常见函数图像

合集下载

常见三角函数图像及其性质

常见三角函数图像及其性质

常见三角函数图像及其性质三角函数介绍正弦函数主词条:正弦函数格式:sin(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比斜边长度的比值求出,函数值为上述比的比值,也是csc(θ)的倒数函数图像:波形曲线值域:[]1,1-余弦函数主词条:余弦函数格式:cos(θ)作用:在直角三角形中,将大小为(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(θ)的倒数函数图像:波形曲线值域:[]1,1-正切函数主词条:正切函数格式:tan(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比邻边长度的比值求出,函数值为上述比的比值,也是cot(θ)的倒数。

函数图像:上图平面直角坐标系反映值域:()∞-∞,+余切函数主词条:余切函数格式:cot(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角邻边长度比对边长度的比值求出,函数值为上述比的比值,也是tan(θ)的倒数值域:()∞-∞,+正割函数主词条:正割函数格式:sec(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角邻边长度的比值求出,函数值为上述比的比值,也是cos(θ)的倒数函数图像:上图平面直角坐标系反映值域:(][)∞-1-,1∞,+余割函数主词条:余割函数格式:csc(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角对边长度的比值求出,函数值为上述比的比值,也是sin(θ)的倒数值域:(][)∞-1-∞,+,1。

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

高中数学常见函数图像

高中数学常见函数图像

高中数学常见函数图像1.2.对数函数:3.定义形如αx y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.图像性质过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.4.函数sin y x =cos y x =tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22xk ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2xk ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴。

高中数学常见函数图像

高中数学常见函数图像

高中数学罕见函数图像之马矢奏春创作1.指数函数:定义 函数(0xy a a =>且1)a ≠叫做指数函数 图象 1a >01a <<定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数 在R 上是减函数 2.对数函数:定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞ 值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数 在(0,)+∞上是减函数 3.幂函数:定义形如αx y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.图像性质过定点:所有的幂函数在(0,)+∞都有定义,而且图象都通过点(1,1).单调性:如果0α>,则幂函数的图象过原点,而且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.xa y =xy(0,1)O 1y =x a y =xy (0,1)O 1y =x y O (1,0)1x =log a y x=x yO (1,0)1x =log a y x =4.函数sin y x =cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2xk ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭ ()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴。

函数图像总结

函数图像总结

函数图像总结函数图像总结函数图像总结一基本函数图像1y=kx(x≠0)2y=kx+b(k≠0)3y4yax2bxc(a0)5yxa6yxk(k0)xk(k0)7yax(a 0,a1)x8ylogax(a0,a1)二抽象图像平移f(x)f(x+1)f(x)f(x-1)f(x)f(x)+1f(x)f(x)-1f(x)f(2x)f(x)2f(x) f(x)f(2x+2)y=f(-x)变成y=f(-x+2)练习:cosxcos2xcos2xcos(2x+4)cosxcos2x+4三图像的变换1f(x)f(|x|)保留y轴右边的,左边关于右边y轴对称2f(x)|f(x)|保留x轴上方的,下方关于x轴对称3f(x)f(-x)y轴对称4f(x)-f(x)x轴对称5f(x)-f(-x)原点对称6f(x)f(|x+1|)先根据1方法变成f(|x|),在向左平移一个单位得到f(|x+1|)7f(x)f(|x|+1)先向左平移一个单位得到f(x+1),再根据1方法变成f(|x|+1)8f(x)与f1(x)的图象关于直线yx对称联想点(x,y),(y,x)9f(x)与f(2ax)的图象关于点(a,0)对称egf(x)= 2x与g(x)=-2x关于对称一、函数yf(x)与函数yf(x)的图象关系函数yf(x)的图象是由yf(x)的图象经沿y轴翻折180°而得到的(即关于y轴对称)。

