运筹学习题集(第二章)
运筹学习题集
第一章线性计划1.1将下述线性计划问题化成标准形式1)min z=-3x1+ 4x2- 2x3+ 5 x44x1- x2+ 2x3-x4 =-2st. x1+ x2- x3+ 2 x4 ≤ 14-2x1+ 3x2+ x3- x4 ≥ 2x1,x2,x3≥ 0,x4 无约束2)min z = 2x1-2x2+3x3- x1+ x2+ x3= 4st. -2x1+ x2- x3≤ 6x1≤0 ,x2≥ 0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解仍是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确信最优解(1)min z=5x1-2x2+3x3+2x4x 1+2x 2+3x 3+4x 4=7 st 2x 1+2x 2+x 3 +2x 4=3 x 1,x 2,x 3,x 4≥01.4 别离用图解法与单纯形法求解以下LP 问题,并对照指出最优解所对应的极点。
1) maxz =10x 1+5x 2 3x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 别离用大M 法与两时期法求解以下LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.6求下表中a ~l 的值。
运筹学第二章习题答案
运筹学第二章习题答案运筹学是一门应用数学学科,旨在通过数学模型和定量方法来解决实际问题。
在运筹学的学习中,习题是必不可少的一部分,通过解答习题可以加深对知识的理解和应用。
本文将针对运筹学第二章的习题进行解答,希望能够帮助读者更好地掌握运筹学的知识。
第一题:线性规划问题的基本要素包括目标函数、约束条件和决策变量。
请问线性规划问题的目标函数通常是什么形式?为什么?答:线性规划问题的目标函数通常是线性函数的形式。
这是因为线性函数具有简单的数学性质,容易求解和分析。
此外,线性函数的图像为直线,可以通过直观的图形方法来理解问题的解。
第二题:什么是单纯形法?请简要描述单纯形法的基本思想和步骤。
答:单纯形法是一种求解线性规划问题的常用方法。
其基本思想是通过不断地移动到更优解的顶点,直到找到最优解。
单纯形法的步骤如下:1. 初始解的选择:选择一个可行解作为初始解。
初始解可以通过图形方法或其他启发式算法得到。
2. 进行迭代:通过计算目标函数的改进方向来确定下一步移动的方向。
如果目标函数不能再改进,则停止迭代,当前解即为最优解。
3. 顶点的移动:通过改变决策变量的值,将当前解移动到相邻的顶点。
移动的方向和距离由迭代步骤中计算得到。
4. 检验最优性:对移动后的顶点进行最优性检验,判断是否达到最优解。
如果达到最优解,则停止迭代,当前解即为最优解;否则,返回第2步。
第三题:什么是整数规划问题?请举一个实际应用的例子,并说明为什么需要使用整数规划方法来解决。
答:整数规划问题是线性规划问题的一种扩展形式,要求决策变量的取值为整数。
整数规划问题通常用于需要离散决策的场景,如生产调度、资源分配等。
举个例子,假设某公司有多个项目需要进行投资,每个项目的投资金额和预期收益已知。
公司希望选择一些项目进行投资,使得总投资金额不超过公司的可用资金,并最大化预期收益。
由于项目的投资金额和收益都是整数,这就是一个整数规划问题。
使用整数规划方法来解决这个问题的原因是,如果将决策变量的取值限制为整数,可以更好地符合实际情况。
运筹课后习题
第2章 习题 P 58—6、86、福安商场是个中型的百货商场,它对售货员的需求经过统计分析如表 2-15 所示:表 2-15 每日售货员的需求情况表为了保证售货人员充分休息,售货人员每周工作 5天,休息两天,并要求休息的两天是连续的。
问应该如何安排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少? 解:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥≥++++≥++++≥++++≥++++≥++++≥++++≥++++++++++=0,,,,,,19252415282831..654321,,,,,,76543217432176321765217654176543654325432176543217654321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x f Min x x x x x x x ,日的上班人数,,,,,分别为星期设8、有1,2,3,4四种零件均可在设备A 或设备B 上加工,已知在这两种设备上分别加工一个零件的费用如表 2-16 所示。
又知设备A 或B 只要有零件加工均需要设备的启动费用,分别为100元和150元。
现要求加工1,2,3,4零件各三件。
问应如何安排使总的费用最小。
试建立线性规划模型。
解:关键问题是启动费用,因此,应有三个模型来比较结果:设 x ij ,i = 1、2、3、4;j = 1、2;分别为产品 i 在设备 j ( 1 为 A ,2 为 B )上加工的数量。
模型1 只用设备A 加工:总费用:z = (50+80+90+40)*3+100 = 880元。
模型2 只用设备B 加工:总费用:z = (30+100+50+70)*3+150 = 900元。
模型3 同时用设备A 、B 加工:.030330302,1;4,3,2,103333..25070501003040908050423222124131211142413231222112114232221241312111========⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=+=+=+=+++++++++=x x x x x x x x j i x x x x x x x x x t s x x x x x x x x f Min ij ,,,,,,,最优解总费用:z = 850元。
《运筹学教程》第二章习题答案
