弹塑性时程分析

合集下载

动力弹塑性时程分析技术抗震应用阐述

动力弹塑性时程分析技术抗震应用阐述

动力弹塑性时程分析技术抗震应用阐述高层建筑是当前建筑的主要形式,新材料、新技术的应用使得建筑质量提高,功能越来越齐全。

但其结构设计也更复杂,施工难度加大,因此对其抗震施工技术提出了更高的要求。

高层建筑的投资数额较大,周期也相对较长,而动力弹性时程分析技术是一项综合性较强的技术工作,涉及每一个环节,一旦出现问题,必将影响到施工质量。

从而延误工期,甚至引发安全事故,带来严重的损失。

所以,在施工过程中,必须加强建筑结构抗震设计中对动力弹塑性时程分析技术的应用,进而保证及时解决潜在的隐患。

1.动力弹塑性时程分析技术概述弹塑性时程分析方法可以有效的将结构作为弹塑性振动体系进行相应的分析,并通过对地震波数据在地面运动中的输入应用,可以有效的进行下一步的积分运算,进而可以得出地面加速度随着时间的变化而发生的变化,同时,还可以得出结构的内力与变形随着时间的变化而变化的整个过程。

动力弹塑性时程分析技术的应用通常有以下几个步骤:第一,通过对几何模型的建立,进而实现网格的划分工作;第二,对材料的本构关系进行确定,并根据各个构件自身的单元类型及材料类型的确定,进而对结构的质量、刚度及阻尼矩阵进行确定;第三,根据本场地的地震波,并对模型的边界条件进行定义,进而得出相应的计算结果;第四,根据计算所得出的结果进行进一步的处理工作,并根据处理的结果进行结构整体性可靠度的评估。

2 高层建筑动力弹塑性时程分析技术管理现状2.1材料设备管理中的问题材料是建筑的基础,现代化高层建筑用途不同,所用的材料也千差万别,加上各种新型材料日新月异,种类繁多,管理十分复杂。

如果购置时质检把关不严、储存方式不合理,很容易出现材料不能及时供应等情况,或导致材料性能下降,或与工程技术要求不相符。

各项机械设备、电气设备也是施工中不可或缺的元素,由于制度不健全、监督不严,存在着违规操作等不规范行为,这就导致动力弹塑性时程分析技术在实际的工程施工过程中不能得到有效的反应。

某超高层结构的弹塑性时程分析

某超高层结构的弹塑性时程分析
构件 损伤 情 况进行 对 比 , 结果表 明 , 两个程 序 得 到 的 整 体反 应 计 算 结 果 基 本 吻合 , 结 构 可 以 满足 “ 大震
不倒 ” 的设 防要 求。
关键 词 复 杂超 高层 结构 ,弹塑性 时程 分析 , 抗 震性 能 , 罕遇 地 震
El a s t o - p l a s t i c Ti me Hi s t o r y Aห้องสมุดไป่ตู้ a l y s i s o f a S u p e r Hi g h- r i s e S t r u c t u r e


对 于超 限的复 杂 高层 建 筑 结构 需要 进 行 弹 塑 性 分析 和 计 算 来验 证 “ 大震 不倒 ” 的设防要求。
某超 高层 结构 结构布 置 复杂 , 高度 超 限 , 为 了研 究其 在 地震 作 用下 的抗 震 性 能 , 对 其进 行 弹 塑性 时程 分
析 。采 用 P e r f o r m一 3 D 、 N o s a C A D 建 立模 型 , 主要 分 析 结 构在 7度 罕遇 地 震 下 弹塑 性 时程反 应 , 研 究结 构 在 大震作 用下 受力状 态和 变形 能 力 。通过 对 两个程 序得 到 的结 构在 罕遇 地震作 用下 的整体 反应 指标 和
第2 9卷第 1期
2 0 1 3年 2月





Vo 1 . 29.No .1 Fe b. 2 01 3
S t r u c t u r l Eng a i n e e r s
某超 高 层 结 构 的弹 塑性 时 程分 析
张 云 雷 吴 晓 涵
( 同 济 大 学 结 构 工 程 与 防灾 研 究 所 , 上海 2 0 0 0 9 2 )

超高层连体结构弹塑性时程分析

超高层连体结构弹塑性时程分析
b o d y me mbe r o f t he t wo c a l c u l a t i o n d i d n o t y i e l d, t h e r e l a t e d b e a m a n d la f me b e a m a p p e a r p l a s t i c h i n g e, b u t bo t h d i d n o t r e a c h t h e
( C I T 1 C G e n e r a l I n s t i t u t e o fA r c h i t e c t u r a l D e s i g n A n d R e s e a r c h C o .L t d ,W u h a n 4 3 0 0 1 4 , C h i n a )
王红 军, 张达 生 , 杨 竞 ( 中 信建筑设计研究总院有限公司, 湖 北 武汉 4 3 0 0 1 4 )
【 提 要] 本文以一超高层连体结构实 际工程为 例 , 采 用 Mi d a s B u i l d i n g有 限 元 软 件 对 该 结 构 进 行 详 细 弹 塑 性 时 程 计 算 分
a n g l e o f mo no me r mo d e l i s 1 /1 0 2,a n d t he c o n n e c t o r mo d e l i s 1 /1 35,b o t h me e t t h e s p e c i f i c a t i o n r e q ui r e d mi ni mum s t a n d a r d 1 /1 00.
[ 文章编号 】 1 0 0 2 . 8 4 1 2 ( 2 0 1 4 1 0 1 — 0 0 1 0  ̄ 8