注意它与函数yf(x)满足f(x)f(x)的图象是不同的,前者代表两个函数,后者表示函数yf(x)本身是关于y轴对称的。

(二)伸缩变换及其应用:函数yaf(bx)的图像可以看作是由函数yf(x)的图像先将横坐标伸长(|b|<1)或缩短(|b|>1)到原来的1倍,再把纵坐标伸长(|a|>1)或缩短(|a|<1)到原来的|a|倍即可得到。

如:|b|1的图像x1要求:1会画y=|x+1|y=-2会画f(x)=lg|x|以及f(x)=|lgx|3会画f(x)=|lg|x+1||以及f(x)=x2-4|x|+5f(x)=|x2-2x-3|二1由图像可知f(x+1)为偶函数对称轴为2由图像可知f(x+1)为奇函数关于点(,)对称Eg、对a,bR,记max{a,b}=(A)0(B) a,ab,函数f(x)=max{|x+1|,|x-2|}(xR)的最小值是b,a<b13(C)(D)3901(选讲)1、yf(x)绕原点顺时针方向旋转;yf(x)12、yf(x);yf (x)绕原点逆时针方向旋转9000yQP(a,b)(yf(x)yQ1xP1(b,a)(yf1(x))P(a,b)(yf(x)0P1(b,a)1(yf(x))0(乙)x(甲)(图五)0说明:关于绕原点旋转180的变换实际上就是关于原点对称的问题。

函数图像总结

函数图像总结

函数图像总结函数图像总结函数图像总结一基本函数图像1y=kx(x≠0)2y=kx+b(k≠0)3y4yax2bxc(a0)5yxa6yxk(k0)xk(k0)7yax(a 0,a1)x8ylogax(a0,a1)二抽象图像平移f(x)f(x+1)f(x)f(x-1)f(x)f(x)+1f(x)f(x)-1f(x)f(2x)f(x)2f(x) f(x)f(2x+2)y=f(-x)变成y=f(-x+2)练习:cosxcos2xcos2xcos(2x+4)cosxcos2x+4三图像的变换1f(x)f(|x|)保留y轴右边的,左边关于右边y轴对称2f(x)|f(x)|保留x轴上方的,下方关于x轴对称3f(x)f(-x)y轴对称4f(x)-f(x)x轴对称5f(x)-f(-x)原点对称6f(x)f(|x+1|)先根据1方法变成f(|x|),在向左平移一个单位得到f(|x+1|)7f(x)f(|x|+1)先向左平移一个单位得到f(x+1),再根据1方法变成f(|x|+1)8f(x)与f1(x)的图象关于直线yx对称联想点(x,y),(y,x)9f(x)与f(2ax)的图象关于点(a,0)对称egf(x)= 2x与g(x)=-2x关于对称一、函数yf(x)与函数yf(x)的图象关系函数yf(x)的图象是由yf(x)的图象经沿y轴翻折180°而得到的(即关于y轴对称)。

注意它与函数yf(x)满足f(x)f(x)的图象是不同的,前者代表两个函数,后者表示函数yf(x)本身是关于y轴对称的。

(二)伸缩变换及其应用:函数yaf(bx)的图像可以看作是由函数yf(x)的图像先将横坐标伸长(|b|<1)或缩短(|b|>1)到原来的1倍,再把纵坐标伸长(|a|>1)或缩短(|a|<1)到原来的|a|倍即可得到。

如:|b|1的图像x1要求:1会画y=|x+1|y=-2会画f(x)=lg|x|以及f(x)=|lgx|3会画f(x)=|lg|x+1||以及f(x)=x2-4|x|+5f(x)=|x2-2x-3|二1由图像可知f(x+1)为偶函数对称轴为2由图像可知f(x+1)为奇函数关于点(,)对称Eg、对a,bR,记max{a,b}=(A)0(B) a,ab,函数f(x)=max{|x+1|,|x-2|}(xR)的最小值是b,a<b13(C)(D)3901(选讲)1、yf(x)绕原点顺时针方向旋转;yf(x)12、yf(x);yf (x)绕原点逆时针方向旋转9000yQP(a,b)(yf(x)yQ1xP1(b,a)(yf1(x))P(a,b)(yf(x)0P1(b,a)1(yf(x))0(乙)x(甲)(图五)0说明:关于绕原点旋转180的变换实际上就是关于原点对称的问题。