《运筹学教程》第二章习题答案1、(1)解:引入松弛变量x4≥0,x5≥0,化不等式为等式为:minz=2X1 +3X2+4X3s.t. X1+3X2+2X3+X4=74X1+2X2+X5=9X1,X2,X4,X5≥0化自由变量为非负,令X3=X3′-X3〞,X3′,X3〞≥0 :minz=2X1 +3X2+4X3′-4X3〞s.t. X1+3X2+2 X3′-2 X3〞+X4=74X1+2X2+X5=9X1,X2, X3′,X3〞,X4,X5 ≥0(2)解:引入松弛变量x5≥0,剩余变量X6≥0,化不等式为等式为:maxz=X1 -5X2+4X3- X4s.t. X1+2X3+X5=7X2-2X4-X6=9X1,X2,X4,X5 ,X6≥0化自由变量为非负,令X3=X3′-X3〞,X3′,X3〞≥0 :maxz=X1 -5X2+4X3′-4X3〞- X4s.t. X1+2 X3′-2 X3〞+X5=7X2-2X4-X6=9X1,X2, X3′,X3〞,X4,X5 , X6≥0化极大的目标函数为极小的目标函数:minz=-X1+5X2-4X3′+4X3〞+X4s.t. X1+2 X3′-2 X3〞+X5=7X2-2X4-X6=9X1,X2, X3′,X3〞,X4,X5 , X6≥02、(1)是不等式表示下图阴影区域,过阴影部分任意两点的直线仍在该区域内。
(2)不是不等式表示下图阴影区域,过阴影部分且通过曲线上部的直线上的点不完全在该区域内。
(3)不是 不等式表示下图阴影区域,过阴影部分且通过圆内部的直线上的点不完全在该区域内。
3、在以下问题中,指出一组基础变量,求出所有基础可行解以及最优解。
(1)123123123123m ax 2..2644,,0z x x x s t x x x x x x x x x =+-⎫⎪++≤⎪⎬+-≤⎪⎪≥⎭解:将上式化成标准形式,如下:1231234123512345m in 2..2644,,,,0p x x x s t x x x x x x x x x x x x x =--+⎫⎪+++=⎪⎬+-+=⎪⎪≥⎭从上式中可以得出系数矩阵为[]12345112101411A P P P P P ⎡⎤==⎢⎥-⎣⎦, 取基础变量为45,x x ,令非基变量123,,x x x =0,解方程组123412352644x x x x x x x x +++=+-+=得基础可行解(1)(0,0,0,6,4)T x =同理得基础解:(2)(0,6,0,0,20)T x =-,(3)(0,0,3,0,7)T x =,(4)(0,0,4,24,0)T x =-,(5)(0,1,0,5,0)Tx =,(6)1420(0,,,0,0)99Tx =,(7)(6,0,0,0,2)T x =-,(8)(4,0,0,2,0)Tx=,(9)202(,,0,0,0)33Tx =-,(10)142(,0,,0,0)33Tx =。
运筹学习题答案(第二章)
0
-5/4
(j)
第二章习题解答
2.4 给出线性规划问题 写出其对偶问题;(2)用图解法求解对偶问题;(3)利用(2)的结果及根据对偶问题性质写出原问题最优解。
最优解是:y1=-8/5,y2=1/5,目标函数值-19/5。
01
由于 y1=-8/5,y2=1/5都不等于零,原问题中的约束取等号。又上面第4个约束不等号成立,故x4=0,令x3=0就可以得到最优解: x1=8/5,x2=1/5。
3
2
5
0
0
0
CB
基
b
X1
X2
X3
X4
X5
X6
2
X2
15-7/4
1/4
1
0
0
0
1/4
5
X3
30+
3/2
0
1
0
1/2
0
0
X4
3 /2-5
-1
0
0
1
-1/2
-1/2
Cj-Zj
-7
0
0
-1
-2
0
第二章习题解答
第二章习题解答
2.14 某厂生产A,B,C三种产品,其所需劳动力、材料等有关数据见下表:
第二章习题解答
已知原问题最优解为X*=(2,2,4,0),代入原问题,第4个约束不等式成立,故y4=0。有由于x1,x2,x3大于0,上面对偶问题前3个约束取等号,故得到最优解: y1=4/5, y2,=3/5, y3=1, y4=0
第二章习题解答
2.8 已知线性规划问题A和B如下:
01
01
02
2.6 已知线性规划问题
(完整版)《运筹学》习题集
第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
运筹学习题集(第二章)
运筹学习题集(第二章)判断题判断正误,如果错误请更正第二章线形规划的对偶理论1.原问题第i个约束是<=约束,则对偶变量yi>=0.2.互为对偶问题,或则同时都有最优解,或则同时都无最优解.3.原问题有多重解,对偶问题也有多重解.4.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解.5.原问题无最优解,则对偶问题无可行解.6.设X,Y分别为{minZ=CX|AX>=b,X>=0}和{maxw=Yb|YA<=C,Y>=0}的可行解,则有(1)CX<=Yb;(2)CX是w的上界;(3)当X,Y为最优解,CX=Yb;(4)当CX=Yb 时,有YXs+YsX=0;(5)X为最优解且B是最优基时,则Y=C B B-1是最优解;(6)松弛变量Ys的检验数是λs,则X=-λs是基本解,若Ys是最优解, 则X=-λs是最优解.7.原问题与对偶问题都可行,则都有最优解.8.原问题具有无界解,则对偶问题可行.9.若X,Y是原问题与对偶问题的最优解.则X=Y.10.若某种资源影子价格为0,则该资源一定有剩余.11影子价格就是资源的价格.12.原问题可行对偶问题不可行,可用对偶单纯形法计算.13.对偶单纯形法比值失效说明原问题具有无界解.14.对偶单纯形法是直接解对偶问题的一种解法.15.减少一个约束,目标值不会比原来变差.16.增加一个约束,目标值不会比原来变好.17增加一个变量, 目标值不会比原来变差.18.减少一个非基变量, 目标值不变.19.当Cj(j=1,2,3,……,n)在允许的最大范围内同时变化时,最优解不变。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第二章线性规划的对偶理论1.如果决策变量数列相等的两个线规划的最优解相同,则两个线性规划A约束条件相同B目标函数相同C最优目标函数值相同D以上结论都不对2.对偶单纯形法的最小比值规则是为了保证A使原问题保持可行B 使对偶问题保持可行C逐步消除原问题不可行性D逐步消除对偶问题不可行性3.互为对偶的两个线性规划问题的解存在关系A若最优解存在,则最优解相同B原问题无可行解,则对偶问题也无可行解C对偶问题无可行解,原问题可能无可行解D一个问题无界,则另一个问题无可行解E一个问题无可行解,则另一个问题具有无界解4.