()v η= ( ),V ∈∀v ,导出了线性空间的同构**)(V V ≅.3. 三阶正交矩阵在正交相似下的所有可能的标准形是( ).4. 设,A C 为n 阶对称阵,且⎪⎪⎭⎫⎝⎛'C B B A 为正定阵, 则以B A B C 1-'-为相伴阵的二次型为( )型.5. 当t 取值范围为( )时, 二次型22212312323(,,)232f x x x x x x tx x =+++是正定型. 6. 设二次型(,,)f x y z xy yz zx =++, 则与f 相伴矩阵是( ), f 的正惯性指数是( ),f 的符号差是( ).三 (15分)设实数域上3阶方阵022244243A -⎛⎫⎪= ⎪ ⎪--⎝⎭, 求正交矩阵T , 使'T AT 为对角阵, 并写出该对角阵. 四 (10分)设A 是m n ⨯阶阵, λ>0, 证明'n I A A λ+是正定阵.五 (15分)设ϕ是n 维欧氏空间V 的对称变换, V ∈α,且1α=。
北京大学高等代数 I_2013 期末答案
北京大学数学科学学院期末试题答案2013 -2014学年第 1 学期考试科目 高等代数I 考试时间 2014 年 1 月 2 日 姓 名 学 号一.(30分)填空题 .1. 已知 A = ⎥⎦⎤⎢⎣⎡01t 1t 101. 当 t = ±2 时, tr (A T A )= 12 ; 当 t 取 t ≠ 0 值时, AX = 0 解空间的维数等于A 的秩 .2. 设A, B, C, D 为n 阶矩阵, 且A 可逆. 若有可逆的分块矩阵P , Q , 使得⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡E 00A Q D C B A P , 其中E 是n 阶矩阵, 则P =⎥⎦⎤⎢⎣⎡--n 1nI CA 0I ,Q = ⎥⎦⎤⎢⎣⎡--n 1n I 0B A I (写出一种取法), 此时E = D – CA -1B .3.将矩阵A =⎥⎦⎤⎢⎣⎡312451写成U D U -1的形式, U 为可逆矩阵, D 为对角矩阵, 则U =⎥⎦⎤⎢⎣⎡-1112, D = ⎥⎦⎤⎢⎣⎡40001. (写出一种取法); 当k 趋于正无穷时,A k⎥⎦⎤⎢⎣⎡11趋于 ⎥⎦⎤⎢⎣⎡1232.4. 当 a 取 ( -1, 1 ) 值时, 三元二次型 f = x 12 + 2 x 22 + x 32 + 2 a x 1 x 2 – 2 x 2 x 3正定 ; 此时作变量替换 X = C Y , C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----11100110011222a a a a , 可将 f 化为规范型.5. 在实数域上,以下诸矩阵的相抵分类是 {B} {ACD}, 相似分类 {AC}{B}{D} ; 合同分类 {A}{B}{C}{D}.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2t 2t 40200D 201020102C 000030013B 100121003A ,,, (t 取任意实数) 6. 在三维欧氏空间中取定一个中心在原点的正六面体 C , 则恰有 48_ 个3阶正交矩阵A , 使得线性变换 X → A X 保持C 整体不变(顶点映成顶点), 这些正交矩阵中又恰有 _16_ 个矩阵迹等于0 .二.(12分)已知 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010022102, 且A X + I = A T + X , 求矩阵X .解: 移项, 得 ( A -I ) X = A T -I , 对 [ A -I | A T -I ] 作行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--10111011012021101 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→101110132210021101 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→233100132210021101 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→233100334010212001 于是 X = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----233334212.三.(18分)设α 1 , α 2 , α 3 , α4是矩阵A = 的列向量.(1) 求子空间 V = < α1 , α2 , α3 , α4 > 的一组基底 ;(2) 当a , b 取何值时, 列向量 β = [ 1 a 2 b 1 + a ] T ∈ V , 此时β在 (1) 中基底下的坐标是什么?⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-96390011541310113202解: (1) 对矩阵A T 作行变换, 得到简化阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=90513604023111091312A T ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→01201604023111031110⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→00000310000011030201 简化阶梯形矩阵的非零行构成A T 行空间的基底, 即β1 =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡30201 , β2 =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-00110, β3 =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡31000 构成V 的`一组基.(2) 若 β = [ 1 a 2 b 1 + a ] T ∈ V , 则必有β = β1 + a β2 + b β3 . 比较第3, 第5个分量, 有 2 – a = 2 , 3 + 3b = 1 + a . 由此解得a = 0 , b = -2/3 .此时β在基底β1 , β2 , β3 下的坐标是 ( 1, 0, -2/3 ).四.(16分)判断对错, 正确的请给出证明, 错误的举出反例.1) 若A 是一个n 阶矩阵( n > 1 ), 则一定存在一个n 阶矩阵 B , 使得 B A 是 对角矩阵, 且B A 的秩等于A 的秩 . 解: 错误.反例: 取 A =⎥⎦⎤⎢⎣⎡0011. 若有矩阵B, 使得B A 是非零的对角矩阵, 则 B A 011≠⎥⎦⎤⎢⎣⎡-. 但这是不可能的, 因为011A =⎥⎦⎤⎢⎣⎡-.2) 若A 是m 阶正定矩阵, B 是n 阶正定矩阵, 则对任意m ⨯n 实矩阵C, 都有|B ||A |BCC A T≤.解: 错误.反例: 取 A = I 2 , B = I 2 , C = 2 I 2 , 则有1|B ||A |93000030021002011020*********201BC C AT =>=--==.五.(24分)设α1 , α2 , α3 是矩阵A = 的列向量. (1) 求 A T A 的特征值与特征向量 ;(2) 求正交矩阵 P 及对角矩阵D , 使得A T A = P D P T ;(3) 在欧氏空间R 4的所有2维子空间里, 求一个子空间V (写出V 的一组标准正交基), 使得 α1 , α2 , α3的顶点到V 的距离平方和为最小. 确定这个最小值并说明理由.解: (1) A T A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----542452222的特征多项式为942010422542110222542452222A A I T ----=-----=-----=-x x x x x x x x x x x ||= ( x - 1 )( x 2 -11 x + 10 ) = ( x -1 ) 2 ( x - 10 ) .故A T A 的特征值为1 (代数2重) 与 10 .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-100221010001解齐次方程组 ( A T A - I ) X = 0 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-000000221442442221I A A T , x 1 = -2 x 2 + 2 x 3 , x 2 , x 3为自由变量得 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10201222323232321x x x x x x x x x于是特征值1的特征子空间的一组基为 β1 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012, β2 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡102. 对β1 , β2 作Schmidt 正交化:β1 , β2 → β1 , β2 -),(),(1112ββββ β1 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡01254102 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡54251 , 再单位化, 得到特征值1特征子空间的一组标准正交基γ1 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-01251 , γ2 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡542531. 解齐次方程组 ( A T A - 10 I ) X = 0 , 对A T A - 10 I 作行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=-000110102990452990990452114542452228I 10A A T ,容易看出, 特征值10 的特征子空间的一组基为β3 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-221 , 单位化后得到特征值10 特征子空间的标准正交基γ 3 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-22131.