(完整版)高中数学常见函数图像

(完整版)高中数学常见函数图像

高中数学常见函数图像1.2.对数函数:3.幂函数:定义形如αxy=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.图像性质过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x轴与y轴.4.函数sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22xk ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴。

五大基本初等函数性质及其图像

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。

如,,,都是幂函数。

没有统一的定义域,定义域由值确定。

如,。

但在内总是有定义的,且都经过(1,1)点。

当时,函数在上是单调增加的,当时,函数在内是单调减少的。

下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。

图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。

高等数学中常用的指数函数是时,即。

以与为例绘出图形,如图1-1-4。

图1-1-43.对数函数函数称为对数函数,其定义域,值域。

当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。

与互为反函数。

当时的对数函数称为自然对数,当时,称为常用对数。

以为例绘出图形,如图1-1-5。

图1-1-54.三角函数有,它们都是周期函数。

对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。

它们都是有界函数,周期都是,为奇函数,为偶函数。

图形为图1-1-6、图1-1-7。

图1-1-6 正弦函数图形图1-1-7 余弦函数图形(2)正切函数,定义域,值域为。

周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。

在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。

图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14为有界函数,在其定义域内单调减少的非奇非偶函数。

高中数学函数图像大全

高中数学函数图像大全

高中数学函数图像大全1. 常用数学函数1.1. 直线函数直线函数是数学中最简单的函数之一。

它的特点是图像为一条直线,表达式为y=kx+b,其中k和b是常数。

直线函数的图像与直线的斜率和截距有关。

1.2. 平方函数平方函数的图像为抛物线,表达式为y=x2。

平方函数的特点是对称于y轴,并且开口向上。

1.3. 立方函数立方函数的图像为一条类似于S字形的曲线,表达式为y=x3。

立方函数的特点是对称于原点,并且开口向上。

1.4. 平方根函数平方根函数的图像为一条向右开口的抛物线,表达式为 $y = \\sqrt{x}$。

平方根函数的特点是定义域为非负实数集。

1.5. 绝对值函数绝对值函数的图像为一条折线,表达式为y=|x|。

绝对值函数的特点是对称于y轴,并且在原点处转折。

2. 复合函数复合函数是由两个或多个函数相互组合而成的函数。

其图像可以通过将各个函数的图像进行组合来得到。

3. 反函数反函数是与给定函数互为反函数的函数。

其图像可以通过将给定函数的图像关于直线y=x进行对称得到。

4. 常见函数图像的变换常见函数图像可以通过平移、伸缩、翻转等操作进行变换,从而得到新的函数图像。

4.1. 平移变换平移变换是将函数图像沿x轴或y轴方向移动的操作。

对于函数y=f(x),平移变换的一般形式为y=f(x−a)或y=f(x)+b。

4.2. 伸缩变换伸缩变换是将函数图像在水平或垂直方向进行拉伸或压缩的操作。

对于函数y=f(x),伸缩变换的一般形式为 $y = a \\cdot f(bx)$。

4.3. 翻转变换翻转变换是将函数图像关于x轴或y轴进行翻转的操作。

对于函数y=f(x),翻转变换的一般形式为y=−f(x)或y=f(−x)。

5. 实际应用数学函数图像在实际应用中起到了重要的作用。

例如,在物理学中,函数图像可以用来描述物体的运动轨迹;在经济学中,函数图像可以用来描述经济变量之间的关系;在计算机科学中,函数图像可以用来进行数据的可视化等。

常用函数图像

常用函数图像