已知规范形式原问题(max)的最优表中的检验数为(λ1,λ2,……λn),松弛变量的检验数为(λn+1,λn+2,……λn+m),则对偶问题的最优解为A—(λ1,λ2,……λn)B (λ1,λ2,……λn)C —(λn+1,λn+2,……λn+m)D (λn+1,λn+2,……λn+m)5.原问题与对偶问题都有可行解,则A原问题有最优解,对偶问题可能没有最优解B原问题与对偶问题可能都没有最优解C可能一个问题有最优解,另一个问题具有无界解D原问题与对偶问题都有最优解计算题线性规划问题和对偶问题2.1 对于如下的线性规划问题min z = 3x1 + 2x2 +x3s.t. x1 + x2+ x3 ≤ 15 (1)2x1 - x2+ x3≥ 9 (2)-x1 + 2x2+2x3≤ 8 (3)x1 x2x3 ≥ 01、写出题目中线性规划问题的对偶问题;2、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解答:1、写出题目中线性规划问题的对偶问题;解:max w = 15y1 + 9y2 + 8y3s.t. y1 + 2y- y3 ≤ 3 (1)y1 - y2+ 2y3≤ 2 (2)y1 + y2+ 2y3≤ 1 (3)y1≤0、y2 ≥0、y3 ≤02、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解:先将原问题化成以下形式,则有mi n z = 3x1 + 2x2 + x3s.t. x1 + x2+ x3+ x4= 15 (1)-2x1 + x23+ x5= -9 (2)-x1 + 2x2+2x3+x6= 8 (3)原始问题的最优解为(X 1 X 2 X 3 X 4 X 5 X 6)=(2,0,5,8,0,0),minz=11 对偶问题的最优解为(y 1 y 2 y 3 y 4 y 5 y 6)=(0,7/5,-1/5,0,19/5,0),maxw=112.2 对于以下线性规划问题max z = -x 1 - 2x 2s.t. -2x 1 + 3x 2 ≤ 12 (1) -3x 1 + x 2 ≤ 6 (2) x 1 + 3x 2 ≥ 3 (3) x 1 ≤ 0,x 2 ≥ 01、写出标准化的线性规划问题;2、用单纯形表求出这个线性规划问题的最优解和最优的目标函数值;3、写出这个(极大化)线性规划问题的对偶问题;4、求出对偶问题的最优解和最优解的目标函数值;5、第(2)个约束右端常数b 2=6在什么范围内变化,最优解保持不变。
运筹学第二章答案.
2.1 用图解法求解下列线性规划问题,并指出各问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)⎪⎪⎩⎪⎪⎨⎧≥≤-≤+≤++=0,84821234..2max 2121212121x x x x x x x x t s x x z解:首先划出平面直角坐标系4 x 1 +3x 2X 1⎩⎨⎧=+=-1234842121x x x x 解:⎪⎩⎪⎨⎧=14921x x 所以:2111492max =+⨯=z 所以有唯一解(2)⎪⎪⎩⎪⎪⎨⎧≥≤-≤+≤+-+=0,414234223max 2121212121x x x x x x x x x x 解:2=41⎩⎨⎧=+=+-1423422121x x x x 解得:⎪⎪⎩⎪⎪⎨⎧==4132521x x 所以:144132253max =⨯+⨯=z 因为直线02321=+x x 与直线142321=+x x 平行, 所以有无穷多最优解,max z=14(3) ⎪⎩⎪⎨⎧≥≤+-≤-+=0,432..32max 21212121x x x x x x t s x x z 解:(4)⎪⎩⎪⎨⎧≥-≤-≥-+=0,330..max 21212121x x x x x x t s x x z解:2.2将下列线性规划问题化为标准形式(1) s.t.⎪⎩⎪⎨⎧≥≤≤-+-=++-+-=无约束321321321321,0,0624322min x x x x x x x x x x x x z (2)⎪⎪⎩⎪⎪⎨⎧≤≥-=-+-≤+-≥--+=0,0232132..23min 3213213132321x x x x x x x x x x t s x x x z 无约束, 解:(1)令011≥-=x x )0'','('''33333≥-=x x x x x则上述形式可化为:)'''(32'2m ax 3321x x x x z --+=⎪⎩⎪⎨⎧≥=+--+=-++0,'',',,'6)'''('24)'''('..43321433213321x x x x x x x x x x x x x x t s(2)⎪⎪⎩⎪⎪⎨⎧≤≥-=-+-≤+-≥--+=0,0232132..23min 3213213132321x x x x x x x x x x t s x x x z 无约束, 解:令33'x x -= )0','','(322≥x x x 则上述形式可化为:')'''(23m ax 3221x x x x z ----=⎪⎪⎩⎪⎪⎨⎧≥=---=+--=+---0,,','',',2')'''(321')'''(3')'''(2..543221322153224322x x x x x x x x x x x x x x x x x x t s 2.3. 在下列线性规划问题中,找出所有基解,指出哪些是基可行解并分别代入目标函数,比较找出最优解。
运筹学第二章习题答案
School of Management
运பைடு நூலகம்学教程
第二章习题解答
min c x Z ij ij
i j 1 1 m n
n , , ) ij i (i 1m x a jn1 (3 ) st ij bj ( j 1n , , ) . x 1 i x , , , , , ) ij 0 (i 1m j 1n
0 X4 1 0 0 0 ┆
0 X5 0 1 0 0 ┆
0 X6 0 0 1 0 ┆
基 X1 X2 X3 Cj-Zj ┆ X4 X2 Cj-Zj
┆ ┆ 0 1 0 0 0 0 1 (k)
(l) -1/4 -1/4 0 0 0 3/4 (i)
X1 25/4 5/2
(h) 1/2 -5/4 of Management School (j)
page 14 November 1, 2010
School of Management
运筹学教程
第二章习题解答
min 21 2 y W y y 23 y y y 1 1 2 3 y 2 3 () 1 对偶问题: 2 1 y y st 1 y y 1 y 2 3 1 ,y y 无约束 ,y 3 0 02