ABAQUS弹塑性时程分析注意事项

ABAQUS弹塑性时程分析注意事项

一、YJK转ABAQUS1、YJK模型的合理简化⑴YJK的模型,如果存在次梁布置不规则、次梁与核心筒搭接不规则、次梁与核心筒开洞相交等情况,会造成模型转化失败,因此,转之前需对模型进行一些合理的简化,既要避免模型转化失败,同时尽可能保持原有模型的特性,防止简化过多,造成简化的模型与原模型在结构动力特性上差别较大,总之一句话,模型简化坚持“简单但不失真”的原则。

此过程不可能一蹴而就,需要反复尝试,简化从少入多,简化越少越好。

⑵验证简化模型的有效性。

模型转过来以后并不是万事大吉,还需要对比模型进行检验。

首先转成线弹性模型,此模型的目的就是采用ABAQUS分析模型的动力特性,查看YJK与ABAQUS两软件计算所得的质量与周期是否一致。

若在误差允许范围内,则可进行下一步操作,反之,则需对简化的YJK模型就行修改。

⑶模型验证有效后,下一步转成弹塑性时程分析模型。

转弹塑性时程分析模型之前,有几个问题需要注意:①关于楼板楼板是采用刚性楼板还是采用弹性楼板,取决于楼板有没有缺失,若整层楼板开洞很小,且我们不关注楼板的应力状态,则分析时采用刚性楼板即可,后续abaqus弹塑性时程分析时不对楼板细分,会节约计算成本;反之,若楼板缺失严重,且楼板应力分布是重点关注的东西,则YJK要对板指定弹性板3或弹性板6或弹性模。

后续ABAQUS分析时会对板就行细分。

板内钢筋根据施工图进行确定,但目前导入ABAQUS却不能查看板内钢筋应力分布情况(此问题有待继续研究)。

②关于梁柱ABAQUS采用纤维单元进行模拟。

梁柱内钢筋采用等效的矩形钢管进行模拟,后续可以查看钢筋的受压损伤因子与受拉损伤因子。

梁柱单元细分数目可取2m。

③关于材料强度由于ABAQUS分析未考虑箍筋的作用。

因此可通过取材料平均值来适当考虑箍筋对混凝土的约束作用。

⑷参数设置成功以后即可计算,当然计算之前需对电脑进行设置,保证程序可以自动调入子程序。

⑸ABAQUS分析结果查看,ABAQUS的默认历史时程输出只有能量的输出,我们关心的顶点时程位移曲线,层间位移角,基底剪力这些需要自己编写命令流输出,以供后续处理。

YJK动力弹塑性时程分析详解

YJK动力弹塑性时程分析详解
8.955100e-005 -8.381950e-005 -2.350330e-004 -7.782120e-004 -7.265580e-004 -4.008440e-004 … SW: 1.855060e-004 9.636760e-005 2.856650e-004 2.530350e-004 4.269670e-004 3.687970e-004 5.499770e-004 … 地震波标示符说明
目标最佳。
2 弹塑性时程分析流程
完整的弹塑性时程分析过程如下图所示,程序提供下图所有功能模块,计算完成后以图 形和表格的方式输出超限结构弹塑性分析报告所用数据。
线弹性分析 与设计
分析与设计 施工图
选择地震波
3组或7组
弹塑性时程 分析
生成数据
含钢筋数据
动力方程求解
NewMark数 00200 -0.00200 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 0.00000 -0.00100 0.00000 -0.00000 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 0.00000 -0.00200 0.00200 0.00100 -0.00000 -0.00100 … 对话框中参数应按如下方式设置: 步长设置:0.02; 故数据起始行号:5,因前 5 行数据为说明行; 一行数据个数:5。
4.1.2 地震波选择
弹塑性动力时程分析结果,对地震波的依赖程度比较高。同一结构,采用不同的地震波, 计算结果可能有非常明显的差异。依据《高规》[4]5.5.1 条第 6 款:进行动力弹塑性计算时, 地面运动的加速度时程的选取、预估罕遇地震作用时的峰值加速度取值以及计算结果的选用 应符合该规程第 4.3.5 的规定。

为什么弹塑性分析模块会有弹性时程分析选项

为什么弹塑性分析模块会有弹性时程分析选项

为什么弹塑性分析模块会有弹性时程分析选项?
弹性时程分析与弹塑性时程分析模型,除了所有构件的材料模式在整个地震过程中不会产生非线(不屈服)外,其它参数如阻尼、动力积分方法等等,与弹塑性时程分析模型是一致的。