函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)三角函数(3)对数函数(2)三角函数(4)三角函数(1)三角函数(5)三角函数(2)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3) y=sin(1/x) (4)y = [1/x](1) y = [1/x](2) y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x) y=e1/xy=sinx (x->∞)绝对值函数 y = |x|符号函数 y = sgnx取整函数 y= [x]极限的几何解释(1)极限的几何解释 (2)极限的几何解释 (3)极限的性质 (1) (局部保号性)极限的性质 (2) (局部保号性)极限的性质 (3) (不等式性质)极限的性质 (4) (局部有界性)极限的性质 (5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1) lim(1+1/x)^x 的一般形式(2) lim(1+1/x)^x 的一般形式(3) e的值(1)等价无穷小 (x->0)sinx 等价于xarcsinx 等价于xtanx 等价于xarctanx 等价于x1-cosx 等价于x^2/2sinx 等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞)夹逼定理(1)夹逼定理(2)数列的夹逼性(1)数列的夹逼性(2)pi 是派的意思(如果你没有切换到公式版本) ^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了。

经典数学函数图像(大全)

经典数学函数图像(大全)

经典数学函数图像(大全)1. 一次函数图像一次函数图像是一条直线,其一般形式为 y = mx + b,其中 m是斜率,b 是 y 轴截距。

当 m > 0 时,直线向上倾斜;当 m < 0 时,直线向下倾斜。

2. 二次函数图像二次函数图像是一个抛物线,其一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

3. 三角函数图像三角函数图像包括正弦函数、余弦函数和正切函数。

正弦函数图像是一条波动曲线,余弦函数图像与正弦函数图像相似,但相位差为π/2。

正切函数图像是一条周期性振荡的曲线。

4. 指数函数图像指数函数图像是一条上升或下降的曲线,其一般形式为 y = a^x,其中 a 是底数,x 是指数。

当 a > 1 时,曲线上升;当 0 < a < 1 时,曲线下降。

5. 对数函数图像对数函数图像是一条上升或下降的曲线,其一般形式为 y =log_a(x),其中 a 是底数,x 是真数。

当 a > 1 时,曲线上升;当0 < a < 1 时,曲线下降。

6. 双曲函数图像双曲函数图像包括双曲正弦函数、双曲余弦函数和双曲正切函数。

双曲正弦函数和双曲余弦函数图像都是上升或下降的曲线,而双曲正切函数图像是一条周期性振荡的曲线。

7. 幂函数图像幂函数图像是一条上升或下降的曲线,其一般形式为 y = x^n,其中 n 是指数。

当 n > 0 时,曲线上升;当 n < 0 时,曲线下降。

8. 反比例函数图像反比例函数图像是一条双曲线,其一般形式为 y = k/x,其中 k是常数。

当 k > 0 时,曲线位于第一和第三象限;当 k < 0 时,曲线位于第二和第四象限。

经典数学函数图像(大全)3. 反三角函数图像反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数。

第1.1讲12个函数的图像及性质.docx

第1.1讲12个函数的图像及性质.docx
偶函数。
对称轴:


3.反比例函数

为减函数
无最值
奇函数
原点
中心对称
渐近线: 轴

为增函数
名称
解析式
图象
定义域
值域
单调性
最值或极值
奇偶性
对称性
其他
4.常函数

无最值
偶函数
当 时是奇、
偶函数。
5.三次函数

为增;
在 为减函数
极大值:
极小值:

奇函数
一般无

为减;
在 为增函数
极小值:
极大值:
6.指数函数
1. 偶数
为偶函数
2. 奇数为偶函数
过定点(1,1)
9.对勾函数
1.增: 和 ;
2.减: 和 ;
1.当 时, ;
2.当 时, ;
奇函数
渐近线: 轴和 ;
10.正弦函数
1.增区间:
2.减区间:
1.当 时, ;
2.当 时, ;
奇函数
对称中心
对称轴:
11.余弦函数
1.增区间:
2.减区间:
1.当 时, ;
2.当 时, ;
在 上为增

非奇非偶
与 关于 轴对称;
过定点(0,1)
在 上为减
7.对数函数
在 上为增

非奇非偶
与 关于 轴对称;
过定点(1,0)
在 上为减
名称
解析式
图象
定义域
值域
单调性
最值或极值
奇偶性
对称性
其他
8.幂函数
只讨论

高中阶段常见函数图像(高清)(1)