(2) 由于 γ 1 , γ 2, γ 3构成3维欧氏空间的标准正交基,P = [ γ 1 γ 2 γ 3 ] = ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--32535032534513153252 为正交矩阵. 令D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010001 , 则有 A T A = P D P T ;(3) 设列向量组ξ 1 , ξ 2 是所求2维子空间V 的一组标准正交基,记 B = [ ξ 1 ξ 2 ]. 则α i 到V 的正交投影可表示为( α i , ξ 1 ) ξ 1 + ( α i , ξ 2 ) ξ 2 = ξ 1 ξ 1T α i + ξ 2 ξ 2T α i = BB T α i 由勾股定理, α i 到V 距离的平方为|| α i - BB T α i || 2 = || α i || 2 - || BB T α i || 2= α i T α i - α i T ( BB T )T ( BB T ) α i = α i T α i - α i T B B T α i这里用到ξ 1 , ξ 2 是单位正交向量组, 故有B T B = I 2 .于是α1 , α2 , α3 到V 距离的平方和为 Tr( A T A ) - Tr( A T B B T A ) . 欲使以上距离平方和最小, 只需取单位正交向量组ξ 1 , ξ 2 , 使得 Tr( A T B B T A ) = Tr( B B T A A T ) 最大.由直接计算或利用(2)的结果(见注), 可得A A T = Q E Q T , 这里Q = [ η1 η2 η3 η4 ] = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----10210325350101103900102103253451101103153252是正交矩阵, E = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000100000100001注意到 Tr( A T B B T A ) = Tr( B B T Q E Q T ) = Tr( Q T B B T Q E ) .令 C = Q T B . 设c 1 , c 2 , c 3 , c 4 是CC T 的对角元, 则c 1 + c 2 +c 3 + c 4 = Tr( CC T )= Tr( Q T B B T Q ) = Tr( B T B ) = 2 .又因为C = Q T B 的列向量组是单位正交向量组, 可扩充成欧氏空间R 4的标准正交基. 记C*是此标准正交基排成的正交矩阵, 则有0 ≤ c i = C 第i 个行向量长度的平方 ≤ C*第i 个行向量长度的平方 = 1 . 于是 Tr( A T B B T A ) = Tr( CC T E ) = c 1 + c 2 + 10 c 3 ≤ 11,等号可在 c 3 = 1, c 1 + c 2 = 1, c 4 = 0 取到, 例如取C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00010010 , B = QC = [ η3 η1 ], 即V = < η3 , η 1 > 时, α1 , α2 , α3 到V 的距离 平方和为最小, 这个最小值为 Tr( A T A )-Tr( A T B B T A ) = 12-11 = 1 .注. 利用 (2) 的分解A T A = P D P T , 我们推得A A T A P = A P D 且 ( A P )T A P = P T A T A P = D .容易看出A P 的列向量A γ 1 , A γ 2 , A γ 3 是实对称矩阵A A T 的特征向量, 特征值分别为1, 1, 10 的特征向量; 且A γ 1 , A γ 2 , A γ 3两两正交, 长度的平方分别为1, 1, 10. 将A γ 1 , A γ 2 , A γ 3单位化, 令η1 = A γ 1 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-001251, η2 = A γ 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡5042531, η3 =101A γ 3 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-29211031.再解 A A T X = 0 得A A T 的特征值0的单位特征向量 η4 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--2121101. 则Q = [ η1 η 2 η 3 η4 ] 是正交矩阵, 且 A A T = Q E Q T .。
1999-2000,2,5-8,10北京大学高等代数考研真题
1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。
其中B 是常数2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标;对于线心型曲线,写出对称直线的方程。
3. 设数域K 上的n 级矩阵A 的),(j i 元为ji b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。
4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC (2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。
数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。
用U 表示K 上所有n 级循环矩阵组成的集合。
证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。
5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。
在实数域上n 维线性空间n R 中,对于nR ∈βα,,令βαβαH f '=),(。
试问:f 是不是n R 上的一个内积,写出理由。
(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。
令αα'=A B ,求B的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n r a n k r a n k =+++-⇔=)()(23A A I A I I A2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。
高等代数教案(北大版)--高等代数试题以及解答
高 等 代 数(上)(No. 8)一、填空题(每小题1分, 共8分)1.一非空复数集P 为数域, 若其 包含0和1, 且对加减乘除四种运算封闭. 2. 设d (x )为f (x ), g (x ) 的一个最大公因式, 则d (x )与(f (x ), g (x ))的关系 倍数关系即d (x )=k (f (x ), g (x )) .3.设{i 1,i 2,…,i n }={1,2,…, n },则τ( i 1i 2…i n )+ τ( i n i n -1…i 1)=n(n -1)2. 4.设n ≥2, a 1,…,a n 两两不同, 则xa a a x a a a xnn.....................2211的不同根为 a 1, a 2,…,a n .5.设t 1,…,t r 两两不同, 则αi =(1,t i ,…,1-r i t ), i =1,…, r 线性 无关 .6.若β可由α1,…,αr 唯一表示, 则α1,…,αr 线性 无关 . 7.设α1,…,αm 为n 维向量组, 且R (α1,…,αm )=n , 则n ≤ m . 8.若A 为n 级实对称阵且AA '= O , 则A= O . 二、选择题(每小题1分, 共8分)1. 对于“命题甲:将n (>1)级行列式D 的主对角线上元素反号, 则行列式变为-D ;命题乙:对换行列式中两行的位置, 则行列式反号”有( B ) .A . 甲成立, 乙不成立B . 甲不成立, 乙成立C . 甲, 乙均成立D . 甲, 乙均不成立2.整系数多项式f (x )在Z 不可约是f (x )在Q 上不可约的( B ) 条件.A . 充分B . 充分必要C . 必要D . 既不充分也不必要3.设D=|a ij |n , A ij 为a ij 的代数余子式, 则nnnnn n A A A A A A A A A D (212)221212111∙=( C ) .A . DB . -DC .D n D . (-1)n D 4.下述中, 错误的是( D ) .A . 奇数次实系数多项式必有实根B . 代数基本定理适用于复数域C . 任一数域包含QD . 在P [x ]中, f (x )g (x )= f (x )h (x )⇒g (x )=h (x ) 5.设A , B 为n 级方阵, m ∈N , 则“命题甲:|-A|=-A ;命题乙:(AB )m = A m B m ”中正确的是( D ) .A . 甲成立, 乙不成立B . 甲不成立, 乙成立C . 甲, 乙均成立D . 甲, 乙均不成立 6. 任n 级矩阵A 与-A , 下述判断成立的是( B ) .A . |A|=-|A|B . AX =0 与(-A )X =0同解C . 若A 可逆, 则(-A )-1=(-1)n A -1D . A 反对称, -A 反对称7. 向量组α1,…,αs 线性无关⇔( C ) .A . 不含零向量B . 存在向量不能由其余向量线性表出C . 每个向量均不能由其余向量表出D . 与单位向量等价8. 设A , B 均为P 上矩阵, 则由( A ) 不能断言A ≌B .A . R (A )= R (B ) B . 存在可逆阵P 与Q 使A=PBQC . A 与B 均为n 级可逆D . A 可经初等变换变成B三、简要回答(每小题5分, 共20分)1.设f (x), g (x )∈P [x ], g (x )≠0, 若f (x )= g (x )q (x )+r (x ), 则 (f (x ), g (x ))=(f (x ), r (x ))成立吗?为什么?答: 不一定成立. 如:f (x )=6x 2, g (x )=2x , q (x )=3x , r (x )=0, (f (x ), g (x ))= x , (f (x ), r (x ))=x 2. 2. 设⎪⎪⎭⎫⎝⎛=d c b a A , 则当a ,b ,c ,d 满足何条件时, A =A '? A =A 2?为什么? 答: 当b =c 时, A 是一个对称矩阵, 因此A =A '.当a+d =1或c=b=0且a , d ∈{0,1}时, A =A 2.直接根据矩阵相等的定义.3.若α1,…,αs 与β1,…,β s 均相关, 则α1+β1,…,αs +β s 相关吗?为什么?答: 不一定. 如:α1=(0, 2, 0), α2=(1, 0, 1), α3=(2, 1, 2), β1=(0, -1, 0), β2=( -1, 0, 0), β3=(-1, -1, 0), 显然α1, α2, α3; β1, β2, β3两组向量均相关, 但α1+β1, α2+β2, α3+β3是线性无关的.4.若A , B 均为n 级阵, 且A ≌B , 则A 与B 的行向量组等价吗?为什么? 答:等价。