(2) 最优解是:y1=-8/5,y2=1/5,目标函数值-19/5。 (3)由于 y1=-8/5,y2=1/5都不等于零,原问题中的约 束取等号。又上面第4个约束不等号成立,故x4=0,令 x3=0就可以得到最优解: x1=8/5,x2=1/5。
page 13 November 1, 2010
School of Management
3在互为对偶的一对原问题与对偶问题中不管原问题是求极大或极小原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值
运筹学作业2(清华版第二章部分习题)答案
运筹学作业2(第二章部分习题)答案2.1 题 (P . 77) 写出下列线性规划问题的对偶问题:(1)123123123123123m ax 224..34223343500,z x x x s t x x x x x x x x x x x x =++⎧⎪++≥⎪⎪++≤⎨⎪++≤⎪≥≥⎪⎩无约束,;解:根据原—对偶关系表,可得原问题的对偶规划问题为:123123123123123m ax 235..223424334,0,0w y y y s t y y y y y y y y y y y y =++⎧⎪++≤⎪⎪++≤⎨⎪++=⎪≥≤≤⎪⎩(2)1111m in ,1,,,1,,0,1,,;1,,m n ij ij i j n ij ij i j nij ij j j ij z c x c x a i m c x b j nx i m j n====⎧=⎪⎪⎪==⎪⎨⎪⎪==⎪⎪≥==⎪⎩∑∑∑∑ 解:根据原—对偶关系表,可得原问题的对偶规划问题为:11m ax 1,,;1,,m n i i j ji j i j ij i w a u b v u v c i m j n u ==⎧=+⎪⎪⎪+≤⎨⎪==⎪⎪⎩∑∑ j 无约束,v 无约束2.2判断下列说法是否正确,为什么?(1) 如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; 答:错。
因为:若线性规划的原问题存在可行解,且其对偶问题有可行解,则原问题和可行问题都将有最优解。
但,现实中肯定有一些问题是无最优解的,故本题说法不对。
例如原问题1212212m ax 31..30,0z x x x x s t x x x =++≥⎧⎪≤⎨⎪≥≥⎩有可行解,但其对偶问题1211212m in 33..10,0w y y y s t y y y y =+≥⎧⎪+≥⎨⎪≤≥⎩无可行解。
(2) 如果线性规划的对偶问题无可行解,则原问题也一定无可行解;答:错,如(1)中的例子。
运筹学习题集
《运筹学》习题集目录第一章线性规划 (1)第二章运输问题 (9)第三章整数规划 (14)第四章目标规划 (20)第五章动态规划 (21)第六章图与网络分析 (24)第七章存储论 (27)第八章对策论 (28)第一章 线性规划1、将下列线性规划问题化为标准型(1) max Z = 3x 1+ 5x 2- 4x 3+ 2x 4⎪⎪⎩⎪⎪⎨⎧≥=+≥+≤++0x , x , x 9 5x -3x -4x x -13 2x -2x 3x -x 18 3x x -6x 2x s.t.421432143214321 (2) min f = 3x1+ x2+ 4x3+ 2x4 ≤ 1⎪⎪⎩⎪⎪⎨⎧≤≥=++≥+≤+0 x 0, x , x15 2x 3x -4x 2x 7- x -2x 2x -3x 51- 2x - x -3x 2x s.t. 4214214321 43213 (3) min F=x1+x2+x3+x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥+≥+≥+≥+0x ,x ,x ,x 7x x 8x x 6x x 5x x s.t.432143222141 (4) 3213min x x x F -+=⎪⎪⎩⎪⎪⎨⎧≤≤≥≥0x ,x ,x 4x +5x +x -22x +x -3x +x +x ..32132121321t s 2、求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点):⎪⎩⎪⎨⎧≥≥++≥++0 x ,x ,x 12 4x 3x 2x -6 3x 3x 2x 3213213213、用图解法求解下列线性规划问题⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+=0x ,x 3 x 122x +3x 6 x -2x ..max )1(211212121t s X X Z⎪⎩⎪⎨⎧≥≥≥++-=0 x ,x 155x -3x 56 7x 4x ..3min )2(21212121t s x x Z4、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。
运筹学(胡运权第二版)习题答案(第二章)
对偶问题: st34yy11
y2 4y3 2 3y2 3y3 4
y1 0, y2 0, y3无限制
School of Management
运筹学教程
page 3 5/17/2021
第二章习题解答
maxZ 5x1 6x2 3x3
x1 2x2 2x3 5
(2)
st
4xx1175xx22
3x3 3x3
运筹学教程
第二章习题解答
page 2 5/17/2021
2.1 写出下列线性规划问题的对偶问题。
min Z 2x1 2x2 4x3
x1 3x2 4x3 2
(1)
st
2x1x3
3 5
x1, x2 , 0, x3无约束
maxW 2y1 3y2 5y3
y1 2y2 y3 2
page 4 5/17/2021
School of Management
运筹学教程
第二章习题解答
m
maxZ cjxj
j1
n
aijxj
bi
(i 1,,m1 m)
(4)
j1 st n aijxj bi
(i m1 1,m1 2,,m)
j1
xj 0 (j 1,,n1,n),xj无约束j( n1 1,,n)
(4)
由于(1)和(4)是矛盾约束,故对偶问题无可行解。 所以原问题目标函数值无界。
page 16 5/17/2021
School of Management
运筹学教程
第二章习题解答
2.7 给出线性规划问题
min Z 2 x1 4 x 2 x3 x 4
x1 3 x2 x4 8
st .