高中阶段常见函数图像(高清)(1)
函数表达式
图像
函数表达式
y ln x x
y ln x x
函数极值点
1, 1
y x ln x
函数极值点
1 e
,
1 e
y ln x x
函数极值点
e,
1 e
y x ln x
函数极值点
e, e
y ex x
过定点
0,1
y ex x
函数极值点
0,1
y ex x
函数极值点
1, e
y ln x x 1
函数极值点
e, e
ln x x 1
y ln x 1 ex
函数极值点
0,1 ln x 1 ex
函数表达式
y sin x
y ex x 1
函数极值点
e,
1 e
ex x 1
y ex x 1
过定点
0,1
ex 1 x
y ln 1 1 1 xx
函数极值点
函数表达式
y x2 ex
图像
y
x2 ex
y
ex x2
y ex sin x y ex sin x
4 / 41
y ex sin x y ex sin x
y
sin ex
x
y ex cos x
函数表达式
图像
函数表达式
图像
y ex cos x
y ex cos x
y
cos ex
x
y x2 sin x
y xex
函数极值点
1,
1 e
y
x ex
函数极值点
1,
1 e
图像
1 / 41
函数表达式

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

高中13种函数图像汇总

高中13种函数图像汇总

高中13种函数图像汇总函数图像是数学教学中的重要知识点,在高中阶段,学生要掌握常见的13种函数图像的概念、性质、特征,本文将对13种函数图像进行汇总,为学生深入学习提供参考。

一、直线函数图像直线函数的图像是一条直线,它的函数表达式为y=kx+b,其中k是斜率,b是y轴截距,如果k=0,则表示水平线;如果b=0,则表示垂直线。

二、平方函数图像平方函数的图像是一个U型函数曲线,它的函数表达式为y=x^2。

正定平方函数的图像会向上钝化,而负定平方函数的图像会向下钝化,当x=0时,y取得最大值。

三、立方函数图像立方函数的图像是一条U型函数曲线,它的函数表达式为y=x^3,正定立方函数的图像会向上钝化,而负定立方函数的图像会向下钝化,当x=0时,y取得最大值。

四、正弦函数图像正弦函数的图像是一条具有一定周期的曲线,它的函数表达式为y=A*sin(Bx+C),其中A表示振幅,B表示周期,C表示初相。

五、余弦函数图像余弦函数的图像与正弦函数的图像大致相同,它的函数表达式为y=A*cos(Bx+C),其中A表示振幅,B表示周期,C表示初相。

六、指数函数图像指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^x,其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。

七、反指数函数图像反指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^(-x),其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。

八、对数函数图像对数函数的图像是一条上升曲线,它的函数表达式为y=A*ln (x),A表示振幅,此时x的取值范围是大于0的正数。

九、反对数函数图像反对数函数的图像也是一条上升曲线,它的函数表达式为y=A*ln(1/x),A表示振幅,此时x的取值范围是大于0的正数。

十、双曲线函数图像双曲线的图像是一条上升或下降的曲线,它的函数表达式为y=A*sinh(Bx+C),其中A表示振幅,B表示周期,C表示初相。

十二种基本函数的图像

十二种基本函数的图像

十二种基本函数的图像
十二种基本函数的图像
y=(x的绝对值+/-一个数字)的图像:v字形上下移动(上加下减);
y=(x+/-一个数)的绝对值的图像:v字形左右移动(左加右减);
y=(x^2)+/-一个数:抛物线上下移动(上加下减);
y=(x+/-一个数)^2:抛物线左右移动(左加右减);
y=根号下x的图像:关于x^2的图像以直线Y=x对称(只有第一象限);y=根号下(x+/-一个数):同上图左右移动(左加右减);
y=(根号下x)+/-一个数(2种):同上图上下移动(上加下减);
y=x^3的图像:关于原点对称的图像;
y=x^3(+/-一个数)的图像:y=x^3的图像上下移动(上加下减);
y=(x+/-一个数)^3的图像:y=x^3的图像左右移动(左加右减);
移动的距离为+/-一个数的单位长度。