程序设置弹性时程分析有以下几个方面的用意:1)高规5.5.1条条文说明提及:“与弹性静力相比,结构的弹塑分析具有更大的不确定性,不仅与上述因素有关,还与分析软件的计算模型以及结构阻尼选取、构件破损程度的衡量、有限元的划分等有关,存在较多的人为因素和经验因素。

因此,弹塑性计算分析首先要了解分析软件的适用性,选用适合于所设计工程的软件,然后对计算结果的合理进行分析判断。

工程设计中有时会遇到计算结果出现不合理或怪异现象,需要结构工程师与软件编制人员共同研究解决”。

针对上述请情况,软件同时计算和输出弹性时程计算结果,并且自动给出节点时程、层时程、层包络对比曲线。

通过弹性与
弹塑性曲线的对比,发现结果的不合理与怪异现象。

比如说弹性与弹塑性时程结果出现了量级上的差别时,应排除模型和计算问题。

一般来说,是弹塑性分析结果不合理的概率大,弹性分析结果是比较稳定和可靠的。

2)弹性时程分析结果可以用于评价结构的性能状态。

精编弹塑性时程分析法资料

精编弹塑性时程分析法资料
时刚度退化。 ③ 非弹性阶段卸载至零第一次反向加载时直线指向反向屈
服点,后续反向加载时直线指向所经历过的最大位移点。 ④ 中途卸载时,卸载刚度取 k1。
《工程结构抗震与防灾》电子教案 东南大学 源自幼亮§4 弹塑性时程分析法
9
2. 双线型模型力学描述:
设 P(Ui ) 、U i 表示ti 时刻结构的恢复力与变形,则在ti1时刻刚度退化双线
P(Ui ) P(U7 )
刚度降低系数为

4

k4 k1
Py U yk1

P(U i1 )

P(U3)

P(U
7
)
Py Uy
(U i1


Py Uy
(U i1
U3) U7
)
(4.1.11)
《工程结构抗震与防灾》电子教案
东南大学
丁幼亮
§4 弹塑性时程分析法
U 0 ,U U6
初始条件为
U i U 6 , P(U i ) P(U 6 ) 0
刚度降低系数为
P(U 2 )
(U 2 U 6 )k1

P(U i1 )
P(U 2 ) U2 U6
(U i1
U6 )
(4.1.7)
需要指出,式(4.1.2)~式(4.1.7)中,U 2 、 P(U 2 ) 、U 3 、U5 、 P(U5)
(1) 在弹性阶段,K 是定值,不随变形而变化. (2) 在弹塑性阶段,K 值随结构变形状态不同而改变。 (3) 由于地震下结构变形为一个循环往复的过程,因此 K 值随着变形也是
个循环往复的过程。
因此,弹塑性时程分析法必须首先确定刚度与变形之间的关系,

弹性、弹塑性时程分析

弹性、弹塑性时程分析

PKPM软件园地 建筑结构.技术通讯 2007年1月弹性、弹塑性时程分析法在结构设计中的应用杨志勇 黄吉锋(中国建筑科学研究院 北京 100013)0 前言地震作用是建筑结构可能遭遇的最主要灾害作用之一。

几十年来,人们积累了大量的实测地震资料,这些资料多以位移、速度或者加速度时程的形式体现。

与此相对应,时程分析方法也被认为是最直接的一种计算建筑结构地震响应的方法。

但是,由于地震作用随机性导致计算结果的不确定性,弹性时程分析方法只是结构设计的一种辅助计算方法;虽然如此,抗震规范为了增强重要结构的抗震安全性,还是将弹性时程分析方法规定为常遇地震作用下振型分解反应谱法的一种补充计算方法;尤其是考虑了结构的弹塑性性能后,弹塑性时程分析方法更是被普遍认为是一种仿真的罕遇地震作用响应计算方法。

《建筑抗震设计规范》(GB50011-2001)第3.6.2,5.1.2,5.5.1,5.5.2,5.5.3等条文规定了时程分析相关的内容。

下面结合TAT ,SATWE ,PMSAP 和EPDA 等软件应用,探讨如何将弹性、弹塑性时程分析正确应用到结构设计中去。

1 弹性时程分析的正确应用11正确地在软件中应用弹性时程分析方法需要对规范的相关条文规定有正确的认识。

以下几点是需要特别明确的:(1)抗震规范第5.1.2条第3点规定,“可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值”。

在设计过程中,如何实现“较大值”有不同的做法:1)设计采用弹性时程分析的构件内力响应包络值的多波平均值与振型分解反应谱法计算结果二者的较大值直接进行构件设计;2)在实现振型分解反应谱方法时,放大地震力使得到的楼层响应曲线包住时程分析楼层响应曲线的平均值。

图1 SATWE 地震作用放大系数前一种做法可能使得构件配筋较大,因为在时程分析过程中,构件内力的最大响应具有不同时性,采用包络值进行设计会使得构件内力,尤其是压弯构件内力偏于保守。