完整word版,北京大学数学科学学院期末试题-高等代数-2012
北京大学数学学院期末试题2011 - 2012学年第一学期考试科目高等代数I考试时间2012年1月3日11(10分)已知n阶方阵A =求矩阵X ,使得A X = B .对矩阵作初等行变换1a = [ 1 1 0 ] T 构成=2特征子空间的一组基1 1 0二.(15分)设A : X A X 是R 3上的线性变换,其中A =1 1 20 0 2(1) 求线性变换A 像空间的维数和一组基 (2) 求矩阵A 的特征值与特征向量; (3) 判断矩阵A 能否对角化并说明理由.1 1 01 12 0通解为 X 1 = X 2 , X 3 = 0 , X 2X 1 x 2 x 2x 2X 3解:(1)在标准基下 ,A 像空间就是矩阵A 的列空间,它的一组基A|维数是(入2)2入)入(入2)2 A 的特征值为=2 (代数二重),对二2解齐次方程组(A - 2 I ) X = 0 :1 1 00 0 10 0 0为自由变量.写成向量形式1 x2 1a= [ 1 1 0 ] T构成=2特征子空间的一组基对二0解齐次方程组A X = 0 :1 1 0 110 1 12 0 0 1 0 0 2 0 0 0X 3⑶由于特征值二2特征子空间的维数1小于其代数重数2,A 不能否对角化. 三. (35分)填空题(多选).1 .已知3阶矩阵A 的特征值为1, 1/2,0 ,相应的特征向量为[1 0 ]T ,[0 1 0 ]T, [ 1 2 0 则 2 A 3 4 -3 A 2 : 二1 011 00 1 0 11 1 0 1 0 12 0 1/2 0 0 1 2 0 1/2 11 00 0 00 10 010 12.设A =112t.当 t取不等于 1的值 时, 存在矩阵B ,1 t2 43 当 -4/5 < t < 0时,三元二次型X 2 + y 2 + 5 z 2 + 2 t X y -2 X z + 4 y z 正定. 4 设 是n 维欧氏空间里的单位列向量 ,则| 1-5T| = —注:可计算行列式或利用| I m — B | = | I n -B A | . 5.在实数域上,以下诸矩阵的相抵分类是{ABD},{C},通解为 X 1 = - X 2 , X 3 = 0X 2为自由变量•写成向量形式X 1 X 2 X 2 X 2 X 2 1a = [ -1 1 0 ] T 构成=0特征子空间的一组基使得AB= =I.当t取 1 时,存在非E零矩阵C , 使得C A = 0 .相似分类是{A,D},{B},{C},合同分类是{A},{B},{C},{D}1 0 1 0 1 0 1 0 02 1 2A 0 1 0 ,B 1 3 1 ,C 0 1 0 ,D 0 1 01 0 1 0 1 0 3 0 1 0 0 06. 以下说法正确的有(a)(b)(c)(d)多选).a) 如果两个实对称矩阵相似,它们也一定合同;b) 实方阵都能写成P Q的形式,其中P是实对称矩阵,Q是正交矩阵c) 每个矩阵都能写成P J的形式,P是可逆矩阵,J是行简化阶梯矩阵d) 实方阵都能写成Q R的形式,Q是正交矩阵,R是上三角矩阵四.(12分)判断对错,正确的请给出证明,错误的举出反例.1) 在包含n (n>1)个向量的向量组中,若任意n - 1个向量都线性无关,则整个向量组也线性无关.1 2解:此命题错误.例如,考察向量组o'。
北京大学数学系《高等代数》(第3版)(章节题库 λ-矩阵)
,则
,从而
,于是
由于
的若当标准形依次为
故 A*的若当标准形为
7.求 A 的全体零化多项式集,其中
解:将特征矩阵化为标准形
得 A 的最小多项式为
,故 A 的零化多项式的集合为
最小多项式有着广泛的用途,例如求矩阵的若当标准形,判定
矩阵能否对角化等等.
8.设实数域 R 上矩阵
5 / 64
圣才电子书
标准形为
A 的初等因子是 A+3,(λ-1)2;不变因子是
由
,故 A 的有理标准形为
4.已知
(1)求 A 的不变因子,初等因子和最小多项式.(2)求 A 的若当标准形. 解:(1)用初等变换将 λE-A 化为标准形,
于是 A 的不变因子是 1)2,(λ-1)2;最小多项式为(λ-1)2.
(2)A 的若当标准形为
十万种考研考证电子书、题库视频学习平 台
(1)求 A 的特征多项式 f(λ). (2)f(λ)是否为 R 上不可约多项式?(3)求 A 的最小多项式,要写出理由;(4) A 在 R 上可否对角化? 解:将 λE-A 化为标准形
故 A 不变因子为
(1)A 的特征多项式
(2)由 R 上的不可约多项式仅有 2 次,2 次多项式,故 f(λ)在 R 上可约.
故 a=b=c.由
,即
故 A 至少有两个特征值为 0. 3.设
求矩阵 A 的不变因子,初等因子,若当标准形,有理标准形. 解:因为
2 / 64
圣才电子书
十万种考研考证电子书、题库视频学习平 台
故 A 的特征值为 λ2=3,λ2=1(2 重),1 的几何重数为 3-r(E-A)=1,故 A 的若当
(完整word版)高等代数期末复习试题
数学系《高等代数》期末考试试卷年级 专业 学号 姓名注:考试时间120分钟,试卷满分100分 。
;错误的在题后的括号内打“×”.每小题2分,共18分) 1.向量空间一定含有无穷多个向量. ( )2.若向量空间V 的维数2dim ≤V ,则V 没有真子空间. ( )3. n 维向量空间中由一个基到另一个基的过渡矩阵必为可逆矩阵. ( )4.线性变换把线性无关的向量组映成线性无关的向量组. ( )5.每一个线性变换都有本征值. ( )6.若向量ξ是线性变换σ的属于本征值λ的本征向量,则由ξ生成的子空间 为σ的不变子空间. ( )7.保持向量间夹角不变的线性变换是正交变换. ( )8.两个复二次型等价的充分必要条件是它们有相同的秩. ( )9. 若两个n 阶实对称矩阵B A ,均正定,则它们的和B A +也正定. ( )号码填在题目的括号内.每小题2分,共10分)1. 下列命题不正确的是 ( ).A. 若向量组},,,{21r ααα 线性无关,则它的任意一部分向量所成的向量组也线性无关;B. 若向量组},,,{21r ααα 线性相关,则其中每一个向量都是其余向量的线性组合;C.若向量组},,,{21r ααα 线性无关,且每一i α可由向量},,,{21s βββ 线装订线性表示,则s r ≤;D. )0(>n n 维向量空间的任意两个基彼此等价.2. 下列关于同构的命题中,错误的是( ).A .向量空间V 的可逆线性变换是V 到V 的同构映射;B .数域F 上的n 维向量空间的全体线性变换所成向量空间与数域F 上的所有n 阶矩阵所成向量空间同构;C .若σ是数域F 上向量空间V 到W 的同构映射,则1-σ是W 到V 的同构映射;D .向量空间不能与它的某一个非平凡子空间同构.3.n 阶矩阵A 有n 个不同的特征根是A 与对角矩阵相似的 ( ).A .充分而非必要条件;B .必要而非充分条件;C .充分必要条件; D. 既非充分也非必要条件.4.二次型⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=21213211312),(),,(x x x x x x x q 的矩阵是( ). A .⎪⎪⎭⎫ ⎝⎛-1312; B .⎪⎪⎭⎫ ⎝⎛1112;C .⎪⎪⎪⎭⎫ ⎝⎛-000013013;D .⎪⎪⎪⎭⎫ ⎝⎛0000110125.实二次型Ax x x x x q '=),,(321正定的充分且必要条件是 ( ).A .0>A ;B .秩为3;C .A 合同于三阶单位矩阵;D .对某一,0),,(321≠'=x x x x 有0>'Ax x .1. 复数域C 作为实数域R 上的向量空间,它的一个基是________.2. 设},,2,1,),,,{(21n i F x x x x F i n n =∈=是数域F 上n 元行空间,对任意n n F x x x ∈),,,(21 ,定义),,,,0,0()),,,((22121-=n n x x x x x x σ,则σ是一个线性变换,且σ的核)(σKer 的维数等于______.3. 若A 是一个正交矩阵,则2A 的行列式2A =________.4. 在欧氏空间3R 中向量)0,0,1(1=α与)0,1,0(2=α的夹角θ=______.5. 实数域R上5元二次型可分为_______类,属于同一类的二次型彼此等价,属于不同类的二次型互不等价.42分)1.求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++=+++=+++033450220230432143243214321x x x x x x x x x x x x x x x 的解空间的一个基,再进一步实施正交化,求出规范正交基.2.设⎪⎪⎪⎭⎫ ⎝⎛--=230120001A ,求A 的特征根及对应的特征向量.问A 是否可以对角化?若可以,则求一可逆矩阵T ,使AT T 1-为对角形.3. 写出3元二次型32213214),,(x x x x x x x q +=的矩阵.试用非奇异的线性变换,将此二次型变为只含变量的平方项.五.证明题(每小题10分,共20分)1.设21,λλ为n 阶矩阵A 的属于不同特征根,21,ξξ分别是A 的属于21,λλ的特征向量,证明21ξξ+不是A 的特征向量.2.设σ是n 维欧氏空间V 的正交变换,且ισ=2为单位变换,A 是σ关于V 的某一规范正交基的矩阵,证明A 为对称矩阵.数学系《高等代数》期末考试试卷(A 卷)年级 专业 学号 姓名 注:考试时间120分钟,试卷满分100分 。
北京大学高等代数16