扩展资料:
基本函数(初等函数)是由常函数、幂函数、指数函数、对数函数、三角函数和反三角函数经过有限次的有理运算(加、减、乘、除、有限次乘方、有限次开方)及有限次函数复合所产生、并且在定义域上能用一个方程式表示的函数。

一般来说,分段函数不是初等函数,因为在这些分段函数的定义域上不能用一个解析式表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
(0,1) 0
y

(0,1)
y=1
x
0
x
性 质
1、定义域为R; 2、值域为(0,+∞ ) 3、图象过定点(0,1)
4、在R上是增函数
在R上是减函数
例4.求下列函数的定义域 ⑴
王新敞
奎屯 新疆
y 0.4
1 x 1
⑵ ⑶
y 3
x
5 x1
y 2 1
1 x 3、比较函数 y 2 ( x R)与函数 y ( ) 图像 2
log c b log a b = (a > 0且a ? 1, c 0且c ? 1, b 0) logc a
(二)对数运算性质的运用
例1、若 a > 0, a ? 1, x
y > 0, n N *,则下列各式中:
n
(1)(loga x ) = n loga x
1 (3) log a x = - log a x
( 0,+∞) R 即当x =1时,y=0
在(0,+∞)上是 减函数 当x>1时, y<0 当x=1时, y=0 当0<x<1时,y>0
(3)根据对称性(关于x轴对称)已知 的图象,你能画出 ?
3
f (x ) log1 x
o
1
x
(4)当 0<a<1时与a>1时的图象又怎么画呢?
(D)b < a < c
一、选择题(每小题3分,共15分)
1.若函数y=(x+1)(x-a)为偶函数,则a等于(
(A)-2 (B)-1 (C )1 (D )2

【解析】选C.∵y=(x+1)(x-a)=x2+(1-a)x-a是偶函数.
∴1-a=0,∴a=1.
2.已知函数f(x)为R上的减函数,则满足f(|x|)<f(1)的实数x
高中数学必修一常见函数图像
阳信二中 团结协作 无私奉献 创造辉煌
函数y=x的图像
例2、旅行社为某旅游团包飞机去旅 游,其中旅行社的包机费为15000元, 旅游团中的每人的飞机票按以下方式 与旅行社结算:若旅游团的人数在 30人或30人以下,飞机票每张收费 900元;若旅游团的人数多于30人, 则给与优惠,每多1人,机票费每张 减少10元,但旅游团的人数最多有 75人,那么旅游团的人数为多少时, 旅行社可获得的利润最大?
的取值范围是( (A)(-1,1) ) (B)(0,1)
(C)(-1,0)∪(0,1) (D)(-∞,-1)∪(1,+∞) 【解析】选D.∵f(x)在R上为减函数且f(|x|)<f(1), ∴|x|>1,解得x>1或x<-1.
例,已知函数 f (x )(x Î R ), 是奇函数, f ( x) f (x ) = 2x - 1, 且当 时, 求函 x 0 数 的解析式。
2
(一)知识梳理
1、对数的运算性质
如果a > 0 , a ≠ 1 , M > 0 , N > 0,那么:
loga MN = loga M + loga N M log a = log a M - log a N N
loga M n = n loga M
log a m N
n
n = log a N m 2、换底公式:
变式训练
3x 5, x 0 已知函数f ( x) x 5, 0 x 1, 2 x 8, x 1 3 1 (1)求f ( ), f ( ), f ( 1), f f ( 2) 的值. 2 (2)作出函数f ( x)的图象.
(2)
3 3 (1)解:f ( ) 2 8 5, 2 2 1 1 f ( ) 5, f (1) 1 3 5 2, f f (2) f (1) 2.
x
y
1 x y ( ),x R 2
(0,1)
y 2 ,x R
x
y=1
0
x
对数函数y=logax (a>0,且
a≠1)
图 象 性 质
的图象与性质
0<a<1
a>1
定义域 : 值 域 : (1 ,0), 过定点 在(0,+∞)上是 增函数 当x>1时, y>0 当x=1时, y=0 当0<x<1时,y<0
b , 在 2a
x
在(-∞,0) 和(0,+∞) 是增函数
b , 在 2a
o
x
减函数
增函数 b - 在 - , 2a 减函数
指数函数 y a (a
x
0, a 1) 的图像和性质
0<a<1
a>1