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较一、Pushover分析法1、Pushover分析法优点:(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。

(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。

2、Pushover分析法缺点:(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。

(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。

(3)只能从整体上考察结构的性能,得到的结果较为粗糙。

且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。

不能完全真实反应结构在地震作用下性状。

二、弹塑性时程分析法1、时程分析法优点:(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。

(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。

(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。

(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。

2、时程分析法缺点:(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。

(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。

所以此法的计算工作十分繁重,必须借助于计算机才能完成。

厦门建发国际大厦动力弹塑性时程分析

厦门建发国际大厦动力弹塑性时程分析
性能为基准的抗震世刊指导文件。水文乐川荚旧规范ATc40…以发美闰联爿f紧急事务管理暑(FEMA【51) 第356号文件“建筑抗震修复预标准其说明”所提供的结构构件弹塑性变形町接受限值。
。∥’——
!!生!口’叫…。¨m
(a)%f#&§m}
_r

L!!』幽。、、
(b)***&女^十 目14#自№*Ⅲn§* (c)自#*女&女¥

4地震加戴 根据《建筑抗震醍汁规范》GB50叭1 2。01州《高屡建筑混凝}。结构技术川程》¨1』3 2∞2以及没
计院的建议,此次分析选取了甲遇地震r的目f凡然波年¨蛔人T波,M州为了分析r}・震作用r的结 构性能,将小震人T波放大2 8l倍,得到中Jl地震波,考虑rl,震r时结构性能彤…。按《规范》艘定. 在所采用的这些地震记录中,两个分毓峰值加速度的比值符合咀F比值要求x:Y=0 55曲/一2,人震310 cm^2).在此接础上.阿乘以方向系数(x:v

64(v)藩』;;的楼』剁。;问抗侧
山结构的受卿承找山。j j联受蜉承城力的比值为0 70。四Ⅲ_A脎以}.上体结构收进的水平凡0与r郝 楼腻之比人于25%。除此以外,…十受建筑粕置及功能使川j‘的限制,建筑物顾部(们层以1)正法 设咒忡臂桁粜,『…X在15 J;:和3l J,:世仲臂桁架。仲付桁架规格为:r F丝90。“。0x25x25,腹¨
和拉』七衙环的刚度践复。通常认为.Jl有当应变大J。0 025时,制筋才能进入强化阶段,『m在实际结 构中为控制裂缝∞过火开胜, 般控制受拉钢筋麻变不大丁0 0l。在普通钢筋混凝i。中.在甲截面假
定下,即便拒强震忭用下,铡筋也搬难进入强化阶段。…此分析,并学虑到T程l:的适用性,本文采 川.折线动力删化模型来模拟铡筋存反堑柑找作用F的口一e咒系。芍虑钢材的强化段,钢材的弹性 模昼为E.强化段的弹他模母为0 0lE,。如图6所示。

浅谈弹塑性动力时程分析方法

浅谈弹塑性动力时程分析方法

浅谈弹塑性动力时程分析方法对于结构地震响应分析方法,发展到目前为止,可以归纳为以下三个发展阶段:静力法、拟静力法(即反应谱法)、动力法(主要为时程分析法)。

在结构进入弹塑性阶段后,结构的一些构件进入屈服状态、结构刚度发生变化、产生塑性区域。

而弹性静力法忽略了结构的动力特性和结构的非刚性等重要特性,此时已经不再适用,因此使用弹性静力法已经不能满足现代建筑结构的设计要求。

反应谱法能考虑结构的动力特性及其与地震作用之间的相互关系,但它不能给出结构地震反应的全过程,更无法给出各构件进入弹塑性变形阶段的内力和变形状态。

为了研究和计算高层建筑结构的弹塑性变形,有必要进行结构的弹塑性分析。

目前,结构的弹塑性分析主要分为弹塑性动力分析和弹塑性静力分析两大类[1] [2]。

1 现有弹塑性分析方法综述1.1 静力弹塑性分析方法静力弹塑性分析方法,即我们常说的Push-over法,主要用于进行变形验算,尤其是在大震下的抗倒塌验算。

它是结构地震相应分析的简化方法[3] [4] [5]。

Push-over法基本步骤大致如下[1]:(1)建立结构的计算模型、确定构件的相关参数以及要采用的恢复力模型。

(2)求出作用在结构上的竖向荷载并求出结构在竖向荷载作用下的内力,以便和水平荷载作用下的内力进行组合。

(3)根据结构的具体情况,确定对结构施加的水平荷载分布形式:倒三角或与第一振型等小的水平荷载模式。

水平荷载施加于各楼层的质心处,逐渐单调增加侧向力,以产生的那里跟善意不计算所得的内力叠加后,刚好使一个或者一批构件开列进入屈服状态为宜。

(4)对于上一步进入屈服的构件进行修改,形成一个“新”的结构,修改结构的刚度矩阵并求出“新”结构的自振周期,不断重复第3步直到结构的侧向位移达到预定的目标位移、或是结构变成为机构为止。