北京大学数学科学学院期末试题2015 -2016学年第 1 学期考试科目 高等代数I 考试时间 2016 年 1 月 5 日姓 名 学 号一.(20分)已知 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1111211a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=22112a a B . 当a 取何值时,矩阵方程A X =B 无解, 有唯一解, 有无穷多解 ? 在A X = B 有解时给出一个解X .二.(14分)作变量替换 X = C Y , 将三元二次型f ( x 1 , x 2 , x 3 ) = a x 12 + x 22 + 3 x 32 + 6 x 1 x 2 + 10 x 1 x 3 – 2 x 2 x 3化为标准型, 并确定当a 取何值时,f 正定 ; 当a 取何值时,f 不定 .三.(12分)当a 取何值时,矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡51010432a 相似于对角矩阵.四.(27分)设实二次型 f ( x 1 , x 2 , x 3 ) = 3 x 12 + 4 x 1 x 2 – 4 x 1 x 3 + 8 x 2 x 3 .(1) 将 f 写成 X T A X 的形式, 并求实对称矩阵A 的特征值与特征向量;(2) 求正交矩阵P 及对角矩阵D , 使得A = P D P T ; 用正交替换X = P Y 将f 化为标准型;(3) 证明: 对任意 X = [ x 1 x 2 x 3 ] T ∈ R 3 , 有f ( X ) = X T A X ≤ 4 || X ||2 , 并确定等号在何时取到.五.(12分)设 β1, β2, β3, β4 分别是矩阵C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------1111111111111111的列向量. 1) 证明: βi βj T ( 1 ≤ i ≤ 4 , 1 ≤ j ≤ 4 ) 是全体4级实矩阵构成的实线性空间M 4(R) 的一组基;2) 求矩阵X =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001001001001000在以上基底下的坐标, 即求矩阵A = [ a i j ] , 使得 Tj 4j i,1i ij ββX ∑≤≤=a . 六.(10分)设A 是3 ⨯ 4矩阵,且A 的任何一个3级子式都不等于零. 证明:存在可逆矩阵C 与对角矩阵D ,使得A = D C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110010101001 .七.( 5分)判断对错. 正确的请给出证明, 错误的请举出反例.若A 是行列式为1的n 级正交矩阵 , 则A 的每个r 级子式 ( 1 ≤ r ≤ n ) 一定等于此子式的代数余子式 .。
北京大学高等代数 I_2011 期末答案
北京大学数学学院期末试题2011-2012学年第一学期考试科目 高等代数I 考试时间 2012年1月3日姓 名 学 号一. (10分)已知n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡111011001 , B =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡n 321332122211111 . 求矩阵X , 使得 A X = B .解: 对矩阵 [ A | B ] 作初等行变换⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1n 2101110022101101110001011110001n 3211111033211112221001111110001⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→100010000110010011100010111100012n 1001100011001001110001011110001故 X =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100110111 .二.(15分)设 A : X A X 是R 3上的线性变换, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200211011.(1) 求线性变换 A 像空间的维数和一组基;(2) 求矩阵A 的特征值与特征向量;(3) 判断矩阵A 能否对角化并说明理由.解: (1) 在标准基下, A 像空间就是矩阵A 的列空间, 它的一组基为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡220011,, 维数是2 .(2)A 的特征值为λ = 2 (代数二重), 0 .对λ = 2解齐次方程组 ( A - 2 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000100011000211011通解为x 1 = x 2 , x 3 = 0 , x 2 为自由变量. 写成向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110222321x x x x x x α1 = [ 1 1 0 ] T 构成λ = 2特征子空间的一组基.22)2λ(λ)λ2λ()2λ(1λ111λ)2λ(2λ0021λ1011λλ-=--=-----=------=-|A I |对λ = 0解齐次方程组 A X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000100011200211011通解为x 1 = - x 2 , x 3 = 0 , x 2 为自由变量. 写成向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110222321x x x x x xα1 = [ -1 1 0 ] T 构成λ = 0特征子空间的一组基.(3) 由于特征值 λ = 2特征子空间的维数1小于其代数重数2,A 不能否对角化.三.(35分)填空题 (多选) .1.已知3阶矩阵A 的特征值为 1, 1/2 , 0 , 相应的特征向量为[ 1 0 1 ] T , [ 0 1 0 ] T , [ 1 2 0 ] T , 则 2 A 3 – 3 A 2 = .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101121010100121010100002100010012101011// 2. 设A = . 当t 取 不等于1的值 时, 存在矩阵B ,使得 AB = I . 当t 取 1 时, 存在非零矩阵C , 使得 C A = 0 .3. 当 -4/5 < t < 0 时, 三元二次型x 2 + y 2 + 5 z 2 + 2 t x y – 2 x z + 4 y z 正定.4. 设α是n 维欧氏空间里的单位列向量 , 则 | I – 5 α αT | = - 4 . 注: 可计算行列式或利用 | I m –A B | = | I n –B A | .5. 在实数域上,以下诸矩阵的相抵分类是 {A,B,D},{C},⎥⎦⎤⎢⎣⎡+421211t t相似分类是 {A,D},{B},{C} , 合同分类是 {A},{B},{C},{D}.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000010212D 103010001C 010131010B 101010101A ,,,6. 以下说法正确的有 (a)(b)(c)(d) (多选).a) 如果两个实对称矩阵相似, 它们也一定合同;b) 实方阵都能写成P Q 的形式, 其中P 是实对称矩阵, Q 是正交矩阵 c) 每个矩阵都能写成P J 的形式, P 是可逆矩阵, J 是行简化阶梯矩阵 d) 实方阵都能写成Q R 的形式, Q 是正交矩阵, R 是上三角矩阵四.(12分)判断对错, 正确的请给出证明, 错误的举出反例.1) 在包含n (n>1)个向量的向量组中, 若任意n - 1 个向量都线性 无关, 则整个向量组也线性无关.解: 此命题错误. 例如, 考察向量组 ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0201,, 其中由任意一个 向量构成的部分组都线性无关, 但整个向量组线性相关.2) 设A 是m ⨯ n 矩阵. 若存在矩阵B 与C, 使得 BA = I n , AC = I m , 则必有m = n , 且 B = C .解: 此命题正确. 由矩阵乘法的结合律, 有C = ( BA ) C = B ( AC ) = B , 于是 m = n.五.(20分)设 f = 2 x 1 x 2 + 2 x 1 x 3 + 2 x 2 x 3 是三元二次型.(1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量;(2) 求正交矩阵P 及对角矩阵D, 使得A = P D P T ;(3) 求二次齐次函数 f ( x 1 , x 2 , x 3 ) 在单位球面 x 12 + x 22 + x 32 = 1上的最大、最小值, 并确定在何处取到.解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==321321T AX X f x x x x x x 011101110A 的特征值为λ = - 1 (代数二重), 2 .对λ = - 1解齐次方程组 ( A + I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000111111111111通解为x 1 = - x 2 - x 3 , x 2 、x 3为自由变量. 写成向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101011323232321x x x x x x x x xα1 = [ -1 1 0 ] T , α2 = [ -1 0 1 ] T 构成λ = -1特征子空间的一组基. 对λ = 2解齐次方程组 ( A - 2 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000110101000112121211121112通解为 x 1 = x 3 , x 2 = x 3 , x 3为自由变量. 向量形式:)2λ()1λ()2λλ()1λ(1λ0011λ112λ1λλ101λ111λλ111λ111λλ22-+=--+=+-----=+------=------=-|A I |⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1113333321x x x x x x x 于是α3 = [ 1 1 1 ] T 构成λ = 2特征子空间的一组基.