跟踪雷达基础知识讲

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.5 目标捕获和距离跟踪

距离跟踪就是连续测量从发射射频脉冲到目标回波信号返回之间的延时的过程。距离测量是雷达最精确的位置坐标测量。其典型数据是在测量几百英里距离时精密到几码以内。通常距离跟踪是从其他目标中鉴别出所需目标的主要方法,通过距离波门(即时间选通)从误差检波器输出中消除其他目标的回波(虽然也有用速度鉴别和角度鉴别的)。距离跟踪电路也可用来捕获所希望的目标。距离跟踪不仅必须测量脉冲从雷达到目标的往返行程时间,而且必须识别出反射信号是一目标而不是噪声,并且保存目标的距离随时间变化的历程。

这里的讨论适用于典型的脉冲跟踪雷达。距离测量也可以用使用调频连续波的连续波雷达来完成,这种调频连续波通常是一种线性调频波。目标距离由回波信号和发射信号之间的频率差异决定。考虑到多普勒效应的调频连续波系统的性能见参考资料1。

捕获

距离跟踪的第一个作用是捕获所需的目标。虽然这不是跟踪工作,但在典型的雷达里这是实现距离跟踪或角跟踪之前必需的第一步。对于窄波束跟踪雷达而言,为使天线波束指向目标的方向,必须具备有关目标角位置的某些信息。这个信息叫做引导数据,可以由搜索雷达或其他来源提供。引导数据可以足够精确地把窄波束指向目标或者可以要求跟踪器扫描一个较大的不确定区域。雷达距离跟踪的优点是能看到从近距离一直到雷达的最大距离上的所有目标。通常把这个距离分成小段,其中各段可以同时检验是否有目标存在。当需要波束扫描时,距离跟踪器可在短时间里(如0.1s)检验各段情况,即可作出关于目标是否存在的判断。如果没有目标存在,就让波束移向新的位置。这个过程对机械式跟踪而言是完全连续的,因为机械式跟踪移动波束相当慢,因此使得在对各段距离进行检验的短时间内目标仍然留在波束宽度之内。

与搜索雷达一样,目标捕获要考虑实现给定的检测概率和虚警概率所需的信噪比门限和积累时间[1]。然而,与搜索雷达相比,目标捕获可使用较高的虚警概率,这是因为操纵员知道目标是存在的,不存在在等待目标时由于虚警而使操纵员疲劳。最佳虚警概率的选择是以电路的性能为基础的,此电路可观察各距离间隔以判断哪一个间隔中有目标回波。

其典型的技术是使门限电压足够高,以防止大多数噪声尖峰超过门限,可是又要低得足以让弱信号通过。在各个发射脉冲之后即可观察所检验的距离间隔是否有信号超过了门限。积累时间允许雷达在判决是否有目标存在之前进行几次这种观察。噪声和目标之间的主要区别在于超过门限的噪声尖峰是随机的,但如果有目标存在,则当它超过门限时就比较有规律。一种典型的系统就可简单地计算在积累时间内超过门限的次数,并在超过的次数大于雷达发射次数的一半时,就指出是否有目标出现。若雷达脉冲重复频率是300 Hz,积累时间是0.1s,则在有一个强而稳定的目标时,雷达就能观察到30次超过门限。由于从弱目标来的回波加上噪声不一定总是超过门限,所以可以规定一个界限,如15次,在积累时间里,必须超过这一界限才判定有目标出现。对于非闪烁目标,预期的性能为:在信噪比为2.5dB时,发现概率是90%,虚警率是10-5。AN/FPS—16和AN/FPQ—6测量雷达均使用这些检测参数,每次捕获可使用10个邻接的波门,每个波门宽为1000yd。这10个波门覆盖了5n mile的距离间隔。

距离跟踪

一旦目标被找到,就希望在距离坐标上跟踪目标,以提供连续的距离信息(即到目标的斜距)。适当的定时脉冲提供了距离波门选通,从而使角跟踪电路和自动增益控制电路可仅仅顾及一个短的距离间隔(或预期出现回波脉冲的时间间隔)。距离跟踪是由类似于角跟踪器的闭环跟踪器完成的。它能检测出距离波门对于目标回波脉冲中心的误差,并产生误差电压,从而可提供一个响应于这个误差电压电路,使波门向一个方向移动以重新对准目标回波脉冲中心。

距离跟踪误差可以用许多方法进行检测。其最常用的方法是前、后波门技术(如图18.24所示)。两个波门这样来定时:前波门在主距离波门开始时打开,在主距离波门的中心关闭;后波门在主距离波门中心处打开,在其结束后关闭;前、后波门各自让目标视频脉冲在波门开着的时间内对电容器充电;电容器的作用像积分器;前波门电容器充电到正比于目标视频脉冲的前半个区域的电压上,后波门电容器是负向充电,并正比于目标视频脉冲的后半个区域;当波门正确地对准了一个对称的视频脉冲时,两电容器就等量地充电,其充电所得的电压相加就产生一个零输出;当波门中心没有对准目标视频中心,以致前波门超过了目标视频脉冲的中心时,正向充电波门电容器就收到较大的电荷,而后波门由于只套上脉冲的一小部分,因而得到较小的负电荷。两电容器的电压相加就得到正的电压输出;同样,如果波门提早,以致目标视频脉冲的大部分区域落入后波门内,则两电容器电压的相加就得到负的输出;在误差大约在目标视频脉冲宽度的±1/4的范围内,输出电压基本上是定时误差的线性函数,且具有对应于误差方向的极性。

图18.24 前、后波门距离误差敏感电路

许多雷达距离跟踪系统利用采样电路在视频回波脉冲附近采3~5个样本。与前、后波门距离跟踪器的幅度相类似,可对脉冲前、后两半样本的幅度进行比较以检测出距离误差。

在某些情况下,雷达距离跟踪系统希望按回波前沿或后沿进行距离跟踪。这已在一些应用中得到实现,其方法是简单地加上一个偏置,使对误差灵敏的波门套在目标回波中心的前面或后面,即用波门抑制了不需要的回波(如从目标附近来的其他回波)。门限装置也可用做按前沿或后沿工作的跟踪器,通过观测目标视频超过给定门限的时间来完成。在超过门限的瞬间触发波门电路,以便从计时设备上读出目标距离或者产生一个标志目标出现的合成脉冲。

雷达距离跟踪系统可利用距离误差检波器输出来调整距离波门位置,并校正距离读数而使距离跟踪环路闭合。有一种技术是使用由稳定振荡器驱动的高速数字计数器,在其发射脉冲时使计数器复位到零。如图18.25所示,目标距离由数字系统寄存器中的数字表示。在数字计数器计到与距离寄存器中的数字相同时,重合电路就给出指示并进而产生距离波门,如图18.26所示的框图。距离误差经距离误差检波器检测而得到误差电压,且激励电压控制可变频率振荡器,依据误差电压极性的正、负而增加或减少距离寄存器中的计数。这就把距离寄存器里的数字改变到对应于目标距离的数值上。读出距离寄存器中的数就读出了目标的距离。譬如说,每个单位数即对应于2yd的距离。另外一项技术是使用两个振荡器[26],其距离波门由两振荡器的差频控制,其中一个振荡器由误差检波输出电压在频率上控制。

图18.25 数字式距离跟踪器

相关文档
最新文档