记录每一步的结构自振周期并累计每一步施加的荷载。

(5)将每一个不同的结构自振周期及其对应的水平力总量与结构自重(重力荷載代表值)的比值(地震影响系数)绘成曲线,也把相应场地的各条反应谱曲线绘在一起,以此来评估结构的抗震性能。

SAP2k第6章弹性及弹塑性时程分析

SAP2k第6章弹性及弹塑性时程分析
Wen塑性单元行为描述如下:
f r k d 1 r yield z
式中:k为弹性弹簧常数;yield为屈服力;r为指定的屈
服后刚度对弹性刚度的比值;z为一个内部的滞后变量,
此变量范围为|z|≤ 1,其屈服面由|z|= 1代表。。
其中exp 为等于或大于1 的指数。
此指数越大,屈服比率越陡。实际指
数限值大约是20。公式z‘ 等价于
Wen 模型A=1 及α=β=0.5。
2.3 单元类型介绍——滞回(橡胶)隔震属性
双轴的滞后隔振器,对于两个剪切变形有耦合的塑性属性
,且对余下的4个变形有线性的有效刚度属性。 对 每 一 个
剪切变形自由度,用户可独立的指定线性或非线性的行为。
2.3 单元类型介绍——滞回(橡胶)隔震属性
●在每一曲线终点的斜率不能为负
2.3 单元类型介绍——多段线性塑性连接单元
用户定义多段线性曲线上的点时,对称的成对点将被
连接,即使是非对称的曲线。这样能够对滞回曲线的形状
进行一些控制。
2.3 单元类型介绍——多段线性塑性连接单元
Takeda模型
Takeda模型在卸载过程中,当通过水平轴时,卸载曲线
沿反向加载路径(Backbone Force Deformat ion )
的切线方向。
2.3 单元类型介绍——多段线性塑性连接单元
枢纽点(Pivot)模型
这个模型与Takeda 塑性模型相似,但是具有一个附加
参数来控制退化滞回曲线。适用于钢筋混凝土单元,是基
于趋向于在力-变形(或弯矩-转动)平面内指定点、也
筏板基础等。
体单元
主要用于细部分析。
点单元
也称连接单元,可在两节点之间绘制,也可在一个节

MATLAB弹塑性时程分析法编程

MATLAB弹塑性时程分析法编程

MATLAB弹塑性时程分析法编程弹塑性时程分析是工程结构力学中的一种重要分析方法,用于评估结构在地震等动力荷载下的变形和应力分布。

MATLAB是一种非常强大的科学计算软件,具有丰富的工具箱和函数,可以方便地编写弹塑性时程分析的程序。

本文将介绍如何用MATLAB编程实现弹塑性时程分析。

1.弹塑性分析概述弹塑性分析是一种结构稳定性的计算方法,它考虑了结构的非线性行为,如塑性变形和残余应力。

弹塑性分析的基本思想是将结构划分为弹性和塑性两个部分,根据结构的实际受力情况,逐步计算结构的位移、应力和变形等参数。

2.弹塑性时程分析原理弹塑性时程分析是指以地震动作为输入,计算结构的时程响应。

其基本步骤是:首先,根据结构参数和地震动波特性,建立结构的动力模型。

然后,采用数值积分方法,按照时间步进逐步计算结构的位移、速度和加速度等参数,直到达到要求的计算时间。

在计算过程中,根据结构的非线性本构关系和塑性溃效准则,判断应力状态是否进入塑性阶段,并更新剩余强度等参数。

3.弹塑性时程分析MATLAB编程步骤(1)建立结构的动力模型首先,根据结构的几何形状和材料性质,使用MATLAB建立结构的节点和单元模型。

可以利用网格划分法或几何变换法进行离散化,以获得结构的节点和单元信息。

(2)定义地震动输入根据地震动加速度时程图,使用MATLAB定义地震动输入信号。

可以通过读取实测地震数据,或者使用地震动模拟软件产生地震动波进行模拟。

(3)定义结构的本构关系根据结构的材料性质和截面参数,使用MATLAB定义结构的本构关系。

可以根据结构的线性弹性或非线性塑性材料模型,采用协调变形法或增量处理法进行计算。

(4)制定计算控制策略根据结构的强度要求和计算时间,制定合理的计算控制策略。

这包括选择合适的时间步长和计算时程,以及考虑计算结果的误差控制和稳定性分析。

(5)编写弹塑性时程分析算法根据以上步骤,编写MATLAB程序来实现弹塑性时程分析。

弹塑性时程分析法

弹塑性时程分析法

形关系式简述如下。
(1)正向或反向弹性阶段(01 段或 04 段)
此阶阶段有 U 0 ,U U y ;或U 0 , U U y
初始条件为 U 0 0 , P(U 0 ) 0 刚度降低系数为 1

P(Ui 1 )

k1Ui1 ,
k1

Py Uy
(4.1.2)
《工程结构抗震与防灾》电子教案 东南大学 丁幼亮
(4)正向硬化阶段卸载至零且第一次反向加载(34 段)
此阶段有U 0 ,U U 3
初始条件为U i U 3 , P(U i ) P(U 3 ) 0
刚度降低系数为