(2) 将α1 = [ -1 1 0 ] T , α2 = [ -1 0 1 ] T 正交化:令β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=2112101121101β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21161β||β||1γ,01121β||β||1γ222111 将α3 = [ 1 1 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11131γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] 为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==T 3T 2T 1321γγγ211]γγγ[T P D P A (3) 做正交替换X = P Y ,f = X T A X = Y T P T A P Y = Y T D Y = - y 12 - y 22 + 2 y 32 . 由于P 正交, x 12 + x 22 + x 32 = 1 当且仅当 y 12 + y 22 + y 32 = 1.当 y 12 + y 22 + y 32 = 1时,f = - y 12 - y 22 + 2 y 32 ≤ 2( y 12 + y 22 + y 32 ) = 2,等号成立当且仅当 y 3 = ±1, y 1 = y 2= 0, 即X 取λ = 2特征子空间中的单位向量 ± γ3时成立.类似地, 当 y 12 + y 22 + y 32 = 1时,f = - y 12 - y 22 + 2 y 32 ≥ - ( y 12 + y 22 + y 32 ) = -1,等号成立当且仅当X 取λ = -1特征子空间中的单位向量时成立.六.(8分)设 A 是一个n 阶正定矩阵, 其 ( i , j ) 元记为a i j .证明: a 11 a 22 . . . a nn ≥ | A | .证法1. 对 n 应用数学归纳法.当 n = 1 时, A = a 11 = | A | , 命题成立.以下设命题对n -1成立, 考察A 是n 阶矩阵的情况.记A =⎥⎦⎤⎢⎣⎡-nn αT αα1n A , 其中A n-1是n - 1阶正定矩阵, α是 n - 1 维列向量. 对 A 做成对的行,列分块运算, 得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-----αααααα1-1-n 1n 1-1-n 1n 1n 1-1-n 1n A 00A 1A 0I A 1A 0I T T T T nn T nn αα 于是 | A | = | A n-1 | ( a nn - αT A n-1-1 α ) .由归纳假设, | A n-1 | ≤ a 11 a 22 . . . a n-1n-1 . 又由A n-1 正定知A n-1 的特征值都 > 0, 于是实对称矩阵A n-1-1的特征值也都大于0, 故A n-1-1 也正定. 特别地, 有αT A n-1-1 α ≥ 0 .综上所述, | A | = | A n-1 | ( a nn - αT A n-1-1 α )≤ a 11 a 22 . . . a n-1n-1 a nn .故命题对所有n ≥成立.证法2. 利用Cholesky 分解: 每个正定矩阵A都可写成A = L T L,其中L是对角元都> 0的实上三角矩阵.设L 的( i , j ) 元为b i j , 则有a j j = b1 j2+ b2 j2 + … +b j j2 ≥b j j2 .故 a 11 a22 . . . a nn ≥b112 b222. . . b nn2 = | L T L | =| A |.。
高等代数北大版习题参考答案
高等代数北大版习题参考答案CKBOOD was revised in the early morning of December 17, 2020.第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P n n ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β,A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
(2021年整理)高等代数2011-2012第一学期期末试卷答案
(完整)高等代数2011-2012第一学期期末试卷答案(完整)高等代数2011-2012第一学期期末试卷答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高等代数2011-2012第一学期期末试卷答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高等代数2011-2012第一学期期末试卷答案的全部内容。
(完整)高等代数2011-2012第一学期期末试卷答案高等代数2011—2012第一学期期末试卷答案课程名称:《高等代数》参考答案及评分标准(A 卷)考试(考查):考试 时间:200 年 月 日 本试卷共7页,满分100 分; 考试时间:120 分钟答题前请将密封线内的项目填写清楚一.选择题(本大题共8个小题,每小题3分,共24分.请在每小题的四个备选答案中选出一个正确的答案,并将其号码填入题后的括号内)。
1.在[]F x 里一定能整除任意多项式的多项式是 【 B 】 A .零多项式 B .零次多项式 C .本原多项式 D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k 【 C 】A .4B .3C .2D .13.A ,B 是n 阶方阵,则下列结论成立的是 【 C 】A .AB O A O ≠⇔≠且B O ≠ B 。
0A A O =⇔=C .0AB A O =⇔=或B O =D . 1||=⇔=A I A4.设n 阶矩阵A 满足220A A I --=,则下列矩阵哪个不可逆 【 B 】A 。
2A I +B 。
A I +C .A I -D .A5.设A 为3阶方阵,且1)(=A r ,则 【 A 】 A 。
北京大学数学学院期末试题(高代2011-2012第二学期期末)
北京大学数学学院期末试题2011-2012学年第二学期考试科目 高等代数II 考试时间 2012年6月12日姓 名 学 号一. 设A : XAX 是R 4到R 3的线性映射, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡211110101101. 1) 求 Im A 的维数 r 与一组基;2) 求 Ker A 的维数与一组基;3) 求R 4的一组基α1 , α2 , α3 , α4 与 R 3的一组基β1 , β2 , β3 ,使得 A α i = β i , 1≤ i ≤ r 且 A α i = 0 , ∀ i > r .二(15分)已知 f ( α , β ) 是 R 3 上的对称双线性函数, 且 f 在基底 α 1 , α 2 , α 3 下的度量矩阵为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡520231011 .1) 证明 f ( α , β ) 是 R 3 上的内积 ;2) 求内积 f 的一组标准正交基 β1 , β2 , β3 ;3) 在内积 f 下, α 3的顶点到子空间 < α 1 , α 2 > 的距离是多少?三(16分)求以下矩阵的相似分类(说明理由, 但不需写出过渡矩阵).⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010110A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010001B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110011001C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110010011D .四(32分)设 A 是实线性空间V 上的线性变换, 且在基底 α 1 , α 2 , α 3 , α 4 下的矩阵为 A = .1) 求A 的特征多项式与最小多项式 ;2) 求V 的根子空间分解, 各个根子空间的基底;3) 对每个根子空间 W , 求多项式 h W ( x ) , 使得 h W ( A )是沿其余根子空间向W 作的投影变换;4) 求V 的一组基, 使得A 的矩阵为Jordan 标准型.五(16分)判断对错, 正确的请给出证明, 错误的举出反例.1) 设 A , B 分别是 3 ⨯ 5 与 5 ⨯ 3 矩阵. 若B A 可对角化,则 A B 也能对角化;2) 若 A 是 3 维实线性空间 V 到其对偶空间 V * 的线性同构,则存在V 的一组基α 1 , α 2 , α 3 , 使得A ( α i ) = α i * , 3i 1≤≤. 这里α 1* , α 2* , α 3* 是α 1 , α 2 , α 3的对偶基.六 ( 6分) 设分块矩阵 A = , 这里I , A 1 , A 2 ∈ M n (R). 已知线性变换 Y A Y 有唯一的n 维不变子空间W ⊂ R 2n ,且W 与分块矩阵 的列空间的交为零子空间. 求矩阵方程 X 2 + X A 1–A 2 X = I所有解 X ∈ M n (R). ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000110012211212⎥⎦⎤⎢⎣⎡21A I I A ⎥⎦⎤⎢⎣⎡I 0。
高等代数北大版习题参考答案
高等代数北大版习题参考答案CKBOOD was revised in the early morning of December 17, 2020.第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P n n ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β,A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
北京大学数学系《高等代数》配套模拟试题及详解【圣才出品】
1+22 , 22 +33,33 +1
1 0 1
1
,
2
,
3
2
2
0
0 3 3
1,2,3 A
因为∣A∣=12≠0,所以向量组 α1+2α2,2α2+3α3,3α3+α1 线性无关.