运筹学第二章作业的参考答案要点
第二章作业的参考答案73P 4、将下面的线性规划问题化成标准形式⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-≤≤≤-+≥+-+-613032632..2max 21321321321x x x x x x x x t s x x x解:将max 化为 min ,3x 用54x x -代替,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤≤-≤≤≤--+≥-+---+-0,61303)(26)(32..)(2min 5421542154215421x x x x x x x x x x x x t s x x x x令122+='x x ,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤'≤≤≤≤---'+≥-+-'----'+-0,70303)()1(26)(3)1(2..)(21min 5421542154215421x x x x x x x x x x x x t s x x x x将线性不等式化成线性等式,则可得原问题的标准形式⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥'=+'=+=++-'+=--+'--+-'+-0,,,,,,,73424332..122min 98765421928175421654215421x x x x x x x x x x x x x x x x x x x x x x t s x x x x73P 5、用图解法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤≤≥++212620..3min212121x x x x t s x x解:图2.1的阴影部分为此问题的可行区域。
将目标函数的等值线c x x =+213(c 为常数)沿它的负法线方向T),(31--移动到可行区域的边界上。
于是交点T),(812就是该问题的最优解,其最优值为36。
74P 12、对于下面的线性规划问题,以),,(632A A A B =为基写出对应的典式。
⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=+++-=++-=++-+-6,,1,010 83412 427 23..2min 63215214321321 j x x x x x x x x x x x x t s x x x j 解:先将方程组中基变量632,,x x x 的系数向量化成单位向量⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=≥-=+---=++-=++++-6,,1,039 47 4 2253 41 21581 21 45..2min 65415215431321 j x x x x x x x x x x x x t s x x x j 利用线性方程组的典式,把32,x x 用541,,x x x 表示,再带入目标函数,则可得原问题相应于基),,(632A A A B =的典式⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=≥-=+---=++-=++++---6,,1,039 47 4 2253 41 21581 21 45..8321451min 65415215431541 j x x x x x x x x x x x x t s x x x j75P 16、用单纯形法求解下列线性规划问题:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤-+≤+-≤+++--=3,2,1,020102603..2min 321321321321j x x x x x x x x x x t s x x x z j解:将此问题化成标准形式⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=+-+=++-=++++--=6,5,4,3,2,1,020102603..2min 632153214321321j x x x x x x x x x x x x x t s x x x z j以654,,x x x 为基变量,可得第一张单纯形表为以1x 为以2x 为进基变量,6x 为离基变量旋转得 解为Tx )0,5,15(*=,最所以最优优值为-35。
运筹学第二章答案
1.某人根据医嘱,每天需补充A 、B 、C 三种营养,A 不少于80单位,B 不少于150单位,C 不少于180单位.此人准备每天从六种食物中摄取这三种营养成分.已知六种食物每百克的营养成分含量及食物价格如表2-22所示.(1)试建立此人在满足健康需要的基础上花费最少的数学模型;(2)假定有一个厂商计划生产一中药丸,售给此人服用,药丸中包含有A ,B ,C 三种营养成分.试为厂商制定一个药丸的合理价格,既使此人愿意购买,又使厂商能获得最大利益,建立数学模型.表2-22【解】(1)设x j 为每天第j 种食物的用量,数学模型为 ⎪⎪⎩⎪⎪⎨⎧≥≥++++≥+++++≥++++++++++=01801034217181501512253092480118401425132.03.09.08.04.05.0min 65432154321654321654321654321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Z 、、、、、(2)设y i 为第i 种单位营养的价格,则数学模型为12312312312312312312123m ax 801501801324180.525970.41430210.84025340.9812100.311150.5,,0w y y y y y y y y y y y y y y y y y y y y y y y =++++≤⎧⎪++≤⎪⎪++≤⎪++≤⎨⎪++≤⎪⎪++≤⎪≥⎩2.