y=1
A = {x 2m - 1 x
• 若
3m + 2}, B = {x x ? 2或x
5},
A
B 蛊 , 实数m的取值范围。
• 活页115页 19,20,22题
常见问题 你掌握了多少?
团 结 进 取 自 强 不 息
1 n (5) log a x = log a x n
(2)(loga x )n = loga x n
loga x y (4) = loga loga y x
1 (6) log a x = log a n x n
n
(7)loga x = logan x
其中成立的有(
x- y x +y (8) loga = - loga x +y x- y
1
0
1
y loga2 x y loga3 x
x
y loga4 x
y loga5 x y loga6 x
法2:做直线y=1,观察与各图像交点横坐标即可知道底数大小。
y x3
y x2
yx
yx
1 2
y x 1
幂函数的性质 (1) 所有的幂函数在(0,+∞)都有定义,并 且图象都通过点(1,1); (2) 如果α>0,则幂函数图象过原点, 并且在区间[0,+∞)上是增函数; (3) 如果α<0,则幂函数图象在区间 (0,+∞)上是减函数; (4) 当α为奇数时,幂函数为奇函数; 当α为偶数时,幂函数为偶函数.
y
图 形
y=log
2
x
y=log
10
x
0
1
y=log
0.5
y=log 0.1 x x
x
补充 底数互为倒数的两个对数函数的图象 性质 关于x轴对称。 一 补充 底数a>1时,底数越大,其图象越接近x 性质 轴。 底数0<a<1时,底数越小,其图象越接近 二
x轴。
下列是6个对数函数的图象比较它们底数的大小 法一: 规律:在 x=1的右边看图象,图象越高 底数越小. y y loga x 即图高底小

(A)3个
(B)4个
(C)5个
(D)6个
2 2 例2 : lg 25 + lg 8 + lg 5?lg 20 lg 2 = 3
ln 2 ln 3 ln 5 练习 1: 若a = ,b = ,c = , 则( ) 2 3 5
(A)a < b < c (B)c < b < a
(C)c < a < b
例,画出函数 y = - x 2 + 2 x +1 出函数的单调区间。
的图像并写
• 求函数的定义域
1 f (x ) = x + 2 + 2 x -x-6
f (x ) = x - 1 + 1 - x
a • 判断函数 f (x ) = x + x 的单调性。
在 (1, +
)

• 活页93页 • 已知集合
学习案
2.作出下列函数的图象
4 y 3 2 1 -2 -1 o 1 2 3 x
(1) y x 2( x Z , 且 x 2)
4 (2) y ( x 4且x 0) x
补充练习:求下列各式中x的值。
log2 (log5 x ) = 1
log 4 [log3 (log 1 x )] = 0
学习案
学点二 分段函数 1.画出函数
y x 的图象.
y
由绝对值的集合意义知,
x, x ≥ 0, y 图像如下: x, x 0.
o
x
观察下面两组图像,它们是否也有对称性呢?
y
(1)
O x
fx =
x3
1 f ( x ) ( x 0) x
(2)
y
-1
O
1
x
f(x)=x2
熟 练 记 忆
fx = x
练一练:
判断函数的奇偶性:
f x x 1 1 x
2
2
y o
y
y x
在(-∞,+∞) 是减函数
o y o y
x
在(-∞,+∞) 是增函数
o
y o x
在(-∞,0) x 和(0,+∞) 是减函数
b - 在 - , 2a 增函数
相关文档
最新文档