2.若 α1,α2,α3,β1,β2 都是 4 维列向量,且 4 阶行列式∣α1α2α3β1∣=m,∣α1α2β2α3 ∣=n,则∣α3α2α1(β1+β2)∣=( ).
AP(1,2)P(2,3(1))=C
因此
Q P 1, 2 P 2,31
1 0 0 0 1 1
P
1,
2
0
1
1
1
0
0
0 0 1 0 0 1
3 / 13
圣才电子书 十万种考研考证电子书、题库视频学习平台
A.E B.-E C.A
2 / 13
圣才电子书
D.-A
十万种考研考证电子书、题库视频学习平台
【答案】A
【解析】由题设(E-A)B=E,所以有 B(E-A)=E.又 C(E-A)=A,故(B-
C)(E-A)=E-A,结合 E-A 可逆,得 B-C=E.
4.设 A 是 3 阶方阵,将 A 第 1 列与第 2 列交换得 B,再把 B 第 2 列加到第 3 列得 C,
圣才电子书 十万种考研考证电子书、题库视频学习平台
北京大学数学系《高等代数》配套模拟试题及详解
一、选择题(每题 3 分,共 15 分) 1.设向量组 α1,α2,α3,线性无关,则下列向量组中,线性无关的是( ). A.α1+α2,α2+α3,α3-α1 B.α1+α2,α2+α3,α1+2α2+α3 C.α1+2α2,2α2+3α3,3α3+α1 D.α1+α2+α3,2α1-3α2+22α3,3α1+5α2-5α3 【答案】C 【解析】方法 1:对 C,令 k1(α1+2α2)+k2(2α2+3α3)+k3(3α3+α1)=0 则有 (k1+k3)α1+2(k1+k2)α2+3(k2+k3)α3=0 由 α1,α2,α3 线性无关知
中国科学院大学2012年高等代数及其试题答案
T2 (k ) 0 ,而 T3 (k ) kT3 ( ) T3 ( ) T3 ( ) 0 ,得证。
注 1: 根据证明, 对任意有限多个线性变换, 结论同样成立, 而不仅限于 n 个 线性变换; 注 2: 一些教科书中有结论: 设 V1 , V2 , , Vs 是 n 维线性空间的 s 个非平凡子空 间,则有向量 ,使得 Vi 。如果利用该结论的话,可以不妨设诸 Ti 既非零变 换,又非可逆变换,构造子空间 Vi ker Ti Ti ( ) 0 ,即得。
T 1 1 A 1
T A1 0 A I 1 T A1 T 1 0 1 A T A1 1 A1 T A1 A 1 T A1 I 0 T A1 0 1 T 1 1 A A (1)由 T
f ( x) p ( x)u ( x) f ( x) g1 ( x)[ p ( x)q ( x) r ( x)] r ( x) g1 ( x) p ( x) f1 ( x)
于是
f ( x) f ( x) r ( x) k k 1 1 g ( x) p ( x) p ( x) g1 ( x)
1 n c 0, n!
得 c 0 ,即 f (0) 0 ,矛盾。 2.分析:只需证明 f ( x) r ( x) g1 ( x) p ( x) f1 ( x) 证明 由 ( p ( x), g1 ( x)) 1 ,得 p ( x)u ( x) g1 ( x)v( x) 1 ,则
K n ,由 ( A ) A ,其中 A V1 , A V2 ,
故 K n V1 V2 , 故有 K n V1 V2 , 至于 V1 V2 V1 V2 , 很容易证明 V1 V2 0 , 或者利用幂等矩阵的性质 rank ( A) rank ( I A) n ,得
北京大学2012年高等代数与解析几何试题及解答
3. 因为 | det A| = 1, 故 A 为可逆矩阵. 设每行每列恰有一个元素为 1 或 −1, 其余元素均为 0 的 n 阶方阵组 成的集合为 S, 则 A ∈ S. 任取 B ∈ S, AB 可以看作对 B 的行做一个置换, 并且对某些行倍乘 −1 而得的矩 阵, 从而 AB ∈ S, 于是 A, A2, A3, . . . , An, . . . 均属于 S. 而 S 是有限集, 故存在 p > q ∈ N 使得 Ap = Aq, 所以 Ap−q = E.
4. 证法一: 利用一点点张量的知识, 先来考虑 A, B 的张量积
A ⊗ B =
a11B
a21B ...
a12B
a22B ...
··· ···
a1nB
a2nB ...
,
an1B an2B · · · annB
那么有 rank(A ⊗ B) = rank(A) · rank(B), 由于 A ◦ B 正好是 A ⊗ B 的主子式,故
i=1
∏n 由根与系数的关系知 σi ∈ Q, i = 1, 2, . . . , n, 于是 f (λi) ∈ Q.
i=1
2. 矩阵的行列式展开式告诉我们: 矩阵的行列式为矩阵中元素进行有限次加减乘法后所得的结果, 因此先将矩 阵中的元素都模 2 取余再计算行列式得到的数与先按原矩阵元素计算行列式再模 2 取余所得的数在模 2 的 意义下相等. 将题中矩阵的每个元素都模 2 取余后所得矩阵的次对角线下方元素均变为了 0, 对角线上的元 素全是 1, 不用关心对角线上方的元素是什么就知道这个时候最后的结果一定是模 2 余 1, 从而原矩阵的行 列式不为 0.
(2) 当 a > 0 时. i. 若 ac − b2 > 0, 则为单叶双曲面. ii. 若 ac − b2 = 0, 则为锥面.