写出下列线性规划的对偶问题 (1)⎪⎩⎪⎨⎧≥≤+-≤+-+-=0,451342max 21212121x x x x x x x x 【解】12121212m in 42354,0w y y y y y y y y =-+-+≥-⎧⎪+≥⎨⎪≥⎩(2)⎪⎩⎪⎨⎧≥≥+--=++-=0,8310232min 32132121321x x x x x x x x x x x Z 无约束, 【解】121212212m ax 108223130w y y y y y y y y y =+-=⎧⎪-=-⎪⎨≤⎪⎪≥⎩无约束;(3)⎪⎪⎩⎪⎪⎨⎧≤≥≤++-≥--+=--+-++=无约束43214321432143214321,0,0,66841052678410342max x x x x x x x x x x x x x x x x x x x x Z 【解】123123123123123123m in 8106107416822644530,0w y y y y y y y y y y y y y y y y y y =++++≥⎧⎪+-≥⎪⎪--+≤⎨⎪--+=-⎪≤≥⎪⎩无约束; (4)12341234134123411234m ax 236732696562225100,,,Z x x x x x x x x x x x x x x x x x x x x =-++--+-=⎧⎪+-≥⎪⎪-+-+≤-⎨⎪≤≤⎪≥⎪⎩无约束【解】123412341341234111234m ax 236732696562225100,,,Z x x x x x x x x x x x x x x x x x x x x x =-++--+-=⎧⎪+-≥⎪⎪-+-+≤-⎪⎨≥⎪⎪≤⎪≥⎪⎩无约束对偶问题为: 12345123451212312312345m in 962+510362223566270,000w y y y y y y y y y y y y y y y y y y y y y y x =--+--+-≥-⎧⎪-+=⎪⎪--=⎨⎪-++=-⎪≤≥≤≥⎪⎩无约束;,,, 3.考虑线性规划⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥++=0,73225442012min 2121212121x x x x x x x x x x Z(1)说明原问题与对偶问题都有最优解;(2)通过解对偶问题由最优表中观察出原问题的最优解; (3)利用公式C B B -1求原问题的最优解; (4)利用互补松弛条件求原问题的最优解. 【解】(1)原问题的对偶问题为123123123m ax 427212453200,1,2,3jw y y y y y y y y y y j =++⎧++≤⎪++≤⎨⎪≥=⎩容易看出原问题和对偶问题都有可行解,如X =(2,1)、Y =(1,0,1),由定理2.4知都有最优解。
管理运筹学(第四版)第二章习题答案
第二章补充作业习题:用大M 法和两阶段法求解下面LP 问题:⎪⎪⎩⎪⎪⎨⎧≥≥+-≥-+=0,3232s.t.42min 21212121x x x x x x x x z解: 标准化为⎪⎪⎩⎪⎪⎨⎧≥=-+-=----=0,,,3232s.t.42max 432142132121x x x x x x x x x x x x z(1)大M 法引入人工变量65,x x ,得到下面的LP 问题⎪⎪⎪⎪⎨⎧=≥=+-+-=+------=6,,1,03232s.t.42max 642153216521 j x x x x x x x x x Mx Mx x x z j因为人工变量6x 为4>0,所以原问题没有可行解。
(2)两阶段法:增加人工变量65,x x ,得到辅助LP 问题⎪⎪⎩⎪⎪⎨⎧=≥=+-+-=+----=6,,1,03232s.t.max 6421532165 j x x x x x x x x x x x g j初始表因为辅助LP 问题的最优值为4>0,所以原问题没有可行解。
习2.1 解:设1x 为每天生产甲产品的数量,2x 为每天生产乙产品的数量,则数学模型为,5183202..200300max 211212121≥≤≤+≤++=x x x x x x x t s x x z最优解为:()TX 4.8,2.3*=,最优值为:z = 2640。
(1)最优解为:()TX 5.0,5.1*=,最优值为:z = 4.5。
(2)无可行解有无穷多最优解,其中一个为:TX⎪⎭⎫⎝⎛=0,310*1,另一个为:()TX10,0*2=,最优值为:z = 20。
(4)无界解解:A B 资源限额 会议室 1 1 5 桌子 3 2 12 货架 3 6 18 工资2522设1x 为雇佣A 的天数,2x 为雇佣B 的天数,则数学模型为,186312235..2225min 2121212121≥≥+≥+≥++=x x x x x x x x t s x x z最优解为:()TX3,2*=,最优值为:z = 116。
《运筹学教程》第二章习题答案-推荐下载
1、(1)解:引入松弛变量 x4≥0,x5≥0,化不等式为等式为:
minz=2X1 +3X2+4X3
s.t.
X1+3X2+2X3+X4=7
4X1+2X2+X5=9
X1,X2,X4,X5≥0 化自由变量为非负,令 X3=X3′-X3〞,X3′,X3〞≥0 :
minz=2X1 +3X2+4X3′-4X3〞
x(10) (14 , 0, 2 , 0, 0)T 。 33
其中基础可行解为: x(1) (0, 0, 0, 6, 4)T , x(3) (0, 0, 3, 0, 7)T , x(5) (0,1, 0, 5, 0)T ,
。
将上解逐一带入原目标函数,得
Z1
其中
=0,
Z10
Z3
=
=-3,
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
运筹学第2章答案
即令 C1 ' = 3 + λ
σ 1 = −λ <= 0
1
σ2
=
λ 3
<=
0
σ3 =0
11 σ 1 = − 3 λ − 5 <= 0
13
σ5
=
λ 3
−
5
<=
0
P5=1/3X-3/5<=0
Cj
3
1
4
0
0
Cb
xb
b
x1
x2
x3
x4
x5
0
x4
15
3
-1
0
4
x3
6
3/5
4/5
1
σi
3/5
-11/5
0
x1 入基,min{15/3,3/(3/5)}=5,所以 x4 出基
Cj
3
1
4
Cb
xb
b
x1
x2
x3
3
x1
5
13
-1/3
0
4
x3
3
0
1
1
σi
0
-2
0
因为所有的σ i <=0,所以得到最优解 X=(5,0,3,0,0)T,
32/5
0
0
1
-1/5
8/5
2
x2
3/5
0
1
0
1/5