(U 3
Py U
y
)k1
故P (U i 1 ) Nhomakorabea
U3
Py U
y
(U i 1
U3)
(4.1.5)
(5)反向硬化阶段加载(56 段)
p(x)

2

Qx
arctan
(2
x
)Qx
(3)正向硬化阶段卸载(23 段)
此阶段有U 0 ,U U 2
初始条件为U i U 2 , P(U i ) P(U 2 ) 刚度降低系数为 1
故 P(U i1 ) P(U 2 ) k1 (U i1 U 2 )
《工程结构抗震与防灾》电子教案 东南大学 丁幼亮
11
§4 弹塑性时程分析法
刚度降低系数为
1

k2 k1
1
故 P(Ui1) Pc 1k1(Ui1 Uc )
(4.1.9)
《工程结构抗震与防灾》电子教案 东南大学 丁幼亮
16 (3)正向或反向硬化段(23 段或 67 段)

某8度区超高层结构弹塑性时程分析

某8度区超高层结构弹塑性时程分析
7 3—8 9.
, 2 0 1 l , 2 3 ( 1 ) :
[ 9 3 M s s h k o c r A, J a c q u o  ̄ J P .C  ̄ i d d i n e s . f u r F i m ml D e m a J nM o d e l - i n gi nE v e n t —B[ C ] .ho c . t h e2 m l硼 E Et 3 t h】 l l i ∞
[ 4 ] 杨先桥 , 傅学怡 , 黄用军. 深圳平安金融中心塔楼 动力弹塑性
分析[ J ] . 建筑结构学报 , 2 0 1 I , ( O 7 ) . [ 5 ] 杨学林 , 周平槐 , 徐燕青. 兰州红楼时代 广场超 限高层性 能化 抗震设计t J ] . 建 筑结构 , 2 o 1 2 , ( O &
4 结

本 文通 过对 8度 区某 超 高 层 结 构 的 A B A Q U S 动力 弹塑性 时程分 析 , 可 以得到 如下 结论 : ( I )罕遇地 震作 用下 , 结构 的层 间位移 角 满足 规范 1 / 1 0 0的限值要求 , 在完 成 弹塑性 时程分 析后 ,
[ 2 ] 吴 晓涵 . N o s a C A D与 A B A Q U S 和P e r o f r m 3 D弹塑性 模型转换
及分析应用 [ J ] . 建筑结构 , 2 0 1 2 , ( 1 1 ) . [ 3 ] 庄茁 , 张帆 , 岑松 . A B A Q U S非线性有 限元分析 与实例 [ M] .
北京 : 科学 出版社 , 2 0 0 5 .
结构仍保持直立, 满足“ 大震不倒” 的设防要求. ( 2 )在动力时程分析过程 中, 连梁受压损伤明 显, 起到了很好的耗能作用 , 结构进入弹塑性 阶段 ; 大部分墙肢未现受压损伤 , 保证了结构 安全性.

弹塑性时程分析用地震波选取的基本原则1

弹塑性时程分析用地震波选取的基本原则1

弹塑性时程分析用地震波选取的基本原则2010-06-06 20:14:20| 分类:结构设计相关| 标签:高层建筑地震地震波地震资料|字号大中小订阅地震动具有强烈随机性,分析表明,结构的地震反应随输入地震波的不同而差距很大,相差高达几倍甚至十几倍之多。

故要保证时程分析结果的合理性,必须合理选择输入地震波。

归纳起来,选择输入地震波时应当考虑以下几方面的因素:峰值、频谱特性、地震动持时以及地震波数量,其中,前三个因素称为地震动的三要素。

1、峰值调整地震波的峰值一定程度上反映了地震波的强度,因此要求输入结构的地震波峰值应与设防烈度要求的多遇地震或罕遇地震的峰值相当,否则应按下式对该地震波的峰值进行调整。

A′(t) = (A′max/A max) A (t)其中,A′(t) 和A′max分别为地震波时程曲线与峰值,A′max取设防烈度要求的多遇或罕遇地震的地面运动峰值; A (t) 和Amax分别为原地震波时程曲线与峰值。