北京大学高等代数 I_2012 期末答案2
北京大学数学科学学院期末试题2012 -2013学年第 1 学期考试科目 高等代数I 考试时间 2013 年 1 月 9 日 姓 名 学 号一.(10分)设F 4 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111, F 2 = ⎥⎦⎤⎢⎣⎡-1111, D 2 = ⎥⎦⎤⎢⎣⎡i 001. 1) 求矩阵C , 使得 ⎥⎦⎤⎢⎣⎡-2222D I D I⎥⎦⎤⎢⎣⎡22F 00F C = F 4 ; 2) 求F 4 的逆矩阵.解: 1) 比较 ⎥⎦⎤⎢⎣⎡-2222D I D I ⎥⎦⎤⎢⎣⎡22F 00F =⎥⎦⎤⎢⎣⎡-=222222F D F F D F ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i i 111111i i 111111 与 F 4 得 C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000001001000001. 2) 由 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4000040000400004知 414F 41F =-.二. (10分)设n 阶方阵A n = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010010100110010. 记θ = π / ( n+1 ) .1) 对1 ≤ j ≤ n, 证明 α j = [ sin( j θ ) sin( 2 j θ ) . . . sin( n j θ ) ] T是A n 的特征向量 ;2) 对 a ∈ R , 求矩阵a I + A n 的行列式. 解: 1) 对每个 1 ≤ j ≤ n, 我们有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡)θj n sin()θj 3sin()θj 2sin()θj sin(θ)2cos(j )θj 1)(n sin()θj 4sin()θj 2sin()θj 3sin()θj sin()θj sin(2)θj n sin()θj 3sin()θj 2sin()θj sin(01001010011001即 A n α j = 2cos( j θ ) α j .于是α j ( 1 ≤ j ≤ n ) 是A n 的特征向量, 它们对应的特征值2cos( j θ ) ( 1 ≤ j ≤ n )互异.2) a I + A n 的特征值为a + 2cos( j θ ) ( 1 ≤ j ≤ n ) , 故| a I + A n | = ( a + 2cos θ ) ( a + 2cos( 2θ ) ) ...( a + 2cos( n θ ) ) .三. (10分)设A : XA X 是R 4到R 3的线性映射, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110110101101.1) 求A 的秩 r 及可逆矩阵P , Q , 使得 A = P ⎥⎦⎤⎢⎣⎡0IrQ , 这里 I r 是r 阶单位矩阵.2) 求R 4的一组基α 1 , α 2 , α 3 , α 4 与 R 3的一组基β 1 , β 2 , β 3 ,使得 A α i = β i , ∀ 1 ≤ i ≤ r 且 A α i = 0 , ∀ i > r . 解: 1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010010101101000000100001101010001000010101101101010001110110101101于是A 的秩为 2 , 可取 P = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001, Q = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010010101101. 2) 在上式两边右乘Q -1 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000010010101101, 得A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000001000011010100011000010010101101. 令α 1 , α 2 , α 3 , α 4 依次为Q -1的列向量, β 1 , β 2 , β 3 依次为P 的列向量, 则有 A α 1 = β 1 , A α 2 = β 2 , A α 3 = 0 , A α 4 = 0 . 三.(32分)填空题 .1.设 B, C, D 是n 阶矩阵, 其中D 可逆, 则⎥⎦⎤⎢⎣⎡-D CB C D B 1的秩 = n . ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D C 00D C B C D B I 0D B I 11,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-D 000I D C 0ID C 0012. 当t < - 1/4 时, 二次型 f = 5 t x 2 + t y 2 – z 2 + 2 t xy + 2 x z 负定 ; 当t >0 时, 二次型 f 的正、负惯性指数分别是 2 与 1 . 通过成对行列变换, 二次型 f 的矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000t 0001t 41000t t 0t 1t 51010t t 1t t 5f 负定 ⇔ 4 t + 1 < 0 且t < 0 ⇔ t < – 1 / 4f 的正、负惯性指数分别是 2 与 1 ⇔ 4 t + 1 > 0 且t > 0 ⇔ t > 0 .3. 已知 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12222121231 是行列式为1的正交矩阵, 则线性变换X A X 是绕单位向量α = 的旋转, 旋转角为 .解特征方程组 ( A – I ) X = 0 , 得特征值1 的特征子空间基底 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011. 于是α = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡±01121. 取与α垂直的向量β = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011, 由A β =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-41131 求得β与A β 夹角的余弦值为 ( β, A β )/ ( | β| | A β| )= 1/3 . 故旋转角为 arccos( 1 / 3 ).4. 在欧氏空间R 4中,子空间 < ( 1,0,0,0) T, ( 0,1,0,0 ) T> 到⎩⎨⎧==+1x 2x x 321的解集合的最小距离是 1 .四. (18分)设f ( x 1 , x 2 , x 3 ) = 8 x 12 –7 x 22 + 8 x 32 + 8 x 1 x 2 – 2 x 1 x 3 + 8 x 2 x 3 . (1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量; (2) 求正交矩阵 P 及对角矩阵D , 使得 A = P D P T .解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==321321Tx x x 841474148x x x X A X f8λ4147λ49λ09λ8λ4147λ4148λ|A λI |---+-+--=---+---=-)9λ()9λ()3249λ()9λ(7λ4187λ4009λ22+-=---=---+--=A 的特征值为λ = 9 (二重), – 9 . 对λ = 9解齐次方程组 ( A – 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----0000001411414164141 通解为x 1 = 4 x2 - x3 , x 2 、x 3为自由变量. 解的向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101x 014x x x x 4x x x x 323232321于是α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 构成λ = 9特征子空间的一组基. 对λ = -9解齐次方程组 ( A + 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--00041010100036901741000212174117414241417 通解为 x 1 = x 3 , x 2 = - 4 x 3 , x 3为自由变量. 解的向量形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141x x 4x x x x x 3333321于是α3 = [ 1 -4 1 ] T 构成λ = -9特征子空间的一组基. (2) 将α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 正交化: 令 β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=21210124014β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21231β||β||1γ,10121β||β||1γ222111 将α3 = [ 1 -4 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=141231γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--23132212343102313221为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==T 3T 2T1321Tγγγ999]γγγ[P D P A五.(10分)设β是欧氏空间R n 的单位向量, V 是子空间 < β > 的正交补. (1) 求矩阵A , 使得对任意列向量X ∈ R n , AX 是X 向V 所作的正交投影; (2) 求正交矩阵B , 使得线性变换 X B X 是R n 关于V 的镜面反射. 解: (1) 对任意列向量X ∈ R n , X 在一维子空间 < β > 上的正交投影为 ( X , β ) β = β βT X .于是X 在正交补 < β >⊥上的正交投影为X – ( X , β ) β = X – β βT X = ( I – β βT ) X .故所求矩阵为A = I – β βT .(2) 向量X ∈ R n , 关于 < β >⊥ 的镜面反射为X – 2 ( X , β ) β = X – 2 β βT X = ( I – 2 β βT ) X . 故所求正交矩阵为B = I – 2 β βT .六.(10分)判断对错, 正确的请给出证明, 错误的举出反例.1) 若A 是实对称矩阵, B 是实反对称矩阵, 则A + i B 的特征多项式在复数域上的根都是实数. 正确.证明: 设λ是A + i B 在复数域上的特征值, α是属于λ的复特征向量, 即 ( A + i B ) α = λ α , α ≠ 0 .则有 αT ( A – i B ) = λ αT , TT αλ)B i A (α=+.于是 ααλα)B i A (αααλTTT=+=, 由α ≠ 0 知0ααT≠, 于是 λλ=, λ 为实数.2) 在数域K 上, 若 n 阶方阵A 有 n + 1 个特征向量, 且其中任意 n 个都线性无关, 则 A 一定是数量矩阵. 正确.若A 不是数量矩阵, 则A 的特征子空间维数都小于n. 又因为A 有 n 个 线性无关的特征向量, A 可对角化, 故A 的特征子空间的维数之和等于n. 任给n + 1 个特征向量, 必存在A 的一个特征子空间 V , 包含其中至少 dim V + 1≤ n 个特征向量, 这dim V + 1 个特征向量线性相关, 矛盾!。
高等代数(北大第三版)习题答案完整
解出(ⅰ)当 u = 0时t + 3t − 3t + 4 = 0(t + 4)(t − t + 1)
3 2 2
1 ± 3¡ ± 3 ¡ t = −4或t = =e 2 ∴
(ⅱ)
π
当u ≠ 0时, 只有t 2 + t + 3 = 0,
t 1 =− t +1 3
t 3 + 3t 2 − (u + 3)t + (4 − u ) ⇒ u =