-3/5
3
18/5
1
0
01/52Fra bibliotek5x1
运筹学_第2章_对偶理论习题
第二章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3无限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2无限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。
试用互补松弛定理求该线性规划问题的最优解。
解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。
又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。
故原问题的最优解为X*=(0,0,4,4)T2.4用对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。
2-9章运筹学课后题及答案
第二章决策分析2.1 某公司面对五种自然状态、四种行动方案的收益情况如下表:假定不知道各种自然状态出现的概率,分别用以下五种方法选择最优行动方案:1、最大最小准则2、最大最大准则3、等可能性准则4、乐观系数准则(分别取α=0.6、0.7、0.8、0.9)5、后悔值准则解:1、用最大最小准则决策S4为最优方案;2、用最大最大准则决策S2为最优方案;3、用等可能性准则决策S4为最优方案;4、乐观系数准则决策(1) α=0.6,S1为最优方案;(2) α=0.7,S1为最优方案;(3) α=0.8,S1为最优方案;(4) α=0.9,S2为最优方案;可见,随着乐观系数的改变,其决策的最优方案也会随时改变。
5、用后悔值准则决策S4为最优方案。
2.2 在习题1中,若各种自然状态发生的概率分别为P(N1)=0.1、P(N2)=0.3、P(N3)=0.4、P(N4)=0.2、P(N5)=0.1。
请用期望值准则进行决策。
解:期望值准则决策S1为最优方案。
3.3 市场上销售一种打印有生产日期的保鲜鸡蛋,由于确保鸡蛋是新鲜的,所以要比一般鸡蛋贵些。
商场以35元一箱买进,以50元一箱卖出,按规定要求印有日期的鸡蛋在一周内必须售出,若一周内没有售出就按每箱10元处理给指定的奶牛场。
商场与养鸡场的协议是只要商场能售出多少,养鸡场就供应多少,但只有11箱、12箱、15箱、18箱和20箱五种可执行的计划,每周一进货。
1、编制商场保鲜鸡蛋进货问题的收益表。
2、分别用最大最小准则、最大最大准则、等可能性准则、乐观系数准则(α=0.8)和后悔值准则进行决策。
3、根据商场多年销售这种鸡蛋的报表统计,得到平均每周销售完11箱、12箱、15箱、18箱和20箱这种鸡蛋的概率分别为:0.1、0.2、0.3、0.3、0.1。
请用期望值准则进行决策。
1、收益表2、用各准则模型求解(1)最大最小准则得S5为最优方案;(2)最大最大准则得S1为最优方案;(3)等可能性准则得S4为最优方案;(4)乐观系数( =0.8)准则得S1为最优方案;(5)后悔值准则得S3为最优方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断题判断正误,如果错误请更正第二章线形规划的对偶理论1.原问题第i个约束是<=约束,则对偶变量yi>=0.2.互为对偶问题,或则同时都有最优解,或则同时都无最优解.3.原问题有多重解,对偶问题也有多重解.4.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解.5.原问题无最优解,则对偶问题无可行解.6.设X,Y分别为{minZ=CX|AX>=b,X>=0}和{maxw=Yb|YA<=C,Y>=0}的可行解,则有(1)CX<=Yb;(2)CX是w的上界;(3)当X,Y为最优解,CX=Yb;(4)当CX=Yb 时,有YXs+YsX=0;(5)X为最优解且B是最优基时,则Y=C B B-1是最优解;(6)松弛变量Ys的检验数是λs,则X=-λs是基本解,若Ys是最优解, 则X=-λs是最优解.7.原问题与对偶问题都可行,则都有最优解.8.原问题具有无界解,则对偶问题可行.9.若X,Y是原问题与对偶问题的最优解.则X=Y.10.若某种资源影子价格为0,则该资源一定有剩余.11影子价格就是资源的价格.12.原问题可行对偶问题不可行,可用对偶单纯形法计算.13.对偶单纯形法比值失效说明原问题具有无界解.14.对偶单纯形法是直接解对偶问题的一种解法.15.减少一个约束,目标值不会比原来变差.16.增加一个约束,目标值不会比原来变好.17增加一个变量, 目标值不会比原来变差.18.减少一个非基变量, 目标值不变.19.当Cj(j=1,2,3,……,n)在允许的最大范围内同时变化时,最优解不变。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第二章线性规划的对偶理论1.如果决策变量数列相等的两个线规划的最优解相同,则两个线性规划A约束条件相同B目标函数相同C最优目标函数值相同D以上结论都不对2.对偶单纯形法的最小比值规则是为了保证A使原问题保持可行B使对偶问题保持可行C逐步消除原问题不可行性D逐步消除对偶问题不可行性3.互为对偶的两个线性规划问题的解存在关系A若最优解存在,则最优解相同B原问题无可行解,则对偶问题也无可行解C对偶问题无可行解,原问题可能无可行解D一个问题无界,则另一个问题无可行解E一个问题无可行解,则另一个问题具有无界解4.已知规范形式原问题(max)的最优表中的检验数为(λ1,λ2,……λn),松弛变量的检验数为(λn+1,λn+2,……λn+m),则对偶问题的最优解为A—(λ1,λ2,……λn)B (λ1,λ2,……λn)C —(λn+1,λn+2,……λn+m)D(λn+1,λn+2,……λn+m)5.