2、频谱特性频谱即地面运动的频率成分及各频率的影响程度。

它与地震传播距离、传播区域、传播介质及结构所在地的场地土性质有密切关系。

地面运动的特性测定表明,不同性质的土层对地震波中各种频率成分的吸收和过滤的效果是不同的。

一般来说,同一地震,震中距近,则振幅大,高频成分丰富;震中距远,则振幅小,低频成分丰富。

因此,在震中附近或岩石等坚硬场地土中,地震波中的短周期成分较多,在震中距很远或当冲积土层很厚而土质又较软时,由于地震波中的短周期成分被吸收而导致长周期成分为主。

合理的地震波选择应从两个方面着手:1) 所输入地震波的卓越周期应尽可能与拟建场地的特征周期一致。

2) 所输入地震波的震中距应尽可能与拟建场地的震中距一致。

3、地震动持时地震动持时也是结构破坏、倒塌的重要因素。

结构在开始受到地震波的作用时,只引起微小的裂缝,在后续的地震波作用下,破坏加大,变形积累,导致大的破坏甚至倒塌。

有的结构在主震时已经破坏但没有倒塌,但在余震时倒塌,就是因为震动时间长,破坏过程在多次地震反复作用下完成,即所谓低周疲劳破坏。

ABAQUS弹塑性时程分析报告

ABAQUS弹塑性时程分析报告

目录1 工程概况 (1)1.1工程与模型概况 (1)1.2进行罕遇地震弹塑性时程分析的目的 (1)2分析方法及采用的计算软件 (2)2.1分析方法 (2)2.2分析软件 (2)2.3分析步骤 (2)2.4结构阻尼选取 (3)3 结构抗震性能评价指标 (4)3.1结构的总体变形 (4)3.2构件性能评估指标 (4)5 罕遇地震弹塑性动力时程分析结果 (5)5.1地震波选取 (5)5.2各地震波组分析结果汇总 (6)5.2.1基底剪力 (6)5.2.2层间位移角 (7)5.2.3 结构顶点水平位移 (9)5.2.5 结构弹塑性整体计算指标评价 (10)6构件性能分析 (11)6.1钢管混凝土柱 (11)6.2主要剪力墙 (12)6.2.1 底部剪力墙 (13)6.2.2加强层 (13)6.2.3其他楼层 (14)6.3连梁 (15)6.4斜撑 (16)6.5钢梁的塑性应变 (17)7 罕遇地震作用下结构性能评价 (19)1 工程概况1.1 工程与模型概况(a )三位模型 (b )加强层结构布置图1.1 ABAQUS 计算模型1.2 进行罕遇地震弹塑性时程分析的目的对此工程进行罕遇地震作用下的弹塑性时程分析,以期达到以下目的: (1)评价结构在罕遇地震作用下的弹塑性行为,根据主要构件的塑性损伤和整体变形情况,确定结构是否满足“大震不倒”的设防水准要求;(2)研究结构在大震作用下的基底剪力、剪重比、顶点位移、层间位移角等综合指标,评价结构在大震作用下的力学性能;(3)检验混凝土墙肢在大震下的损伤情况,钢筋是否屈服; (4)检验钢管混凝土及钢结构构件在大震下的塑性情况; (5)研究防屈曲支撑的塑性变形情况;(6)根据以上分析结果,针对结构薄弱部位和薄弱构件提出相应的加强措施,以指导结构设计。

2分析方法及采用的计算软件2.1 分析方法目前常用的弹塑性分析方法从分析理论上分有静力弹塑性(pushover )和动力弹塑性两类,从数值积分方法上分有隐式积分和显式积分两类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。

基本原理
多自由度体系在地面运动作用下的振动方程为:
式中、、分别为体系的水平位移、速度、加速度向量;为地面运动水平加速度,、、
分别为体系的刚度矩阵、阻尼矩阵和质量矩阵。

将强震记录下来的某水平分量加速度-时间曲线划分为很小的时段,然后依次对各个时段通过振动方程进行直接积分,从而求出体系在各时刻的位移、速度和加速度,进而计算结构的内力。

式中结构整体的刚度矩阵、阻尼矩阵和质量矩阵通过每个构件所赋予的单元和材料类型组装形成。

动力弹塑性分析中对于材料需要考虑包括:在往复循环加载下,混凝土及钢材的滞回性能、混凝土从出现开裂直至完全压碎退出工作全过程中的刚度退化、混凝土拉压循环中强度恢复等大量非线性问题。

基本步骤
弹塑性动力分析包括以下几个步骤:
(1) 建立结构的几何模型并划分网格;
(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;
(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;
(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。

计算模型
在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。

在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。

以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。

其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。

它的主要优
点有:
(1) 应用范围广泛,可以使用在梁单元、壳单元和实体单元等各种单元类型中,并与钢筋单元共同工作;
(2) 可以准确模拟混凝土结构在单调加载、循环加载和动力荷载下的响应,并且可以考虑应变速率的影响;
(3) 引入了损伤指标的概念,可以对混凝土的弹性刚度矩阵进行折减,可以模拟混凝土的刚度随着损伤增加而降低的特点;
(4) 将非关联硬化引入到了混凝土弹塑性本构模型中,可以更好的模拟混凝土的受压弹塑性行为,可以人为指定混凝土的拉伸强化曲线,从而更好的模拟开裂截面之间混凝土和钢筋共同作用的情况;
(5) 可以人为的控制裂缝闭合前后的行为,更好的模拟反复荷载作用下混凝土的反应。

对于钢材等材料的屈服和强化,ABAQUS提供了各种屈服准则,流动法则和强化准则,并可以考虑加载时的应变速率等问题。

在ABAQUS的后处理模块中,可以给出整个模型在地震作用下每个时刻的结构变形形态、应力等相关数据,可以查看结构所有混凝土单元的损伤、混凝土中分布的钢筋应力等,了解结构的破坏情况,也可以根据结构的总侧移量和层间位移等控制指标对结构进行整体的判定分析。