f ( x ) = x 5 , x0 = 1 :即 ∴ f ( x) = ( x − 1)5 + 5( x − 1) 4 + 10( x − 1)3 + 10( x − 1) 2 + 5( x − 1) + 1
当然也可以 f ( x) = x = [( x − 1) + 1]
5 5
= ( x − 1)5 + 5( x − 1) 4 + ⋅⋅⋅ + 1
2
ε1 =
− 1 + 3i − 1 − 3i ,ε 2 = 2 2
所以 d ( x) = u ( x) f1 ( x) d ( x) + v( x) g1 ( x)d ( x). 消去 d ( x ) ≠ 0 得 1 = u ( x) f1 ( x) + v( x) g1 ( x)
P45.11
证:设 ( f ( x), g ( x)) = d ( x) ≠ 0, f ( x) = f1 ( x) d ( x), g ( x) = g1 ( x)d ( x)
t= − 1 ± − 11 2
P45、8 d ( x ) | f ( x ), d ( x ) | g ( x ) 表明 d ( x ) 是公因式 又已知: d ( x)是f ( x)与g ( x)的组合 所以 表明任何公因式整除 d ( x )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京大学数学学院期末试题2011-2012学年第一学期考试科目 高等代数I 考试时间 2012年1月3日 姓 名 学 号一. (10分)已知n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡111011001, B =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡n 321332122211111 .求矩阵X , 使得 A X = B . 解: 对矩阵 [ A | B ] 作初等行变换⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1n 2101110022101101110001011110001n 3211111033211112221001111110001⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→100010000110010011100010*******12n 1001100011001001110001011110001故 X =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10110111.二.(15分)设 A : X A X 是R 3上的线性变换, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200211011.(1) 求线性变换 A 像空间的维数和一组基; (2) 求矩阵A 的特征值与特征向量; (3) 判断矩阵A 能否对角化并说明理由.解: (1) 在标准基下, A 像空间就是矩阵A 的列空间, 它的一组基为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡220011,, 维数是2 .(2)A 的特征值为λ = 2 (代数二重), 0 .对λ = 2解齐次方程组 ( A - 2 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000100011000211011 通解为x 1 = x 2 , x 3 = 0 , x 2 为自由变量. 写成向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110222321x x x x x x α1 = [ 1 1 0 ] T 构成λ = 2特征子空间的一组基.22)2λ(λ)λ2λ()2λ(1λ111λ)2λ(2λ0021λ111λλ-=--=-----=------=-|A I |对λ = 0解齐次方程组 A X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000100011200211011 通解为x 1 = - x 2 , x 3 = 0 , x 2 为自由变量. 写成向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110222321x x x x x xα1 = [ -1 1 0 ] T 构成λ = 0特征子空间的一组基.(3) 由于特征值 λ = 2特征子空间的维数1小于其代数重数2,A 不能否对角化. 三.(35分)填空题 (多选) .1.已知3阶矩阵A 的特征值为 1, 1/2 , 0 , 相应的特征向量为[ 1 0 1 ] T , [ 0 1 0 ] T , [ 1 2 0 ] T , 则 2 A 3– 3 A 2 = .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101121010100121010100002100010012101011//2. 设A = . 当t 取 不等于1的值 时, 存在矩阵B ,使得 AB = I . 当t 取 1 时, 存在非零矩阵C , 使得 C A = 0 . 3. 当 -4/5 < t < 0 时, 三元二次型x 2 + y 2 + 5 z 2 + 2 t x y – 2 x z + 4 y z 正定.4. 设α是n 维欧氏空间里的单位列向量 , 则 | I – 5 α αT | = - 4 . 注: 可计算行列式或利用 | I m –A B | = | I n –B A | .5. 在实数域上,以下诸矩阵的相抵分类是 {A,B,D},{C},⎥⎦⎤⎢⎣⎡+421211t t相似分类是 {A,D},{B},{C} , 合同分类是 {A},{B},{C},{D}.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000010212D 103010001C 010131010B 101010101A ,,,6. 以下说法正确的有 (a)(b)(c)(d) (多选). a) 如果两个实对称矩阵相似, 它们也一定合同;b) 实方阵都能写成P Q 的形式, 其中P 是实对称矩阵, Q 是正交矩阵 c) 每个矩阵都能写成P J 的形式, P 是可逆矩阵, J 是行简化阶梯矩阵 d) 实方阵都能写成Q R 的形式, Q 是正交矩阵, R 是上三角矩阵 四.(12分)判断对错, 正确的请给出证明, 错误的举出反例. 1) 在包含n (n>1)个向量的向量组中, 若任意n - 1 个向量都线性 无关, 则整个向量组也线性无关.解: 此命题错误. 例如, 考察向量组 ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0201,, 其中由任意一个 向量构成的部分组都线性无关, 但整个向量组线性相关.2) 设A 是m ⨯ n 矩阵. 若存在矩阵B 与C, 使得 BA = I n , AC = I m , 则必有m = n , 且 B = C .解: 此命题正确. 由矩阵乘法的结合律, 有C = ( BA ) C = B ( AC ) = B , 于是 m = n. 五.(20分)设 f = 2 x 1 x 2 + 2 x 1 x 3 + 2 x 2 x 3 是三元二次型. (1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量; (2) 求正交矩阵P 及对角矩阵D, 使得A = PD P T ;(3) 求二次齐次函数 f ( x 1 , x 2 , x 3 ) 在单位球面 x 12+ x 22+ x 32= 1上的最大、最小值, 并确定在何处取到.解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==321321TAX X f x x x x x x 011101110A 的特征值为λ = - 1 (代数二重), 2 .对λ = - 1解齐次方程组 ( A + I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000111111111111 通解为x 1 = - x 2 - x 3 , x 2 、x 3为自由变量. 写成向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101011323232321x x x x x x x x x α1 = [ -1 1 0 ] T , α2 = [ -1 0 1 ] T 构成λ = -1特征子空间的一组基. 对λ = 2解齐次方程组 ( A - 2 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000110101000112121211121112 通解为 x 1 = x3 , x 2 = x 3 , x 3为自由变量. 向量形式:)2λ()1λ()2λλ()1λ(1λ0011λ112λ1λλ101λ111λλ111λ111λλ22-+=--+=+-----=+------=------=-|A I |⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1113333321x x x x x x x 于是α3 = [ 1 1 1 ] T 构成λ = 2特征子空间的一组基. (2) 将α1 = [ -1 1 0 ] T , α2 = [ -1 0 1 ] T 正交化: 令β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=2112101121101β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21161β||β||1γ,01121β||β||1γ222111 将α3 = [ 1 1 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11131γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] 为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==T 3T 2T 1321γγγ211]γγγ[TP D P A(3) 做正交替换X = P Y ,f = X T A X = Y T P T A P Y = Y T D Y = - y 12- y 22+ 2 y 32. 由于P 正交, x 12+ x 22+ x 32= 1 当且仅当 y 12+ y 22+ y 32= 1.当 y 12 + y 22 + y 32= 1时,f = - y 12- y 22+ 2 y 32≤ 2( y 12 + y 22 + y 32) = 2,等号成立当且仅当 y 3 = ±1, y 1 = y 2= 0, 即X 取λ = 2特征子空间中的单位向量 ± γ3时成立.类似地, 当 y 12 + y 22 + y 32= 1时,f = - y 12- y 22+ 2 y 32≥ - ( y 12 + y 22 + y 32) = -1,等号成立当且仅当X 取λ = -1特征子空间中的单位向量时成立.六.(8分)设 A 是一个n 阶正定矩阵, 其 ( i , j ) 元记为a i j .证明:a11 a 22 . . . a nn ≥ | A | .证法1. 对 n 应用数学归纳法. 当 n = 1 时, A = a 11 = | A | , 命题成立.以下设命题对n -1成立, 考察A 是n 阶矩阵的情况.记A =⎥⎦⎤⎢⎣⎡-nn αTαα1n A , 其中A n-1是n - 1阶正定矩阵, α是 n - 1 维列向量. 对 A 做成对的行,列分块运算, 得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-----αααααα1-1-n 1n 1-1-n 1n 1n 1-1-n 1n A 00A 1A 0I A 1A 0I T T T T nn Tnn αα于是 | A | = | A n-1 | ( a nn - αTA n-1-1α ) .由归纳假设, | A n-1 | ≤ a 11 a 22 . . . a n-1n-1 . 又由A n-1正定知A n-1 的特征值都 > 0, 于是实对称矩阵A n-1-1的特征值也都大于0, 故A n-1-1也正定. 特别地, 有αTA n-1-1 α ≥ 0 . 综上所述, | A | = | A n-1 | ( a nn - αTA n-1-1α )≤ a 11 a 22 . . . a n-1n-1 a nn .故命题对所有n ≥成立.证法2. 利用Cholesky 分解: 每个正定矩阵A都可写成A = L T L,其中L是对角元都> 0的实上三角矩阵.设L 的( i , j ) 元为b i j , 则有a j j = b1 j2+ b2 j2 + … +b j j2 ≥b j j2 .故 a 11 a22 . . . a nn ≥b112 b222. . . b nn2 = | L T L | =| A |.。