原问题与对偶问题都有可行解,则A原问题有最优解,对偶问题可能没有最优解B原问题与对偶问题可能都没有最优解C可能一个问题有最优解,另一个问题具有无界解D原问题与对偶问题都有最优解计算题线性规划问题和对偶问题2.1 对于如下的线性规划问题min z = 3x1 + 2x2 +x3s.t. x1+ x2+ x3 ≤15 (1)2x1- x2+ x3≥9 (2)-x1+ 2x2+2x3≤8 (3)x1x2x3 ≥01、写出题目中线性规划问题的对偶问题;2、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解答:1、写出题目中线性规划问题的对偶问题;解:max w = 15y1 + 9y2 + 8y3s.t. y1+ 2y2- y3 ≤ 3 (1)y1- y2+ 2y3≤ 2 (2)y1+ y2+ 2y3≤ 1 (3)y1≤0、y2 ≥0、y3 ≤02、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解:先将原问题化成以下形式,则有mi n z = 3x1 + 2x2 + x3s.t. x1+ x2+ x3 + x4 = 15 (1)-2x1+ x2- x3+ x5= -9 (2)-x1+ 2x2+2x3+x6 = 8 (3)原始问题的最优解为(X1 X2 X3 X4 X5 X6)=(2,0,5,8,0,0),minz=11对偶问题的最优解为(y1 y2 y3 y4 y5 y6)=(0,7/5,-1/5,0,19/5,0),maxw=11 2.2 对于以下线性规划问题max z = -x1 - 2x2s.t. -2x1 + 3x2≤12 (1)-3x1 + x2≤ 6 (2)x1 + 3x2≥ 3 (3)x1≤0,x2≥01、写出标准化的线性规划问题;2、用单纯形表求出这个线性规划问题的最优解和最优的目标函数值;3、写出这个(极大化)线性规划问题的对偶问题;4、求出对偶问题的最优解和最优解的目标函数值;5、第(2)个约束右端常数b2=6在什么范围内变化,最优解保持不变。
解答:1、写出标准化的线性规划问题:令x1*=- x1max z = x1*- 2x2s.t. 2x1*+ 3x2+ x3 = 12 (1)3x1*+ x2+ x4= 6 (2)-x1*+ 3x2-x5 = 3 (3)x1* x2 x3 x4 x5≥02、(此时最优解为(X1、X2、X3、X4 X5)=(-3/2,3/2,9/2,0,0)maxz=-3/23、写出这个(极大化)线性规划问题的对偶问题;min w = 12y1 + 6y2 + 3y3s.t. -2y1- 3y2+ y3 ≤-1 (1)3y1+ y2+ 3 y3≥-2 (2)y1≥0、y2 ≥0、y3 ≤04、求出对偶问题的最优解和最优解的目标函数值;此时最优解为(y1、y2、y3、y4 y5)=(0,1/10,-7/10,0,0)minw =-3/25、则有1≤b2≤11,最优解不变。
2.3 已知LP问题:max z = x1 + 2x2 +3x3 + 4x4s.t. x1 + 2x2 + 2x3 + 3x4≤20 (1)2x1 + x2 + 3x3 + 2x4≤20 (2)x1 、x2 、x3 、x4≥0的最优解为(0,0,4,4)T,最优值为Z=28。
请用互补松弛定理计算其对偶问题的最优解。
解答:首先写出此LP问题的对偶问题为:min w = 20y1 + 20y2s.t. y1 + 2y2 ≥ 1 (1)2y1 + y2≥ 2 (2)2y1 + 3y2 ≥ 3 (3)3y1 + 2y2≥ 4 (4)y1 、y2 、≥0将上述对偶问题的化成标准型,取松弛变量分别为v1、v2、、v3、v4,则有min w = 20y1 + 20y2s.t. y1 + 2y2 - v1= 1 (5)2y1 + y2- v2= 2 (6)2y1 + 3y2 - v3= 3 (7)3y1 + 2y2- v4= 4 (8)y1 、y2 、≥0利用互补松弛定理可知:x3 = 4 > 0 ,又有x3 v3 = 0 ,所以有v3 = 0 代入(7)式x4 = 4 > 0,又有x4 v4= 0 ,所以有v4 = 0 代入(8)式,则有2y1 + 3y2 = 3 (9)3y1 + 2y2= 4 (10)从中可计算出y1 = 6/5、y2 = 1/5,则w* =282.4 一个工厂用四种原料生产三种产品,生产每种产品要消耗的各种原料数量(表中“—”表示相应的产品不需要这种原料)、各种产品的利润以及各种原料的限量如下表所示。
1、写出原料限制条件下利润最大化的线性规划模型;2、写出以上问题的对偶问题;3、已知利润最大的线性规划问题的最优解是产品A生产120件,产品B不生解答:数量(表中“—”表示相应的产品不需要这种原料)、各种产品的利润以及各种原料的限量如下表所示。
1.写出原料限制条件下利润最大化的线性规划模型;max z = 120x1 + 180x2 +210x3s.t. 12x1 + 8x2+10x3 ≤2400 (1)6x1 + 10x2+15x3 ≤1500 (2)15x1 + 18x2≤1800 (3)20x2 + 22x3≤2000 (4)x1≥0,x2≥0 x3≥02.写出以上问题的对偶问题;min w = 2400y1 + 1500y2 +1800y3 +2000y4s.t. 12y1 + 6y2+15y3 ≥120 (1)8y1 + 10y2 + 18y3 + 20y4 ≥180 (2)10y1 + 15y2 +22y4 ≥210 (3)y1≥0,y2≥0 y3≥0 y4≥03.已知利润最大的线性规划问题的最优解是产品A生产120件,产品B不生产,产品C生产52件,用互补松弛关系求四种原料的影子价格。
max z = 120x1 + 180x2 +210x3s.t. 12x1 + 8x2+10x3 +x4 = 2400 (1)6x1 + 10x2+15x3 +x5 = 1500 (2)15x1 + 18x2+x6= 1800 (3)20x2 + 22x3+x7= 2000 (4)x1≥0,x2≥0 x3≥0 x4≥0 x5 ≥0 x6≥0 x7≥0x4 =440 x5 =0 x6 =0 x7 =856min w = 2400y1 + 1500y2 +1800y3 +2000y4s.t. 12y1 + 6y2+15y3 -y5 = 120 (1)8y1 + 10y2+ 18y3 + 20y4 -y6 = 180 (2)10y1 + 15y2+22y4 -y7 = 210 (3)y1≥0,y2≥0 y3≥0 y4≥0 y5≥0 y6≥0 y7≥0由互补松弛关系可知,x1 x3 x4 x7≥0,得到y5= y7= y1= y4=06y2+15y3 = 12010y2+ 18y3 -y6 = 18015y2= 210解得y2=14 y3= 2.4 y6=3.2原材料甲的影子价格为:0万元/吨原材料乙的影子价格为:14万元/吨原材料丙的影子价格为:2.4万元/吨原材料丁的影子价格为:0万元/吨。