优缺点
相比弹性分析中的振型分解反应谱法和POA方法,弹塑性时程分析方法的优点是:
(1) 由于输入的是地震波的整个过程,可以真实反映各个时刻地震作用引起的结构响应,包括变形、应力、损伤形态(开裂和破坏)等;
(2) 目前许多程序是通过定义材料的本构关系来考虑结构的弹塑性性能,因此可以准确模拟任何结构,计算模型简化较少;
(3) 该方法基于塑性区的概念,相比POA中单一的塑性铰判别法,特别是对于带剪力墙的结构,结果更为准确可靠。

该方法的缺点是:
(1) 计算量大,运算时间长,由于可进行此类分析的大型通用有限元分析软件均不是面向设计的,因此软件的使用相对复杂,建模工作量大,数据前后处理繁琐,不如设计软件简
单、直观;
(2) 分析中需要用到大量有限元、钢筋混凝土本构关系、损伤模型等相关理论知识,对计算人员要求较高。

但是随着理论研究的不断发展,计算机软硬件水平的不断提高,动力弹塑性时程分析方法已经开始应用于少数超高层和复杂的大型结构分析中。

4工程应用
东莞台商会馆大楼位于广东省东莞市中心区,由一栋68层超高层办公公寓楼(主楼)和一栋十层商业办公楼(副楼)组成(见图3),主楼与副楼之间采用防震缝分开。

主楼总高度为289m,属于超过《高规》规定的B级高度的超限高层。

该楼为钢框架混凝土核心筒结构,采用钢管混凝土柱,钢-混凝土组合楼板。

结合建筑的避难层,在23、38、54及64层设置了四个加强层。

加强层沿核心筒Y向剪力墙布置四道伸臂桁架,并沿外框架柱一周布置带状桁架。

图3 东莞台商会馆大楼
该结构高度较高,周期较长,受高阶振型影响明显,而且核心筒剪力墙的是否安全可靠是整个分析的重点,因此POA方法并不适用于本案。

经过比较,最终采用大型通用有限元软件ABAQUS进行了动力弹塑性时程分析,单次计算时间为7.5天。

计算选取EL-CENTRO 波和场地波进行计算,加速度峰值均为163gal,地震波持时30秒。

之前该结构采用ETABS和MTS进行了弹性计算,各项指标正常,均满足规范要求。

而采用ABAQUS进行初算后,却发现该结构在局部楼层剪力墙发生了严重的塑性破坏,表现为混凝土压碎,剪力墙钢筋出现屈服。

针对结构在弹塑性分析中出现的薄弱部位和破坏区域,对原设计进行了局部调整和优化,最终对新的方案进行了再次计算。

计算发现:EL-CENTRO波作用下,从地震加载开始,剪力墙裂缝逐步发展。

至地震结束时,Y向的所有连梁和X向顶部和底部的连梁基本裂通,根据连梁上的裂缝分布和应力判断均为受弯破坏,连梁端部剪应力较低,满足“强剪弱弯”的要求。

核心筒墙体仅在54层加强层X向剪力墙上出现较为明显的拉、压裂缝,但破坏程度较轻,钢筋应力始终小于屈服强度。

楼板拉裂主要集中在加强层和顶层核心筒周围板带和四个角部区域,受压破坏只出现在加强层与伸臂桁架相连的4条板带上,破坏程度也比较轻。

整个地震过程中,框架柱和大部分钢梁的应力始终不大,基本没有进入塑性阶段,只有加强层顶部与伸臂桁架相连的主梁局部进入了塑性。

最大层间位移为1/366,发生在27.2秒,位于第65层。

而在场地波作用下,
震害明显较轻,除了局部楼板、核心筒局部墙体和连梁开裂外,其他部位基本没有破坏。

至此,认为该结构能够抵御罕遇地震的作用,满足“大震不倒”的性能目标。

可以看出,对重要的高层建筑和复杂结构进行动力弹塑性分析可以弥补弹性分析方法的不足,帮助设计人员找到其薄弱部位,对结构在地震作用下的可靠度进行评估,减少了设计的盲目性,使结构设计更加合理和安全。

5结语
结构的动力弹塑性分析方法是一项非常复杂的工作,从计算模型的简化、恢复力模型的确定、地震波的选用,直至计算结果的分析和后处理都需要进行大量的工作,而且数据量庞大,计算周期较长。

但是它是目前进行结构抗震分析最为理想的方法,具有其它方法无可比拟的优势。

当前,建筑结构的形式日益丰富,高度和跨度不断增长,对于结构的计算分析手段也提出了越来越高的要求。

随着计算机软硬件水平的不断提高,将动力弹塑性时程分析方法应用于工程实践中已经逐渐变为现实,相信动力弹塑性分析方法必将在结构设计中得到更加广泛的应用。

相关文档
最新文档